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Abstract. For a uniruled projective manifold, we prove that a general rational curve of minimal

degree through a general point is uniquely determined by its tangent vector. As applications, among

other things we give a new proof, using no Lie theory, of our earlier result that a holomorphic map

from a rational homogeneous space of Picard number 1 onto a projective manifold different from the

projective space must be a biholomorphic map.

1. Introduction. Let X be an irreducible uniruled projective variety. Let
RatCurvesn(X) be the normalized space of rational curves on X in the sense of [Ko].
For an irreducible component K of RatCurvesn(X), let ρ : U → K and µ : U → X
be the associated universal family morphisms. In other words, ρ is a P1-bundle over
K and for α ∈ K, the corresponding rational curve in X is µ(ρ−1(α)). An irreducible
component K of RatCurvesn(X) is a minimal component if µ is dominant and for
a general point x ∈ X, µ−1(x) is projective. Members of a minimal component are
called minimal rational curves. For example, rational curves passing through a general
point of X of minimal degree with respect to a fixed ample line bundle are minimal
rational curves. Denote by PT (X) the projectivization of the tangent bundle of the
smooth part of X. Given a minimal component K, consider the rational map

τ : U ��� PT (X)

defined by
τ(α) := PTx(C)

for α ∈ U such that x := µ(α) is a smooth point of X and ρ(α) corresponds to a
rational curve C on X smooth at x. Let C ⊂ PT (X) be the proper image of τ . We
call τ the tangent map of K and C the total variety of minimal rational tangents of K.

When X is smooth, it is well-known that the degree of a minimal rational curve
with respect to the anti-canonical bundle is bounded by dim(X) + 1 and the tangent
map τ : U ��� C is generically finite. We will prove the following.

Theorem 1. For any uniruled projective manifold X and any minimal compo-
nent K, the tangent map τ : U ��� C is birational.

In the process of proving Theorem 1, we will also prove

Theorem 2. Suppose a uniruled projective manifold has two distinct minimal
components K and K′. Then their total spaces of minimal rational tangents C and C′

are distinct.
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Theorem 1 and Theorem 2 imply that a general rational curve of minimal degree
through a general point of X is uniquely determined by its tangent vector. Theorem
1 is proved under some special assumptions on K, which do not always hold, in [KK].
Their method is completely different from ours.

In addition to its intrinsic interest, Theorem 1 has several interesting conse-
quences. For a point x ∈ X, the subvariety Cx = C ∩ PTx(X) is called the variety
of minimal rational tangents at x. It is known that µ−1(x) is a (not necessarily irre-
ducible) smooth projective variety for a general point x. Kebekus showed that for a
general x, the restriction of the tangent map to the fiber at x, τx : µ−1(x) → Cx is a
finite morphism ([Ke, Theorem 3.4]). Thus Theorem 1 has the following consequence.

Corollary 1. For any uniruled projective manifold and a minimal component,
the normalization of the variety of minimal rational tangents at a general point is
smooth.

This has an application to the rigidity of generically finite morphisms to Fano
manifolds of Picard number 1. We say that Cx is non-linear, if one (hence all) of the
components of Cx is not a linear subvariety of PTx(X). We will prove

Theorem 3. Let χ : X → ∆ := {t ∈ C, |t| < 1} be a regular family of Fano
manifolds of Picard number 1 so that X0 = χ−1(0) has a minimal component whose
variety of minimal rational tangents at a general point is non-linear. For a given
projective manifold X ′, suppose there exists a surjective morphism f : X ′ = X ′×∆ →
X respecting the projections to ∆ so that ft : X ′ → Xt is a generically finite morphism
for each t ∈ ∆. Then there exists ε > 0 and a holomorphic family of biholomorphic
morphisms vt : X0 → Xt for |t| < ε, satisfying v0 = Id and ft = vt ◦ f0.

One interesting consequence is the following.

Theorem 4. Let G/P be a rational homogeneous space of Picard number 1. If
f : G/P → X is a surjective morphism to a smooth projective variety X of positive
dimension, then either X ∼= Pn, n = dim(G/P ), or f is a biregular morphism.

This was originally proved in [HM1] by using quite a bit of Lie theory. The proof
given here uses no Lie theory.

A natural question arising from Theorem 3 is to understand when a projective
manifold X admits a minimal component K whose variety of minimal rational tangents
at a general point is non-linear. We expect the following.

Conjecture. For any Fano manifold of Picard number 1 excepting the projec-
tive space and for any minimal component, the variety of minimal rational tangents at
a general point is non-linear if its dimension is positive. In particular, for a Fano man-
ifold of Picard number 1 with index > 2 excepting the projective space, any minimal
component has non-linear varieties of minimal rational tangents at general points.

There are two ingredients of the proof of Theorem 1, the work of Cho-Miyaoka-
Shepherd-Barron ([CMS]) and the theory of differential systems on the subvariety of
the projectivized tangent bundle. Roughly speaking, [CMS] proves Theorem 1 in the
special case when τ : U ��� PT (X) is dominant and the theory of differential systems
reduces the general case to this special case. The theory of differential systems we
need will be explained in Section 2. Theorem 1 and Theorem 2 will be proved in
Section 3. Theorem 3 and Theorem 4 will be proved in Section 4. We will work over
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the field of complex numbers. Unless otherwise stated, the topology considered is the
analytic topology.

2. Differential systems on the subvariety of the projectivized tangent
bundle. We need to study some natural distributions defined on a subvariety of the
projectivized tangent bundle of a complex manifold. Since this theory does not seem to
be well-known to algebraic geometers or complex analysts, we will give a full account
in this section. In the standard literature, a distribution on a complex manifold means
a subbundle of the tangent bundle. In this article, it will be used in a broader sense.

A distribution on an irreducible normal variety is a subbundle of the tangent
bundle of a Zariski open subset of the smooth part of the normal variety. This Zariski
open subset will be called the domain of definition of the distribution. For simplicity,
we will regard two distributions identical if they agree on the intersection of their
domains of definition. Thus, given any distribution on a normal variety X, there is
a smallest subvariety S containing the singular locus of X such that the distribution
can be identified with a distribution defined on X − S. We will call S the singular
locus of the distribution.

By taking local holomorphic sections, we can view a distribution V as a locally
free sheaf on the domain of definition. The Lie bracket of local vector fields define a
C-linear sheaf map [, ] : V×V → Θ where Θ denotes the tangent sheaf of the domain of
definition. The distribution defined by [V,V]+V is called the first derived system of V
and is denoted by ∂V. The domain of definition of ∂V may be different from that of V.
The Lie bracket defines a holomorphic vector bundle morphism

∧2 V → Θ/V over the
domain of definition. This section of Hom(

∧2 V,Θ/V) over the domain of definition
will be called the Frobenius bracket tensor of V. By abuse of notation, we will use
the same notation [, ] for the Frobenius bracket tensor and the Lie bracket of vector
fields. By the famous Frobenius theorem, if the Frobenius bracket tensor vanishes,
or equivalently, if ∂V = V, the distribution V is integrable and defines a foliation on
its domain of definition. In this case we will use the notation V to mean both the
distribution and the foliation defined by it. A leaf of an integrable distribution means
a maximal irreducible submanifold in the domain of definition which is tangent to the
given distribution. The Cauchy characteristic of V is the distribution Ch(V) which is
defined at a general point x by

Ch(V)x = {v ∈ Vx, [v,Vx] = 0}.
The Cauchy characteristic of any distribution is integrable, as can be easily checked
using the Jacobi identity.

Let ξ : Y → X be a dominant morphism between two varieties. For a distribution
D on X, dξ∗D denotes the distribution on Y defined by

(dξ∗D)y = (dξy)−1(Dξ(y))

at a general point y ∈ Y such that the differential dξy : Ty(Y ) → Tξ(y)(X) is surjective
and ξ(y) lies in the domain of definition of D. dξ∗D will be called the pull-back of
D by ξ. Given a local section w of D in a neighborhood of ξ(y), we can find a local
section dξ∗w of dξ∗D in a neighborhood of y so that w = dξ∗(dξ∗w). We will say that
dξ∗w is a lift of w. Two different lifts of w differ by a local vector field tangent to the
fibers of ξ. The proof of the following lemma is elementary.
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Lemma 1. For any dominant morphism ξ : Y → X and a distribution D on X,

dξ∗(∂D) = ∂(dξ∗D)

dξ∗Ch(D) = Ch(dξ∗D).

In particular, tangent vectors to the fibers of ξ are contained in Ch(dξ∗D).

For the rest of this section, let us fix a complex manifold X and an irreducible
subvariety C ⊂ PT (X) which is dominant over X. There are two naturally defined
distributions J and P on C. At a general point α ∈ C, they are defined by

Jα := (dπ)−1(Cα)

Pα := (dπ)−1(T̂α(Cx))

where dπ : Tα(C) → Tx(X) is the differential of the natural projection π : C → X at
α ∈ C, x = π(α), and T̂α(Cx) ⊂ Tx(X) is the linear tangent space of Cx := π−1(x) ⊂
PTx(X) at α. Both J and P are canonically determined by C. J has rank p+1 and P
has rank 2p + 1, where p is the fiber dimension of π : C → X. Also we have the trivial
vertical distribution V of rank p on C defining the fibers of π. Clearly, V ⊂ J ⊂ P.

Proposition 1. In a neighborhood of a general point of C, choose a line sub-
bundle F of J such that V + F = J . Then every local section of P is of the form
[v, f ] + u + f ′ where u, v are local sections of V and f, f ′ are local sections of F . In
other words, P = ∂J .

Proof. For notational simplicity, we will work over Ξ := T (X) \ (0-section). Let
ξ : Ξ → PT (X) be the natural C∗-bundle. Let Ĉ := ξ−1(C). We will denote the
restriction of ξ to Ĉ by the same letter ξ. Let Ĵ := dξ∗J , P̂ := dξ∗P, V̂ := dξ∗V, and
F̂ := dξ∗F be the distributions pulled-back to Ĉ. By Lemma 1, it suffices to check
that P̂ = ∂Ĵ .

We start with ∂Ĵ ⊂ P̂. It suffices to show [V̂, F̂ ] ⊂ P̂. Let x1, . . . , xn be a
local coordinate system on X. Let λ1 = dx1, . . . , λn = dxn be linear coordinates
in the vertical direction of Ξ. Let v̂ =

∑
i vi

∂
∂λi

be a lift of a local section of V
and f̂ =

∑
i fi

∂
∂λi

+ ζ
∑

j λj
∂

∂xj
be a lift of a local section of F over a small open

set in Ĉ. Here vi, fi, ζ are suitable local holomorphic functions. Dividing by ζ and
looking at general points outside the zero set of ζ, we may assume that ζ ≡ 1. Then
[v̂, f̂ ] =

∑
i vi

∂
∂xi

modulo V̂. But this is precisely the vectors v̂ viewed as the tangent
vectors to X. Hence [v̂, f̂ ] is a local section of P̂.

From the above expression of [v̂, f̂ ] modulo V̂, we see that the rank of ∂Ĵ is higher
than the rank of Ĵ by at least p, which shows ∂Ĵ = P̂.

We will describe the Frobenius bracket tensor of the distribution P in terms of the
projective geometry of Cx. For this, we recall the definitions of the second fundamental
form of a subvariety in the projective space.

Let V be a complex vector space and Z ⊂ PV be a subvariety of the projective
space. For a smooth point x ∈ Z, we are going to define a symmetric bilinear form
IIx,Z : Tx(Z) ⊗ Tx(Z) → Nx(Z; PV ), called the second fundamental form of Z at x
as follows. Let ξ : V \ 0 → PV be the natural C∗-bundle. We denote ξ−1(x) by x̂

and ξ−1(Z) by Ẑ. Let T̂x(Z) ⊂ V be the affine tangent space of Z at x which can be
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naturally identified with the tangent space Tx̄(Ẑ) of Ẑ at any point x̄ of x̂. We have
natural identifications

Tx(Z) = Hom(x̂, T̂x(Z)/x̂)

Nx(Z; PV ) = Hom(x̂, V/T̂x(Z)).

Given two elements uo and vo of Tx(Z), choose local vector fields u and v on Z with
ux = uo and vx = vo. Let û and v̂ be their lifts in an open subset of Ẑ. We extend
them to local vector fields in an open subset of V \0 and denote these extended vector
fields by the same symbols. In terms of a linear coordinate system x1, . . . , xn on V ,
we can write

û = u1
∂

∂x1
+ · · · + un

∂

∂xn

v̂ = v1
∂

∂x1
+ · · · + vn

∂

∂xn
.

We define

v̂(û) :=
n∑

i,j=1

vi
∂uj

∂xi

∂

∂xj

û(v̂) :=
n∑

i,j=1

ui
∂vj

∂xi

∂

∂xj
.

These are local vector fields on V \ 0. They are not necessarily tangent to Ẑ, but

v̂(û) − û(v̂) = [v̂, û]

is a lift of the local vector field [v, u] on Z. We denote the value of v̂(û) at a point x̄ ∈ x̂

modulo T̂x(Z) = Tx̄(Ẑ) by ÎI x̄(uo, vo). It is easy to see that this vector in V/T̂x(Z) is
independent of the choices of u, v, û, or v̂ and it depends linearly on the choice of x̄ ∈ x̂.
In other words, x̄ 	→ ÎI x̄(uo, vo) defines an element of Hom(x̂, V/T̂x(Z)) = Nx(Z; PV ).
This element of Nx(Z; PV ) is defined to be IIx,Z(uo, vo). From the fact that [û, v̂] is
tangent to Ẑ, we can see the symmetry IIx,Z(uo, vo) = IIx,Z(vo, uo).

Another equivalent definition of the second fundamental form is via the Gauss
map. The Gauss map γ : Z ��� Gr(dim Z + 1;V ) is a rational map assigning the
affine tangent spaces to Z at smooth points of Z. In other words, it is defined by
γ(x) = [T̂x(Z)] at a smooth point x ∈ Z.

The derivative of the Gauss map

dγx : Tx(Z) → T[T̂x(Z)](Gr(dim Z + 1;V )) = Hom(T̂x(Z), V/T̂x(Z))

induces an element of Tx(Z) ⊗ Tx(Z) → Nx(Z; PV ) and one can check that our
definition of IIx,Z is just an explicit coordinate description of this element. The
following result is classical:

Lemma 2 ([GH, 2.10]). The closures of the fibers of the Gauss map are linear
subspaces in V .

Now we are ready to describe the Frobenius bracket of P:
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Proposition 2. Let α ∈ C. Choose a local complement F as in Proposition 1
and a section f of F near α. Given two vectors uo and vo in Tα(Cx) with x = π(α),
let u (resp. v) be a local vector field on a neighborhood of α in C tangent to fibers of
π such that uα = uo (resp. vα = vo). Let [v, f ]α be the value of the local vector field
[v, f ] on C at the point α. Then the Frobenius bracket tensor for the distribution P at
α

[, ] :
2∧
Pα → Tα(C)/Pα

= Tx(X)/T̂α(Cx)

= α̂ ⊗ Nα(Cx; PTx(X))

satisfies
[u, [v, f ]]α = π∗fα ⊗ IIα,Cx

(u, v) ∈ α̂ ⊗ Nα(Cx; PTx(X))

where fα ∈ Fα denotes the value of f at α, which is contained in Jα so that π∗fα ∈ α̂.

Proof. We will work on Ξ as in the proof of Proposition 1. Choose a local
coordinate system x1, . . . , xn of X and vertical coordinates λ1 = dx1, . . . , λn = dxn

of Ξ. We choose lifts v̂ =
∑

i vi
∂

∂λi
and û =

∑
i ui

∂
∂λi

. As in the proof of Proposition
1, we may choose f̂ =

∑
i fi

∂
∂λi

+
∑

j λj
∂

∂xj
. Then

[v̂, f̂ ] =
∑

i

vi
∂

∂xi
+

∑

i

(v̂(fi) − f̂(vi))
∂

∂λi

[û, [v̂, f̂ ]] ≡
∑

i

û(vi)
∂

∂xi
mod V̂.

Restricting û and v̂ to Ĉx, we see that [û, [v̂, f̂ ]]α = ÎIα(u, v).

Define a sub-distribution G of V which consists of tangent vectors to fibers of
the Gauss map for Cx as x varies. This distribution is integrable. An immediate
consequence of Proposition 2 is

Proposition 3. In the notation above, G = Ch(P) ∩ V.

This enables us to describe Ch(P) in terms of the Gauss map for Cx as follows.

Proposition 4. If there exists a complement F to V in J in an open subset of
C so that F ⊂ Ch(P), then Ch(P) = F +G + [F ,G] on that open subset. In this case,
if the rank of G is k − 1 for some k > 0, then the rank of Ch(P) is 2k − 1.

Proof. From Proposition 3 and the fact that Ch(P) is closed under Lie bracket,
the inclusion F +G+[F ,G] ⊂ Ch(P) is immediate. We know that any local section of
Ch(P) can be written as f1 + v1 +[f2, v2] for some local sections f1, f2 of F and v1, v2

of V from Proposition 1. We want to show that this local section is in F + G + [F ,G].
It suffices to show that v2 is a section of Ch(P). In fact, if v2 is a section of Ch(P),
it is a section of G from Proposition 3 and so [f2, v2] is a local section of [F ,G]. As a
consequence, we have v1 ∈ Ch(P)∩V = G, which proves Proposition 4. To show that
v2 is a section of Ch(P), we need to check that [v2, h] is a section of P for any local
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section h of P. From Proposition 1, we can set h = f3 + v3 + [f4, v4]. Then

[v2, h] = [v2, f3 + v3 + [f4, v4]]

= [v2, f3] + [v2, v3] + [v2, [f4, v4]]

= [v2, f3] + [v2, v3] + [v4, [f4, v2]] + [f4, [v2, v4]].

So it suffices to show that [v4, [f4, v2]] is a section of P. Since f1 + v1 + [f2, v2] is a
section of Ch(P), we see that [v4, f1 + v1 +[f2, v2]] is a section of P. Thus [v4, [f2, v2]]
is a section of P. This implies that [v4, [f4, v2]] is a section of P because f4 = ζf2 for
some local holomorphic function ζ.

Finally, the statement about the ranks follows from the local coordinate expression
of [F ,G] as in the proof of Proposition 1.

Proposition 5. Suppose there exists a local complement F to V in J as in
Proposition 4. Let S be a local leaf of Ch(P) in an open neighborhood of the domain
of definition of Ch(P) where F is a well-defined foliation. Then S is an open subset
in PT (π(S)).

Proof. Since the leaves of F in S are sent to holomorphic curves in π(S), we see
that S ⊂ PT (π(S)). Let k− 1 be the rank of G so that dim S = 2k− 1. Note that the
intersection of S with a fiber π−1(x) is an open subset of the projective space in Cx

which is a fiber of the Gauss map of Cx. Thus we get dim(π(S)) = k, which implies
that dim(S) = dim PT (π(S)).

3. Birationality of the tangent map. For a quick reference on the deforma-
tion theory of rational curves in the terminology of the current article we refer the
reader to [HM2]. Let X be a uniruled projective manifold and K be a minimal com-
ponent. Let ρ : U → K and µ : U → X be the associated universal family morphisms.
Since τ : U ��� C is generically finite, there exists a Zariski open subset Uo such that
τ |Uo is an étale morphism. The fibers of ρ : U → K can be regarded as a foliation by
curves on an étale cover of an open subset of C. This will be called the tautological
foliation on C and denoted by F . This is a multi-valued foliation on C.

Proposition 6. The tautological foliation F is a univalent foliation on C if and
only if the tangent map τ : U ��� C is birational.

Proof. The univalence of F when τ is birational is obvious. If F is univalent, its
leaves are curves on C whose images in X under the projection π : C → X are just
members of K. Thus τ must be birational from the generic injectivity of the natural
map K → Chow(X).

Now let us apply Section 2 to the subvariety C of PT (X). We have natural
distributions V, J and P on C which are completely determined by the inclusion
C ⊂ PT (X).

Proposition 7. At a general point of C choose a neighborhood on which a uni-
valent choice of the values of the tautological foliation F can be made. Denote this
univalent foliation by the same symbol F . Then V + F = J in that open subset.

Proof. By the definition of J , Jα = (dπ)−1(Cα) at α ∈ C, it is obvious that F ⊂
J . Thus V + F = J follows from F � V and rank(V) + rank(F) = rank(J ).
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On K, we have a natural distribution R defined as follows. At a general point [h]
of K corresponding to a rational curve h : P1 → X, the bundle h∗T (X) on P1 splits as
O(2) ⊕O(1)p ⊕On−1−p for some non-negative integer p. Members of K having such
splitting type of T (X) are called standard rational curves. By elementary deformation
theory, p is the fiber dimension of µ : U → X and the tangent space to K is

T[h](K) = H0(P1, h∗T (X))/H0(P1, T (P1)) ∼= H0(P1,O(1)p ⊕On−1−p).

The subspace of T[h](K) corresponding to the subspace H0(P1,O(1)p) is determined
independent of the choice of the isomorphism h∗T (X) ∼= O(2)⊕O(1)p⊕On−1−p. This
subspace will be defined to be R[h]. Thus R is a distribution of rank 2p on K whose
domain of definition includes the open subset consisting of standard rational curves
belonging to K.

Proposition 8. The pull-back of R by ρ agrees with the pull-back of P by τ :
dτ∗P = dρ∗R. In particular, F ⊂ Ch(P).

Proof. At a general point α ∈ C corresponding to the tangent direction to a
general standard minimal rational curve h : P1 → X with h(o) = x, we have the
natural identifications

Tα(C) = H0(P1, h∗T (X))/H0(P1, T (P1) ⊗ mo)

Tx(X) = H0(P1, h∗T (X))/H0(P1, h∗T (X) ⊗ mo).

Under these identifications, the projection dπ : Tα(C) → Tx(X) corresponds to tak-
ing the value of a section in H0(P1, h∗T (X)) at the point o. By definition, Pα =
(dπ)−1(T̂α(Cx)) at a general point α ∈ C. By elementary deformation theory, T̂α(Cx)
is naturally isomorphic to (O(2) ⊕ O(1)p)-part of the splitting h∗T (X) ∼= O(2) ⊕
O(1)p ⊕On−1−p. Thus Pα corresponds to the sections in H0(P1, h∗T (X)) whose val-
ues at o lie in the O(2)⊕O(1)p-part of the splitting. Thus it is exactly the lift of R[h]

by ρ.

Proposition 9. Let S be a general leaf of Ch(P). Then π(S) is a quasi-
projective variety and contains a smooth Zariski open subset W ⊂ π(S) such that
PT (W) is a Zariski dense open subset of S. Let KS be the subvariety of K consisting
of members of K lying on the closure S̄ of π(S). Then KS is a minimal component of
the irreducible projective variety S̄. Moreover, the corresponding total space of minimal
rational tangents CS agrees with PT (S̄).

Proof. By Proposition 7 and Proposition 8, we can apply Proposition 5 here.
The result follows from the fact that the leaves of F correspond to minimal rational
curves.

Now we recall the following result of Cho-Miyaoka-Shepherd-Barron. Note that
minimal components and their total spaces of minimal rational tangents are defined
for any irreducible projective variety X in Section 1.

Proposition 10 ([CMS, Theorem 4.2]). Let X be an irreducible normal pro-
jective variety of dimension n. Suppose there exists a minimal component K on X such
that the total space of minimal rational tangents agrees with PT (X). Then there exists
a finite morphism Pn → X which is étale over X − Sing(X) such that the members
of K are just the images of lines in Pn. In particular, X ∼= Pn if X is smooth.



minimal rational curves 59

A simple consequence is the following special case of Theorem 1.

Proposition 11. Let X be an irreducible normal projective variety which has a
minimal component K such that the total space of minimal rational tangents C agrees
with PT (X). Then

(i) the tangent map τ : U ��� C is birational and
(ii) K is the only minimal component of X.

We are ready to prove Theorem 1 and 2.

Proof of Theorem 1 and Theorem 2. Let us start with Theorem 1. By Proposition
6, it suffices to show that the tautological foliation F is univalent. By Proposition 8,
F is contained in Ch(P) and it suffices to show that it is univalent on a general leaf
S of Ch(P). But by Proposition 9, F restricted to S is the tautological foliation for
the minimal component KS of S̄ with the total space of minimal rational tangents
CS equal to PT (S̄). Thus F is univalent on S by Proposition 11 (i) applied to the
normalization of S̄. Theorem 2 follows from the fact that KS is the only minimal
component of S̄, by Proposition 11 (ii).

We will finish this section with a few results about π(S) in the notation of Propo-
sition 9. A subvariety Y in X is called a Cauchy subvariety of the minimal component
K if it is the closure of π(S) for a general leaf S of Ch(P) in the notation of Proposition
9. The following is an immediate consequence of Proposition 10.

Proposition 12. Let X be a uniruled projective manifold and Y ⊂ X be a
Cauchy subvariety with respect to a choice of a minimal component K. Let Ỹ be the
normalization of Y . Then there exists a finite morphism Pd → Ỹ which is étale over
Ỹ − Sing(Ỹ ) such that the members of K lying on Y are just the images of lines in
Pd.

Corollary 1 has the following consequence.

Proposition 13. Let X be a uniruled projective manifold and K be a minimal
component. Suppose the variety of minimal rational tangents Cx is non-linear. Then
for each component C1

x of Cx, the intersection of the closures of the fibers of the Gauss
map for C1

x is empty.

Proof. Suppose there exists a point α ∈ C1
x which is the intersection of the closures

of the fibers of the Gauss map. The normalization K1
x of C1

x is smooth by Corollary
1. The fibers of the Gauss map give subvarieties of the smooth projective variety K1

x

passing through a point α̂ ∈ K1
x over α. The pull-back of O(1) bundle on PTx(X) to

K1
x gives an ample line bundle L with respect to which the fibers of the Gauss map

are linear subspaces. It follows that there exists a family of rational curves through
α̂ covering the whole smooth variety K1

x such that each member has degree 1 with
respect to the ample line bundle L. By Proposition 10, K1

x must be a projective space
and then C1

x must be linear.

It is well-known that a positive-dimensional family of minimal rational curves
passing through a general point x ∈ X does not have a common intersection other
than x (‘bend-and-break’). A weaker form of this fact can be generalized to Cauchy
subvarieties as follows.
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Proposition 14. Let X be a uniruled projective manifold and K be a minimal
component. Assume that Cx is non-linear for a general point x ∈ X. Let C1

x be
a component of Cx. Then the irreducible family of the Cauchy subvarieties passing
through x whose tangent spaces lie in C1

x does not have a common intersection point
other than x.

Proof. Note that the non-linearity of Cx implies, by Lemma 2, that there is
a positive-dimensional family {Ys}, where s is a parameter, of Cauchy subvarieties
passing through x whose tangent spaces lie in C1

x. Suppose there exists a common
intersection point y different from x. By Proposition 12, for each s, there exists a
member Cs of K passing through x and y lying on the Cauchy subvariety Ys. Since
there cannot exist a positive-dimensional family of minimal rational curves passing
through x and y, Cs cannot be a family of distinct members of K. It follows that a
single member C = Cs belongs to each Ys and α := PTx(Cs) is in the intersection of
the fibers of the Gauss map of C1

x, a contradiction to Proposition 13.

4. Rigidity of generically finite morphisms to Fano manifolds with non-
linear varieties of minimal rational tangents. A weaker form of Theorem 3 was
already proved in [HM3] where the stronger assumption that Cx has generically finite
Gauss map was needed. The proof of Theorem 3 is a generalization of the argument
in [HM3] using the result of Section 3. We start with recalling two results from [HM3].

Lemma 3 ([HM3, Lemma 4.2]). Let π : Y → X be a generically finite morphism
from a normal variety Y onto a Fano manifold X with Picard number 1. Suppose for a
general member C ⊂ X belonging to a chosen minimal component K, each component
of the inverse image π−1(C) is birational to C by π. Then π : Y → X itself is
birational.

Proposition 15 ([HM3, Proof of Theorem 1.4]). Let {Xt, t ∈ ∆} be a
regular family of uniruled projective manifolds. Given a minimal component K0 of
X0 with the total space of variety of minimal rational tangents C0 ⊂ PT (X0), there
exists ε > 0 and a family of minimal components Kt of Xt, 0 < |t| < ε, with the total
space of minimal rational tangents Ct ⊂ PT (Xt) having the following property: given
a family of generically finite morphisms ft : X ′ → Xt from a fixed projective manifold
X ′ and a general point x ∈ X ′, the family of subvarieties (dft)−1

x (Ct,ft(x)) in PTx(X ′)
is a constant family, i.e.

(dft)−1(Ct,ft(x)) = (df0)−1(C0,f0(x))

for all |t| < ε.

The condition of the non-linearity of the variety of minimal rational tangents is
used in the following manner.

Proposition 16. Let X be a Fano manifold of Picard number 1. Suppose there
exists a minimal component K such that the variety of minimal rational tangents Cx

at a general point x ∈ X is non-linear of dimension p > 0. Let X ′ be another Fano
manifold of Picard number 1 with a minimal component K′. Assume that the variety
of minimal rational tangents C′

x′ ⊂ PTx′(X ′) at a general point x′ has dimension p. If
there exists a quasi-projective variety U and étale morphisms e : U → X and ϕ : U →
X ′ preserving varieties of minimal rational tangents in the sense that ϕ∗e∗(Ce(y)) =
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C′
ϕ(y) (and hence e∗ϕ∗(C′

ϕ(y)) = Ce(y)) for all y ∈ U , then there exists a birational map
Φ : X ��� X ′ such that ϕ = Φ ◦ e.

Proof. We define an equivalence relation on U by y1 ∼ y2 if e(y1) = e(y2) and
ϕ(y1) = ϕ(y2). In the quotient space U/∼, we can find a Zariski-open subset Ũ so that
the induced morphisms ẽ : Ũ → X and ϕ̃ : Ũ → X ′ are étale, preserving varieties of
minimal rational tangents in the above sense. For a general Cauchy subvariety Y of
K, any component Y1 of ẽ−1(Y ) is sent to a Cauchy subvariety of K′ because Cauchy
subvarieties are completely determined by the geometry of the total space of minimal
rational tangents in PT (X) and PT (X ′).

We claim that ẽ is injective. Suppose not. Then by Lemma 3, for a general
member C of K, there exists a component Ĉ of ẽ−1(C) so that ẽ|Ĉ : Ĉ → C is not
birational. Choose a general point x ∈ C and let y1 �= y2 be points of Ĉ over x. By
the construction of Ũ we can assume that ϕ̃(y1) �= ϕ̃(y2). Since C is general, we can
assume that for p-dimensional family of deformations Ct of C fixing x, the collection
of some components Ĉt of ẽ−1(Ct) gives a p-dimensional family of deformations of Ĉ
fixing y1 and y2. For the Cauchy subvariety St containing Ct, ẽ−1(St) contains an
irreducible component Zt containing both y1 and y2. Thus we have a component C1

of the variety of minimal rational tangents C′
ϕ̃(y1)

and a component C2 of the variety of
minimal rational tangents C′

ϕ̃(y2)
such that the Cauchy subvarieties corresponding to

C1 and the Cauchy subvarieties corresponding to C2 are equal. Since C′
x′ ⊂ PTx′(X ′) is

also non-linear at a general point x′ ∈ X ′, this contradicts with Proposition 14.

Proof of Theorem 3. Suppose that f is birational. Then f is biholomorphic over
X −Z where Z is a subvariety of codimension ≥ 2. On X ′ we have the vector field V
lifting d

dt on ∆. Its push-forward f∗V is a vector field on X −Z. By Hartogs, we can
extend it to a vector field on X which generates the required family of biholomorphic
morphisms.

Suppose that ft is not birational, but generically d-to-1. We will construct a new
projective manifold X̂, a generically finite dominant rational map ν : X ′ ��� X̂ of
degree d and a holomorphic family of birational morphisms gt : X̂ → Xt for small
t, so that ft = gt ◦ ν over general points of X ′. Then the proof is reduced to the
birational case, which is already settled above.

Let K0 be the minimal component on X0 with the total space of minimal rational
tangents C0 ⊂ PT (X0) whose fiber over a general point of X0 consists of non-linear
subvarietes. Applying Proposition 15, there exists some ε > 0 and a minimal compo-
nent Kt of Xt for 0 < |t| < ε such that the total space of minimal rational tangents
Ct satisfies

(dft)−1
y (Ct

ft(y)) = (df0)−1
y (C0

f0(y)).

Fix such a small t = s. There exists an open subset U ⊂ X ′ which is étale over
X0 and Xs by f0 and fs. The above equality of the inverse image of the varieties of
minimal rational tangents at fs(y) and f0(y) implies that the hypothesis of Proposition
16 is satisfied for the étale morphisms fs|U and f0|U . Thus there exists a birational
map Φ : X0 ��� Xs such that fs|U = Φ ◦ f0|U .

We say that a reduced 0-cycle y1 + · · ·+ yd of length d on X ′ is a special cycle if
f0(y1) = · · · = f0(yd) and fs(y1) = · · · = fs(yd). From the existence of the birational
map Φ, general fibers of f0 and fs are special cycles. The set of all special cycles on
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X ′ gives a constructible subset of the Hilbert scheme of 0-dimensional subschemes of
X ′. We can find an irreducible component of this set so that the corresponding cycles
cover an open set of X ′. Let B be the closure of that component and let σ : A → B
and λ : A → X ′ be the universal family morphisms so that σ is flat and of degree d.
We claim that λ is birational. Otherwise we have two distinct special cycles of degree
d containing a given general point y of X ′, which is absurd because f0 and fs are of
degree d.

Let X̂ be a desingularization of B and σ̂ : Â → X̂, λ̂ : Â → X ′ be the induced
morphisms. Define the rational map ν : X ′ ��� X̂ as ν := σ̂ ◦ λ̂−1. Then ν is a
generically finite dominant rational map of degree d. Consider the morphism f̂s = fs◦λ̂
from Â to Xs. From the definition of special cycles, a general fiber of σ̂ is contained
in a fiber of f̂s. Thus each fiber of σ̂ is contained in a fiber of f̂s by the flatness of σ̂.
It follows that we get a birational morphism gs : X̂ → Xs satisfying fs = gs ◦ ν. Since
X ′,Xs are all projective, it is easy to see that {gs} is a holomorphic family.

Let X be a Fano manifold of Picard number 1. Suppose X ′ is a projective
manifold with non-zero holomorphic vector fields. Given a generically finite morphism
f : X ′ → X, we get a deformation ft : X ′ → X of f obtained by composing it with the
1-parameter subgroup of automorphisms of X ′ generated by the holomorphic vector
fields. In this situation, Theorem 3, with X = X × ∆, implies the following.

Corollary 2. Let X be a Fano manifold of Picard number 1 which has a min-
imal component with non-linear variety of minimal rational tangents. Then for any
projective variety X ′ and a surjective generically finite morphism f : X ′ → X, any
holomorphic vector field on X ′ descends to a holomorphic vector field on X such that
f is equivariant with respect to the 1-parameter groups of automorphisms of X ′ and
X generated by the holomorphic vector fields.

Proof of Theorem 4. Since the Picard number of G/P is 1, f is finite and X
is a Fano manifold of Picard number 1. Assume that X �∼= Pn and pick a minimal
component K on X with C �= PT (X) by Proposition 10.

First assume that Cx is non-linear at general x ∈ X. By Corollary 2, vector fields
on G/P descend to vector fields on X by f . If R ⊂ G/P is a non-empty ramification
divisor of f and B = f(R), then the image of any tangent vector of G/P at a point
x on R is tangent to B whenever f(x) is a smooth point of B. Thus all vector fields
of G/P are sent to vector fields on X tangent to B at smooth points of B. This
implies that integral curves of any vector field of G/P through a point of R are sent
to curves in B. In other words, the integral curves through a point of R remain in R,
a contradiction to the homogeneity of G/P .

Now we may assume that Cx is linear. Then a component of (df)−1(Cf(s)) ⊂
PTs(G/P ) at a general point s ∈ G/P is a linear space invariant under the isotropy
group P by [HM1, Section 1], defining a G-invariant distribution on G/P . By trans-
lating an irreducible component of the inverse image of a Cauchy subvariety, we get
a proper G-invariant foliation on G/P with compact leaves, a contradiction to the
assumption that G/P has Picard number 1.
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scient. Éc. Norm. Sup., 12 (1979), pp. 355–432.
[HM1] Hwang, J.-M. and Mok, N., Holomorphic maps from rational homogeneous spaces of Picard

number 1 onto projective manifolds, Invent. math., 136 (1999), pp. 209–231.
[HM2] Hwang, J.-M. and Mok, N., Varieties of minimal rational tangents on uniruled manifolds,

in Several Complex Variables, ed. by M. Schneider and Y.-T. Siu, MSRI Publications
37, Cambridge University Press (1999), pp. 351–389.

[HM3] Hwang, J.-M. and Mok, N., Cartan-Fubini type extension of holomorphic maps for Fano

manifolds of Picard number 1, Journal Math. Pures Appl., 80 (2001), pp. 563–575.
[Ke] Kebekus, S., Families of singular rational curves, J. Algebraic Geom., 11 (2002), pp. 245–

256.
[KK] Kebekus, S. and Kovacs, S., Are minimal degree rational curves determined by their tan-

gent vectors?, preprint alg-geom/0206193.
[Ko] Kollár, J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer

Grenzgebiete, 3 Folge, Band 32, Springer Verlag, 1996.



64 j.-m. hwang and n. mok


