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PAIRING RANK IN RATIONAL HOMOTOPY GROUP
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Abstract. Let X be a simply connected CW complex of finite rational LS-category. The dimension
of rational Gottlieb group G.(X)®Q is upper-bounded by the rational LS-category caty(X) [2]. Then
we introduce a new rational homotopical invariant between them, denoted as the pairing rank vo(X)
in the rational homotopy group m.(X)® Q. If 7.(f) ®Q is injective for a map f : X — Y, then we
have vo(X) < vo(Y). Also it has a good estimate for a fibration X—E—Y as vo(E) < vo(X) +vo(Y).
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1 Introduction

In this paper, all spaces are connected and simply connected based CW complexes of finite rational
LS-category [2] and maps are based unless otherwise noted. Let G,(X) be the n-th Gottlieb group
(evaluation subgroup) of X, which consists of elements a of 7,(X) with the homotopy commutative
diagram:

Stxx 5 X

gl H

STV — X

(a,idy)
where (a,idx)(x) = Vxo(aVidy). Here Vx : XV X — X is the folding map of X. Let G.(X) be
the total Gottlieb group @,.0G,(X). For any (homogeneous) elements a;,,---,a;, of G.(X) with

dega;, = I, there is a map y, : Shx...x 8" — X such that (x):

Ha
Shix...xShxx ——

g ||

Shv...v§hvy — 5 X
(@i @iy idx)
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since there is a composition of affiliated maps {1 X --- X 1 x u}:
SUx xS 1x(§hxX) = 8§ x- . x§h2x(§h1xX)— - = X.
As a general formula of (x),

Definition 1.1. [9] We say that maps f; : X; — Y (i = 1,..,n) have an n-pairing if there is a homotopy
commutative diagram:

X\ XXX, —— Y

| ||

XiVv--vX, — Y

Srosfud
with a map u, which is called an affiliated map. Then we write fi L f5 L --- L f,.

Definition 1.2. Let the pairing rank vo(X) of X in the rational homotopy group be
max{n lai, L--- La;, for {a,..,a;}CA with some basis A of nodd(X)Q},

where A is a homogeneous basis of the graded vector space m,qa(X)g = Sr>0m2u+1(X) ®Q; i.e.,
A = U;A; with A; a basis of 7;(X)g (i is odd).

Let Xg and fg be the rationalizations of a space X and a map f : X — Y, respectively [5]. Itis
known that G.(Xq) = G+«(X)g when X is finite [6] (in general, G.(Xq) D G+«(X)g) and G¢yen(X)g =0
[2, 6.12]. Y. Félix and S. Halperin [2, p.35] conjecture that G,(X)g =0 for all n > 2g if X is a
complex of dimension g. When G.(Xq) = Q{a;,,"-,a;,) with dega;, = i, there is the restriction
map g, 1 S x - xSl — Xg of u, in (*) such that

SIIX"'XSI" L} XQ

g |

Shv..vsh —— Xq

(@i o Qi)

homotopically commutes. Thus we have dimG.(Xq) < vo(X) < dimm,(X)g.

Let cat(X) be the Lusternik-Schnirelmann (LS) category of X, which is the least integer n such
that X is the union of n + 1 open subsets contractible in X [1]. Let catpX := cat(Xg) be the rational
LS-category of X. Then catoX < catX. It is known that dimG.(Xg) < catoX [2, 6.12]. Recall Y.
Félix and S. Halperins’

Mapping theorem [2, Theorem I]. If 7.(f)®Q is injective foramap f : X — Y, then catyX < catyY.

We have a similar result about our pairing rank:
Proposition 1.3. If 7,4,(f)®Q is injective for amap f : X — Y, then vo(X) < vo(Y).
Proof. It is given by the homotopy commutative diagram:
Shix...xSh —— Xg

| H

Shvy...y§h X Y,
@iy, aiy) 2 fo °
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when vo(X) = n. It means fgoa;, L--- L fgoa;, for the sub-basis {fgoa;, -, fooa;,} of myaa(¥)q.
O

In particular, when Xg ~ Yg, we have vo(X) = vo(Y).
Theorem 1.4. vy(X) < caty(X).

Proof. When vo(X) = n, the induced map of an affiliated map ..(u)q : 7.(S Ix...x§ i")Q =, (Sh )o®
@, (S — m.(X)g is injective. Recall caty(S™ X ---x §) = n. From the above Mapping theo-
rem, we have n < caty(X). O

Accordingly, we have the main inequalities:
dimG.(X)g < vo(X) < cato(X). (%)

If X is the product of spheres, dim G.(X)q = vo(X) = catp(X). In Theorem 2.5, we give a relaxed
condition in the terms of Sullivan models [11],[3].
Recall a (rationalized) result of Varadarajan and Hardie:

Theorem 1.5. [3, Proposition 30.6] For a fibration X — E — Y, catyE is upper bounded by catoX
and catyY as
catoE + 1 < (catoX + 1)(catyY +1)

and this inequality is best possible.

For example, the projectivization of a complex n-bundle over S?" is given by a non-trivial fi-
bration CP"! — CP?*~! — §2"  where CP" is the n-dimensional complex projective space. It
induces the equation catoE +1 =2n=n-2 = (catpX + 1)(catpY + 1). Recall that K. Hess showed
that caty(X X Y) = catgX + catpY in 1991 [1]. There is a problem: when X is elliptic (see §2 for the
definition), dim H*(X; Q) < 2¢¢0X) 9 [12].

Claim 1.6. (1) Gottlieb group is not functorial, that is, a map f : X — Y does not induce G.(X) —
G.(Y) in general. Thus, even if m.(f)®Q is injective, it does not hold that dim G.(X)g < dimG.(Y)q.
For example, let M(Y) = (A(vi,v2,v3),d) with |v;| odd, dvi = dv, =0, dvy = vivy and M(X) =
(A(v2,v3),0). When M(f) is the projection removing vi, n.(f)®Q is injective. But dimG.(X)g =
2>1=dimG.(Y)q.
(2) Although dim G (X XY)q =dimG.(X)g+dimG.(Y)q, there is no good estimate of dimG.(E)q

in terms of dimG.(X)g and dimG.(Y)q for a fibration X — E — Y. Indeed, they can be arbitrary
([14, Example 1]).

Our pairing rank has a good evaluation inequality induced by an inclusion 7,44(E)q C moqa(X)q©®
Toda(Y)q as

Theorem 1.7. For a fibration & : X 5 EL Y,

(1) vo(E) < vo(X) +vo(Y).

(2) vo(X) < vo(E) if it is weakly rational trivial; i.e., n.(E)g = m.(X)g ®m.(Y)q.
(3) In particular, vo(X X Y) = vo(X) +vo(Y).

In general, even if vo(E) = vo(X) + vo(Y), the fibration ¢ : X — E — Y may not be trivial (See
Example 3.5(2)(3) in §3). In the future works, it is expected to find some relations between other
numerical invariants as in [1], [4].
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2 Sullivan model

Recall the Sullivan minimal model M(X) of a simply connected space X of finite type. Itis a free Q-
commutative differential graded algebra (DGA) (AV,d) with a Q-graded vector space V = @i>] Vi
of dimV* < oo and a decomposable differential d. Denote the degree of a homogeneous element
x of a graded algebra as |x|, the Q-vector space of basis {v;}; as Q(v;);. A fibration p : E — Y has
a minimal model which is a DGA-map M(p) : M(Y) — M(E). It is induced by a relative model
(KS-extension)

M) = (AW,dy) » (AW®AV,D),

where (AV,D) = (AV,dy) is the minimal model of the homotopy fibre X of p and there is a quasi-

isomorphism p : M(E) = (AW ® AV, D). Notice that M(X) determines the rational homotopy type
of X, especially H*(X;Q) = H*(M(X)) as graded algebras and 7;(X)® Q = Hom(V',Q). We refer to
[3] for a general introduction and the standard notations. The next lemma immediately follows:

Lemma 2.1. The inequality vo(X) > n is given by an affiliated map
H:SUx- xS — Xg

where |a;| are odd if and onl if there is a subspace Q(vy,---v,) of V with |v;| = a; for M(X) = (AV,d)
such that there is a DGA-map

M) - (AV,d) = (A(vi, -+ ,vn), 0),

where M(u)(v;) = v;.

Proof of Theorem 1.7. (1) Suppose p: S™ X---X§" — Egq is an affiliated map. Then we can assume
thatitis g :S§™ X---x§" x§"+ x ... x§"™ — Eg such that @; : ™ — Eq is an element of 7,,(X)g
for1 <i<aandp;:S" — Eqg is an element of n,,(Y)g for a+1 <i < b. (The existence of such

elements are guaranteed by the construction of Sullivan relative model as we see below.) Then there
is a homotopy commutative diagram

SMx.eeox§Ma — 5 §Mx...xSMax SN+l x...x S —— 5 SN+l x...%x S
lﬂa lﬂ J{:”/f

Xo —_— Eg _— Yo
i p

and it induces p" = po X pag : (S X -+ X §") X (§"a+1 X+ - X §") — Xg X Yg. From Lemma 2.1, it is
equivalent to the homotopy commutative diagram of DGAs:

(A(V],..,Va),o) — (A(V17'~,Va5wa+l’":Wb)’o) A — (A(Wll+1"'9wb)90)

M(;m] TMW) TM%)
(AV,dx) — (AU,dg) — (AW,dy)
M(i) M(p)
| " |
AV dy) —— (AV®AW,D) — (AW.dy)

where (AV,dx), (AU,dg) and (AW,dy) are the Sullivan minimal models of X, E and Y with U C
Ve W. It induces the DGA-map M (u,)® M(ug) : (AV,dx) ® (AW,dy) — (A(V1,..,Vas Wat1,.-,Wp),0).

(2) It follows from Proposition 1.3. In this case, (AU, dEg) is identified to (AV ® AW, D), it fol-
lows from the DGA-map M(u,) o M(i) in the above diagram and (3) is obvious. O
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Let A be a DGA A = (A*,dy) with A* = @;50A!, A° =Q, A' =0 and the augmentation € : A — Q.
Define Der;A the vector space of derivations of A decreasing the degree by i > 0, where 8(xy) =
8(x)y + (=1)Mx6(y) for 6 € Der;A. We denote @;soDer;A by DerA. The boundary operator & :
Der.A — Der,._1A is defined by 6(0) =dy oo — (=D ody.

Proposition 2.2. [2] For the minimal model M(X) = (AV,d) of a simply connected finite complex X
and the argumentation € : AV — Q,

Gn(Xg) = Im(Hy(e.) : Hy(Der(AV,d)) — Hom,(V,Q) = Hom(V",Q))
foralln>0.

A space X or a model M(X) = (AV,d) is said to be elliptic if dim H*(X;Q) = H*(AV,d) < oo and
dimm,.(X)g = dimV < co. When X is elliptic, cato(X) = eg(AV,d) := max{n| [a] # 0 € H"(AV,d) for
a@ € AZ"V} [1]. A model (AV,d) is called pure when dV¢" = 0 and dV°% c AVerer,

Lemma 2.3. For a pure minimal model M = (A(x1,.., Xm, Y1, .., Yn),d) with |x;| even and |y;| odd, we
have vo(M) = n.

Proof. The model of an affiliated map is given by the DGA-projection M(u) : M — (A(y1,..,¥1),0)
from Lemma 2.1. O

L. Lechuga and A. Murillo give

Theorem 2.4. [7, Theorem 1] For an elliptic model with M(X) = (AV,d) with dV C AV, caty(X) =
(k—2)dim V" + dim V%,

When dV c A2V in (AV,d), we say that (AV,d) is quadratic.
Theorem 2.5. If M(X) is a pure elliptic quadratic model, then dimG.(X)q = vo(X) = caty(X).

Proof. In this case, G.(X)g = V°% from Proposition 2.2 and vo(X) = dim V°% from Lemma 2.3. It
is also equal to cafo(X) = dim Vodd from Theorem 2.4. O

Remark 2.6. Suppose that the minimal model of X is given by M(X) = (A(x1, .., Xz, V1, .-, Yn),d) With
|x;| even, |y;| odd, dx; = 0 and dy; € A(xy,..,x,) for all i. When its cohomology is finite, X is called
as an Fy-space. For a fibration ¢ : X — E — S2*1 caty(E) = cato(X) + 1 [8, Theorem 4.7]. Also
dimG.(E)g = n+1 if and only if £ is rationally trivial [14, Corollary A]. There is an open problem
that £ is rationally trivial if cupo(E) = cupo(X) + 1 [8]. We know vo(E) = n+ 1 since Dx; € (x1,..,X,)
for all i in the KS-extension

M(S**1) = (Az,0) = (A(Z, X1, 00 X V1, 0r V) D) = M(X).

Here (x1,..,x,) is the ideal generated by xi,..,x,. Indeed, then there is the DGA-projection map
M(X) - (A(z,y1,..,¥1),0) and then we have it from Lemma 2.1.

3 Examples

Example 3.1. Let cupo(X) be the rational cup length of X, the largest integer n such that the n-
product of H*(X;Q) is not zero. The following examples are useful for Theorem 3.3 below.

(1) vo(X) = 0 if and only if X =g *.

(2) dimG.($S")g =vo(S") = dimG.(CP")g = vo(CP") = 1 but cupo(CP") = cato(CP") = n.

(3) dimG.(S™ Vv S™)g =0 [10] but vo(S™ VvV S") = caty(S" v S") = 1.
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Example 3.2. Recall Theorem 2.5. Even if M(X) is a quadratic model, vo(X) may not be equal to
cato(X). For example, let M(X) = (A(x,y,z,a,b,¢),d) with |x| =2, [y| = |zl =3, la| =4, |b| =5, |c| =7,
dx=dy=0,dz= X2, da = xy, db = xa+yz and dc = a’+ 2yb, which is an elliptic model [3, p.439].
Then vo(X) = 3 by the affiliated map  : S® x §3xS7 — Xg. It is given from Lemma 2.1 by the
DGA -restriction map

(A(x,y,z,a,b,¢),d) — (A(z,b,c),0)

and since we can directly check vo(X) # 4. On the other hand, dimG.(X)g = 1 from Proposition 2.2
and caty(X) = 4 from Theorem 2.4.

A space X is said to be formal if there is a DGA-map from its minimal model to its rational
cohomology with zero differential: M(X) — (H*(X;Q),0). For example, homogeneous spaces G/H
with rank(G) = rank(H) are formal.

Theorem 3.3. Any triple (a,b,c) of 0 <a < b < c is realized as [X] := (dimG.(X)q, vo(X), catoX) for
a formal space X.

Proof Notice that [X x Y] = [X] + [Y]. For any triple (a,b,c) of 0 <a < b < ¢, we have

(@,b,c0)=[STxS3%x---xS2_1=(l,b—a+1,c—a+1),
(Lb—a+1l,c—a+1)—[MZ4(S*vS?)1=(1,1,c=b+1) and

(1,1,c—b+1)=[CPb*

from the above example. Thus we have [X] = (a,b,c) when
X = SixS3x---x83  x NS vs?), x cperl,

for example. o

Example 3.4. Recall cupo(X) < cato(X) in general and the integer cato(X) — cupo(X) can be arbi-
trarily large for elliptic spaces [13]. If X is formal, it is known that cupy(X) = cato(X) [3]. Then we
have vo(X) < cupo(X) from Theorem 1.4. Consider non-formal cases:

(1) When X is the non-formal homogeneous space S U(6)/S UB)xS U(3), M(X) = (A(x,y,v1, V2,
v3),d) = (AV,d) with |x| =4 and |y| = 6, dx =dy =0, dv; = x>, dv, = xy and dv; = y*. It satisfies the
condition of Theorem 2.5. Then [x] - [yv, — xv3] represents the fundamental class of H*(X;Q) and it
is in A3V. Thus we have the inequality:

cupo(X) =2 <3 =dimG.(X)q = vo(X) = caty(X).

(2) When M(X) = (A(vy,va,..,vy),d) withn >4 odd, |v;] odd and dv| =dv, =0, dvy = v{vy, dvy =
vivs, -+, dv, =Vv1v,_1, then vo(X) = n—1 since there is the restriction map M(X) — (A(v2,v3,..,v,),0).
We see cupo(X) = (n+1)/2 since there are cocycles vi and vov, —v3v,—1+---+(— 1)(””)/21/(,”1)/zv(,l+3)/2
where

il -vave —v3vp—1 +--- + (—1)("+1)/2V(n+1)/zv(n+3)/2]% =c[vivae- vl
for a certain non-zero integer ¢. From Proposition 2.2, dimG.(X)q = dimQ(v,) = 1. Also cato(X) =
eo(X) = n. It gives the inequalities:

dimG.(X)qg < cupo(X) < vo(X) < caty(X).
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(3) Let X be the space of the above (2). From Example 3.1(2), we have the inequalities:
dimG.(X X CP")g < vo(X X CP") < cupo(X X CP") < cato(X x CP")

for a sufficiently large n.

Example 3.5. (1) The space of Example 3.2 is the total space of a fibration §*x > — X — §2 x
S3. Then dimG(X)g = 1 <2+2 =dimG(S*xS°)g +dimG(S? x S3)qg, catpX +1 =4+1<3-3 =
(cato(S*x S3)+ 1)(caty(S? x S3) + 1) in the fomula of Theorem 1.5 and vp(X) = 3 <2+2 = vo(S* x
§%)+v(S2x S?) in the fomula of Theorem 1.7(1).

(2) The space of Example 3.4(1) is the total space of the fibration §° — X — S*x §°. It gives
an example with dimG(X)g = dimG(S?)g +dimG(S* x S %)g and

vo(X)=3=1+42=vp(S)) +vp(S*x S

but catpX +1=3+1<6=2-3 = (catyS® + 1)(caty(S*x S®) + 1) in the fomula of Theorem 1.5.

(3) Put S~ — T — §% the sphere bundle associated to the tangent bundle of S** where n
is odd. Put the pull back fibration S#~! — ¥ i> STX8) X85 xS} along the map ST X875 XS5 X
Sy—S an collapsing the (4n — 1)-skelton. Then Y is an 8n — 1-dimensional manifold with M(Y) =
(A(wi,wo, w3, wa,w),dy) with |w;| = n, [w| =4n—1, dyw; =0, dyw = wiwowzwy. Then for the basis
A= {wi,wy,wiwi,wof m.(Y)®Q, we see vo(Y) =4 by S xS xST. xSl — Yo for 1 <ij <ip <
i3 < 4. Consider the spherical fibration §2-1 5 E — Y where M(E) = (A(wy, w2, w3, wa,w,V), D)
with [v| =2n -1 and Dw; = Dwy = Dws = Dwg4 = 0, Dw = dyw and Dv = wyw,. Then there is a
DGA-projection M(E) — (A(wj,,wi,,wi;,w,v),0). Thus we have the equalities:

Vo(E)=5=1+4=vy(SP ) +v(Y).

On the other hand, we have G.(E)g = Q{(w3,ws,w,v) and G.(Y)g = Q(w) from Proposition 2.2.
Thus dimG.(E)g =4 > 1 +1 = dimG.(S* 1o +dimG.(Y)g and catoE+1=6+1<12=2-6 =
(catpS* ! + 1)(catyY + 1) in the fomula of Theorem 1.5.

Acknowledgement. The author would like to thank Nobuyuki Oda for his valuable comments,
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References

[1] O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik-Schnirelmann category, Math. Survey
and Mono. 103, A.M.S. 2003

[2] Y. Félix and S. Halperin, Rational LS category and its applications, Trans.A.M.S. 273 (1982)
1-38

[3] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathe-
matics 205, Springer-Verlag, 2001

[4] J.-B. Gatsinzi, On the genus of elliptic fibrations, Proc.A.M.S. 132 (2003) 597-606

[5] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North-
Holland Math. Studies, 15 1975

[6] G.E.Lang,Jr. Localizations and evaluation subgroups, Proc.A.M.S. 50 (1975) 489-494



92 T. Yamaguchi

[7] L. Lechuga and A. Murillo, A formula for the rational LS-category of certain spaces,
Ann.Inst.Fourier, Grenoble 52 (2002) 1585-1590

[8] G. Lupton, Variations on a conjecture of Halperin, Homotopy and Geometry Banach Center
Publ. 45 (1998) 115-135

[9] N. Oda, Pairings and copairings in the category of topological spaces, Publ. Res. Inst. Math.
Sci. Kyoto Univ. 28 (1992) 83-97

[10] S.B. Smith, Rational evaluation subgroups, Math.Z.221 (1996) 387-400
[11] D. Sullivan, Infinitesimal computations in topology, LH.E.S., 47 (1978) 269-331

[12] T. Yamaguchi, On a lower bound for the LS-category of a rationally elliptic space, Bull. Belg.
Math. Soc. 12 (2005) 565-568

[13] T. Yamaguchi, Cupgy and caty can be arbitrary in elliptic spaces, New Zealand J. Math. 35
(2006) 211-213

[14] T. Yamaguchi, An estimate in Gottlieb ranks of fibration, Bull. Belg. Math. Soc. 15 (2008)
663-675



