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FINITE STATIONARY PHASE EXPANSIONS∗

JAMES BERNHARD†

Abstract. Functions which are moment maps of Hamiltonian actions on symplectic manifolds
have the property that their stationary phase expansions have only finitely many nonzero terms and
are therefore precise rather than asymptotic. In this paper, we exhibit another type of function
which has this property and explain why in terms of equivariant cohomology and the geometry of
the spaces involved.
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Let S2n denote the unit sphere in R2n+1, given by

S2n = {(x1, x2, . . . , x2n, z) | x1
2 + x2

2 + · · · + x2n
2 + z2 = 1},

and let dV denote the standard volume form on S2n inherited from R2n+1. For any
nonzero t ∈ R and any C∞-function f : S2n → R, the method of stationary phase
(see [3] or [4], for example) tells us that

∫

S2n

etf dV =
∑

p∈Cf

etf(p)Qp(t
−1),

where Qp is a power series with coefficients depending on p and where

Cf = {p ∈ S2n | f ′(p) = 0}

is the set of critical points of f .
In the particular case that f : S2n → R is the “height function”

f(x1, . . . , x2n, z) = z

on S2n (with critical points at z = ±1), one can compute directly that

∫

S2n

etz dV = c

∫ 1

−1

etz(1 − z2)n−1 dz =
∑

z=±1

etzQz(t
−1),

where c is some real constant and Qz is a polynomial with coefficients depending on
z. In other words, the stationary phase expansion of the height function on S2n has
only finitely many terms and is therefore precise, rather than asymptotic.

This gives rise to the main question of this paper: Where did this function come

from and why does it have this property? In the coming sections, we give an explana-
tion for why f has this property in terms of equivariant cohomology and the geometry
of S2n.
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188 J. BERNHARD

1. The Duistermaat-Heckman Theorem. The Duistermaat-Heckman Theo-
rem provides examples of functions with this finite stationary phase property, namely
moment maps of Hamiltonian actions. In such examples, the manifolds involved are
symplectic and the stationary phase expansions of the moment maps are all single-
term expansions, as opposed to the multiple-term expansion associated with the height
function on S2n (which is, of course, not symplectic for n > 1). In this paper, we show
a way to generalize the Atiyah-Bott method of proving the Duistermaat-Heckman
Theorem to accomodate the example of the height function on S2n. For simplicity,
we describe such a generalization only for the case of an S1- action, but the methods
involved carry over readily to the case of a torus action.

The Atiyah-Bott method of proving the Duistermaat-Heckman Theorem for a 2n-
dimensional symplectic manifold M with a Hamiltonian action by S1 which has only
isolated fixed points is as follows (see [1]). If the symplectic form on M is denoted by
ω and u ∈ s

1∗ is dual to a nonzero X ∈ s
1, and if

ω̃ = ω + fu

is equivariantly closed, then the function f : M → R is called a moment map associ-
ated with ω. To demonstrate that the moment map f has the finite stationary phase
property, we exponentiate ω̃:

∫

M

eeω =

∫

M

efueω,

which, when expanded out, equals:

∫

M

efu

(
1 + ω +

ω2

2!
+ · · · +

ωn

n!

)
.(1)

Removing terms which do not contain differential forms of degree 2n and integrating
directly, we are left with the integral of efu times the symplectic volume form:

(1) =

∫

M

efu ωn

n!
.

On the other hand, applying the Equivariant Localization Theorem (see [1] or [2], for
example) to (1), we find that

(1) =
∑

p∈Cf

ef(p)u

cpun
,

where each cp ∈ R is some constant depending on p and where Cf is again the set of
critical points of f .

Combining the above two equations and evaluating both sides at tX (for real
t 6= 0) shows that the stationary phase expansion for the moment map f has only a
single term for each critical point:

∫

M

etf ωn

n!
=
∑

p∈Cf

etf(p)

cptn
.
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2. Generalizations. The Atiyah-Bott proof of the Duistermaat-Heckman The-
orem leads us to investigate what happens if we exponentiate equivariantly closed
forms other than those arising from symplectic forms and moment maps. In particu-
lar, let M be a compact smooth (not necessarily symplectic) 2n-dimensional manifold
acted on by S1 with only isolated fixed points, and let M have a non-degenerate closed
S1-invariant 2k-form α ∈ Ω2k(M). If k and l are positive integers with 2kl = 2n, then
αl/l! is a volume form on M .

Let us also assume that α can be “extended” to an equivariantly closed form

α̃ = α + αk−1u + · · · + α1u
k−1 + fuk,

where each αj ∈ Ω2j(M) and f : M → R. (Here as before, X ∈ s
1 is nonzero, and

u ∈ s
1∗ is its dual.) The form α will always have such an extension if, for example,

M has no nontrivial cohomology in dimensions less than 2k.
Any such α̃ can be exponentiated and integrated as in the Atiyah-Bott proof

of the Duistermaat-Heckman Theorem. This time, however, there are additional
complications. We have

∫

M

eeα =

∫

M

efuk

eα+αk−1u+···+α1uk−1

,

which, when expanded out, equals:
∫

M

efuk
(
1 + (α+αk−1u + · · · + α1u

k−1)

+
(α + αk−1u + · · · + α1u

k−1)2

2!
+ · · ·

)
.(2)

As was the case with (1), we can evaluate (2) by applying the Equivariant Local-
ization Theorem to obtain:

(2) =
∑

p∈Cf

ef(p)uk

cpun
,

where each cp ∈ R is again some constant depending on p.
Removing the terms in (2) which do not contain differential forms of degree 2n

as we did before does not leave only the volume form this time though. Rather, we
have that

(2) =

∫

M

∑

i1+···+ij=n

αi1αi2 · · ·αij
ujk−n

j!
,

where i1, . . . , ij are positive integers and with the convention that αk = α. It is not

apparent in general what contribution these “cross-terms”
1

j!
αi1αi2 · · ·αij

ujk−n make

to the integral.

3. The constant curvature case. In the particular case where M has constant
curvature and where α is the nonzero Euler class of M , we now show how to compute
the contribution of the above cross-terms to the integral. These extra restrictions
rule out nearly everything but S2n, however, so it is hoped that the methods involved
in computing the contribution of the cross-terms will be found applicable in a wider
setting, as we discuss in Section 6.
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To compute the contribution of the cross-terms, we first introduce some notation.
Let M be any compact, smooth 2n-dimensional manifold with nonzero Euler class
and with an action by S1 which has only isolated fixed points. As before, let X ∈ s

1

be nonzero and let u ∈ s
1∗ be dual to X . Also assume that ∇ : Γ(TM) → Γ(T ∗M ⊗

TM) is an S1-invariant connection on M with (necessarily S1-invariant) curvature
R ∈ Ω2(M ; End(TM)).

The equivariant Euler class of M then (see [2], for example) is given by

χ̃ = Pfaff

(
R + uL

2π

)
:= χn + χn−1u + · · · + χ1u

n−1 + χ0u
n,(3)

where the map L can be described as follows. Any element Y ∈ s
1 induces a vector

field on M given by

Ỹ (p) =
d

dt

(
exp(−tY ) · p

)∣∣∣∣
t=0

for any p ∈ M . If L denotes the Lie derivative, then the map L is defined by

L(Y ) = LeY −∇eY
for any Y ∈ s

1.
Note that by the definition given in (3), we have that

χ = χn = Pfaff

(
R

2π

)
(4)

is the ordinary Euler class of M , and that

f = χ0 = Pfaff

(
L

2π

)
.(5)

By the same definition, we also have that χj ∈ Ω2j(M) for each j = 0, 1, . . . , n.
To compute the contribution of the cross-terms in (2) in the case where α̃ = χ̃,

we use the following lemma.

Lemma 3.1. If M has constant curvature, then the coefficients of u in the expan-

sion (3) for χ̃ satisfy the following relationships:

χkχl =
(k + l)! (k + l)! (2k)! (2l)!

k! k! l! l! (2k + 2l)!
f χk+l,

for any k, l ∈ {1, . . . , n} such that k + l ≤ n.

In the interest of clarity and brevity of exposition, we postpone the proof of
Lemma 3.1 to Section 4. We proceed now to the main theorem of this paper.

Theorem 3.2. If M has constant curvature with Euler class χ given by Equa-

tion (4), and if f is the function defined by Equation (5), then the stationary phase

expansion of

∫

M

etfχ

relative to the parameter t has only finitely many non-zero terms.



FINITE STATIONARY PHASE EXPANSIONS 191

Proof. Proceeding to exponentiate the equivariant Euler class χ̃ as we did the
forms ω̃ and α̃ above, we find that if M0 denotes the zero set of the vector field X̃,
then the Equivariant Localization Theorem gives us that

∫

M

eeχ =
∑

p∈M0

(2π)n eeχ|p
f(p)un

=
∑

p∈M0

(2π)n

f(p)un

(
ef un+χ1un−1+···+χn

)∣∣∣
p

=
∑

p∈M0

(2π)n

f(p)un
ef(p) un

,

using again that, since the fixed points of the action are isolated, the equivariant Euler

class of the normal bundle of a fixed point p ∈ M0 is simply
f(p)un

(2π)n
.

The zero set M0 of X̃ is equal to the set Cf of critical points of f , however. Since
df = ι eXχ2, then Cf ⊃ M0, and since df is S1-invariant, it must vanish only on entire
orbits, so Cf consists only of entire orbits. By assumption, the function f has only
isolated fixed points though, so we must have Cf ⊂ M0 as well.

Now expanding the expression for eeχ, we obtain

∫

M

eeχ =

∫

M

ef un+χ1un−1+···+χn

=

∫

M

ef un

(
1 + (χ1u

n−1 + · · · + χn) +
1

2!
(χ1u

n−1+

· · · + χn)2 + · · · +
1

n!
(χ1u

n−1 + · · · + χn)n

)

=

∫

M

ef un

(
χn +

un

2!

∑

j1+j2=n

χj1χj2 +(6)

u2n

3!

∑

j1+j2+j3=n

χj1χj2χj3 + · · · +
u(n−1)n

n!
χ1

n

)
,

where the indices jm in the summations all range from 1 to n. The series terminates
because since χj ∈ Ω2j(M)G, then χj

n+1 vanishes for j ≥ 1. Also, the terms which
do not contain 2n-forms are removed since they contribute nothing to the integral, as
M is 2n-dimensional.

We can now use Lemma 3.1 to complete the proof of the theorem. Computing
directly from the relations in the lemma, we find that for any j1, . . . , jm ∈ {1, . . . , n}
such that j1 + · · · + jm = n, we have

χj1 · · ·χjm
=

(
2j1
j1

)
· · ·

(
2jm

jm

)(
2n

n

)−1

fm−1 χn.

If we introduce the notation

bm =
1

(m + 1)!

∑

j1+···+jm+1=n

(
2j1
j1

)
· · ·

(
2jm+1

jm+1

)(
2n

n

)−1

,
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then, substituting this into the expression above for the integral of the exponential of
the equivariant Euler class, we obtain

∫

M

eeχ =

∫

M

ef un

(χn + b1u
nfχn + · · · + bn−1u

(n−1)nfn−1χn)

=

∫

M

ef un

χ + b1u
n

∫

M

ef un

f χ + · · · + bn−1u
(n−1)n

∫

M

ef un

fn−1χ.

Combining this with the expression we obtained for the same integral by localization,
we have

∑

p∈Cf

(2π)n

f(p)un
ef(p) un

=

∫

M

ef un

χ + b1u
n

∫

M

ef un

f χ +

· · · + bn−1u
(n−1)n

∫

M

ef un

fn−1χ.

We now “evaluate” both sides of this equation at t1/nX . Since u(t1/nX) = t1/n, this
gives

∑

p∈Cf

(2π)n

f(p) t
ef(p) t =

∫

M

ef tχ + b1t

∫

M

ef tf χ + · · · + bn−1t
n−1

∫

M

ef tfn−1χ

=

∫

M

ef tχ + b1t
∂

∂t

(∫

M

ef tχ

)
+

· · · + bn−1t
n−1 ∂n−1

∂tn−1

(∫

M

ef tχ

)

=

(
1 + b1t

∂

∂t
+ · · · + bn−1t

n−1 ∂n−1

∂tn−1

)∫

M

ef tχ.

Now the stationary phase expansion of etf integrated against the Euler class of
M is, as usual, of the form

∫

M

ef tχ =
∑

p∈Cf

ef(p) t
∞∑

j=0

cp,jt
−j ,

where the cp,j ∈ R are constants depending on p and j. Putting this in for the integral
on the right side of the previous equation, we have

∑

p∈Cf

(2π)n

f(p) t
ef(p) t =

(
1 + b1t

∂

∂t
+

· · · + bn−1t
n−1 ∂n−1

∂tn−1

)

∑

p∈Cf

ef(p) t
∞∑

j=0

cp,jt
−j




=
∑

p∈Cf

(
1 + b1t

∂

∂t
+

· · · + bn−1t
n−1 ∂n−1

∂tn−1

)
ef(p) t

∞∑

j=0

cp,jt
−j


 .
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Comparing coefficients on both sides of the equation, we find that all the constants
cp,j must vanish for suitably large j.

Therefore, the stationary phase expansion has only finitely many nonzero terms.
After we prove Lemma 3.1 then, the proof of Theorem 3.2 will be complete.

4. Proof of Lemma 3.1. We now compute the Pfaffian in Equation (3) above at
a point p ∈ M . Since L is skew-symmetric, then with a suitable choice of orthonormal
basis ∂x1, . . . , ∂x2n for TpM , the matrix of L is of the form

L =




0 λ1

−λ1 0
. . .

0 λn

−λn 0




,

where some of the λi’s are possibly equal to zero.

Before we describe what R looks like with respect to this basis, we give a definition,
using the notation that

εi1i2···i2m =





1 if i1, . . . , i2m is an even permutation of 1, . . . , 2m

−1 if i1, . . . , i2m is an odd permutation of 1, . . . , 2m

0 if i1, . . . , i2m are not all distinct.

Definition 4.1. Let A = (aij) be a 2m×2m matrix. We say that A has Property
Φ if for any integers i1, i2, . . . , i2m between 1 and 2m,

ai1i2ai3i4 · · · ai2m−1i2m
= εi1i2···i2ma12a34 · · ·a2m−1,2m.

The Pfaffian of a matrix A with Property Φ is equal to

Pfaff(A) =
1

2mm!

2m∑

i1,...,i2m=1

εi1i2···i2mai1i2ai3i4 · · · ai2m−1i2m

=
(2m)!

2mm!
a12a34 · · ·a2m−1,2m.

We note also that if A has Property Φ, then any minor obtained by removing rows
i1, . . . , i2k and the corresponding columns i1, . . . , i2k has Property Φ as well.

If M has constant curvature, then, relative to the orthonormal basis ∂x1, . . . , ∂x2n

at p, the matrix for R has Property Φ. This holds because, if M has constant curvature
κ, then for any vectors v1, v2, v3, v4 ∈ TpM ,

〈R(v1, v2)v3, v4〉 = κ(〈v2, v3〉〈v1, v4〉 − 〈v1, v3〉〈v2, v4〉),

so the (i, j)-th entry in the matrix for R at p is given by

rij = κ dxidxj ,

where dx1, . . . , dx2n ∈ T ∗
p M is the dual basis to ∂x1, . . . , ∂x2n.
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Using this property of R, we can now compute Pfaff(R + uL) at p. To help in
writing it out, we introduce the following notation: for any k ∈ {1, . . . , n}, we let Ik

and Jk represent “complementary” ordered multi-indices, in the sense that

Ik = {i1, . . . , in−k} with i1 < i2 < · · · < in−k,

Jk = {j1, . . . , jk} with j1 < j2 < · · · < jk,

Ik ∩ Jk = ∅, and Ik ∪ Jk = {1, . . . , n}.

Also, for any such multi-indices, we let R(Jk) denote the 2k × 2k minor of
R obtained by removing all the rows and columns corresponding to those
which are occupied by λi1 , . . . , λin−k

in L, i.e. rows 2i1 − 1, . . . , 2in−k − 1,
2i1, . . . , 2in−k as well as the corresponding columns 2i1 − 1, . . . , 2in−k − 1,
2i1, . . . , 2in−k.

In this notation then,

Pfaff(R + uL) = Pfaff(R) + u
∑

Jn−1

λi1Pfaff(R(Jn−1))

+u2
∑

Jn−2

λi1λi2Pfaff(R(Jn−2)) + · · ·

+un−1
∑

J1

λi1λi2 · · ·λin−1
Pfaff(R(J1)) + unλ1λ2 · · ·λn.

Since R has Property Φ, then the 2k × 2k minors R(Jk) have Property Φ as well,
meaning that

Pfaff(R(Jk)) =
(2k)!

2kk!
rj1j2rj3j4 · · · rj2k−1j2k

.

Substituting this into the equation above, we obtain

Pfaff(R + uL) = Pfaff(R)

+u
(2n − 2)!

2n−1(n − 1)!

∑

Jn−1

λi1r2j1−1,2j1r2j2−1,2j2 · · · r2jn−1−1,2jn−1

+u2 (2n − 4)!

2n−2(n − 2)!

∑

Jn−2

λi1λi2r2j1−1,2j1r2j2−1,2j2 · · · r2jn−2−1,2jn−2

+ · · · + un−1 2!

211!

∑

J1

λi1λi2 · · ·λin−1
r2j1−1,2j1 + unλ1λ2 · · ·λn.

That is, if we now insert the factor of 1/2π into the Pfaffian and denote the “near-
diagonal” element r2k−1,2k of the matrix for R by

ρk = r2k−1,2k,

then we obtain an expression for the coefficient χk of un−k in the equivariant Euler

class χ̃ = Pfaff

(
R + uL

2π

)
, namely

χk =
(2k)!

(2π)n2kk!

∑

Jk

λi1λi2 · · ·λin−k
ρj1ρj2 · · · ρjk

.
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Multiplying two of these coefficients together (and using Property Φ), we find that

χkχl =
(k + l)! (k + l)! (2k)! (2l)!

k! k! l! l! (2k + 2l)!

λ1λ2 · · ·λn

(2π)n
χk+l,

for any k, l ∈ {1, . . . , n} such that k + l ≤ n. Noting that

f(p) = Pfaff

(
L|p
2π

)
=

λ1λ2 · · ·λn

(2π)n

then completes the proof of the lemma.

This then completes the proof of Theorem 3.2.

5. The explicit computation on S2n. As mentioned in the introduction, the
original question, posed by Bott, motivating this paper was why does the height func-

tion z on S2n have the property that etz has a finite stationary phase expansion? As
demonstrated in the previous section, this property follows from the constant curva-
ture of S2n. We compute this explicitly here, so let S2n ⊂ R2n+1, where R2n+1 has
coordinates x1, x2, . . . , x2n, z, and

S2n = {(x1, x2, . . . , x2n, z) ∈ R2n+1 | (x1)2 + (x2)2 + · · · + (x2n)2 + z2 = 1}.

Then S1 acts on S2n by rotating the first n planes in R2n+1 (the k-th plane being
the x2k−1x2k-plane) with weights λ1, λ2, . . . , λn. An infinitesimal generator for this
action is given by

X̃ = λ1(x
1∂x2 − x2∂x1) + · · · + λn(x2n−1∂x2n − x2n∂x2n−1),

and we define u ∈ s
1∗ to be the dual of X ∈ s

1. We also define

θ =
1

2

(
1

λ1
(x1 dx2 − x2 dx1) + · · · +

1

λn
(x2n−1 dx2n − x2n dx2n−1)

)
.

Then θ has the following properties:

ι eXθ =
1

2
(1 − z2)

dθ =
1

λ1
dx1 dx2 + · · · +

1

λn
dx2n−1dx2n

ι eXdθ = z dz.

The equivariant Euler class of S2n relative to this action then is given by

χ̃ =
λ1 · · ·λn

(2π)n

(2n + 1)!!

n!

(
2n

2n + 1
θ(dθ)n−1dz +

1

2n + 1
(dθ)nz

)

+
λ1 · · ·λn

(2π)n

(2n − 1)!!

(n − 1)!

(
2n − 2

2n − 1
θ(dθ)n−2dz +

1

2n − 1
(dθ)n−1z

)
u

+
λ1 · · ·λn

(2π)n

(2n − 3)!!

(n − 2)!

(
2n − 4

2n − 3
θ(dθ)n−3dz +

1

2n − 3
(dθ)n−2z

)
u2 +

· · · +
λ1 · · ·λn

(2π)n

3!!

1!

(
2

3
θ dz +

1

3
dθ z

)
un−1 +

λ1 · · ·λn

(2π)n
z un.
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This can be exponentiated as in the previous section to show that the stationary phase
expansion of the function etz (integrated against the Euler class) is finite.

Another, perhaps more direct, way to show this is by using a “tail” for the
equivariant Euler class other than the usual one obtained from the equivariant cur-
vature. From the above expression for the Euler class χ (the de Rham 2n-form term
in the equivariant Euler class) on S2n, we obtain

ι eXχ =
λ1 · · ·λn

(2π)n

(2n − 1)!!

(n − 1)!
(dθ)n−1 dz.

Using that

d
(
θ (dθ)n−2 dz

)
= (dθ)n−1 dz,

and continuing in a similar fashion with forms of lower de Rham degree, we obtain
another equivariant extension of the Euler class:

χ̃ =
λ1 · · ·λn

(2π)n

(2n + 1)!!

n!

(
2n

2n + 1
θ(dθ)n−1dz +

1

2n + 1
(dθ)nz

)
+

λ1 · · ·λn

(2π)n

(2n − 1)!!

(n − 1)!
θ (dθ)n−2 dz u +

λ1 · · ·λn

2 (2π)n

(2n − 1)!!

(n − 1)!
θ (dθ)n−3 (1 − z2) dz u2 +

λ1 · · ·λn

22 (2π)n

(2n − 1)!!

(n − 1)!
θ (dθ)n−4 (1 − z2)2 dz u3 +

· · · +
λ1 · · ·λn

2n−2 (2π)n

(2n − 1)!!

(n − 1)!
θ (dθ)0 (1 − z2)n−2 dz un−1 +

λ1 · · ·λn

2n−1 (2π)n

(2n − 1)!!

(n − 1)!

(∫ z

0

(1 − ζ2)n−1 dζ

)
un.

This extension has the advantage that, since there is a dz in each middle term, we
can obtain directly an equivariant extension for the class euzχ:

(̃euzχ) =
euzλ1 · · ·λn

(2π)n

(2n + 1)!!

n!

(
2n

2n + 1
θ(dθ)n−1dz +

1

2n + 1
(dθ)nz

)
+

euzλ1 · · ·λn

(2π)n

(2n − 1)!!

(n − 1)!
θ (dθ)n−2 dz u +

euzλ1 · · ·λn

2 (2π)n

(2n − 1)!!

(n − 1)!
θ (dθ)n−3 (1 − z2) dz u2 +

euzλ1 · · ·λn

22 (2π)n

(2n − 1)!!

(n − 1)!
θ (dθ)n−4 (1 − z2)2 dz u3 +

...

+
euzλ1 · · ·λn

2n−2 (2π)n

(2n − 1)!!

(n − 1)!
θ (dθ)0 (1 − z2)n−2 dz un−1 +

λ1 · · ·λn

2n−1 (2π)n

(2n − 1)!!

(n − 1)!

(∫ z

0

euζ(1 − ζ2)n−1 dζ

)
un.

Relative to this action, the equivariant Euler class of the normal bundle to the
fixed point at z = 1 is (2π)−nλ1 · · ·λn un, and at z = −1 it is −(2π)−nλ1 · · ·λn un.
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Applying the Equivariant Localization Theorem to the equivariantly closed form

(̃euzχ) then, we have

∫

S2n

euzχ =
(2n − 1)!!

2n−1 (n − 1)!

(∫ 1

0

euζ(1 − ζ2)n−1 dζ

)
−

(2n − 1)!!

2n−1 (n − 1)!

(∫ −1

0

euζ(1 − ζ2)n−1 dζ

)

=
(2n − 1)!!

2n−1 (n − 1)!

(∫ 1

−1

euζ(1 − ζ2)n−1 dζ

)

Evaluating both sides on tX (and also evaluating the integrals by multiplying out the
factor (1− ζ2)n−1 and integrating term by term), we obtain an explicit expression for
the stationary phase expansion of etz integrated against the Euler class of S2n.

This equivariant extension then demonstrates the finite length of the stationary
phase expansion of etz, but it can also be used to demonstrate the fact that the
stationary phase expansion of the function

f(z) =
λ1 · · ·λn

2n−1(2π)n

(2n − 1)!!

(n − 1)!

(∫ z

0

(1 − ζ2)n−1 dζ

)

has only one term. For this, one can follow the Atiyah-Bott procedure and exponenti-
ate the above equivariant extension of the equivariant Euler class. Since each term in
this extension except for the de Rham 2n-form and de Rham 0-form terms contains a
factor of dz, all the “cross-terms” introduced by the exponentiation vanish. In other
words, using this extension for χ̃, we have that

∫

S2n

eeχ =

∫

S2n

eunf
(
1 + (χ̃ − unf)

)
.

Applying the Equivariant Localization Theorem then yields

∫

S2n

eunfχ =
(2π)n

λ1 · · ·λn un
(eunf(1) − eunf(−1)).

Evaluating both sides at t1/nX , we obtain a one-term stationary phase expansion for
etf relative to the Euler class.

How to generalize this, however, is not at present apparent. One possibility is
that nontrivial cohomology in dimensions lower than the form to be exponentiated
is an obstruction to finding an extension with the property that all terms except the
highest and lowest degree de Rham terms are divisible by some particular 1-form.

6. Conclusion. We have now given a geometric reason for the finiteness of the
stationary phase expansion of the height function on S2n. While we have not explicitly
produced a wide class of examples of functions which are not moment maps but which
have the finite stationary phase expansion property, it is hoped that the techniques
involved in demonstrating the finiteness of the stationary phase expansion of the
height function on S2n can be adapted to produce a wider class of functions with
finite stationary phase expansions.

In particular, a key aspect of the method used to prove Lemma 3.1 is that the
computation showing the relationships among the terms of the equivariant Euler class
has been done entirely locally. In verifying the relationships at each point individually
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rather than globally all at once, matrices for L and R could be written down and the
computation could be carried out.

It is not apparent at this point what the most general conditions on M are that
bring about similar relationships among the terms of the equivariant Euler class. We
have shown that constant curvature is sufficient, but it may be a more stringent
condition than is necessary. Perhaps the method of proof used here can be adapted
to be more widely applicable.

We also do not have a geometric explanation yet for the finiteness of the stationary
phase expansion of the function

f(z) =
λ1 · · ·λn

2n−1(2π)n

(2n − 1)!!

(n − 1)!

(∫ z

0

(1 − ζ2)n−1 dζ

)
.

As was mentioned, this function has a single-term stationary phase expansion, and
there should be a geometric explanation for this fact as well.

In addition, if there are other functions which have finite stationary phase expan-
sions and which arise as the 0-form part of an equivariant extension of a nondegenerate
2k-form, then there is another, larger, question: do such equivariant extensions of non-

degenerate 2k-foms act similarly to symplectic forms and moment maps in other ways

as well? An affirmative answer to this question would lead to higher-dimensional
analogues of sympletic forms and moment maps.
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