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Abstract

This paper is devoted to solve a multidimensional backward stochastic differential
equation with jumps in finite time horizon. Under weak monotonicity condition on the
generator and by means of suitable sequences, we prove existence and uniqueness of
solution.
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1 Introduction

It is well known that the pioneer result on Backward stochastic differential equation (BSDE
in short) was established by Pardoux and Peng [10]. Few years later the authors prove in
[11] the deep connection between such equations and parabolic partial differential equa-
tions. Since then the interest in such stochastic equations has increased thanks to the many
domains of applications. In order to study more general BSDEs, several authors interested
in relaxing the Lipschitz condition on the generator. In this way some attempts have been
done (see among others Mao [9], kobylanski [7], Lepeltier and San Martin [8]). Some au-
thors studying parabolic integral-partial differential equation (PIDE), interested in BSDEs
with Poisson Process (BSDEP in short). Among them we mention the result of Barles et al
[1] who establish a probabilistic interpretation of a solution of a PIDE. This was done by
means of a real-valued BSDEP with Lipschitzian generator.

Soon after appeared multidimensional BSDEs (MBSDE in short). Hamadène [6] proved
an existence and uniqueness result of such equations with uniformly continuous generator
∗E-mail address: sagnayaya88@gmail.com
†E-mail address: ahmadou-bamba.sow@ugb.edu.sn
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and Fan et al [4] focused on the uniqueness of solutions of a MBSDE with linear growth
generator. Recently Fan and Jiang [3] studying a MBSDE in finite time horizon prove an
existence and uniqueness result under mild conditions on the generator. Their method based
on four steps with suitable sequences improve subsequently the known results.

In this paper we intend to extend the result establish in [3] to MBSDEs with Poisson
jumps (MBSDEP in short) introduced by a random Poisson measure independent to the
underlying Brownian motion. We prove existence and uniqueness of solution under weak
monotonicity and a growth condition on the generator. The paper is organized as follows.
We first introduce a technical assumption and establish some preliminary results in section
2. Thanks to these statements we deal with the solvability of a MBSDEP in finite time
duration in Section 3.

2 MBSDE with Poisson Jumps

2.1 Definitions and preliminary results

Let Ω be a non-empty set, F a σ−algebra of sets of Ω and P a probability measure defined
on F . The triplet (Ω,F , P) defines a probability space, which is assumed to be complete.
We assume given two mutually independent processes:

• a d−dimensional Brownian motion (Bt)t≥0,

• a random Poisson measure µ on E×R+ with compensator ν(dt,de) = λ(de)dt

where the space E = R− {0} is equipped with its Borel field E such that {̃µ([0, t]× A) =
(µ− ν)[0, t]×A} is a martingale for any A ∈ E satisfying λ(A) <∞. λ is a σ−finite measure
on E and satisfies ∫

E
(1∧ |e|2)λ(de) <∞.

We consider the filtration (Ft)t≥0 given byFt =F
B

t ∨F
µ

t , where for any process {ηt}t≥0, F
η
s,t =

σ{ηr −ηs, s ≤ r ≤ t}∨N , F η
t = F

η
0,t. Here N denotes the class of P−null sets of F .

For Q ∈ N∗, | . | stands for the Euclidian norm in RQ.
We consider the following sets (where E denotes the mathematical expectation with respect
to the probability measure P) and a non-random horizon time 0 < T < +∞:

• S2(RQ) the space of Ft−adapted càdlàg processes

Ψ : [0,T ]×Ω −→ RQ, ‖Ψ‖2
S2(RQ) = E

(
sup

0≤t≤T
|Ψt|

2
)
<∞.

• M2(RQ) the space of Ft−progressively measurable processes

Ψ : [0,T ]×Ω −→ RQ×d, ‖Ψ‖2
M2(RQ) = E

∫ T

0
|Ψt|

2 dt <∞.

• L2(̃µ,RQ) the space of mappings U : Ω× [0,T ]×E −→ RQ which are P⊗E-measurable
such that

‖U‖2
L2(RQ) = E

∫ T

0
‖Ut‖

2
L2(E,E,λ,R)dt <∞,
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where P denotes the σ−algebra of Ft−predictable sets of Ω× [0,T ] and

‖Ut‖
2
L2(E,E,λ,R) =

∫
E
|Ut(e)|2λ(de).

We may often write | · | instead of ‖ · ‖L2(E,E,λ,R) for a sake of simplicity.
Let k ≥ 1 and define A = Rk ×Rk×d × L2(E,E,λ,Rk). Notice that the space B2(Rk) =

S2(Rk)×M2(Rk×d)×L2(̃µ,Rk) endowed with the norm

‖(Y,Z,U)‖2
B2(Rk) = ‖Y‖

2
S2(Rk)+ ‖Z‖

2
M2(Rk×d)+ ‖U‖

2
L2(Rk)

is a Banach space.
Finally let S be the set of all nondecreasing and concave function ϕ(·) : R+→ R+ satis-

fying ϕ(0) = 0, ϕ(s) > 0 for s > 0 and
∫

0+ϕ
−1(u)du = +∞.

Remark 2.1. Notice that for any κ ∈ S, there exists a positive constant A such that κ(x) ≤
A(x+1), x ∈ R+.

Given g : Ω× [0,T ]×A→ Rk a jointly measurable function and ξ ∈ L2(FT ,R
k) the set

of all Rk−valued, square integrable and FT−measurable random vectors, we are interested
in the MBSDEP with parameters (ξ,g,T ):

Yt = ξ+

∫ T

t
g (r,Θr)dr−

∫ T

t
ZrdBr −

∫ T

t

∫
E

Ur(e)̃µ(dr,de), 0 ≤ t ≤ T, (2.1)

where Θr stands for the triple (Yr,Zr,Ur).
For instance let us precise the notion of solution to eq.(2.1).

Definition 2.2. A triplet of processes (Yt,Zt,Ut)0≤t≤T is called a solution to eq.(2.1), if
(Yt,Zt,Ut) ∈ B2(Rk) and it satisfies eq.(2.1).

Now, let us introduce the following Proposition 2.3, which will play an important role
in the proof of our main result. In stating it, the following assumption on the generator g is
useful:

(A) : dP×dt-a.e., ∀(y,z,u) ∈ Rk ×Rk×d ×Rk,

〈y,g(ø, t,y,z,u)〉 ≤ ψ(|y|2)+α|y|(|z|+ |u|)+ |y|ϕt

where α > 0, ϕt is a non-negative and (Ft)-progressively measurable process satisfying

E

[∫ T

0
ϕ2

t dt
]
< +∞

and ψ is a nondecreasing concave function from R+ to itself with ψ(0) = 0.

Proposition 2.3. Assume that g satisfies the assumption (A) and let (Yt,Zt,Ut)0≤t≤T be a
solution to the MBSDEP (2.1). Then for any θ > 0, there exists a constant c > 0 depending
only on α and θ such that, for any 0 ≤ u ≤ t ≤ T,

E

[
sup

t≤r≤T
|Yr |

2
∣∣∣∣∣ Fu

]
+E

[∫ T

t
|Zs|

2ds
∣∣∣∣∣ Fu

]
+E

[∫ T

t

∫
E
|Us(e)|2λ(de)ds

∣∣∣∣∣ Fu

]
≤ ec(T−t)

{
cE[|ξ|2

∣∣∣ Fu]+ c
∫ T

t
ψ(E[|Ys|

2|Fu])ds+
1
θ
E

[∫ T

t
ϕ2

sds
∣∣∣∣∣ Fu

]} (2.2)
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Proof. Applying Itô’s formula to |Yt|
2 reads to

|Yt|
2+

∫ T

t
|Zs|

2ds+
∫ T

t

∫
E
|Us(e)|2λ(de)ds+

∑
t<s≤T

(∆Ys)2 = |ξ|2+2
∫ T

t
〈Ys,g(s,Θs)〉ds

−2
∫ T

t
〈Ys,ZsdBs〉−2

∫ T

t

∫
E
〈Ys− ,Us(e)̃µ(ds,de)〉, 0 ≤ t ≤ T. (2.3)

By the assumption (A) and the inequality 2ab ≤ θa2+b2/θ for any θ > 0, we have

2〈Ys,g(s,Θs))〉 ≤ ψ(|Ys|
2)+2α|Ys|(|Zs|+ |Us|)+2|Ys|ϕs

≤ ψ(|Ys|
2)+ (4α2+146θ)|Ys|

2+
ϕ2

s

146θ
+

1
2

(|Zs|
2+ |Us|

2)
(2.4)

Thus it follows from eq.(2.3) and (2.4) that for any 0 ≤ u ≤ t ≤ T ,

1
2
E

[∫ T

t
|Zs|

2ds+
∫ T

t

∫
E
|Us(e)|2λ(de)ds

∣∣∣∣∣ Fu

]
≤ Xt

u (2.5)

where for 0 ≤ u ≤ t ≤ T ,

Xt
u = E[|ξ|2Fu]+ (4α2+146θ)

∫ T

t
E

[
sup

s≤r≤T
|Yr |

2
∣∣∣∣∣ Fu

]
ds

+E

[∫ T

t

(
2ψ(|Ys|

2)+
ϕ2

s

146θ

)
ds

∣∣∣∣∣ Fu

]
From the Burkhölder-Davis-Gundy inequality, the process

{
Mt =

∫ t
0 〈Ys,ZsdBs〉

}
0≤t≤T

is in
fact a uniformly integrable martingale. Indeed for any 0 ≤ u ≤ t ≤ T , we have

2E
[

sup
t≤r≤T

∣∣∣∣∣∣
∫ T

r
〈Ys,ZsdBs〉

∣∣∣∣∣∣
∣∣∣∣∣ Fu

]
≤6E


(

sup
t≤r≤T

|Yr |
2
) 1

2

.

(∫ T

t
|Zs|

2ds
) 1

2 ∣∣∣∣∣ Fu


≤

1
4
E

[
sup

t≤r≤T
|Yr |

2
∣∣∣∣∣ Fu

]
+36E

[∫ T

t
|Zs|

2ds
∣∣∣∣∣ Fu

] (2.6)

Similarly for the discontinuous martingale, we have

2E
[

sup
t≤r≤T

∣∣∣∣∣∣
∫ T

r

∫
E
〈Ys− ,Us(e)̃µ(ds,de)〉

∣∣∣∣∣∣
∣∣∣∣∣ Fu

]

≤ 6E


(

sup
t≤r≤T

|Yr |
2
) 1

2

.

(∫ T

t

∫
E
|Us(e)|2λ(de)ds

) 1
2 ∣∣∣∣∣ Fu


≤

1
4
E

[
sup

t≤r≤T
|Yr |

2
∣∣∣∣∣ Fu

]
+36E

[∫ T

t

∫
E
|Us(e)|2λ(de)ds

∣∣∣∣∣ Fu

]
(2.7)

Taking in account (2.4) and (2.7), we deduce from eq.(2.3)

E

[
sup

t≤r≤T
|Yr |

2
∣∣∣∣∣ Fu

]
+E

[∫ T

t
|Zs|

2ds
∣∣∣∣∣ Fu

]
+E

[∫ T

t

∫
E
|Us(e)|2λ(de)ds

∣∣∣∣∣ Fu

]
(2.8)

≤ 2Xt
u+72E

[∫ T

t
|Zs|

2ds
∣∣∣∣∣ Fu

]
+72E

[∫ T

t

∫
E
|Us(e)|2λ(de)ds

∣∣∣∣∣ Fu

]
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Hence combining the above inequality and (2.5), we obtain

f (t) ≤ 146Xt
u

:= 146E[|ξ|2|Fu]+146(4α2+146θ)
∫ T

t
f (s)ds+E

[∫ T

t

(
292ψ(|Ys|

2)+
ϕ2

s

θ

)
ds

∣∣∣∣∣ Fu

]
where f (t) stands for the left hand side of (2.8).

Applying Fubini’s theorem and Jensen’s inequality, inequality (2.2) follows from Gron-
wall’s lemma. �

In what follows we investigate our main subject.

3 Existence and uniqueness of solution

Let us introduce the following assumptions on the generator g. We say that g satisfies
assumptions (H) if the following hold :
• (H1): g satisfies the weak monotonicity condition in y, i.e., there exists κ ∈ S such that
dP×dt-a.e, ∀y1,y2 ∈ R

k,z ∈ Rk×d,u ∈ Rk,

〈y1− y2,g(ø, t,y1,z,u)−g(ø, t,y2,z,u)〉 ≤ κ(|y1− y2|
2).

• (H2): dP×dt-a.e., ∀z ∈ Rk×d the function y 7−→ g(ø, t,y,z,u) is continuous.
• (H3): g has a general growth with respect to y, i.e., dP×dt-a.e,

∀y ∈ Rk, |g(ø, t,y,0,0)| ≤ |g(ø,0,0,0)|+φ(|y|)

where φ : R+ 7−→ R+ is an increasing continuous function.
• (H4): g is Lipschitz continuous in (z,u) uniformly with respect to (ø, t,y), i.e., there exists
a constant β > 0 such that dP×dt-a.e, y ∈ Rk,z1,z2 ∈ R

k×d,u1,u2 ∈ R
k

|g(ø, t,y,z1,u1)−g(ø, t,y,z2,u2)| ≤ β(|z1− z2|+ |u1−u2|).

• (H5): The integrability condition holds a.s. E
[∫ T

0
|g(ø, t,0,0,0)|2dt

]
< +∞.

We recall the following result which will be useful in the proof of uniqueness. This one is
a consequence of Lemma 3.6 in [9].

Lemma 3.1 (Bihari’s inequality). Let T > 0, u,v continuous non-negative functions on
[0,T ] and H : R+ → R+ continuous and nondecreasing such that H(r) > 0 for r > 0 sat-
isfying ∫

0+

ds
H(s)

= +∞.

If

u(t) ≤
∫ t

0
v(s)H(u(s))ds, 0 ≤ t ≤ T,

then u(t) = 0 for all 0 ≤ t ≤ T.
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We are now in position to give our main result:

Theorem 3.2. Let ξ ∈ L2(FT ,R
k). If g satisfies the assumptions (H), then the MBSDEP

(2.1) with parameters (ξ,T,g) has a unique solution.

Proof. (i) Uniqueness. Let (Y i
t ,Z

i
t ,U

i
t)0≤t≤T , i = 1,2 be two solutions of the MBSDEP (2.1).

We consider the function ĝ defined by

∀(y,z,u) ∈ Rk ×Rk×d ×Rk, ĝ(s,y,z,u) = g(s,y+Y2
s ,z+Z2

s ,u+U2
s )−g(s,Y2

s ,Z
2
s ,U

2
s )

and for δ ∈ {Y,Z,U} we define δ̂ = δ1−δ2.
It is easily seen that the triple (Ŷt, Ẑt, Ût)0≤t≤T is a solution to the following MBSDEP

with parameters (0,T, ĝ):

Ŷt =

∫ T

t
ĝ(s, Ŷs, Ẑs, Ûs)ds−

∫ T

t
ẐsdBs−

∫ T

t

∫
E

Ûs(e)̃µ(ds,de), 0 ≤ t ≤ T. (3.1)

It follows from (H1) and (H4) that dP×dt-a.e.,

∀(y,z,u) ∈ Rk ×Rk×d ×Rk, 〈y, ĝ(s,y,z,u)〉 ≤ κ(|y|2)+β|y|(|z|+ |u|).

Then the generator ĝ of the MBSDEP (3.1) satisfies the assumption (A) with

ψ(u) = κ(u), α = β, and φt ≡ 0.

Thus, it follows from Proposition 2.3 with u = 0 and θ = 1 that there exists a constant c > 0
depending only on β and T such that, for 0 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Ŷr |

2
]
+E

[∫ T

t
|Ẑs|

2ds
]
+E

[∫ T

t

∫
E
|Ûs(e)|2λ(de)ds

]
≤ c

∫ T

t
κ

(
E

[
sup

s≤r≤T
|Ŷr |

2
])

ds.

Bihari’s inequality implies that, for any 0 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Ŷr |

2
]
+E

[∫ T

t
|Ẑs|

2ds
]
+E

[∫ T

t

∫
E
|Ûs(e)|2λ(de)ds

]
= 0.

Uniqueness follows.
(ii) Existence. The proof of the existence part will be split into four steps:
Step 1: Let us consider the following condition :
(B1): for a given pair of processes (V,W) ∈ M2(Rk×d)×L2(̃µ,Rk) there exists K > 0 such
that

dP-a.s, |ξ|2 ≤ K, dP×dt-a.e., |g(t,0,0,0)| ≤ K and |Vt|+ |Wt| ≤ K. (3.2)

We intend to prove that under the assumptions (H) and condition (B1) there exists a
unique solution to the following MBSDEP:

Yt = ξ+

∫ T

t
g(s,Ys,Vs,Ws)ds−

∫ T

t
ZsdBs−

∫ T

t
Us(e)̃µ(ds,de). (3.3)
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Let ψ ∈ C∞(Rk,R+) s.t.
∫
Rk ψ(y) = 1, with the closed unit ball as compact support. For an

integer n ≥ 1 and (ø, t,y) ∈Ω× [0,T ]×Rk, we set

gn(t,y,Vt,Wt) = nkg(t,y,Vt,Wt)∗ψ(ny). (3.4)

Then, gn is an (Ft)-progressively mesurable process and for any y ∈ Rk, we have

gn(t,y,Vt,Wt) =
∫
Rk

g(t,y−
u
n
,Vt,Wt)∗ψ(u)du

=

∫
{u:|u|≤1}

g(t,y−
u
n
,Vt,Wt)ψ(u)du.

(3.5)

It follows from assumptions (H3), (H4) and condition (B1) that

∀y ∈ Rk, |g(t,y,Vt,Wt)| ≤ |g(t,y,0,0)|+ |g(t,y,Vt,Wt)−g(t,y,0,0)|

≤ K(1+β)+φ(|y|)
(3.6)

Hence from eq.(3.4), we can show that n ≥ 1, gn is locally Lipschitz in y. Furthermore, for
any n ≥ 1 and y ∈ Rk, it follows from eq.(3.5) and (3.6) that dP×dt-a.e.,

|gn(t,y,Vt,Wt)| ≤ K(1+β)+φ(|y|) (3.7)

Now, for some large enough integer r > 0 which will be chosen later, let θr be a smooth
function such that

0 ≤ θr ≤ 1, θr(y) = 1, for |y| ≤ r and θr(y) = 0 as soon as |y| ≥ r+1.

Then for any integer n ≥ 1, the function gθn(t,y) = θr(y)gn(t,y,Vt,Wt) is globally Lipschitz
in y. Indeed, let us pick (y,y′) ∈ Rk ×Rk. If |y| > r+1 and |y′| > r+1, then the statement is
trivially satisfied and thus we reduce to the case |y′| ≤ r+1. Note that gn is locally Lipschitz
in y and θr is globally Lipschitz in y. It follows from (3.7) that there exist two positive
constants C1 and C2 such that dP×dt-a.e.,

|gθn(t,y)−gθn(t,y′)| ≤ |θr(y)||gn(t,y,Vt,Wt)−gn(t,y′,Vt,Wt)|

+ |θr(y)− θr(y′)||gn(t,y′,Vt,Wt)|

≤C1|y− y′|+C2(K +βK +φ(r+1))|y− y′| :=C|y− y′|.

From Theorem 2.1 in [1], we know that for any n ≥ 1, the following MBSDEP

Yn
t = ξ+

∫ T

t
gθn(s,Yn

s )ds−
∫ T

t
Zn

s dBs−

∫ T

t

∫
E

Un
s (e)̃µ(ds,de). (3.8)

has a unique solution (Yn
t ,Z

n
t ,U

n
t )0≤t≤T .

Furthermore from (3.5) and (H1), we deduce that for any integer n≥ 1 and (y1,y2) ∈Rk×Rk,

〈y1− y2, gn(t,y1,Vt,Wt)−gn(t,y2,Vt,Wt)〉

≤

∫
Rk

〈
y1− y2,g(t,y1−

u
n
,Vt,Wt)−g(t,y2−

u
n
,Vt,Wt)

〉
ψ(u)du

≤

∫
Rk
κ(|y1− y2|

2)ψ(u)du = κ(|y1− y2|
2). (3.9)
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Moreover for any n ≥ 1 and y ∈ Rk, combining (3.9) and (3.7) we have dP×dt-a.e.,

〈y,gθn(t,y)〉 = θr(y)〈y,gn(t,y,Vt,Wt)−gn(t,0,Vt,Wt)〉+ θr(y)〈y,gn(t,0,Vt,Wt)〉

≤ κ(|y|2)+ |y|(K(1+β)+φ(0)).

This implies that the generator gθn of the MBSDEP (3.8) satisfies the assumption (A) with

ψ(u) = κ(u), α = 0, and ϕt = K(1+β)+φ(0).

Hence applying Proposition 2.3 (with θ = 1) and taking in account condition (B1), we de-
duce that there exists a constant c > 0 depending only on T such that, for n ≥ 1 and any
0 ≤ u ≤ t ≤ T ,

E[|Yn
t |

2|Fu]+E
[∫ T

t
|Zn

s |
2ds

∣∣∣∣∣ Fu

]
+E

[∫ T

t

∫
E
|Un

s (e)|2λ(de)ds
∣∣∣∣∣ Fu

]
≤ cK2+ c

∫ T

t
κ(E[|Yn

s |
2|Fu])ds+ c(K +βK +φ(0))2T

Furthermore, by Remark 2.1 and Gronwall’s lemma, we deduce that

E[|Yn
t |

2|Fu]+E
[∫ T

t
|Zn

s |
2ds

∣∣∣∣∣ Fu

]
+E

[∫ T

t

∫
E
|Un

s (e)|2λ(de)ds
∣∣∣∣∣ Fu

]
≤ (cK2+ cAT + c(K(1+β)+φ(0))2T )× ecAT := r2.

Substituting u = t in the previous inequality it follows that, for any n ≥ 1,

∀0 ≤ t ≤ T, |Yn
t | ≤ r and E

[∫ T

t
|Zn

s |
2ds

]
+E

[∫ T

t

∫
E
|Un

s (e)|2λ(de)ds
]
≤ r2. (3.10)

By (3.8) and (3.10), we conclude that (Yn
t ,Z

n
t ,U

n
t )0≤t≤T solves the following MBSDEP:

Yn
t = ξ+

∫ T

t
gn(s,Yn

s ,Vs,Ws)−
∫ T

t
Zn

s dBs−

∫ T

t

∫
E

Un
s (e)̃µ(ds,de). (3.11)

In the sequel, we shall show that
{
(Yn

t ,Z
n
t ,U

n
t )0≤t≤T

}
n≥1 is a Cauchy sequence in the Banach

space B2(Rk). To this end we define for any integers n,m and δ ∈ {Y,Z,U}, δ̂n,m = δn −

δm. Thus the triplet (Ŷt
n,m
, Ẑt

n,m
, Ût

n,m
)0≤t≤T is solution to the MBSDEP with parameters

(0,T, ĝn,m) :

Ŷn,m
t =

∫ T

t
ĝn,m(s, Ŷn,m

s ,Vs,Ws)−
∫ T

t
Ẑn,m

s dBs−

∫ T

t

∫
E

Ûn,m
s (e)̃µ(ds,de), (3.12)

where

ĝn,m(s,y,Vs,Ws) = gn(s,y+Ym
s ,Vs,Ws)−gm(s,Ym

s ,Vs,Ws), y ∈ Rk, 0 ≤ s ≤ T.

It follows from (3.9) that for any y ∈ Rk,

〈y, ĝn,m(t,y,Vt,Wt) = 〈y,gn(t,y+Ym
t ,Vt,Wt)−gn(t,Ym

t ,Vt,Wt)〉

+ 〈y,gn(t,Ym
t ,Vt,Wt)−gm(t,Ym

t ,Vt,Wt)〉

≤ κ(|y|2)+ |y||gn(t,Ym
t ,Vt,Wt)−gm(t,Ym

t ,Vt,Wt)|.
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We deduce that the generator ĝn,m of the MBSDEP (3.12) satisfies the assumption (A) with

ψ(u) = κ(u), α = 0 and ϕt = |gn(t,Ym
t ,Vt,Wt)−gm(t,Ym

t ,Vt,Wt)|.

Hence applying Proposition 2.3 (with u = 0 and θ = 1), there exists a constant c > 0 depend-
ing only on T such that for 0 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Ŷn,m

r |
2
]
+E

[∫ T

t
|Ẑn,m

s |
2ds

]
+E

[∫ T

t

∫
E
|Ûn,m

s (e)|2λ(de)ds
]

≤

∫ T

t
κ

(
E

[
sup

s≤r≤T
|Ŷn,m

r |
2
])

ds

+ cE
[∫ T

0
(|gn(s,Ym

s ,Vs,Ws)−gm(s,Ym
s ,Vs,Ws)|)2ds

]
.

(3.13)

On the other part, from eq.(3.5) we have for n,m ≥ 1 and 0 ≤ s ≤ T ,

|gn(s,Ym
s ,Vs,Ws)−gm(s,Ym

s ,Vs,Ws)| ≤
∫
{u:|u|≤1}

hn,m,s(u)ψ(u)du

where
hn,m,s(u) = |g(s,Ym

s −u/n,Vs,Ws)−g(s,Ym
s −u/m,Vs,Ws)|.

By (H2) and (3.10), we derive that for any u ∈ Rk,

dP×dt-a.e., hn,m,s(u)→ 0 as n,m→∞.

Moreover from (3.6) and (3.10), we have for any 0 ≤ s ≤ T and u ∈ Rk such that |u| ≤
1, hn,m,s(u) ≤ 2(K +βK +ϕ(r+1)). This implies in particular

|gn(s,Ym
s ,Vs,Ws)−gm(s,Ym

s ,Vs,Ws)| ≤ 2(K +βK +ϕ(r+1)).

Applying Lebesgue’s dominated convergence theorem twice, we obtain

lim
n,m→∞

E

[∫ T

0
|gn(s,Ym

s ,Vs,Ws)−gm(s,Ym
s ,Vs,Ws)|2ds

]
= 0. (3.14)

Let us set for 0 ≤ t ≤ T, f (t) = limsupn,m→∞ f n,m(t) where f n,m(t) stands for the left hand
side of (3.13). Then the function f is well defined by (3.10). Taking the lim sup in (3.13)
and combining Fatou’s lemma, (3.14) and the properties (essentially monotonicity and con-
tinuity) of κ we deduce that

∀0 ≤ t ≤ T, f (t) ≤ c
∫ T

t
κ( f (s))ds.

Bihari’s inequality implies that

lim
n,m→∞

{
E

[
sup

t≤r≤T
|Ŷn,m

r |
2
]
+E

[∫ T

t
|Ẑn,m

s |
2ds

]
+E

[∫ T

t

∫
E
|Ûn,m

s (e)|2λ(de)ds
]}
= 0.
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As a consequence, we derive that
{
(Yn

t ,Z
n
t ,U

n
t )0≤t≤T

}
n≥1 is a Cauchy sequence in the Banach

spaceB2(Rk). Let (Yt,Zt,Ut)0≤t≤T be the limit process of the sequence
{
(Yn

t ,Z
n
t ,U

n
t )0≤t≤T

}
n≥1

in B2(Rk). Taking the limit in uniform convergence in probability in (3.11) and combining
(3.7), (3.10) and assumptions (H2), we deduce by Lebesgue’s dominated convergence the-
orem that (Yt,Zt,Ut) solves the MBSDEP (3.3).

Step 2: In this step, we intend to remove the bounded condition required on the process
(Vt,Wt)0≤t≤T in Step 1. To this end we introduce the condition:
(B2): for a given pair of processes (V,W) ∈M2(Rk×d)×L2(̃µ,Rk), there exists K > 0 such
that

dP-a.s., |ξ| ≤ K, and dP×dt-a.e., |g(t,0,0,0)| ≤ K, (3.15)

Let us prove that under condition (B2), there exists a unique solution to MBSDEP (3.3).
For any integer n ≥ 1 and z ∈ Rk×d, we consider the function qn(z) = zn/(|z| ∨ n). Then we
have

∀(z,u) ∈ Rk×d ×Rk, |qn(z)|+ |qn(u)| ≤ (|z|+ |u|)∧n.

It follows from Step 1 that for any n ≥ 1, there exists a solution (Yn
t ,Z

n
t ,U

n
t )0≤t≤T to the

following MBSDEP

Yn
t = ξ+

∫ T

t
g(s,Yn

s ,qn(Vs),qn(Ws))ds−
∫ T

t
Zn

s dBs−

∫ T

t

∫
E

Un
s (e)̃u(ds,de). (3.16)

Similarly, we shall show that
{
(Yn

t ,Z
n
t ,U

n
t )0≤t≤T

}
n≥1 solution to (3.16) is a Cauchy sequence

inB2(Rk). Using the notations introduced in Step 1, we derive that the triplet (Ŷn,m
t , Ẑn,m

t , Ûn,m
t )0≤t≤T

solves the MBSDEP

Ŷn,m
t =

∫ T

t
ĝn,m(s, Ŷn,m

s ,Vs,Ws)ds−
∫ T

t
Ẑn,m

s dBs−

∫ T

t

∫
E

Ûn,m
s (e)̃u(ds,de), (3.17)

where for any 0 ≤ s ≤ T ,

ĝn,m(s,y,Vs,Ws) = g(s,y+Ym
s ,qn(Vs),qn(Ws))−g(s,y+Ym

s ,qm(Vs),qm(Ws)), y ∈ Rk.

By standard computations, it follows from (H1) and (H4) that for any y ∈ Rk,dP×dt -a.e.,

〈y, ĝn,m(t,y,Vt,Wt)〉 ≤ κ(|y|2)+β|y|[|qn(Vt)−qm(Vt)|+ |qn(Wt)−qm(Wt)|]

Hence the generator ĝn,m of the MBSDEP (3.17) satisfies the assumption (A) with

ψ(u) = κ(u), α = 0 and ϕt = β[|qn(Vt)−qm(Vt)|+ |qn(Wt)−qm(Wt)|].

It follows from Proposition 2.3 with u = 0 and θ = 1 that there exists a constant c > 0
depending only on T such that for 0 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Ŷn,m

r |
2
]
+E

[∫ T

t
|Ẑn,m

s |
2ds

]
+E

[∫ T

t

∫
E
|Ûn,m

s (e)|2λ(de)ds
]

≤

∫ T

t
κ

(
E

[
sup

s≤r≤T
|Ŷn,m

r |
2
])

ds

+ cβ2E

[∫ T

0
(|qn(Vs)−qm(Vs)|+ |qn(Ws)−qm(Ws)|)2 ds

]
.

(3.18)
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Since κ ∈ S, applying Gronwall’s lemma we obtain for any 0 ≤ t ≤ T and n,m ≥ 1,

E

[
sup

t≤r≤T
|Ŷn,m

r |
2
]
+E

[∫ T

t
|Ẑn,m

s |
2ds

]
+E

[∫ T

t

∫
E
|Ûn,m

s (e)|2λ(de)ds
]

≤

(
cAT +2cβ2E

[∫ T

0
(|Vs|+ |Ws|)2ds

])
× ecAT .

Taking the lim sup in (3.18) with respect to n,m combined with Fatou’s lemma, the mono-
tonicity and continuity of κ and Bihari’s inequality, we deduce that{
(Yn

t ,Z
n
t ,U

n
t )0≤t≤T

}
n≥1 is a Cauchy sequence in B2(Rk).

Let (Yt,Zt,Ut)0≤t≤T be the limit process of the sequence
{
(Yn

t ,Z
n
t ,U

n
t )0≤t≤T

}
n≥1 in B2(Rk).

Taking the limit in uniform convergence in probability in (3.16) in view of (H2), (H4), we
deduce by Lebesgue’s dominated convergence theorem that (Yt,Zt,Ut)0≤t≤T solves the MB-
SDEP (3.3).

Step 3: We shall prove that given ξ ∈ L2(FT ,R
k), if condition (B2) introduced in (3.15)

holds, then there exists a unique solution to the MBSDEP (2.1).
Using Step 2, we consider now the well defined sequence (Yn

t ,Z
n
t ,U

n
t )n≥0 given by

Y0
t = 0, Z0

t = 0, U0
t = 0,

Yn
t = ξ+

∫ T

t
g(s,Yn

s ,Z
n−1
s ,Un−1

s )ds−
∫ T

t
Zn

s dBs−

∫ T

t

∫
E

Un
s (e)̃µ(ds,de), n ≥ 1.

(3.19)

By assumptions (H1) and (H4), we have for any y ∈ Rk,dP×dt-a.e,

〈y,g(t,y,Zn−1
t ,Un−1

t )〉 = 〈y,g(t,y,Zn−1
t ,Un−1

t )−g(t,0,Zn−1
t ,Un−1

t )〉

+ 〈y,g(t,0,Zn−1
t ,Un−1

t )〉

≤ κ(|y|2)+ |y|(|g(t,0,0,0)|+β(|Zn−1
t |+ |U

n−1
t |))

This implies that the generator g of the MBSDEP (3.19) satisfies the assumption (A) with

ψ(u) = κ(u), α = 0 and ϕt = |g(t,0,0,0)|+β(|Zn−1
t |+ |U

n−1
t |).

Hence applying Proposition 2.3 (with θ = 32β2 and u = 0), we deduce that there exists a
constant c > 0 depending only on β such that for 0 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Yn

r |
2
]
+E

[∫ T

t
|Zn

s |
2ds

]
+E

[∫ T

t

∫
E
|Un

s (e)|2λ(de)ds
]

≤ ec(T−t)M(t)+ cec(T−t)
∫ T

t
κ

(
E

[
sup

s≤r≤T
|Yr |

2
])

ds

+
ec(T−t)

8
E

[∫ T

t
|Zn−1

s |
2ds+

∫ T

t

∫
E
|Un−1

s (e)|2λ(de)ds
]
,

where, thanks to condition (B2), we have

M(t) = cE[|ξ|2]+
1

16β2E

[∫ T

t
|g(s,0,0,0)|2ds

]
≤ K2

(
c+

T
16β2

)
:= M. (3.20)
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Let us set T1 =max {T − ln2/c,T − ln2/(2cA),0}. Then for T1 ≤ t ≤ T , we have the inequal-
ities

ec(T−t) ≤ 2, e2cA(T−t) ≤ 2

and for any n ≥ 1,

E

[
sup

t≤r≤T
|Yn

r |
2
]
+E

[∫ T

t
|Zn

s |
2ds

]
+E

[∫ T

t

∫
E
|Un

s (e)|2λ(de)ds
]

≤ 2M+ c
∫ T

t
κ

(
E

[
sup

s≤r≤T
|Yr |

2
])

ds

+
1
4
E

[∫ T

t
|Zn−1

s |
2ds+

∫ T

t

∫
E
|Un−1

s (e)|2λ(de)ds
]
.

Remark 2.1 and Gronwall’s lemma yields for T1 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Yn

r |
2
]
+E

[∫ T

t
|Zn

s |
2ds

]
+E

[∫ T

t

∫
E
|Un

s (e)|2λ(de)ds
]

≤

(
2M+2cAT +

1
4
E

[∫ T

t
|Zn−1

s |
2ds+

∫ T

t

∫
E
|Un−1

s (e)|2λ(de)ds
])
× e2cA(T−t)

≤ 4M+4cAT +
1
2
E

[∫ T

t
|Zn−1

s |
2ds+

∫ T

t

∫
E
|Un−1

s (e)|2λ(de)ds
]
,

which implies by induction that for any n ≥ 1 and T1 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Yn

r |
2
]
+E

[∫ T

t
|Zn

s |
2ds

]
+E

[∫ T

t

∫
E
|Un

s (e)|2λ(de)ds
]
≤ 8M+8cAT. (3.21)

In the same spirit, we have for T1 ≤ t ≤ T ,

Ŷn,m
t =

∫ T

t
ĝn,m(s, Ŷn,m

s )ds−
∫ T

t
Ẑn,m

s dBs−

∫ T

t

∫
E

Ûn,m
s (e)̃µ(ds,de) (3.22)

where

ĝn,m(s,y) = g(s,y+Ym
s ,Z

n−1
s ,Un−1

s )−g(s,Ym
s ,Z

m−1
s ,Um−1

s ), y ∈ Rk, 0 ≤ s ≤ T.

We deduce from assumptions (H1) and (H4) that for any y ∈ Rk,

〈y, ĝn,m(t,y)〉 ≤ κ(|y|2)+β|y|(|Zn−1
t −Zm−1

t |+ |Un−1
t −Um−1

t |)

= κ(|y|2)+β|y|(|Ẑn−1,m−1
t |+ |Ûn−1,m−1

t |).

Then the generator ĝn,m of the MBSDEP (3.22) satisfies the assumption (A) with

ψ(u) = κ(u), α = 0 and ϕt = β(|Ẑn−1,m−1
t |+ |Ûn−1,m−1

t |).
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It follows from Proposition 2.3 with θ = 16β2 and u = 0 that there exists a constant γ > 0
depending only on β such that for T1 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Ŷn,m

r |
2
]
+E

[∫ T

t
|Ẑn,m

s |
2ds

]
+E

[∫ T

t

∫
E
|Ûn,m

s (e)|2λ(de)ds
]

≤ γe2γ(T−t)
∫ T

t
κ

(
E

[
sup

s≤r≤T
|Ŷn,m

r |
2
])

ds

+
eγ(T−t)

8
E

[∫ T

t
|Ẑn−1,m−1

s |2ds+
∫ T

t

∫
E
|Ûn−1,m−1

s (e)|2λ(de)ds
]
.

We can assume that γ = c. Let us recall T1 = max {T − ln2/c,T − ln2/(2cA),0}. Then for
any T1 ≤ t ≤ T , we have

E

[
sup

t≤r≤T
|Ŷn,m

r |
2
]
+E

[∫ T

t
|Ẑn,m

s |
2ds

]
+E

[∫ T

t

∫
E
|Ûn,m

s (e)|2λ(de)ds
]

≤ 2c
∫ T

t
κ

(
E

[
sup

s≤r≤T
|Ŷn,m

r |
2
])

ds

+
1
4
E

[∫ T

t
|Ẑn−1,m−1

s |2ds+
∫ T

t

∫
E
|Ûn−1,m−1

s (e)|2λ(de)ds
]
.

Hence in view of (3.21), taking the lim sup in the above inequality and using Fatou’s lemma,
the monotonicity and continuity of κ and Bihari’s inequality, we prove that

{
(Yn

t ,Z
n
t ,U

n
t )

}
n≥1

is a Cauchy sequence in the Banach space B2(Rk).
Let (Yt,Zt,Ut)T1≤t≤T be the limit of this sequence. Taking the limit in uniform convergence
in probability in (3.19), in view of (H2)-(H4), we deduce by Lebesgue’s dominated con-
vergence theorem that (Yt,Zt,Ut)T1≤t≤T is a solution to the MBSDEP (2.1) on the interval
[T1,T ]. Note that T −T1 is a positive number and depends only on β and A. We can repeat
the above procedure in finite steps to obtain a solution to the MBSDEP with parameters
(ξ,T,g) on [T2,T1], [T3,T2], ..., and then on [0,T ].

Step 4 : We shall prove that for ξ ∈ L2(FT ,R
k) there exists a unique solution to the MBSDEP

(2.1) with parameters (ξ,T,g). To this end we consider the sequences (gn)n≥1 and (ξn)n≥1
defined as follows:
For an integer n ≥ 1, let (where the function qn(x) is defined in the previous step)ξn = qn(ξ),

gn (t,Yt,Zt,Ut) = g (t,Yt,Zt,Ut)−g (t,0,0,0)+qn (g (t,0,0,0)) .
(3.23)

It easily seen that
|ξn| ≤ n, |ξn| ≤ ξ and |gn (t,0,0,0) | ≤ n.

By Lebesgue’s dominated convergence theorem and assumption (H5), we have

E
[
|ξn− ξ|

2
] n→∞
−−−−→ 0 and E

[∫ T

0
|qn (g (t,0,0,0))−g (t,0,0,0) |2dt

]
n→∞
−−−−→ 0. (3.24)
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By Step 3, for any n ≥ 1, let (Yn
t ,Z

n
t ,U

n
t )T1≤t≤T denotes the unique solution to the following

MBSDEP :

Yn
t = ξn+

∫ T

t
gn(s,Yn

s ,Z
n
s ,U

n
s )ds−

∫ T

t
Zn

s dBs−

∫ T

t

∫
E

Un
s (e)̃µ(ds,de). (3.25)

Putting ξ̂n,m = ξn−ξm and using the same notations as in the previous steps, we have for any
0 ≤ t ≤ T ,

Ŷt
n,m
= ξ̂n,m+

∫ T

t
ĝn,m(s, Ŷs

n,m
, Ẑs

n,m
, Ûs

n,m
)ds−

∫ T

t
Ẑs

n,m
dBs

−

∫ T

t

∫
E

Ûs
n,m

(e)̃µ(ds,de)
(3.26)

where for (y,z,u) ∈ Rk ×Rk×d ×Rk the generator ĝn,m defined by

ĝn,m(s,y,z,u) = gn(s,y+Ym
s ,z+Zm

s ,u+Um
s )−gm(s,Ym

s ,Z
m
s ,U

m
s )

can be rewritten as

ĝn,m(s,y,z,u) = gn(s,y+Ym
s ,z+Zm

s ,u+Um
s )−gm(s,y+Ym

s ,z+Zm
s ,u+Um

s )

+gm(s,y+Ym
s ,z+Zm

s ,u+Um
s )−gm(s,Ym

s ,Z
m
s ,U

m
s ). (3.27)

Thanks to this representation and eq.(3.23), it follows from (H1) and (H4)

〈y, ĝn,m(s,y,z,u)〉|y||qn(g(t,0,0,0))−qm(g(t,0,0,0))|+ κ(|y|2)+β|y|(|z|+ |u|)

Then the generator ĝn,m of MBSDEP (3.26) satisfies the assumption (A) with

ψ(u) = κ(u), α = β and ϕt = |qn(g(t,0,0,0))−qm(g(t,0,0,0))|.

Applying Proposition 2.3 (with u = 0 and θ = 1) that there exists a constant c > 0 depending
only on T and β such that for 0 ≤ t ≤ T ,

E

[
sup

t≤r≤T
|Ŷr

n,m
|2
]
+E

[∫ T

t
|Ẑs

n,m
|2ds

]
+E

[∫ T

t

∫
E
|Ûs

n,m
(e)|2λ(de)ds

]
≤ E

[
|̂ξn,m|2

]
+ c

∫ T

t
κ

(
E

[
sup

s≤r≤T
|Ŷr

n,m
|2
])

ds

+ cE
[∫ T

0
(|qn(g(t,0,0,0))−qm(g(t,0,0,0))|)2ds

]
.

(3.28)

Using once again Remark 2.1 and Gronwall’s lemma, we deduce that for 0 ≤ t ≤ T and
n,m ≥ 1,

E

[
sup

t≤r≤T
|Ŷr

n,m
|2
]
+E

[∫ T

t
|Ẑs

n,m
|2ds

]
+E

[∫ T

t

∫
E
|Ûs

n,m
(e)|2λ(de)ds

]
≤

(
4cE[|ξ|2]+ cAT +4cE

[∫ T

0
|g(s,0,0,0)|2ds

])
× ecAT .
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Hence in view of (3.24), by taking the limsup in (3.28) with respect to n,m and using
Fatou’s lemma, the monotonicity and continuity of κ and Bihari’s inequality we prove that{(

Yn
t ,Z

n
t ,U

n
t
)
0≤t≤T

}
n≥1

is a Cauchy sequence in the Banach space B2(Rk).
Let (Yt,Zt,Ut)0≤t≤T be the limit process of the sequence

{
(Yn

t ,Z
n
t ,U

n
t )0≤t≤T

}
n≥1. Taking the

limit in uniform convergence in probability in (3.25), and using the assumptions (H2)-(H4),
we deduce by Lebesgue’s dominated convergence theorem that (Yt,Zt,Ut)0≤t≤T solves the
MBSDEP (2.1) with parameters (ξ,T,g). This completes the proof. �

Acknowledgments: This work has been supported by the African Center of Excellence
project for high education (CEA-MITIC), a World Bank program implemented at Faculty
of Applied Sciences and Technology at Université Gaston Berger de Saint-Louis.
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