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Abstract
This short note is devoted to relationships between the cohomology theory of

Koszul-Vinberg algebras and some related topics. Besides being useful for the study
of some short exact sequences of KV algebras and of short exact sequences of modules
over KV algebras, the so-called KV cohomology is useful to study the deformations
of these KV algebras as well as to study the Dirac reductions of Poisson manifolds.
We briefly discuss these items.
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1 Introduction

The cohomolgy theory of Koszul-Vinberg algebras (KV cohomology) has been initiated
by Albert Nijenhuis [26] in order to study the deformations of locally flat manifolds [17].
Recently this pioneering work has been completed [20] while the same pioneering work
was rediscovered using new concepts [5],[9]. In this paper we briefly discuss a few settings
where the KV cohomology plays a useful role.
Firstly we point out the role of this cohomology in classical settings such as the classifica-
tion of short exact sequences of Koszul-Vinberg algebras. Thus, regarding extensions and
deformations of Koszul-Vinberg algebras the role of the second KV cohomology space and
that of the third KV cohomology space are similar to those of the Chevalley-Eilenberg co-
homology of Lie algebras (respectively is similar to the role of Hochschild cohomology of
associative algebras). Nevertheless, this analogy does not hold for the extensions of mod-
ules over Koszul-Vinberg algebras.
The complex of superorder differential forms with values in vector bundles has been ini-
tiated by Koszul [16]. We give the definition of that complex. The KV cohomology of a
locally flat manifold (M,∇) helps to relate the pioneering work of Nijenhuis to the coho-
mology of T ?M-valued superorder differential forms.
The real KV cohomology of Lagrangian foliations is also related to Poisson manifolds and
to their Dirac reductions. This relationship has been pointed out by J. Stasheff in a private
communication to the author.
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2 KV Cochain Complexes

In this section we give relevant formulas which lead to the definition of so-called KV
cochain complex of a Koszul-Vinberg algebra. The expression KV cohomology always
means ”cohomology of Koszul-Vinberg algebras” [20].

2.1 Koszul-Vinberg algebras and their modules

The ground field is the field R of real numbers. All vector spaces and all algebras are vector
spaces and algebras over the field R.

Definition 2.1. An algebra is a couple A = (V,µ) consisting of a vector space V and a
V -valued bilinear map µ : V ×V →V.

Definition 2.2. The Koszul-Vinberg anomaly (or KV anomaly ) KVµ of an algebra A is the
following tri-linear map
KVµ : V ×V ×V →V
KVµ(a,b,c) = a(bc)− (ab)c−b(ac)+(ba)c where ab stands for µ(a,b).
An algebra A whose KV anomaly vanishes identically is called Koszul-Vinberg algebra (or
KV algebra).

Clearly associative algebras are Koszul-Vinberg algebras. However the origin of the
notion of KV algebra is differential geometry. Thus the important examples of Koszul-
Vinberg algebras come from differential geometry. For instance, let D be the covariant
derivative of a torsion free linear connection in a smooth manifold M.Then the vector space
X (M) of smooth vector fields endowed with multiplication XY = DXY is a Koszul-Vinberg
algebra iff the curvature tensor RD vanishes identically.
Another example is the vector space X (F) of smooth vector fields which are tangent to
a lagrangian foliation F in a symplectic manifold (M,ω). The multiplication of X (F) is
defined by the formula

ω(XY,Z) = Xω(Y,Z)−ω(Y, [X ,Z]).

Of course every associative algebra is a Koszul-Vinberg algebra. The commutator of an
algebra A is the skew symmetric algebra whose bracket is given by [a,b] = ab−ba ∀a,b ∈
A . The commutator algebra of a Koszul-Vinberg algebra is a Lie algebra. The question to
know whether a given Lie algebra is the commutator algebra of a Koszul-Vinberg algebra
is a widely open problem. If K is a commutative field of characteristic zero then no semi-
simple Lie algebra over K is the commutator algebra of a Koszul-Vinberg algebra.

Definition 2.3. A two-sided module over a KV algebra consists of a vector space W and of
two bilinear maps
A×W →W : (a,w)→ aw, W ×A→W : (w,a)→ wa
subject to the following requirements:
a(bw)−(ab)w−b(aw)+(ba)w = 0 and a(wb)−(aw)b−w(ab)+(wa)b = 0 ∀a,b∈ A,w∈
W

Given a two-sided A-module W , J(W ) is the subspace of w ∈ W such that a(bw)−
(ab)w = 0 ∀a,b ∈ A.
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2.2 KV complex

Let Z be the group of integers and let W is a two-sided module over a KV algebra A.
Then C(A,W ) is the Z-graded vector space whose homogeneous subspaces Ci(A,W ) are
defined as follows: Ci(A,W ) = 0 whenever i is a negative integer, C0(A,W ) = J(W ) and
Ci(A,W ) = Hom(A⊗i,W ) whenever i is a positive integer.

One has the cochain complex (C(A,W ) = ∑iCi(A,W ),δ) where the coboundary opera-
tor δ is defined as follows:
(δw)(a) =−aw+wa, ∀w ∈ J(W ).
If i is positive and if f ∈Ci(A,W ) then δ f ∈Ci+1(A,W ) is defined by
δ f (a1⊗ ..ai+1) = ∑ j≤i(−1) j[(a j f )(a1⊗ ..â j⊗ ..ai+1)+( f (a1⊗ ..â j⊗ ..ai⊗a j))ai+1]

At the right side of the formula above a j f is defined by
(a j f )(b1⊗ ..bi) = a j( f (b1⊗ ..bi))−∑1≤k≤i f (b1⊗ ...⊗a jbk⊗ ..bi)

The cohomology space H(A,W ) =⊕iH i(A,W ) of the cochain complex (C(A,W ),δ) is
called W -valued KV cohomology of the KV algebra A.

Definition 2.4. The Maurer-Cartan function of a KV algebra A is the polynomial mapping
PA of C2(A,A) in C3(A,A) given by PA(ν) = δν + KVν where KVν is the Koszul-Vinberg
anomaly of the algebra whose multiplication is a.b = ν(a,b)

Every ν ∈C2(A,A) defines an algebra structure whose multiplication µ is defined by

µ(a,b) = ab+ν(a,b).

The KV anomaly KVµ of µ is related to PA by

KVµ(a,b,c) = PA(a,b,c)

Let W be a vector space, the set of KV algebra structures in W is denoted by KV (W ).
Once for all we fix a KV algebra structure A = (W,µo) ∈ KV (W ). The set of zeros of PA

is denoted by ZA(C2(A,A)). The following is useful to algebraic geometry (as well as to
combinatorial geometry) of the singular algebraic variety KV (W ).

Proposition 2.5. [25] The map µ → ν = µ−µo induces a one to one map of KV (W ) onto
ZA(C2(A,A)).

This proposition is a straight consequence of the relationship between the KV anomaly
and Maurer-Cartan polynomial function.

2.3 Deformations and Extensions of KV algebras.

In regard to the extensions of Koszul-Vinberg algebras as well as their deformations, the
new cohomology theory is an alter ego of the Chevalley-Eilenberg cohomology theory of
Lie algebras (respectively of the Hochschild cohomology theory of associative algebras)[11],[27]
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.

Let us endow a two-sided A-module W with the structure of trivial KV algebra

ww′ = 0, ∀w,w′ ∈W.

Then we have:

Theorem 2.6. The set Ext(A,W) of the equivalence classes of extensions of the KV algbra
A by the trivial KV algebra W is isomorphic to the cohomology space H2(A,W ).

The theorem we just stated is a classical result in the theory of Lie algebras [6],(resp
in theory of associative algebras [12]) In regard to short exact sequences of algebras with
the trivial kernel, the KV cohomology of Koszul-Vinberg algebras works as the Chevalley-
Eilenberg cohomology of Lie algebras (resp as the Hochschild cohomology of associative
algebras).

Indeed, let V and W be two modules over the same Lie algebra g. Then the vector space
L(W,V ) of linear mappings from W to V is a g-module under the action defined by

a f (w) = a( f (w))− f (aw)

∀ f ∈ L(W,V ),a ∈ g,w ∈W . It is well known that there exists a one to one correspondence
between the set Extg(W,V ) of extension classes of the g-module W by the g-module V and
the Chevelley-Eilenberg cohomology space H1(g,L(W,V )).

Mutatis mutandis one has the same result by replacing modules over Lie algebras and
Chevalley-Eilenberg cohomology of Lie algebras by modules over associative algebras and
Hochschild cohomology of associative algebras.
Regarding extensions of modules over the same Koszul-Vinberg algebra A, the relationship
between short exact sequences of KV modules over A, namely

0→W → T →V → 0

and the KV cohomology space H1(A,L(W,V )) doesn’t walk as one would expect. However
there exists a one to one correspondence between the set of equivalence classes of those ex-
tensions and the term E1,1

1 of a canonical spectral sequence of KV complexes, [20].

Indeed let W be a two-sided module over a KV algebra A. Let B = A .W be the semi-
direct product of A with W . Thus B is a KV algebra structure in A⊕W whose multiplication
is given by

(a,w)(a′,w′) = (aa′,aw′+wa′).

Every two-sided module V over A is a two-sided module over B under the following
actions of B

(a,w)v = av
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and
v(a,w) = va

∀a ∈ A,v ∈V,w ∈W.
Now one considers the KV complex C(B,V ) of V -valued cochains of B. Then the pair

(W,B) yields an alter ego Er = (E p,q
r ) of the classical Hochschild-Serre spectral sequence

whose term E1,1
1 is isomorphic to the set ExtA(W,V ) of equivalence classes of extension of

the module W by the module V .
Roughly speaking the KV complex C(B,V ) is endowed with the filtration

F jC(B,V ) =⊕qF jC(B,V )∩Cq(B,V )

Where f ∈F jC(B,V )∩Cq(B,V ) if and only if f (b1, ..,bq)= 0 whenever the subset (b1, ..,bq)
contains more than q− j elements of the ideal W ⊂ B.
The subspaces F jC(B,V ) have the following properties.
(i) F j+1C(B,V )⊂ F jC(B,V ),
(ii) δ(F jC(B,V ))⊂ F jC(B,V ).
Thus we get the filtered cochain complex (C(B,V ),δ,F jC(B,V )) whose spectral sequence
is used above.

It must be noticed that E1,1
1 is quite different from the cohomology space

H1(A,L(W,V )).

3 Hyperbolicity and Completeness of Locally Flat Manifolds

Definition 3.1. A locally flat manifold is a manifold M endowed with a torsion free linear
connection D whose curvature tensor vanishes identically.

Definition 3.2. A locally flat manifold (M,D) whose universal covering (M̃, D̃) is diffeo-
morphic to a convex domain that does not contain any straight line is called hyperbolic
locally flat manifold.

The hyperbolicity is closely related to Hessian Riemannian metric of Koszul type, (see
[29]). Kozsul has proved that compact hyperbolic locally flat manifolds always admit non
trivial deformations, [17]. Behind this non rigidity property there exists a non vanishing
theorem of the cohomology of Koszul-Vinberg algebras. This has been performed in [20].

Let (M,∇) be a locally flat manifold whose universal covering is denoted by (M̃, ∇̃).
We fix once for all xo ∈ M. Up to diffeomorphism, M̃ is the set [([0,1],O),(M,xo)] of
homotopy classes of smooth mappings of ([0,1],0) in (M,xo). Set W = TxoM. Given a
smooth mapping

c : ([0,1],0)→ (M,xo)

let τ(t) : W → Tc(t)M be the parallel transport along c. The development mapping of c(t) is
denoted by Q(c). It is defined by

Q(c) =
Z 1

0
τ
−1(t)(

dc(t)
dt

)dt
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Since the curvature tensor of ∇ vanishes identically Q(c) depends only on the homotopy
class of c(t). Thus one gets a map Q of M̃ in W .

Definition 3.3. A locally flat manifold (M,∇) is complete if the development mapping Q
is a diffeomorphism onto W .

The problem to know whether a given locally flat manifold (M,∇) is complete a widely
open problem.
Let π(M) be the fundamental group of M at xo. Given [γ]∈ π(M) and [c]∈ [([O,1],0),(M,xo)]
one has

Q([cγ]) = τ([γ])Q([c])+Q([γ])

So the mapping
[γ] ∈ π(M)→ (Q([γ]),τ([γ]))

is an affine representation of the group π(M) in the affine space W . The linear part τ(π(M))⊂
Gl(W ) is called the linear holonomy of (M,∇). It is denoted by h(M,∇). The conjecture of
Markus is the following statement

Theorem 3.4. Let (M,∇) be a compact connected locally flat manifold. If the linear holon-
omy group h(M,∇) is unimodular then (M,∇) is complete

This conjecture has been proved when additional particular assumptions are made. For
instance the conjecture of Markus walks if the group h(M,∇) is nilpotent [10]. It walks also
if h(M,∇) is Lorentzian [4].
Set m = dim(M). When h(M,∇) is unimodular the mth real KV cohomology space of
(M,∇) contains a cohomology class which is an obstruction to the completeness of (M,∇)
[20].
An example of compact non complete locally flat manifold is the Hopf manifold Γ\Rn

where
Γ =

{
λ

j}
j∈Z ,

λ > 1 is a positive real number.

4 Relation to the pioneering work of Nijenhuis

In his pioneering attempt (with collaboration of Koszul), [26],[18] Nijenhuis is concerned
with only left modules. I plan to revisit this pioneering work and to show that the cochain
complex of Nijenhuis is actually a subcomplex of a cochain complex of a Koszul-Vinberg
algebra.

Let W be a left module over a KV algebra A. This is a module over the Lie algebra AL

whose bracket is defined by
[a,b] = ab−ba

∀a,b ∈ A. The vector space L(A,W ) of linear maps from A to W is a AL-module.
The complex initiated by Nijenhuis is nothing but the Chevalley-Eilenberg complex Cce(AL,L(A,W )).
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Its jth cohomology space is denoted by H j
ce(AL,L(A,W )). We recall that Nijenhuis defines

the jth W -valued cohomology space H j
N(A,W ) of the KV algebra A to be H j−1

ce (AL,L(A,W )).
The graded vector space CN(A,W ) = ⊕ jHom(∧ jA,L(A,W )) is preserved by the cobound-
ary operator of the KV complex C(A,W ). So CN(A,W ) is a KV subcomplex. Since W is a
left module the jth KV cohomology space H jCN(A,W ) coincides with H j−1

ce (AL,Hom(A,W ))
[20].

Now let E be a vector bundle over a smooth manifold M and let Γ(E) be the vector
space of smooth sections of E. For every non negative integer p we consider the vector
space Ωp(M,E) of E-valued differential p-forms defined in M. Thus, let θ ∈Ωp(M,E). To
vector smooth fields X1, ..,Xp it assigns the smooth section ω(X1, ..,Xp) ∈ Γ(E).

Definition 4.1. [16] Let k be a non negative integer. A E-valued p-form ω is of order ≤ k
if at every point x ∈M the value ω(X1, ..,Xp)(x) depends on the kth jets jk

x(X1), .., jk
x(Xp)

The space of E-valued differential forms of order ≤ k is denoted by Ω[k](M,E). The
vector space

Ω[∞](M,E) = ∪kΩ[k](M,E)

is the vector space of superorder E-valued differential forms in M.
Now, suppose E is a flat vector bundle. This means that E is equipped with a connection

∇ : Γ(T M)×Γ(E)→ Γ(E)

whose curvature tensor R∇ vanishes identically. Therefore, Γ(E) is a module over the Lie
algebra Γ(T M). The action of Γ(T M) in Γ(E) is defined by the connection

∇ : (X ,s) ∈ Γ(T M)×Γ(E) 7→ ∇X(s) ∈ Γ(E).

The vector space
Ω[∞](M,E) =⊕pΩ

p
[∞](M,E)

is a cochain complex whose coboundary operator

δ : Ω
p
[∞](M,E)→Ω

p+1
[∞] (M,E)

is defined as follows

δω(X1, ..,Xp+1) = ∑
j
(−1) j+1

∇X j(ω(.., X̂ j, ..,Xp+1))

+ ∑
i< j

(−1)i+ j
ω([Xi,X j], ..X̂i, ..X̂ j, ..,Xp+1).

Here are two examples of canonical superorder cohomology class [16]
(1) Take E = ∧mT ?M where m = dim(M). Of course, the Lie derivative LX endows E with
a flat connection. Let v ∈ Γ(E) be a volume form. The divergence form div(X) is defined
by

LX(v) = div(X)v.
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It is of order ≤ 0.
(2) Take E = Ω2(M,T M), the space of ordinary T M-valued differential 2-forms. Every
linear connection ∇ defines a E-valued differential 1-form

ω(X) = LX ∇.

Roughly speaking LX ∇ is a T M-valued 2-form defined as follows

ω(X) : (Y,Z)→ [X ,∇Y Z]−∇[X ,Y ]Z−∇Y [X ,Z]

Thus, X 7→ ω(X) is of order ≤ 2. It is a cocycle whose (Chevalley-Eilenberg) cohomology
class [ω] ∈ H1(Γ(T M),Ω2(M,T M)) does not vanish and doesn’t depend on the choice of
the linear connection ∇. The reader is referred to [16] for more details.

Actually the KV cohomology helps to connect the pioneering complex of Nijenhuis,
namely CN(A,W ), with the cohomology of superorder differential forms (see [16]). This
relationship is studied in [23].

5 Other Relevant Relations

5.1 An alternative Cohomology Theory of the Category of Associative Alge-
bras.

Every associative algebra A is a Koszul-Vinberg algebra and a two-sided module V over an
associative algebra A is a KV module over A.
Let V be a module over an associative algebra A. The classical V -valued Hochschild com-
plex HC(A,V )of A is the graded vector space ⊕qHCq(A,V ).
If q is a negative integer then HCq(A,V ) = 0;
HC0(A,V ) = V. If q is a positive integer then HCq(A,V ) = Hom(A⊗q,V ).
The coboundary operator
d : HCqC(A,V )→ HCq+1(A,V ) is defined as it follows.
Given v ∈V and b ∈ B one sets

dv(b) = bv− vb.

Given f ∈ HCq(A,V ) and b1⊗b2..⊗bq+1 one sets

d f (b1⊗b2..⊗bq+1) = b1 f (b2⊗ ..⊗bq+1)+ ∑
k≤q

q(−1)k f (b1..⊗bkbk+1⊗ ..bq+1)

+ (−1)q+1 f (b1⊗ ...⊗bq)bq+1.

The qth cohomology space of the complex above is denoted by HHq(A,V ).
Now let us regard A as KV algebra and V as KV module over A. The KV complex CKV (A,V )
differs from the Hochschild complex HC(A,V ). Indeed

C0
KV (A,V ) = J(V ).

Let q > 1 and let f ∈Cq
KV (A,V ). Then

δ f (b1, ..,bq+1) = ∑
k≤q

(−1)k((bk f )(.., b̂k, ..bq+1)+( f (.., b̂k, ..,bq,bk))bq+1).
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Now it is easy to check that for q = 0 and q = 1 one has

HHq(A,V ) = Hq
KV (A,V ),

For q = 2 one has the inclusion map

HH2(A,V )⊂ H2
KV (A,V ).

So, beside its classical Hochschild cohomology functor HH?(A,V ) the category of associa-
tive algebras admits also the KV cohomology functor HKV (A,V ). The two functors differ
each from other, [20]. Ther arises the problem to know what are the relationships between
HHq(A,V ) and Hq

KV (A,V ) for q > 2. [Nijenhuis, private communication].

To end this subsection, we briefly discuss a canonical relationship between the real
KV cohomology of a locally flat manifold (M,∇) and the de Rham cohomology of the
manifold M. As before the vector space Γ(T M) of smooth vector fields is a KV algebra
whose multiplication is defined by

XY = ∇XY.

Of course, the vector space Γ(T ?M) is nothing but the space of smooth differential forms in
M. It is a left module over the KV algebra Γ(T M). Given X ,Y ∈ Γ(T M) and θ ∈ Γ(T ?M)
the left action of Γ(T M) Xθ is defined by

(Xθ)(Y ) = LX(θ(Y ))−θ(∇XY ).

We may consider the KV complex of superorder cochains C(Γ(T M),Γ(T ?M)). It contains
the Nijenhuis subcomplex

CN(Γ(T M),C∞(M,R)) =⊕qHomR(∧q
Γ(T M),Γ(T ?M)).

Now if one restricts to cochains of order ≤ 0 the complex of Nijenhuis is nothing but the
T ?M-valued differential forms. In other words

CN(Γ(T M),Γ(T ?M)) = Ω[0](M,T ?M).

We already known that the graded vector space

Ω[0](M,T ?M) =⊕qΩ
q
[0](M,T ?M)

is a KV complexe with

Hq−1
N (M,T ?M) = Hq

KV (Γ(T M),C∞(M,R)).

Now denote by p the canonical projection of Ω
q
[0](M,T ?M) onto the vector space Ω(M,R)

of ordinary differential q-forms. Let

d : Ω
q(M,R)→Ω

q+1(M,R)

be the de Rham coboundary operator and let
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δ : Ω
q
[0](M,T ?)→Ω

q+1
[0] (M,T ?M)

be the KV coboundary operator. It is easy to check that ∀θ ∈Ω
q
[0](M,T ?M)

d(p(θ)) = (−1)qp(δ(θ)).

We set
K =⊕q

{
kerp : Ω

q
[0](M,T ?M)→Ω

q+1
[0] (M,R)

}
.

This yields a short exact sequence of cochain complexes

0→ Kq →Ω
q
[0](M,T ?M)→Ω

q+1(M,R)→ 0

So, one get a long exact cohomology sequence connecting cohomology of the KV complex
(Ω[0](M,T ?M),δ) to de Rham cohomology of the manifold M

→ Hq(K)→ Hq
KV (Γ(T M),C∞(M,R))→ Hq

dR(M,R)→ Hq+1(K)→

We recall that
Hq−1

N (Ω[0](M,T ?M)) = Hq
KV (Γ(T M),C∞(M,R))

and
Hq−1

N (Ω[0](M,T ?M)) = Hq−1
CE (Γ(T M),Ω1

[0](M,R)).

5.2 KV Cohomology, Poisson Structures and their Dirac Reductions.

Let A be an associative commutative algebra. Then the skew symmetric part Πθ of every
two dimensional cocycle θ of the Hochschild complex HC?(A,A) is a quasi-Poisson cocy-
cle in the following sense.
(i) For every a ∈ A the linear map Πa defined by Πa(b) = Π(a,b) is a derivation of the
associative algebra A.
Of course the bilinear mapping θ∈C2(A,A) defines an algebra structure in the vector space
|A|. Suppose that the Koszul-Vinberg anomaly KVθ of the algebra (|A| ,θ) vanishes identi-
cally. Then,
(ii) given a,b,c ∈ A one has

aΠθ(b,c)−Πθ(ab,c)+Πθ(a,bc)−Πθ(a,b)c = 0

An important example of Koszul-Vinberg algebra is

g = AL⊕C∞(M)

where AL is the space of vector fields which are tangent to a lagrangian foliation L in a
symplectic manifold (M,ω). The C∞(M)-valued KV cohomology of g generates Poisson
tensors which preserve the space of first integrals of L. This yields Dirac reductions along
the leaves of L, ( see [3]).
Consequently every smooth ( resp. holomorphic ) Poisson structure is the Dirac reduction
along the fibers of the smooth (resp. holomorphic) cotangent fiber bundle [22].

Consider the associative algebra C∞(M) of real valued smooth functions in manifolds
M. Then every two dimensional cohomology class
[θ] ∈ HH2(C∞(M),C∞(M)) contains one and only one quasi-Poisson cocycle [15]. This
result has its analogue in the KV cohomolgy space HKV (C∞(M,R),C∞(M,R)) [22].
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5.3 Misceleneous

The KV cohomology may be used to study the coexistence of some geometrical data in
the same manifold. For instance one can use the KV cohomology to prove the following
statements.
(1) The only compact symplectic solvmanifolds Γ\G (with G completely solvable) that ad-
mit kahlerian metrics are the flat tori Zn\Rn.
Concerning nilmanifolds, this statement has been proved by C. Benson and C. Gordon [1]
and by Dusa McDuff [8].
(2) Suppose a Kahlerian manifold (M,ω,J) is homogeneous under the action of a com-
pletely solvable Lie group. Then M is the total space of a fiber bundle over a bounded
domain whose fibers are simply connected homogeneous kahlerian manifolds, [13] See
also [14], [7],[24].
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