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EFFECTIVE BEHAVIOR OF MULTIPLE LINEAR SYSTEMS ∗

SHENG-LI TAN†

Dedicated to Prof. Yum-Tong Siu on his 60th birthday

1. Introduction. It is a fundamental problem in algebraic geometry to under-
stand the behavior of a multiple linear system |nD| on a projective complex manifold
X for large n. For example, the well-known Riemann-Roch problem is to compute
the function

n �−→ h0(OX(nD)) := dimC H0(X,OX(nD)).

In the introduction to his collected works [33], Zariski cited the Riemann-Roch prob-
lem as one of the four “difficult unsolved questions concerning projective varieties
(even algebraic surfaces)”. The other natural problems about |nD| are to find the fixed
part and base points (see [32]), the very ampleness, the properties of the associated
rational map and its image variety, the finite generation of the ring of sections, · · · .

For a genus g curve X, Riemann-Roch theorem gives good and effective solutions
to these problems.

• Assume that deg D > 0. If n ≥ 2g−1
deg D , then h1(OX(nD)) = 0. So, in general,

h0(nD) =

⎧⎪⎨⎪⎩
n deg D + 1 − g, if n deg D > 2g − 2,

a periodic function of n, if deg D = 0,

0, if deg D < 0.

• If n ≥ 2g
deg D , then |nD| is base point free.

• If n ≥ 2g+1
deg D , then |nD| is very ample.

When X is a surface, the Riemann-Roch problem is also equivalent to the com-
putation of h1(OX(nD)). This problem was studied first by the Italian geometers in
the 19th century. Castelnuovo [9] proved that if |D| is a base point free linear system
of dimension ≥ 2, then there is a constant s such that

h0(OX(nD)) = χ(OX(nD)) + s

for n sufficiently large, i.e., h1(OX(nD)) is a constant.
In [32], Zariski established the fundamental theory on the behavior of an arbitrary

multiple linear system |nD| on an algebraic surface (see the next section for the
details.) By using Zariski decomposition, he showed that one only needs to know the
behavior of |nA + T |, where A is a nef divisor and T is a fixed divisor (see Theorem
2.3). Zariski proved the boundedness of h1(OX(nA + T )), the fixed part Bn and the
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isolated base points of |nA + T | when n is sufficiently large. An important conjecture
on the periodicity was proved later by Cutkosky and Srinivas [10] in 1993. However,
all of these results are ineffective on n.

In the language of Beltrametti and Sommese [4], these problems are about the
k -very ampleness.

Definition 1.1. (1) Let k be a nonnegative integer. A divisor D (or the linear
system |D|) on X is called k-very ample if any k + 1 points (not necessarily dis-
tinct) give k + 1 independent conditions on |D|. Precisely, for any zero dimensional
subscheme ∆ ⊂ X with deg ∆ := h0(O∆) ≤ k + 1,

h0(I∆(D)) = h0(OX(D)) − deg ∆,

where I∆ is the ideal sheaf of ∆.
(2) D is called (−1)-very ample if H1(OX(D)) = 0.

The Riemann-Roch problem is about (−1)-very ampleness; “0-very ample” is
equivalent to “base point free”; “1-very ample” is just “very ample”.

If X is a curve of genus g, k ≥ −1 and D is a divisor satisfying

deg D ≥ k + 2g,

then D is k-very ample. In particular, if deg D > 0, then |nD| is k-very ample
provided

n ≥ k + 2g

deg D
.

In recent years, the effective version of some important theorems attracted much
attention. For example, Fujita’s conjecture and the effective Matsusaka’s big theorem
(see, for example, [1, 26, 27, 28, 12, 13, 15, 17, 19] ...). They are about the 0- and 1-
very ampleness of the adjoint linear system |nH +KX | and |nH| for an ample divisor
H, here KX is the canonical divisor of X. I would like to mention the latest bounds
of Angehrn-Siu [1] and Siu [28] for a d-dimensional complex manifold: |KX + nH| is
base point free if

n ≥ 1
2
(d2 + d + 2).

(The power 2 in the bound is improved to 4
3 by Siu’s student Heier [18].) |nH| is very

ample if

n ≥
(
23d−15d

)4d−1 (
3(3d − 2)dHd + KXHd−1

)4d−13d

(6(3d − 2)d − 2d − 2)4
d−1d− 2

3 (Hd)4
d−13(d−1)

.

If X is a surface, then there are also nice solutions: |nH + KX | is (n − 3)-very
ample (Reider [23], Beltrametti and Sommese [4]). |nH| is very ample when

n >
1
2

[
(H(KX + 4H) + 1)2

H2
+ 3

]
, (1.1)

(Fernandez del Busto [16]). This bound is improved by Beltrametti and Sommese [5]

n >
1
2

(
(H(KX + 2H) + 1)2

H2
+ 7

)
. (1.2)
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But the optimal effective Matsusaka’s theorem for a surface is still open (Ein [14],
Open Problem 4).

It is also of great interest to find the effective behavior of a multiple linear system
|nD|. The purpose of this note is to give effective version of some well-known theorems
on multiple linear systems due to Zariski [32], Castelnuovo [9], Artin [2, 3], Benveniste
[6], Cutkosky and Srinivas [10, 11]. We also try to find the effective behavior of the
rational map defined by |nD|.

For two divisors A and T , let

M(A, T ) =
((KX − T )A + 2)2

4A2
− (KX − T )2

4
,

m(A, T ) = min{n ∈ Z | n > M(A, T )}.
Now we state our main result.

Theorem 1.2. Let A be a nef and big divisor on an algebraic surface X, let
T be any fixed divisor, and let k be a nonnegative integer. Assume that either n >
k+M(A, T ), or n ≥ M(A, T ) when k = 0 and T ∼ KX +λA for some λ ∈ Q. Suppose
|nA + T | is not (k − 1)-very ample, i.e., there is a zero dimensional subscheme ∆ on
X with minimal degree deg ∆ ≤ k such that it does not give independent conditions
on |nA + T |. Then there is an effective divisor D �= 0 containing ∆ such that{

TD − D2 − KXD ≤ k,

DA = 0.
(1.3)

The effective version of the theorems in [32, 2, 3, 6, 9, 10, 11] are obtained by
direct applications of this theorem for various T . For example, if A = H is ample,
then (1.3) has no solution D �= 0. Thus we get an effective version of Serre’s theorem.

Corollary 1.3. If H is ample and n > k + M(H,T ) for some integer k ≥ 0,
then |nH +T | is (k−1)-very ample. Equivalently, |nH +T | is (n−m−1)-very ample
when n ≥ m.

The bound in this corollary is optimal in many cases. If T = KX , then

M(A,KX) =
1

A2
.

So m(A,KX) = 2 (or 1 if A2 > 1). Thus the corollary implies also that |nH + KX | is
(n − 3)-very ample (or (n − 2)-very ample if H2 > 1).

If T = 0, then

M(A, 0) =
(KXA + 2)2

4A2
− K2

X

4
,

and this corollary for k = 2 is an effective version of Matsusaka Big Theorem. Our
bound is better than (1.1) and (1.2). We will present an example to show that this
bound is the best possible.

In general, we set

τ(A, T ) =

{
min

D
{TD − KXD − D2 }, if A is not ample,

+∞, if A is ample,
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where D runs over all effective divisors D �= 0 such that DA = 0. τ is well defined
(Lemma 4.2). Then we have

Corollary 1.4. Assume that τ = τ(A, T ) ≥ 1 and n ≥ m = m(A, T ). Then
|nA + T | is

min{ τ − 2, n − m − 1 }

very ample.

Some well-known conditions on linear systems are those satisfying τ ≥ 1 (see § 2).
For example, τ(A,KX) = min{−D2 } ≥ 1 (Fujita’s condition). τ(A, 0) = 2 if and
only if pa(D) ≤ 0 for any D (Artin’s condition). Laufer-Ramanujan’s condition is
that TD ≥ KXD for any D (reduced and irreducible), which implies also that τ ≥ 1.

As a consequence, the behavior of |nA| is controlled by the curves Ci orthogonal
to A, namely ACi = 0. If Artin’s condition is satisfied, then the behavior of |nA|
is quite similar to that of the canonical multiple linear system |nKX | of a minimal
surface of general type.

I would like to thank the referee for the valuable suggestions for the correction of
the original version.

2. Zariski’s results and generalizations. In this section, we recall Zariski’s
fundamental results and their generalizations. In our language, these results are
essentially about (−1)- and 0-very ampleness.

Let X be a smooth projective complex surface, KX be its canonical divisor and
D be any divisor on X.

Definition 2.1. D is called nef (numerically effective) if for any curve C on
X, DC ≥ 0. D is called big if D2 > 0. D is called pseudo-effective if for any ample
divisor H, DH ≥ 0.

Theorem 2.2. (Zariski decomposition [32]). Let D be a pseudo-effective divisor
on X. There exist uniquely Q-divisors A and F on X, such that D = A+F satisfying
the following conditions:

(1) F = 0 or the intersection matrix of the irreducible components of F is negative
definite;

(2) A is nef and F is effective;
(3) each irreducible component C of F satisfies AC = 0.

The decomposition is called Zariski decomposition. The following basic theorem
has been used to reduce the general case |nD| to the case |nA + T |, where T is any
fixed divisor on X.

Theorem 2.3. (Zariski [32]). As in Theorem 2.2, D = A + F is the Zariski
decomposition.

(1) κ(D) = 2 if and only if A2 > 0.
(2) If D is effective, then for all n ≥ 0,

h0(OX(nD)) = h0(OX([nA]))

(3) If sA is an integral divisor, and n = as + b with 0 ≤ b < s, then

h0(OX(nD)) = h0(OX(asA + bD)).
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(4) As in (3), if κ(D) ≥ 0, then

h1(OX(nD)) = h1(OX(asA + bD)) − F 2

2
n2 +

FKX

2
n −

(
b
FKX

2
− b2 F 2

2

)
.

Theorem 2.4. (Zariski [32]). As in Theorem 2.3, assume that T is any divisor
on X.

(1) h1(OX(nA + T )) is bounded.
(2) Let D be effective and let Bn be the fixed part of |nD|. Then

Bn = B̃n + nF,

where B̃n is a bounded (rational ) effective divisor.
(3) If |D| has no fixed part and n 
 0, then |nD| has no base point and

h1(OX(nA + T )) is a constant.

Shafarevich [25] gave a new proof of the base point freeness in (3).

Theorem 2.5. (Zariski [32], Cutkosky-Srinivas [10, 11]). h1(OX(nA + T )) and
B̃n are periodic when n 
 0.

This theorem has been proved by Zariski [32] for the case A2 = 0 and by Cutkosky
and Srinivas [10, 11] for the case A2 > 0.

For a fixed D, we let

Rm = Rm[D] = H0(X,OX(mD)), R[D] = ⊕∞
m=0Rm[D].

R[D] is a graded ring.
Zariski gave in [32] a criterion for R[D] to be finitely generated.

Theorem 2.6. (Zariski [32]) R[D] is finitely generated if and only if κ(D) ≤ 1,
or κ(D) = 2 and some multiple |h(D − F )| has no fixed part.

Definition 2.7. (1) A curve C = C1 + · · · + Cr on an algebraic surface X is
called negative definite if the intersection matrix (CiCj) of C is negative definite.

(2) A curve C is called rational if for any effective divisor D = n1C1+· · ·+nrCr �=
0, we have pa(D) ≤ 0.

(3) If A2 > 0, then the maximal reduced divisor C = C1 + · · · + Cr with CA = 0
is called the exceptional curve of A. We denote it by E(A) = C.

Theorem 2.8. (Artin [2, 3]) Let C = C1+· · ·+Cr be a negative definite connected
curve on an algebraic surface X.

(1) There is a unique effective divisor Z = n1C1 + · · · + nrCr such that ZCi ≤ 0
and Z is minimal. (Z is called the fundamental cycle of C). In fact, Z ≥ C.

(2) pa(Z) ≥ 0, and pa(Z) = 0 if and only if C is rational.

Theorem 2.9. (Artin’s projective contraction theorem [2, 3]) A negative definite
curve C = C1 + · · ·+ Cr on a projective surface X is rational if and only if C can be
contracted to rational singular points on a projective surface Y . (The singular points
on Y are called rational if χ(OX) = χ(OY )).

Benveniste [6] generalized a result of Zariski ([32], Theorem 6.1).

Theorem 2.10. (Benveniste [6]) Suppose C = C1 + · · · + Cr is a connected
component of E(A) for some nef and big divisor A. If C is rational and n 
 0, then
C can not be a fixed component of |nA|.
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3. Some technique results. Reider’s method is usually used to study the ad-
joint linear system |KX+L| for a nef and big divisor L. In our case, L is not necessarily
nef. Because there is no reference of this method for the general case, we shall present
in this section the generalization of Reider’s method so that Bogomolov’s inequality
can be used in the general case.

We use the notion “k points” for any zero-dimensional subscheme of length k, not
requiring the points to be distinct.

Given a subscheme Z ′ ⊂ Z, the “complement” Z ′′ of Z ′ in Z is the canonical
closed subscheme Z ′′ ⊂ Z with an ideal sheaf IZ′′ = [IZ : IZ′ ], i.e., for any open set
U ⊂ X,

IZ′′(U) := {g ∈ OX(U) | gIZ′(U) ⊂ IZ(U)}.
We call Z ′′ the residual subscheme of Z ′ in Z and denote it by

Z ′′ = Z − Z ′.

Assume that Z is a local complete intersection, and Z ′′ is the residual of Z ′ ⊂ Z
in Z. Then Z ′ is the residual of Z ′′ in Z. Furthermore, we have

deg Z ′ + deg Z ′′ = deg Z.

Note that in the surface case, the 4 equivalent conditions in the following theorem
imply that ∆ is a local complete intersection.

Theorem 3.1. Let ∆ be a zero-dimensional subscheme of X (including empty
set) and let L be a divisor on X. Then the following conditions are equivalent.

(1) There is a rank two vector bundle E with a non zero global section δ satisfying

Z(δ) = ∆, det E = L. (A)

(2) There are 3 curves F1, F2 and F3 such that F1 and F2 have no common
components, and {

∆ = F1 ∩ F2 − F1 ∩ F2 ∩ F3,

L ≡ F1 + F2 − F3.
(B)

(3) There exists a rank two vector bundle E with a global section s such that
dim Z(s) = 0 and {

∆ = Z(s) − Z(s) ∩ F,

L ≡ det E − F.
(C)

(4) Either ∆ = ∅ or there is an element η in H1(I∆(KX + L))∨ such that for
any subscheme (including empty set) ∆′ � ∆, η is not in the image of the
following natural inclusion map:

H1(I∆′(KX + L))∨ ↪→ H1(I∆(KX + L))∨.

Equivalently, ⋃
∆′�∆

H1(I∆′(KX + L))∨ � H1(I∆(KX + L))∨. (D)
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(See [31] for the details of the proof).

Remark 3.2. In the above correspondence, if ∆ = ∅, then the following trivial
cases correspond to each other:

(1) E = OX ⊕OX(L);
(2) f = af1 + bf2 for some sections a and b of line bundles;
(3) f ∈ im(s) is in the image of s (we do not go to the details of this condition);
(4) η = 0.

We would like to mention the implication from (2) to (1) which will be used in
the proof of Lemma 4.9. Denote by fi the global section of OX(Fi) defining Fi. Let
F be the syzygy sheaf of (f1, f2, f3),

0 −→ F −→ ⊕3
i=1OX(−Fi)

f−→ OX , (3.1)

where f is defined by f(x, y, z) = f1x + f2y + f3z, and let E = F(F1 + F2). One can
prove that detE = F1 + F2 − F3 = L and E has a global section δ such that

Z(δ) = F1 ∩ F2 − F1 ∩ F2 ∩ F3 = ∆.

Definition 3.3. We say that ∆ satisfies Cayley-Bacharach property with respect
to |KX + L| if for any F in |KX + L| and for any subscheme ∆′ ⊂ ∆ with deg ∆′ =
deg ∆ − 1, F contains ∆′ implies that F contains ∆. Equivalently, for any such ∆′,

dim H1(I∆′(KX + L))∨ < dim H1(I∆(KX + L))∨. (D′)

(D) implies (D′).

Lemma 3.4. If ∆ is reduced or deg ∆ ≤ 2, then (D′) is equivalent to (D).

Proof. In the two cases, ∆ admits at most a finite number of subschemes ∆′ with
deg ∆′ = deg ∆ − 1, so (D′) implies (D). Indeed, if ∆ is reduced, the finiteness is
obvious. If ∆ is a non-reduced zero-dimensional scheme of degree 2, and if p is a
point on ∆, then it is easy to prove that I∆ = (x, y2), where x and y are some local
coordinates of X near p = (0, 0). So ∆ contains only one subscheme p of degree 1.

Corollary 3.5. Let L be a fixed divisor on X and k ≥ 1 a fixed integer. Then
the following conditions are equivalent.

(1) (A) (equivalently (B) or (C)) has no solution for any ∆ �= ∅ with deg ∆ ≤ k.
(2) For any zero dimensional subscheme ∆ �= ∅ of degree ≤ k,

H1(OX(KX + L))∨ = H1(I∆(KX + L))∨.

(3) Any zero dimensional subscheme ∆ �= ∅ of degree ≤ k gives deg ∆ independent
conditions on |KX + L|. Namely, |KX + L| is (k − 1)-very ample.

The author and E. Viehweg ([29, 31, 30]) prove that the Cayley-Bacharach the-
orem for an n-dimensional projective manifold is equivalent to the k-very ampleness
of |KX + L|.

Theorem 3.6. (Bogomolov [7]) Let E be a rank two vector bundle on an algebraic
surface X. If c1(E)2 > 4c2(E), then there is an invertible subsheaf OX(M) ⊂ E such
that
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(1) (2M − c1(E))H > 0 for any ample divisor H;
(2) (2M − c1(E))2 ≥ c2

1(E) − 4c2(E);
(3) for any nef divisor A,

MA ≥ 1
2
c1(E)A +

1
2

√
A2

√
c2
1(E) − 4c2(E) .

(3) follows from (2) and Hodge index theorem.

Lemma 3.7. Let E be a rank two vector bundle on X, and let M1 and M2 be two
different maximal invertible subsheaves of E. Then there exists an effective divisor D
on X such that

c1(E) − c1(M1) − c1(M2) ≡ D.

Furthermore, D = 0 if and only if E = M1 ⊕M2.

See [29] for the proof of this lemma.

Theorem 3.8. Let L be a divisor on X such that L2 > 0 and LH ≥ 0 for
some ample divisor H. Assume that ∆ is empty or a zero dimensional subscheme of
X satisfying one of the equivalent conditions of Theorem 3.1. If L2 > 4 deg ∆, then
either

(1) η = 0 (and so ∆ = ∅, this corresponds to the trivial cases, see Remark 3.2 );
or

(2) η �= 0, and there exists an effective divisor D �= 0 passing through ∆ such that
for any nef and big divisor A,

DL − deg ∆ ≤ D2 <
�

2
DA ≤ �

4

(
AL −

√
A2

√
L2 − 4 deg ∆

)
,

where � = AL/A2 > 0.

Proof. From the assumption and Hodge index theorem, we see that LH > 0. By
Riemann-Roch theorem, we can prove easily that for a sufficiently large n, h0(nL) > 0.
Hence for any nef and big divisor A, LA ≥ 0. Since L2 > 0, LA > 0.

We assume that the equivalent condition (1) of Theorem 3.1 is true. Namely there
is a rank two vector bundle E with a non zero global section δ such that Z(δ) = ∆,
and detE = L. Thus E admits a maximal invertible subsheaf M1

∼= OX ,

0 −→ OX −→ E −→ I∆(L) −→ 0.

From the assumption, c2
1(E) = L2 > 4 deg ∆ = 4c2(E). Hence E is not semistable.

By Theorem 3.6, E admits a new maximal invertible sheaf M2 = O(M) satisfying
the three inequalities in Theorem 3.6. From Theorem 3.6 (1) and LH > 0 for any
ample divisor, we see that M �≡ 0, so M1 �= M2. Now by Lemma 3.7, there exists
an effective divisor D ≡ L − M passing through ∆. Substitute M = L − D into the
second and third inequality of Theorem 3.6, we get

DL − deg ∆ ≤ D2,

DA ≤ 1
2

(
LA −

√
A2

√
L2 − 4 deg ∆

)
.
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By Lemma 3.7, if η �= 0, then D �= 0. In fact, we only need to prove that

D2 <
�

2
DA. If DA = 0, then D2 < 0 =

�

2
DA by Hodge index theorem. If DA > 0,

also by Hodge index theorem and (2),

D2A2 ≤ (DA)2 < DA · LA/2,

so D2 < �DA/2.

Corollary 3.9. (Beltrametti and Sommese [4]) As in Theorem 3.8, if L is nef
and big and ∆ �= ∅, then we have

DL − deg ∆ ≤ D2 <
1
2
DL < deg ∆,

Lemma 3.10. Let C = C1 + · · · + Cr be a negative definite curve on X.
(1) The classes of the Ci are independent in NS(X) ⊗ Q.
(2) Let E = x1C1 + · · · + xrCr. If ECi ≤ 0 (resp. < 0) for any i, then all xi are

nonnegative (resp. positive). (Hence E is an effective divisor).
(3) If A2 > 0, then the number of curves C satisfying AC = 0 is finite. Hence

E(A) is well-defined.
(4) There is a nef and big divisor A such that E(A) = C.

Proof. (1) The proof is well-known.
(2) Write E in the form E = A−B, where A and B are effective divisors, without

common components. We have EB ≤ 0 by assumption, hence AB − B2 ≤ 0. Since
AB ≥ 0 and B2 ≤ 0, it follows that B2 = 0, and hence B = 0 since the subspace
generated by C1, · · · , Cr is negative definite.

(3) By Hodge index theorem, these curves span a negative subspace of NS(X)⊗Q.
Thus the number is less or equal to the dimension of NS(X) ⊗ Q.

(4) Let H be a very ample divisor on X. Then we can find integers x1, · · · , xr

such that

|det(CiCj)| · HCk + (x1C1 + · · · + xrCr)Ck = 0, for k = 1, · · · , r.

By (2), xi are positive. Let A = |det(CiCj)|H + x1C1 + · · · + xrCr. Then A is nef
and big and E(A) = C.

4. Effective bounds. In this section, we fix a nef and big divisor A and an
arbitrary divisor T . Denote by C1, · · · , Cr the exceptional curves of A.

Theorem 4.1. Let A be a nef and big divisor, let T be any fixed divisor, and let
k be a nonnegative integer. Assume that either n > k + M(A, T ), or n ≥ M(A, T )
when k = 0 and T ∼ KX + λA for some λ ∈ Q. Suppose |nA + T | is not (k − 1)-
very ample, i.e., there is a zero dimensional subscheme ∆ on X with minimal degree
deg ∆ ≤ k such that it does not give independent conditions on |nA + T |. Then there
is an effective divisor D �= 0 containing ∆ such that{

D2 + KXD + k ≥ TD,

DA = 0.
(4.1)

Proof. Let L = nA + T − KX , i.e., |nA + T | = |KX + L|. We claim that if
n > k + M(A, T ), or k = 0, n = M(A, T ) and T ∼ KX + λA, then

L2 > 4k, 0 ≤ 1
2

(
AL −

√
A2

√
L2 − 4k

)
< 1. (4.2)
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Indeed,

L2 − 4k = A2n2 + 2A(T − KX)n + (T − KX)2 − 4k,

the bigger root of the above quadratic polynomial of n is

nk =
(
−A(T − KX) +

√
(A(T − KX))2 − (T − KX)2A2 + 4kA2

)
/A2.

Let h := (A(T − KX))2 − A2(T − KX)2. By Hodge index theorem, h ≥ 0, with
equality if and only if there is a rational number λ such that T ∼ KX + λA. Since

k + M(A, T ) − nk =
1

A2
·
(

1 − 1
2

√
h + 4kA2

)2

≥ 0,

we have L2 > 4k when n > k + M(A, T ) ≥ nk.
Let

f(x) = x2 − AL · x +
h

4
+ k · A2.

The smaller root of f(x) is

x1 =
1
2

(
AL −

√
A2

√
L2 − 4k

)
.

On the other hand,

f(0) ≥ 0, f(1) = A2 · (k + M(A, T ) − n) < 0 when n > k + M(A, T ),

so 0 ≤ x1 < 1 when n > k + M(A, T ).
Note that if k = 0, h = 0 and n = M(A, T ), then M(A, T ) > n0 and f(0) =

f(1) = 0. So x1 = 0 and (4.2) is also true. (In fact, this is the unique case where
x1 < 1 and f(1) ≥ 0.) This proves the claim.

If |nA+T | is not (k−1)-very ample, then there exists a minimal zero dimensional
subscheme ∆ (may be empty) with deg ∆ ≤ k satisfying the conditions of Theorem
3.1 corresponding to the non-trivial cases (see Remark 3.2). Apply Theorem 3.8 (2)
to ∆ and L = nA+T −KX , we get an effective divisor D �= 0 containing ∆ such that

DL − deg ∆ ≤ D2,

0 ≤ DA ≤ 1
2

(
AL −

√
A2

√
L2 − 4 deg ∆

)
≤ x1 < 1.

It implies DA = 0 and D2 + KXD + k ≥ TD.

In general, if x > 0 and f(x) < 0, i.e.,

n > nk +
1

A2

(
x +

f(0)
x

− 2
√

f(0)
)

= −A(T − KX)
A2

+
x

A2
+

f(0)
xA2

,

then x1 < x, so DA < x.
The following are natural conditions on A or E(A) such that (4.1) has no nonzero

solutions D:
(A) A is ample (see Corollary 1.3). (Matsusaka’s condition, τ = +∞).
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(B) TCi ≥ KXCi + k, for any i = 1, · · · , r. (Laufer-Ramanujam’s condition,
τ ≥ k + 1).

(C) E(A) is a rational curve. (Artin’s condition, τ(A, 0) = 2).

Lemma 4.2. For any integer k ≥ 0, there are at most a finite number of effective
divisors D satisfying (4.1).

Proof. Let C1, · · · , Cr be all of the curves satisfying ACi = 0. We have known
that these curves span a negative definite subspace W of NS(X)⊗Q. It is easy to see
that the first inequality in (4.1) gives a bounded domain in W . Thus if D =

∑r
i=1 niCi

satisfies the conditions in the lemma, then (n1, · · · , nr) must be in a bounded domain
of Qn. This implies the lemma since ni are integers.

Corollary 4.3. Assume that A is nef and big, and k ≥ 0.
(1) If Laufer-Ramanujam condition is true for k and n > k + M(A, T ), then

|nA + T | is (k − 1)-very ample.
(2) If E(A) is a rational curve, then h1(nA) = 0 for n > M(A, 0), and |nA| is

base point free for n > 1 + M(A, 0).

Proof. This follows from Corollary 1.4.

In general T may not satisfy Laufer-Ramanujam condition. We will modify it
such that Laufer-Ramanujam condition is true.

Let σi = max{KCi − TCi + k, 0} for i = 1, · · · , r. Because (CiCj) is a negative
definite matrix, we can find an integral divisor

Ek = Ek(A, T,C1 + · · · + Cr) = x1C1 + · · · + xrCr

such that EkCi = −|det(CiCj)| ·σi. By Lemma 3.10, Ek is effective. Let T ′ = T −Ek.
Then Laufer-Ramanujam condition for k is true for T ′, i.e.,

(T − Ek)Ci ≥ KXCi + k, i = 1, · · · , r. (4.3)

By the previous corollary, when n > k + M(A, T − Ek), |nA + T − Ek| is (k − 1)-very
ample.

Theorem 4.4. Assume that A is nef and big. Let T be any divisor.
(1) If n > M(A, T − E0), then

h1(nA + T ) = h1(OE0(nA + T )).

Because OE0(A) is a numerically trivial bundle, by ([10], Theorem 8 ),
h1(OE0(nA + T )) is a periodic function of n.

(2) If n > 1+M(A, T −E1), then the fixed part Bn of |nA+T | is bounded by E1,
and Bn is a periodic divisor of n by [11].

(3) Let C ′ be a connected component of E(A) = C ′ + C ′′, and let E1 = E ′
1 + E ′′

1

be the corresponding decomposition (here T = 0). If C ′ is rational and n >
1 + M(A,−E ′′

1 ), then C ′ can not be the fixed part of |nA|. Namely, the fixed
part of |nA| is contained in E ′′

1 . (See Theorem 2.10 or [6]).

Proof. (1) Since n > M(A, T − E0), by the above corollary, |nA + T − E0| is
(−1)-very ample, i.e., H1(nA + T − E0) = 0. In fact, if n > M(A, T − E0), then
(KX − nA − T + E0)A < 0, so

H2(nA + T − E0) ∼= H0(KX − nA − T + E0)∨ = 0.
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From the long exact sequence of the following

0 −→ O(nA + T − E0) −→ O(nA + T ) −→ OE0(nA + T ) −→ 0,

we can see that

h1(nA + T ) = h1(OE0(nA + T )).

Note that E0 is supported on these Ci with CiA = 0. It has been proved in [10] that
h1(OE0(nA + T )) is a periodic function of n. This completes the proof.

(2) We take k = 1. If n > 1 + M(A, T − E1), then |nA + T − E1| is 0-very ample,
so it has no fixed component. Thus the fixed part Bn of |nA + T | is contained in E1,
i.e., E1 − Bn is effective. This completes the proof.

(3) If E ′
1 = 0 or E ′′

1 = 0, then (3) follows from (2) and the previous corollary (2).
Otherwise, we claim that |nA − E ′′

1 | is 0-very ample. Thus the fixed part of |nA| is
contained in E ′′

1 .
Indeed, with the notations of Theorem 4.1, if we write D = D′ + D′′ and let

T = 0, then from

(−E1)Cj ≥ KXCj + 1, for all j

and D′ ∩ D′′ = ∅, we get⎧⎪⎨⎪⎩
E ′′
1 D′′ + KXD′′ + 1 ≤ 0, if D′′ �= 0,

D′2 + KXD′ = 2pa(D′′) − 2 ≤ −2, if D′ �= 0,

D′′2 ≤ −1, if D′′ �= 0.

Since D = D′ + D′′ �= 0,

D2 + DKX + 1 − (−E ′′
1 )D = (D′2 + D′KX) + D′′2 + (D′′KX + 1 + E ′′

1 D′′) < 0.

Now the claim is a consequence of Theorem 4.1.

Theorem 4.5. Assume that A2 > 0 and |A| has no fixed part. Let T be any
divisor.

(1) If n > 1 + M(A, 0), then |nA| has no base points. (Zariski [32].)
(2) If n > 1+M(A, 0) and n > 1+M(A, T −E1), then h1(nA+T ) = h1(OE1(T ))

is a constant, and h2(nA + T ) = 0. So

h0(nA + T ) = χ(nA + T ) + s,

where s = h1(OE1(T )) is a constant. (Castelnuovo [9]).
(3) The fixed part Bn of |nA + T | is a fixed divisor for n 
 0.

Proof. (1) Because |A| has no fixed part, A is nef. If p is a base point of |nA|,
then there is a curve D passing through p such that DA = 0. Because |nA| has also
no fixed part, this means that we can find a curve in |nA| disjoint with D because
DA = 0. This is impossible since p should be their common point.

(2) In this case, we can find a divisor D in |nA| such that D is disjoint with the
exceptional curve E(A) of A. Thus OE1(D) = OE1 . As in the proof of Theorem 4.4,

h1(nA + T ) = h1(OE1(nA + T )) = h1(OE1(D) ⊗OE1(T )) = h1(OE1(T )).



EFFECTIVE BEHAVIOR OF MULTIPLE LINEAR SYSTEMS 299

Note that n > 1+M(A, T −E1) implies n > −A(T −E1−KX)/A2 = −A(T −KX)/A2,
so A(KX − nA − T ) < 0. Thus h2(nA + T ) = h0(KX − nA − T ) = 0.

(3) Let Mn be the moving part of |nA+T |. Because |A| has no fixed part, |Mn+A|
has also no fixed part. Since (n + 1)A + T = Mn + A + Bn, we have Bn+1 ≤ Bn. It
implies that when n 
 0, Bn is a fixed divisor.

Zariski’s criterion (Theorem 2.6) for the finite generation of R[D] gives a criterion
for projective contractability of a negative definite curve (see also [24]).

Corollary 4.6. (Criterion for Projective Contractability) Let C = C1+ · · ·+Cr

be a negative definite curve. Then C can be contracted to (normal singular) points on
a projective surface if and only if there is a nef and big divisor A such that C = E(A)
and |nA| has no fixed part for some n.

Corollary 4.7. (Artin [2]) A negative definite and rational curve C on an
algebraic surface can be contracted projectively.

Proof. By Lemma 3.10, there is a nef and big divisor A such that E(A) = C.
By Corollary 4.3, |nA| is base point free for large n. Thus C can be contracted
projectively.

Theorem 4.8. Let A be a nef and big divisor with exceptional curve E(A) =
C1 + · · · + Cr, and let T = 0. Denote by E1, · · · , Es the connected components of
E(A). Let E0,i = E0(A, 0, Ei), let Zi be the fundamental cycle of Ei, and let

Ẽ0,i =

{
E0,i, if E0,i �= 0,

Zi, if E0,i = 0.
Ẽ0 =

s∑
i=1

Ẽ0,i.

Assume that either |A| has no base point, or E(A) is rational. If

n > 2 + M(A, 0),

then
(1) ΦnA is a birational morphism onto a projective surface Σn = ΦnA(X).
(2) On X \ ∪r

i=1Ci, ΦnA is an isomorphism.
(3) ΦnA contracts the curves E(A) to some (singular) points of Σn.
(4) Furthermore, if E(A) is rational, then ΦnA has connected fibers. In general,

if n > M(A,−Ẽ0), then ΦnA has also connected fibers.

Proof. In fact, we only need to prove (4) that ΦnA has connected fibers. The
locus over which |nA| is not very ample is contained in E(A), so we only need to
prove that ΦnA(Ei) �= ΦnA(Ej) when i �= j.

By construction, E0,i = E0(A, 0, Ei) = 0 if and only if Ei consists of (−1)- and
(−2)-curves. By definition, Ẽ0,i �= 0, and

−Ẽ0Cj ≥ KXCj , for j = 1, · · · , r.

So |nA − Ẽ0| satisfies Laufer-Ramanujian condition for k = 0. Hence it is (−1)-very
ample, i.e., H1(nA − Ẽ0) = 0.

Now we consider the exact sequence

0 → O(nA − Ẽ0) → O(nA) → OẼ0
(nA) → 0. (4.4)
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Since |nA| has no base point and A ·E(A) = 0, the generic divisor B ∈ |nA| does not
contain any Ci, and hence disjoint with E(A). We obtain

OẼ0
(nA) = OẼ0

(B) = OẼ0
=

s⊕
i=1

OẼ0,i
.

The long exact sequence of (4.4) gives us a surjective map

H0(nA) →
s⊕

i=1

H0(OẼ0,i
),

so for each i �= j, there is a section s in H0(nA) such that s(Ẽ0,i) �= 0, s(Ẽ0,j) = 0.
Hence |nA| separates Ei and Ej , which means that ΦnA(Ei) �= ΦnA(Ej).

If E(A) is rational, then one can prove similarly that H1(nA−Zi −Zj) = 0 and
ΦnA(Ei) �= ΦnA(Ej) provided

n > M(A,−Zi − Zj) = 2 + M(A, 0) − mi + mj

4
for any i �= j, (4.5)

where mi = −Z2
i is the multiplicity of the normal rational singular point with ex-

ceptional curve Ei. On the other hand, condition (4.5) follows from our assumption
n > 2 + M(A, 0).

Let A be a divisor on X, and let

Rm := H0(X,OX(mA)), R[A] :=
∞⊕

m=0

Rm.

R[A] admits naturally a graded ring structure. The generation of this ring was studied
by Zariski [32] for any divisor A, and by Mumford [22], Kodaira [20, 21] and Bombieri
[8] for the canonical divisor of surfaces of general type.

Lemma 4.9. Assume that A2 > 0, � and p are two positive integers such that
|�A| has no base point, and H1(mA) = V is fixed for any m ≥ p. Let k = �2A2 and
let

N(A, �, p) :=

⎧⎨⎩max
{

2� + p − 1, 3� +
KXA

A2

}
, if V = 0,

max { 2� + p − 1, k + M(A, 0) + � } , if V �= 0,

If m > N(A, �, p), then we have

Rm = R�Rm−�. (4.6)

Proof. Note first that A is nef and big. Let E(A) = C1 + · · · + Cr. We choose
three generic curves F1, F2 and F3 in |�A| such that they have no common zero point
and do not contain any Ci. Then we see that E(A) is disjoint with all Fi. We denote
by fi the global section defining Fi. Let F be the syzygy sheaf of (f1, f2, f3) (see
(3.1)),

0 −→ F −→ ⊕3
i=1OX(−Fi) −→ OX −→ 0, (4.7)
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and let E = F(F1 + F2). We have known that detE = F1 + F2 −F3 = �A and E has
a global section δ such that Z(δ) = F1 ∩ F2,

0 −→ O −→ E −→ IF1∩F2(�A) −→ 0. (4.8)

From the conditions, we claim that
a) H1((m − �)A) = H1((m − 2�)A) = V if m > 2� + p − 1;

b) H2((m − 3�)A) = H0(KX − (m − 3�)A) = 0 if m > 3� +
KXA

A2
;

c) H1(IF1∩F2((m − �)A)) = V if V = 0 or m > � + k + M(A, 0).
Indeed, we only need to prove c). From the long exact sequence of

0 −→ OX((m − 3�)A) −→ OX((m − 2�)A)⊕2 (f1,f2)−→ IF1∩F2(m − �) −→ 0,

we obtain

V ⊕2 = H1((m − 2�)A)⊕2 −→ H1(IF1∩F2((m − �)A)) −→ H2((m − 3�)A) = 0.

Thus if V = 0, then H1(IF1∩F2((m − �)A) = 0. Now we consider the case V �= 0.
Suppose

V = H1(OX((m − �)A)) � H1(IF1∩F2((m − �)A)).

Then F1 ∩ F2 violates the (k − 1)-very ampleness of (m − �)A (k = deg(F1 ∩ F2)), so
there exists a minimal non empty subscheme ∆ ⊂ F1 ∩ F2 violating the (k − 1)-very
ampleness. Because m − � > k + M(A, 0), by Theorem 4.1 we have a curve D �= 0
passing through ∆ such that (4.1) is true, hence the support of ∆ is contained in both
F1 and E(A), which contradicts the choice of F1. This completes the proof of c).

Similarly, consider the long exact sequence of (4.8)⊗O((m − 2�)A), we get

V = H1((m − 2�)A) → H1(E((m − 2�)A)) → H1(IF1∩F2((m − �)A)) = V.

So

h1(F(mA)) = h1(E((m − 2�)A)) ≤ 2 dim V. (4.9)

The long exact sequence of (4.7)⊗OX(mA) gives us the following

⊕3
i=1 H0((m − �)A)

(f1,f2,f3)−→ H0(mA) −→ H1(F(m)) →
α→ ⊕3

i=1 H1((m − �)A) −→ H1(mA) −→ H2(F(m)).

We can see by (4.9) that α is injective, equivalently (f1, f2, f3) is surjective, namely

Rm = f1Rm−� + f2Rm−� + f3Rm−�.

This completes the proof.

The following theorem is about the projective normality of ΦmA(X) (see [8],
Theorem 3A).

Theorem 4.10. Let A be a nef divisor with A2 > 0 such that either |A| has no
fixed part or E(A) is rational. Let

� = 1 + m(A, 0),

p =

{
m(A, 0), if E(A) is rational,
1 + max{m(A, 0),m(A,−E1)}, if |A| has no fixed part.
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Assume that

2m >

⎧⎨⎩max
{

2� + p + 1, 3� + 3 +
KXA

A2

}
, if E(A) is rational,

max { 2� + p + 1, k + M(A, 0) + � + 1 } , if |A| has no fixed part.

Then for any n ≥ 1,

Rnm = Rn
m.

Proof. Under the conditions, |�A| and |(�+1)A| have no base point, and h1(mA) =
V is fixed when m ≥ p. By the previous lemma, if m > N(A, � + 1, p), then we have

Rm = R�Rm−�, Rm = R�+1Rm−�−1.

Now we claim that for any n ≥ 1,

Rnm = Rn
m.

Indeed, we can write m = s� + t(� + 1) for some non negative s and t, (e.g., s =[
m
�

]
(�+1)−m and t = m−[

m
�

]
�). We can assume that n ≥ 2. From the assumption

nm ≥ 2m > N(A, � + 1, p), so the previous lemma gives us that

Rnm = R(n−1)m+s�+t(�+1) = R(n−1)mRs
�R

t
�+1 = R(n−1)mRm.

By induction on n, we have Rnm = Rn
m for any n ≥ 1.

Example 4.11. Let π : X → P2 be a double cover ramified over a smooth curve
B of degree 2d, and let H = π∗(OP2(1)) be the pullback divisor of a line. Then nH
is very ample if and only if n ≥ d. (Note that if n < d, then |nH| = π∗|OP2(n)|,
which implies that the map defined by |nH| factorizes through the double cover π,
so nH is not very ample). On the other hand, KX ≡ (d − 3)H and H2 = 2. Thus
M(H, 0) = d − 5

2 , hence m(H, 0) = d − 2. In particular, n > 2 + M(H, 0) iff n ≥ d.
Therefore, our bound in Corollary 1.3 can not be improved for X and H.
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