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Abstract

This paper contains a characterization of Reeb vector fields of K-contact forms
in terms of J-holomorphic embeddings into the tangent unit sphere bundle. A conse-
quence of this characterization is that these vector fields are critical points of a volume
and an energy functionals defined on the set of unit vector fields. Reeb vector fields on
closed, K-contact Einstein manifolds are absolute minimizers for the energy functional
with a mean curvature correction. On odd-dimensional Einstein manifolds of positive
sectional curvature, these unit vector fields are characterized by their minimizing prop-
erty. It is also proved that any closed flat contact manifold admits a parallelization by
three critical unit vector fields, one parallel (hence minimizing), the other two are Reeb
vector fields of contact forms, not Killing and not minimizers of any of the volume or
the energy functionals.
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1 Introduction

Many interesting geometric objects are characterized by their minimizing properties for
appropriate functionals. For example, Einstein metrics are global minimizers of the total
scalar curvature functional. Those minimizing objets often display great stability and high
degree of organization. In this paper, we deal with volume and energy functionals which
are defined on the space of unit vector fields on a riemannian manifold M. Looking at Reeb
vector fields as maps from contact metric manifolds to their tangent unit sphere bundles
endowed with the usual Sasaki metric, we prove the following:
Theorem A The Reeb vector field of a contact form α is a J-holomorphic map if and only
if α is a K-contact form (that is, the Reeb vector field is Killing).

From an isometric embedding point of view, that is, considering the induced metric
instead of the original contact metric on M, one has:
Theorem A’ The Reeb vector field of a K-contact form α is a contact invariant minimal
embedding.

A modified energy functional will also be considered and it will be shown here that
Reeb vector fields of sasakian-Einstein structures are its absolute minimizers. The paper

∗E-mail address: rukim@fiu.edu



Volume and Energy of Reeb Vector Fields 99

concludes with some examples of non-Killing critical unit vector fields arising from the flat
contact metric geometry. The author would like to point out that Gil-Medrano’s paper [6]
contains a unified study of the energy and the volume functionals. As it turns out, each of
the two functionals is the restriction of a general functional defined on the cross product of
the space of all unit vector fields with that of all riemannian metrics on M.

2 Some contact metric geometry

A contact form on a 2n+1-dimensional manifold M is a 1-form α such that the identity α∧
(dα)n 6= 0 holds everywhere on M. Given such a 1-form α, there is always a unique vector
field Z determined by the system of partial differential equations α(Z) = 1 and dα(Z, .) = 0.
This Z is called the characteristic vector field and the corresponding 1-dimensional foliation
is called a contact flow. The 2n-dimensional distribution

D(p) = {X ∈ TpM : α(X) = 0}

is called the contact distribution. On every contact manifold (M,α), there is a nonunique
metric g and a (1,1) type tensor field J such that Z and D are orthogonal, JZ = 0 and−J2 is
the identity when restricted to D. Moreover, the convention being that the exterior derivative
of a 1-form α is given by

dα(X ,Y ) = Xα(Y )−Y α(X)−α([X ,Y ]),

the tensors α, Z, g, and J are compatible in the sense that the following identities are
satisfied.

dα(X ,Y ) = 2g(X ,JY ), α(X) = g(Z,X)

for any tangent vectors X and Y . We will call the data (M,α,Z,g,J) a contact metric
structure. The following identities on a contact metric structure are well known (see [1]).
They involve the symmetric tensor h = 1

2 LZJ (LZ is the usual Lie derivative of the tensor
field J in the direction of the vector field Z), the Levi-Civita covariant derivative operator ∇

and the riemannian curvature tensor R.

∇X Z =−JX − JhX (2.1)

1
2
(R(Z,X)Z− JR(Z,JX)Z) = h2X + J2X . (2.2)

The derivation of these identities and many more may be found in [1].

Definition 2.1. A contact form α on M is said to be K-contact if there exists a contact
metric structure (M,α,Z,g,J) where the Reeb vector field Z is Killing with respect to the
metric g.

It is well known that this Killing condition is equivalent to the the tensor field h being
identically zero (see [1]). When the identity

(∇X J)Y = g(X ,Y )Z−α(Y )X
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is satisfied on a contact metric structure, the structure is said to be sasakian, the contact
form α is then called a sasakian form. Any sasakian structure is K-contact, but it is only
in dimension 3 that any K-contact structure is automatically sasakian. In this paper we are
concerned with closed Einstein manifolds; those riemannian manifolds whose metric g and
Ricci tensor satisfies the identity

Ricci(X ,Y ) = Cg(X ,Y )

for some constant C which is necessarily equal to 2n on a K-contact 2n+1-dimensional
manifold.

3 The volume functional

Let us denote by X 1(M) the space of unit vector fields on a closed riemannian manifold
(M,g) and by T 1M the tangent unit sphere bundle. We will denote by π∗ : T T M → T M
and κ : T T M → T M the projection and the Levi-Civita connection maps respectively. The
volume F (V ) of an element V ∈ X 1(M) is defined to be the volume of the submanifold
V (M)⊂ T 1M where T 1M is endowed with the restriction of the usual Sasaki metric gS (see
reference [3]). We recall that gS is defined by:

gS(X ,Y ) = g(π∗X ,π∗Y )+g(κX ,κY ).

The metric gV induced on M by the map V : M → T 1M is related to the metric g on M by
the identity (see [7], [5])

gV (X ,Y ) = g(LV X ,Y ),

where LV = Id +(∇V )t ◦∇V is a g-symmetric (1,1) tensor field ((∇V )t stands for the trans-
pose of the operator ∇V ).

The problem of determining the condition for an element of X 1(M) to be a critical
point of the volume functional was tackled in [5] and [7] where necessary and sufficient
conditions for criticality were derived for Killing vector fields. A geometric interpretation
of these conditions is yet to be found. In this paper, we will exhibit some contact, non-
Killing critical vector fields arising from the flat contact metric geometry setting. However,
our critical non-Killing vector fields are not absolute minimizers for the volume.

Let f (V ) =
√

det LV where det LV stands for the determinent of LV and let Ω denotes
the riemannian volume element on M. Then the volume functional on the space of unit
vector fields is given by the expression

F (V ) =
Z

M
f (V )Ω. (3.1)

Identifying the tangent space to X 1(M) at V with the space of vector fields perpendicular
to V , one can compute the first variation of F as follows. For an arbitrary vector field
A ∈ TV X 1(M), that is, for arbitrary A perpendicular to V , let V (t) be a smooth path in
X 1(M) such that V (0) = V and V ′(0) = A. Denoting LV (t) simply by L(t), we observe that

L ′(t) = (∇V ′(t))t ◦∇V (t)+(∇V (t))t ◦∇V ′(t)
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and therefore, L(t) satisfies a linear differential equation of the type

X ′(t) = P(t)X(t), (3.2)

with

P(t) = [(∇V ′(t))t ◦∇V (t)+(∇V (t))t ◦∇V ′(t)]◦L−1(t).

It follows that
d
dt

detL(t) = tr(P(t))detL(t). (3.3)

Now we can see that

( f ◦V )′(t) =
1
2
(detL(t))−

1
2

d
dt

(detL(t)). (3.4)

Applying identity (3.3) and evaluating at t = 0, we obtain that the differential of F at V
acting on the tangent vector A can be written as (see [5], [7])

TV F (A) =
Z

M
f (V )tr(L−1

V ◦ (∇V )t ◦∇A)Ω. (3.5)

The notation tr(.) in this paper stands for the trace of an operator.

4 The energy functional

The energy E(V ) of a unit vector field V on a closed n-dimensional riemannian manifold
M is defined as the energy in the sense of [4] of the map

V : (M,g)→ (T 1M,gS),

where gS denotes also the restriction of the Sasaki metric on the tangent unit sphere bundle.
The functional E(V ) is given by the expression (see reference [22])

E(V ) =
1
2

Z
M
‖∇V‖2

Ω+
n
2

Volume o f M.

The first variation TV E and the second variation HessE are given by the following
formulas. For arbitrary vector fields A and B perpendicular to V ,

TV E(A) =
Z

M
g(A,∇∗

∇V ) Ω

HessE (A,B) =
Z

M
g(∇∗

∇A−‖∇V‖2A−R(A,∇V )∇V,B) Ω,

where −∇∗∇ = tr(∇2) is the trace of ∇2 and R is the Riemann curvature tensor field.
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5 The contact metric geometry of the unit tangent line bundle

The Liouville 1-form Θ is defined on T ∗M by Θµ(v) = µ(τ∗v) where v ∈ TµT ∗M and
τ∗ : T T ∗M → T M is the differential of the projection map τ : T ∗M → M. The 2-form
Ω = −dΘ is a symplectic form on T ∗M. We refer to [12] for the basics of symplectic
geometry. Given a riemannian metric g on M, the fundamental 1-form Θ pulls back to a
1-form Θ̃ on T M, Θ̃ = [∗Θ, where [ : T M → T ∗M is the usual musical isomorphism deter-
mined by the metric g. The 2-form Ω̃ = −dΘ̃ = −[∗dΘ is a symplectic form on T M (see
[14], pages 246-247). The map

(π∗,κ) : T T M → T M⊕T M (5.1)

is a vector bundle isomorphism along π : T M → M, which determines an almost complex
structure JT M on T M such that, if (π∗,κ)(x) = (u,v), then (π∗,κ)(JT Mx) = (−v,u) ([3],
[20]).

The tangent bundle of a riemannian manifold M carries a distinguished vector field
U called the geodesic spray. U is determined by π∗U(p,v) = v, and κU(p,v) = 0 for any
(p,v)∈ T M. With respect to the Sasaki metric gS , the 1-form Θ̃ satisfies the identity Θ̃(V ) =
gS(U,V ) for any section V of T T M. That is, Θ̃ and U are (Sasaki) metric duals. The
symplectic form Ω̃ =−dΘ̃ is compatible with the pair (gS ,JT M) in the sense that the identity

Ω̃(X ,Y ) = gS(X ,JT MY ) (5.2)

holds for any pair (X ,Y ) of tangent vector fields on T M.
Letting j : T 1M → T M be the inclusion of the tangent unit sphere bundle as a hypersur-

face in T M, then the pulled back 1-form α̃g = j∗Θ̃ is a contact form on T 1M (see reference
[1]) whose characteristic vector field is tangent to the geodesic flow of M, its integral curves
project to geodesics of M. The kernel of α̃g has associated almost complex operator JT 1M
determined by the equations

JT 1M(U) = 0 and JT 1M(X) = JT MX

for any X tangent to T 1M satisfying the identity gS(X ,U) = 0.
Under the identification (5.1), a tangent vector at (p,v) ∈ T M is a couple (u,w) where

u ∈ TpM is nonzero and w = ∇uW with W a vector field on M such that W (p) = v; or, u = 0
and w is just a tangent vector at p. A vector tangent at (p,v) ∈ T 1M is a couple (u,∇uW )
where as above, u is a tangent vector at p or u = 0 and w⊥ v, but now W is a unit vector field
such that W (p) = v. Note that in this case, one has automatically the identity g(v,∇uW ) = 0.
Now, if (M,α,Z,g,J) is a contact metric structure, a vector tangent to Z(M)⊂ T 1M at (p,Z)
is a couple (u,∇uZ) where u is a tangent vector at p ∈M. We also point out that under the
identification (5.1), the vector field U on T 1M is given by U(p,v) = (v,0). From now on, it
will be understood that the tangent unit sphere bundle is endowed with the restriction of the
Sasaki metric gS .

6 Reeb vector fields of K-contact forms

In the case of the three-dimensional sphere, the Hopf vector fields are absolute minima for
the volume and the energy functionals (see [2] and [8]). However, in higher dimensions,
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these vector fields are not minima anymore, but they are still critical. Their criticality is a
special case of a more general result whose proof is contained in the author’s paper [17].
To state it, we need the following definition.

Definition 6.1. A submanifold M in a contact manifold (N,α,J,Z) is said to be contact
invariant if the characteristic vector field Z is tangent to M and JX is tangent to M whenever
X is.

Clearly, a contact invariant submanifold inherits a contact metric structure from the
ambient manifold. In this context, the inclusion of a contact invariant submanifold is a
J-holomorphic map in the sense of [9] where such maps are shown to be harmonic.

Theorem 6.2. Let (α,Z,g,J) be contact metric structure tensors on a manifold M. Then
Z(M) is a contact invariant submanifold and Z : M → T 1M is a J-holomorphic embedding
if and only if α is a K-contact form.

Proof. The geodesic spray U is clearly tangent to Z(M). Let (u,∇uZ) be a tangent
vector at (p,Z) ∈ Z(M) such that G((u,∇uZ),(Z,0)) = 0; that is, a tangent vector in the
kernel of the contact form α̃g on T 1M. Then

JT 1M(u,∇uZ) = (−∇uZ,u) = (Ju+ Jhu,u).

Therefore, JT 1M(u,∇uZ) will be tangent to Z(M) if and only if ∇Ju+JhuZ = u. But it is easily
seen that ∇Ju+JhuZ = u−h2u, hence Z(M) will be contact invariant if and only if h = 0, that
is, α is a K-contact form.

Also, observe that Z∗(Z) = (Z,0) = U(p,Z), which means that as a map between two
contact manifolds, Z exchanges the two Reeb vector fields involved. Let v ∈ TpM be a
tangent vector such that α(v) = 0. On one hand,

JT 1MZ∗(v) = JT 1M(π∗Z∗(v),κZ∗(v)) = JT 1M(v,∇vZ) = (Jv+ Jhv,v).

On the other hand,
Z∗(Jv) = (Jv,∇JvZ) = (Jv,v−hv).

The two identities above show that Z is a J-holomorphic map if and only if h = 0, that
is, α is a K-contact form.

From Theorem 6.2 above, we derive the following corollary.

Corollary 6.3. Let (M,α,Z,g,J) be a K-contact structure. Then the Reeb vector field Z is
a minimal embedding and a harmonic map into T 1M.

7 Reeb vector fields of sasakian forms on Einstein Manifolds

It was shown in the previous section that Reeb vector fields of K-contact forms are critical
for the energy and volume functionals, but in general they are not minimizing. In this
section, we consider the following modified functional introduced by Brito [2].

D(V ) =
Z

M
(‖∇V‖2 +(n−1)(n−3)‖HV⊥‖2)Ω (7.1)

where HV⊥ is the mean curvature vector field of the distribution orthogonal to V and n is the
dimension of M. When n = 3, the functionals E and D coincide up to renormalizations.
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Lemma 7.1. Let Z be the Reeb vector field of a contact form on a 2n+1-dimensional con-
tact metric manifold M. Then the mean curvature vector field HZ⊥ of the contact distribution
is trivial.

Proof. We shall denote by (g,α,Z,J) the contact metric structure tensors. Choose a
local orthonormal basis Z,Ei,JEi, i = 1,2, ...,n consisting of eigenvectors for the symmetric
tensor h = 1

2 LZJ with eigenvalues λi and −λi respectively. Then, using identity (2.1),

g(HZ⊥ ,Z) =
1

2n

n

∑
i=1

g(∇EiEi +∇JEiJEi,Z)

=
1

2n

n

∑
i=1

λi(g(Ei,JEi)−g(JEi,J2Ei)) = 0.

Brito [2] has shown that Hopf vector fields are absolute minimizers for the functional
D and that in dimension 3, they are the unique minimizers. We would like to point out that
this seemingly ”Hopf vector fields” phenomena is largely K-contact Einstein geometric.
For general sasakian-Einstein manifolds, we can only prove the following.

Proposition 7.2. Let M be a closed connected sasakian-Einstein (2n+1)-dimensional man-
ifold with Reeb vector field Z. Then Z is an absolute minimum for the functional D .

Proof. If M is a (2n+1)-dimensional sasakian-Einstein manifold, then Ricci(V,V ) = 2n
for any unit vector field V . Therefore, from Brito’s lower bound

D(V )≥
Z

M
Ricci(V,V )Ω, (7.2)

we see that on a sasakian-Einstein 2n+1-manifold M,

D(V )≥ 2nVol(M). (7.3)

If Z is the characteristic vector field of a sasakian form, then using the same orthonormal
basis Z, Ei, JEi, i = 1,2, ...,n as in the above lemma, we see that

‖∇Z‖2 = 2n.

This together with Lemma 7.1 shows that D(Z) = 2nVol(M) and hence Z is an absolute
minimizer by estimate (7.3).

We will introduce a functional for which uniqueness of minimizers can be extended to
all odd dimensions. Let’s point out first that for a unit vector field V and a local orthonormal
frame field {V,E1, ...,Em} and up to a constant factor, the mean curvature vector field HV⊥

is given by

HV⊥ =
m

∑
i=1

g(∇EiV,Ei)

which is nothing other than the divergence div(V ) of V . In view of this observation, we
consider the following modification of Brito’s energy functional, which we denote by Emc.

Emc(V ) =
Z

M
(‖∇V‖2 +(div(V ))2)dM.
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Proposition 7.3. Let (M,α,Z,J,g) be structure tensors of a closed, K-contact Einstein
2n+1-dimensional manifold. Then Z is an absolute minimum for the functional Emc.

Proof. For any vector field X on a riemannian manifold (M,g), the following identity
holds: (see [14], page 170).

‖∇X‖2 +(div X)2 = Ricci(X ,X)+
1
2
‖LX g‖2−div(∇X X)+div((div X)X). (7.4)

It follows that, on a closed Einstein manifold (M,g), the functional Emc satisfies the fol-
lowing estimate:

Emc(V ) =
Z

M
‖∇V‖2 +(div V )2dM ≥

Z
M

Ricci(V,V )dM = C Volume(M), (7.5)

where C is the constant Ricci curvature of (M,g). In particular, on a K-contact Ein-
stein manifold (M2n+1,α,Z,J,g), one has C = 2n, div Z = 0 and ‖∇Z‖2 = 2n. Therefore
Emc(Z) = 2n Volume(M) is the absolute minimum value for Emc.

If one assumes positivity of the sectional curvature, then the above proposition has a
weak converse, more precisely:

Theorem 7.4. Let (M,g) be a closed Einstein manifold with positive sectional curvature. If
Z is a unit vector field minimizing Emc, then Z is the Reeb vector field of a K-contact form
on M not necessarily with g as contact metric. In particular, M is odd-dimensional.

Proof. From identity (7.4), one has the following which is valid on any Einstein mani-
fold.

Emc(V ) =
Z

M
‖∇V‖2 +(div V )2dM = C Volume(M)+

1
2

Z
M
‖LV g‖2dM. (7.6)

Suppose Emc(Z) = C Volume(M), then LZg = 0 and Z is a Killing unit vector field, hence
geodesic and divergence free. That is, one has the following identities for Z:

∇ZZ = 0, g(∇X Z,Y )+g(X ,∇Y Z) = 0, div(Z) = 0. (7.7)

Define a 1-form α by
α(X) = g(Z,X).

Then a simple calculation shows that :

dα(X ,Y ) = Xα(Y )−Y α(X)−α([X ,Y ])
= g(∇X Z,Y )−g(∇Y Z,X),

that is, using the second of identities (7.7),

dα(X ,Y ) = 2g(∇X Z,Y ) =−2g(X ,∇Y Z). (7.8)

Notice that, from the definition of α and the first of identities (7.7), one has

α(Z) = 1 and dα(Z,Y ) = 0
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for any Y . In particular, Z is in the kernel of dα. Let X be any unit vector field perpendicular
to Z. Then

dα(X ,∇X Z) = 2g(∇X Z,∇X Z) > 0

because g(∇X Z,∇X Z) is equal to the sectional curvature of the plane spanned by X and
Z, which is positive by assumption. Therefore, the kernel of dα is one dimensional. The
above observations show that α is a contact form with characterisitic vector field Z and M
is odd-dimensional. Since Z is Killing, it follows from Theorem 1 in [18] that the contact
form α admits a K-contact metric (not necessarily the same as g).

A characterization of Reeb vector fields of sasakian forms on Einstein manifolds is
obtained if one assummes constant positive curvature 1.

Theorem 7.5. Let (M,g) be a closed manifold with constant curvature 1. Then a unit
vector field Z minimizes Emc if and only if Z is the Reeb vector field of a sasakian form with
contact metric g.

Proof. If Z is the characteristic vector field of a sasakian, hence K-contact form on
(M,g), then by Proposition 7.2, Z is a minimizer of Emc.

Conversely, suppose that Z is a unit vector field minimizing Emc. As in the proof of
Theorem 7.4, Z is a unit, Killing, geodesic and divergence free vector field. Moreover, the
1-form defined for any X by α(X) = g(Z,X) is a contact form. Let us define a (1,1) tensor
field J by

JX =−∇X Z.

Clearly, one has dα(X ,Y ) = 2g(X ,JY ) by identity (7.8) and also, JZ = 0 since Z is geodesic.
Let now X be a unit vector field orthogonal to Z. The following identity

g(JX ,JX) = g(∇X Z,∇X Z) = 1, (7.9)

holds, because g(∇X Z,∇X Z) is precisely the sectional curvature of the plane spanned by
{X ,Z}, which is equal to 1 by assumption.

Also, in view of identity (7.9),

g(J2X ,X) =−g(∇JX Z,X) = g(JX ,∇X Z) =−g(JX ,JX) =−1.

Therefore, one has
J2X =−X +W,

where W is some vector field orthogonal to both Z and X . But

g(W,W ) = g(J2X +X ,J2X +X)

= g(J2X ,J2X)+g(X ,X)+2g(J2X ,X)

= g(∇∇X ZZ,∇∇X ZZ)+g(X ,X)+2g(J2X ,X)
= 1+1−2 = 0.

It follows that W = 0 and consequently, J2X = −X , making J into a partial complex
structure adapted to α and g, that is to say, (α,Z,J,g) are structure tensors of a K-contact
metric structure on M. If M is 3-dimensional, then this K-contact structure is automatically



Volume and Energy of Reeb Vector Fields 107

sasakian. If M is 5-dimensional or higher, then we can apply a result of Olszak ([13])
which says that in dimension 5 and higher, a contact metric structure of constant curvature
c is sasakian with constant curvature c = 1.

There exists another notion of contact riemannian structure which is slightly weaker
than the K-contact one. An R-contact metric structure is given by a contact form α with
Reeb vector field Z and a riemannian metric g satisfying the following identities ([16]):

α(X) = g(Z,X), LZg = 0.

In this situation, the contact form α is then called an R-contact form and the metric,
an R-contact metric. Given an R-contact metric structure, one can always construct a K-
contact metric associated with the same contact form ([18]). In the R-contact metric setting,
Proposition 7.3 and Theorem 7.4 are special cases of the following more general statement:

Theorem 7.6. Let (M,g) be a closed, Einstein manifold with positive sectional curvature.
Then, a unit vector field Z minimizes Emc on M if and only if Z is the Reeb vector field of
an R-contact form α with R-contact metric g.

Proof. Recall the estimate from (7.5):

Emc(V )≥C Volume(M)

which is valid on any Einstein manifold with Einstein constant C. If Z is an R-contact vector
field, then it is a minimizer of Emc. This follows immediately from identity (7.4) which,
for a unit Killing vector field, becomes:

‖∇Z‖2 = Ricci(Z,Z)

and thus one has

Emc(Z) =
Z

M
‖∇Z‖2 dM =

Z
M

Ricci(Z,Z) dM = C Volume(M).

Conversely, suppose Z is a unit vector field minimizing Emc, then as in the proof of
Theorem 7.4, Z is the Reeb vector field of a contact form α which is defined by

α(X) = g(Z,X).

Since Z is Killing for the metric g, it follows that (α,Z,g) are structure tensors of an
R-contact metric structure.

8 Non-Killing critical unit vector fields

If the curvature tensor of a riemannian manifold (M,g) is identically zero, then identity
(2.2), with X a unit tangent horizontal vector, leads to the identity

0 = g(hX ,hX)−g(X ,X) = g(hX ,hX)−1.

Therefore, the eigenvalues of h are ±1 and the contact distribution D decomposes into
the positive and negative eigenbundles as D = [+1]⊕ [−1].
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Throughout this section, α, g, J, and Z will denote structure tensors of a flat contact
metric, necessarily three-dimensional manifold M.

It is proven in [15] that M admits a parallelization by three unit vector fields Z, X ,
and JX where Z and X are characteristic vector fields of contact forms sharing the same
flat contact metric g. The three vector fields Z, X and JX are respectively eigenvector
fields corresponding to the eigenvalues 0, -1 and 1 of the tensor field h. Concerning these
particular vector fields Z, X and JX , the following identities were established in [15].

∇ZX = 0 = ∇X Z, ∇JX JX = 0 (8.1)

∇JX Z = 2X , ∇JX X =−2Z. (8.2)

Moreover, the vector field JX has been shown to be parallel. Still in the flat contact
metric geometry setting, using identities (8.1), (8.2) and notations of Section 3, we see that:

LZZ = Z, LZX = X , LZJX = 5JX . (8.3)

From identities (8.3), we deduce that

L−1
Z Z = Z, L−1

Z X = X , L−1
Z JX =

1
5

JX . (8.4)

Also, a short calculation shows that f (Z) =
√

5 = f (X) and f (JX) = 1. Hence

F (Z) =
√

5Volume o f M = F (X), and F (JX) = Volume o f M. (8.5)

Next, we compute the expression of TZF (A) for any horizontal vector field A. Using the
symmetry of L−1

Z and identities (8.1), (8.2) and (8.4), we see that:

g(L−1
Z ◦ (∇Z)t(∇ZA),Z) = g((∇Z)t(∇ZA),Z) = g(∇ZA,∇ZZ) = 0 (8.6)

g(L−1
Z ◦ (∇Z)t(∇X A),X) = g(∇X A,∇X Z) = 0. (8.7)

In order to complete our computation of TZF (A), we need the fact that any smooth
horizontal vector field A decomposes as A = aX +bJX for some smooth functions a and b
on M. Again, using identities (8.1), (8.2), (8.4) and symmetry of L−1

Z , we find that

g(L−1
Z ◦ (∇Z)t(∇JX A),JX) =

1
5

g(∇JX A,∇JX Z)

=
2
5

g(∇JX A,X)

=
2
5

g(da(JX)X +a∇JX X +db(JX)JX ,X)

=
2
5

da(JX).

That is
g(L−1

Z ◦ (∇Z)t(∇JX A),JX) =
2
5

da(JX) (8.8)

From identities (8.6), (8.7) and (8.8), we deduce that
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tr(L−1
Z ◦ (∇Z)t ◦∇A) =

2
5

da(JX). (8.9)

Therefore, using the fact that JX is Killing, hence divergence free, we obtain

TZF (A) =
2√
5

Z
M

da(JX)Ω =
2√
5

Z
M

LJX(a Ω) (8.10)

=
2√
5

Z
M

d(iJX(a Ω)) = 0. (8.11)

(The symbol LJX above stands for the Lie derivative, not to be confused with LJX .)

Remark: Since Z and X play interchangeable roles in the flat contact metric setting of
this section, one also has that TX F (A) = 0 for any A perpendicular to X .

Theorem 8.1. Every closed, flat contact metric manifold has a parallelization by three
critical unit vector fields. One of them is parallel minimizing, the other two are Reeb vector
fields, non-Killing and do not minimize the volume functional.

Proof. Since JX is parallel, it is obviously a minimizer for the volume functional. Iden-
tity (8.11) and the above remark show that Z and X are critical unit vector fields. Using
identities (8.3), a direct computation of LZg and LX g shows that none of Z and X is Killing.
Finally, identities (8.5) show that, even though they are critical, neither Z, nor X is mini-
mizing for the volume functional F .

Using identities (8.1)and (8.2), we easily see that

∇
∗
∇Z = 4Z.

Therefore, for any vector field A perpendicular to Z, one obtains that

TZE(A) =
Z

M
g(A,4Z) Ω = 0. (8.12)

Identity (8.12) above shows that Z is a critical vector field for the energy functional. We
also have the following fact.

HessE (JX ,JX) =−
Z

M
4 Ω =−4 Volume o f M < 0. (8.13)

Identities (8.12) and (8.13) imply the following result.

Theorem 8.2. The Reeb vector field in a flat contact metric structure on a closed manifold
is critical unstable for the energy functional.

9 More examples through deformation of contact Metrics

Given a contact metric structure with structures tensors α,g,Z,J,h = 1
2 LZJ and a positive

function l on a manifold M, we consider the following deformation

gl = lg+(1− l)α⊗α.

Denoting by η, S, G the gl-induced contact metric structure tensors on the unit tangent
sphere bundle T 1M, the following theorem is proved in [19].
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Theorem 9.1. The vector field

Z : M → (T 1M,η,S,G)

is a contact invariant embedding if and only if dl(Z) = 0 and h2X = ( 1
l2 − 1)X for any

vector field X such that α(X) = 0.

Corollary 9.2. Let (M,α,Z,J,gl) be a deformed 3-dimensional contact metric structure
with dl(Z) = 0 and h2X = ( 1

l2 −1)X for any X such that α(X) = 0. Then the vector field

Z : M → (T 1M,η,S,G)

is a minimal, contact invariant embedding.

Proof. The corollary follows from the theorem above and Theorem 3.1 in [19].
Examples of 3-dimensional contact manifolds whose tensor h2 is transversally multi-

plication by a basic function can be found in [19], Proposition 5.1. These are obtained by
deforming the standard flat contact metric structure on the torus T 3.
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