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Abstract
We consider some parameterized planar sets with unbounded digits. We investigate these sets
by using the method of “transversality”, which is the main tool in investigating self-similar sets
with overlaps. We calculate the Hausdorff dimension of these sets for typical parameters in
some region with respect to the 2-dimensional Lebesgue measure. In addition, we estimate the
local dimension of the exceptional set of parameters.
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1. Introduction

1.1. Planar sets generated by pairs of linear maps. We consider the following planar
sets A(1) for A e D*, where D* :={1e€C:0< |1 < 1}:

AW =1 @il 1a; € (0,1}
j=0

These sets have fractal structure. Indeed, the sets A(1) are generated by the iterated function
systems {Az, Az + 1} on the complex plane. For the general theory of the iterated function
system (for short, IFS), see [4]. In order to discuss these sets, we introduce a set of functions
F and a set of zeros in D* for functions in F:

=1
M = {1 € D" : there exists f € F such that (1) = 0}.

T’::{f(/l):1+ ajAf:a,,»e{—l,O,l}},

Fig.1. M

The set M is known as the Mandelbrot set for pairs of linear maps (see [1], [2] and Fig. 1).
Note that

1 1
(1 {AEID)*:—<|/1|<1}CMC{/1€]D*:—<|/l|<1}
NG 2

(see [16, p. 538 (6)]).

We set f1(z) = Az and f>o(z) = Az + 1. We say that the IFS {f, f>} satisfies the open set
condition if there exists a non-empty bounded open set V such that f1(V) N fo(V) = 0 and
fi(V) c Vforalli € {1,2}. If A is not an element of M, the corresponding IFS satisfies
the open set condition, and hence we have that the Hausdorff dimension of A(1) is equal
to —log2/log|4| (see [4, Theorem 9.3]). However, in general, it is difficult to estimate the
Hausdorff dimension of A(A) if A is an element of M. We set

M := {1 € D" : there exists f € F such that f(1) = f'(1) = 0} (C M).

For any set A ¢ C, we denote by dimy(A) the Hausdorff dimension of A with respect to the
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Euclidean norm | - |. We denote by L the 2-dimensional Lebesgue measure. The following
holds by [16, Theorem 2.2] and [17, Proposition 2.7].

Theorem 1.1.
. log2 .
) dimy(A(Q)) = “Tog forL-ae. Ae{d1eD :0< | < 1/‘/5};
3) L(AA) >0for L-a.e.A€{leD": 1/V2 < 1] < T\M.

Remark 1.2. 1. It is well known that dimgy(A(1)) < log2/—log|A4] for all A (see [4,
Proposition 9.6]).

2. In [16, Theorem 2.2], Solomyak deals with more general self-similar sets in the plane.
However, the statement of the result are essentially same as in Theorem 1.1.

3. The proof of [17, Proposition 2.7] essentially depends on [3, Theorem 2].

The local dimension of the exceptional set of parameters is estimated as the following.

Theorem 1.3 ([11, Theorem 8.2]). Forany0 < r <R < 1/V2,

log2 log?2
dimy ({1 € D" : r < |2 < R, dimy(AQD)) < —2 < B2 o
—log 4| —logR
Remark 1.4. Solomyak proved that dimg(A(1)) < log2/—1log|A| for A in a dense subset
of {1eD":0< |1 < 1/\/5} in [16, Proposition 2.3].

For further results about dimensions and measures on A(A), see [17].

1.2. Planar sets with unbounded digits. In this paper, we consider the following sets
Ao(Q) for A € D*:

Ap(A) := {Z a;lV :ajel0, p,,»}},

J=0

(o]

where 1 < p; e Rforall j € Ny, pj = o0 as j — coand {p J'}j=0 satisfies the condition

Pt — las j— co.
Dj
Note that the sets Ag(4) depend on the sequence {p j};‘;o
the above condition (see Remark 3.1).

We are motivated by the theory of the non-autonomous iterated function system (for short,
NIFS). Here, an NIFS is some family of contracting maps {f1 ;, f2.j, .., f,,j,.,-}j‘;o. As examples
of studies of NIFSs on a compact metric space, see [5], [13]. Inui [6] gave the methods to
construct “the limit set” of an NIFS on a complete metric space. The set Ag(A) is the limit

set of the NIFS {1, 2.} := {4z, Az + pj};‘;o as the following.

and these sets are well-defined by

Theorem 1.5 ([6, Theorem 1.11]). Let K(C) be the set of all non-empty compact subsets
of C and let dy be the Hausdorff distance on K(C). We define Ayp(1) = {Z;’;O aj/l-i caj €

{0, pj}}. For each j € Ny, we define the map F; : K(C) — K(C) by
Fi(A) = f1 (AU f2,;(A)
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for A € K(C). Then for any A € K(C),
lim dy(Fpo Fyo---0FjA),Ao(1) — 0.
j—o0

Note that there does not exist a compact subset X C C such that for each j, £ ;(X) C X
since the set of digits {p; : j € Ny} is not bounded. One of the aims in this paper is to
establish some methods to estimate the Hausdorff dimension of limit sets of NIFSs on a
non-compact metric space via studying examples. We give the main results, which are
analogues of Theorem 1.1 and Theorem 1.3.

Main result A (Theorem 5.11).

log2
—log /4]

L(Ay(1) > 0 for L-ae. Le{deD : 1/V2 <[] < 1]\ M.

dimg(Ag(2) = for L-ae. e fleD*:0<|A <1/V2}

Main result B (Theorem 5.14). Forany 0 <R < 1/V2,

log2 < log2 -
—log|d|J] — —logR

dimy ({/1 eD*: 0 < |1 <R, dimy(Ag()) <

In order to prove our results, we use the method of “transversality”. Here, for a param-
eterized family of functions, the “transversality” means a condition which controls the way
the functions depend on parameters. Usually, we call the set of parameters “the transver-
sality region”. The method of transversality is used for self-similar sets with overlaps (e.g.,
[12], [16], [8], [9]), for self-similar measures (e.g., [15]) and for some general family of
functions (e.g., [14], [10], [18]). Note that their setting depend on the compactness of the
whole space. Hence we cannot apply their framework or methods to our setting since the set
of digits {p; : j € Ny} is not bounded.

1.3. A strategy for the proof of the main results. In Section 3, we define a metric p,,,
(see Definition 3.3) on a symbolic space /I so that the Hausdorff dimension of /* is equal to
1 with respect to p,,, for each m, n € Ny (see Proposition 3.5). For each n € Ny and A € D*,
we define A,,(1) = {Z‘;’;O ajxlj caj € {0, pn+j}}. For each n € Ny and A € D*, we define the
address map 7, : I — C (see Definition 3.6) so that &, ,(/) = A,(1). For each n € Ny,
we define a set of double zeros of some power series M,, related to the address map 7, SO
that (M,=0 M, = M (see Definition 3.10 and Lemma 3.12). Then for each 1 € D*, there
exists mo € N such that m, ; is (—log|4|/log 2)-Holder continuous with respect to p, ,, (see
Lemma 3.14), which implies the upper estimation of the Hausdorff dimension of Ay(A).

In Section 4, we give some lemmas in order to estimate the Hausdorff dimension. In
addition, we give a technical lemma for the transversality (Lemma 4.10).

In Section 5, we give the key lemmas (Lemmas 5.6 and 5.7), which imply the lower es-
timation of the Hausdorff dimension of A, (A1) for typical parameters A with respect to £ on
D*\.M,, (Theorem 5.8) and the estimation of local dimension of the exceptional set of param-
eters (Theorem 5.14). Here, we use dimy(Ao(1)) = dimy(A,(1)), L(Ao(1) = [P L(A,(D)
(Corollary 3.8) and (1,50 M, = M (Lemma 3.12).
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2. Notation and conventions

N:={1,2,3,..}.

Np:=1{0,1,2,...}.

R : the set of all real numbers.

C : the set of all complex numbers.

Usually, we identify C with R?. For A € C, we denote by || the Euclidean norm of

AeR2

e D:={1eC:|A<1}.

e D":={1eC:0< |1 <1}

e Forany set A ¢ C, we denote by dimg(A) the Hausdorff dimension of A with respect
to the Euclidean norm | - |.

e [ : the 2-dimensional Lebesgue measure on C.

e For each j € Ny, let G; C R. Let 4 € D*. We use {Zj’io ajl:a;e Gj} to denote
{Z‘]’-‘;Oaj/lj : for each j € Ny, a; € Gj}.

e If X and Y are topological spaces, and f : X — Y is any Borel measurable map, then
for any Borel measure i on X, we define fu as the push-forward measure o f'.

e Let X be a topological space, let X, be a Borel measurable subspace of X and let m
be a Borel measure on Xj. If we set m(B) := m(B N Xp) for any Borel subset B C X,
then 72 is a Borel measure on X. We also denote by m the measure 7.

e Let (X,d) be a metric space and let x be a point in X. For any r > 0, we denote

by B(x,r) the set {y € X : d(x,y) < r}. For any set A C X, we denote by cl(A) the

topological closure of A.

3. Preliminaries

3.1. On the symbolic space. We deal with the digits { p.i};io satisfying the following
conditions:
e Foreach j e Ny, p; > 1;
e p; —>o00as j— oo,
® pj+1/pj— las j— co.

The above conditions imply the following.

Remark 3.1. 1. Foreachn € N, p;,,/p; — 1 as j — oo,
2.Leta>1and b > 0. Foreachn e N, (pj+,,)b/aj —0as j— oo,

We set I := {0, 1}. For each w = wow; --- € I and k € N, we set w|; 1= wow; « - w1 €
I*. For each w = wow - wr—; € I*, we denote by [w] the set {T € I® : 79 = wy,T] =
W1, ooy Tk—1 = Wi—1}. For each w = wowy -+ - ,7 = 1911 -+ - € I, we define |w A 7| := inf{j €
No @ w;#7j}h

Proposition 3.2. Let m,n € Ny. Then there exists minimum j,,, € Ny such that for all
jl > j2 > jn,m’ (pj1+n)m/2j1 < (pj2+n)m/2j2-

Proof. Since for each n € Ny, (pjs142)"/(pj+n)™ — 1 as j — oo, there exists k., € Ny
such that for each j > &,
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S (Pj+1+n)m

B (pj+n)m ‘
Hence for any j, = j, + 1> j2 = kyms
> (Pj2+1+n)m’ > (Pj2+2+n)m’ 2> (Pj2+l+n)m '
(Pjpen)™ (Pjrr14n)™ (Pjr+=1yen)™

Thus we have that

2]2 (pj2+n)m

By Proposition 3.2, we define the metric p,,,, on I as the following.

DerintTion 3.3. Let m, n € Ny. We define the metric p,,,, on I by

Kn,m (loATl< jn,m)
p”’m(w’ T) = (plw/\‘r|+n)m

2|w/\‘r| (|w /\ T| > jn,m)

for each w, 7 € I*. Here, K,y = (pj, ,4n)" /27

RemMark 3.4. 1. The metric space (I, p,,,) is a compact metric space for each n € N
and m € Nj.
2. pno(w, 1) = 172" for each w, T € I*.

Let X be a metric space endowed with a metric p. Let A C X. We define |A|, := sup{p(x, y) :
x,y € A}. Foreach t > 0 and 6 > 0, we set

H' 5(A) := inf {Z Uil = A c| Ui lUil < 6 for U; € X}.
i=1 i=1

We define the t-dimensional Hausdor{f outer measure of A with respect to p as
H/’)(A) = (15i—1>% H,i,a(A) € [0, oo].
For any set A C X, we define the Hausdor{f dimension of A with respect to p as
dim,(A) := sup{r > 0 : H;(A) = oo} = inf{r > 0 : H;(A) = 0}.
We compute the Hausdorft dimension of I with respect to p,,, as the following.
Proposition 3.5. For each n € Ny and m € Ny, dim,, (I*) = 1.

Proof. Let u be a probability measure on /* such that

1

2i

for each wow; - - wj_1 € I/ (u is the (1/2, 1/2)-Bernoulli measure on I*°). Fix m € Ny. Then
we have that for any w € I with j > j, .

/-l([a)()wl e a)j—l]) =
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(Pjen)"

2 }) = p([wowy -+ wj-1]) =

H ({T er”: Pnm(@,T) < 5

(pj+n)m }

<

27

{T el”: pym(w,7) <

‘ (_ <p,-+n)m)
= b
pn,m

By the mass distribution principle (see [4, p. 67]), we have that 1 < dim,,  (I*).
We prove that for each m € Ny, dim,, (/) < 1. For any € > 0 and j > j,, since the
family of sets {[w]},c;i is a covering for I, we have that

1 | (P jan)" (O
+€ +e __ .
Hpn,m»(pﬁn)m/zj(l ) < Z |[ ]lpnm - 2](1+E) - 0 as j — 0.

well

Hence we have that 7—[;::(1"") = 0 and hence dim,, , (/) < 1 + €. Since € > 0 is arbitrary,
we have that dim,,  (I*) < 1.
Hence we have proved our proposition. |

3.2. Address maps. We now define address maps as follows.

DerintTION 3.6. For each A € D* and n € Ny, we define the address map 7, : I — C by
mpa(w) = Z Py jw ;A
=0

(w = wow - -+ € I). Note that this map is well-defined.

Then we have that
ﬂ'n,ﬂ(loo) = {Z aj/lj taj € {0,pn+j}} .
=0

In particular, Ag(4) = mo(I~). Below we set A,(1) := m,,(I7). We give the following
proposition.

Proposition 3.7. For each n € Ny, if we set ¢, 1(2) := A2, n.1(2) := A2+ py, then

An(/l) = ¢n,/l(An+l(/l)) U Son,/l(ArHl(/D)'
Proof.

]:

U {’l[z pl’l+J+1w] ]"'pn OFRS {0, 1}}
j=0
= {Z Parjwid! : w; €10, 1}} = An(). |
=)

Pna(Ane1()) U @n2(Ans1(A) = {/l (Z Pt jr1@jd ] +0:w;€{o, 1}}
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Corollary 3.8.
dimg(Ao(4) = dimg(A,(1));
L(Ao(D) 2 A" L(AL(A)).
Proof. By Proposition 3.7, we have that for each n € Ny,

dimy(A,(1)) = max {dimy ($,1(Ans1 (D)), dimp (n 1 (An1 (D))}
= max {dimg (A1 (1)), dimpy (A1 (D)} = dimp (A1 (1))

and
L(AD) 2 L(pn1(Ans1(D) = [APL(A1 (). |

3.3. Sets of some power series. In this subsection, we introduce sets of some power
series and the sets of double zeros. For each j € N and n € Ny, we set

Guj = J {_p’””',o, p"’”} U(-1,1).

man U Pm Pm

For each j € N and n € Ny, the set G, ; is a compact subset in R since p,,. / pm tends to 1 as
m — oo, If we set b, j := max G, ; < oo, there exists m,, ; > n such that b, ; = D, j+ il P -

Lemma 3.9.
1
lim - logb, ; = 0.
Jj—0 J
Proof.
log b, ; = log P

— log (pmn,j+l pm,,'/+2 pm,,_j+3 . pmnv_,--#j )

pmnj Pm, Nad! pm,,_j+2 pmn,j+(j—l)
Jj-

Z Pm, j+k)+1

0 Pm, j+k
For any € > 0, there exists j; € N such that for any j > j,

log Pit <e€
Pj
since pj,;1/p; — 1 as j — oo. In addition, there exists j, € N with j, > j; such that for any
7z 2
i1+ 1 »
(]l . )IOg Pmyp+1 <e
J Pmy,

Since pu+1/Pm < Pm,y+1/Pm,, for any m > n, we have that for any j > j,

n k)+1 n, k)+1
0<< log bn/ Zl Pm Pamy ko +1 Z log Pm Pomy j+k)+1
Pmy, j+k k=141 pm,”+k
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1 L
- (J1 _ )10g Dm,i+1 N (J _Jl)e <2
J Dty J

By Lemma 3.9, the function
A C(A) = ) by AV
j=0

is well-defined on D. We define the following sets.

DerinitioN 3.10. For each n € Ny, we set

Fr = {f(/l) =+1+ Z a0 anj € Gn»/’}’
j=1

M, = {1 e€D" : there exists f € F, such that f(1) = f'(1) = 0},

F = {f(/l) ==+1 +Zaj/lj caje{-1,0, 1}},

j=1
M :={1eD" :there exists f € F such that f(1) = f'(1) = 0}.

RemMark 3.11. For any n € Ny, the sets 7, and F are compact subsets of the space of
holomorphic functions on D endowed with the compact open topology.

Lemma 3.12.
MM, = St

n>0

Proof. Since for all n € Ny,
F.oF
we have that
ﬂ M, > M.
n>0

Fix zo0 € (M0 M,,. Then for each n € Ny, there exists Jn € Ty such that f,(z0) = f,(z0) = 0.
Here,

A =1+ ay 0,
J=1

where
Pm,, j+jn,j
Apj= ———— 0Oray,;
pmn,j

(an,j € {-1,0,1},m, ; > n for each j € N). For each n € Ny, we set

ga(D) =1+ Z an A’ € F.
=1
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Then there exists a sub-sequence {g,,} and g € F s.t.
gn, — g on every compact subset of D as k — oo

since F is compact.
Then we have that

|fnk(Z0) - gnk(Z0)| = [1 +

[ oo
a/nk,jzoj] - [1 + Z ank,jzon < Z |an,.j = an,.jllzol.
1 =

Jj= J=1

Since f;,(z0) = 0 and the last term tends to 0 as k — oo, we have that
9(z0) = 0.
In addition,
|mmw%ym=by%ﬂfq{mequiymwwmmWP
j=1 =1 =1
Since f;, (z0) = 0 and the last term tends to 0 as k — co, we have that
g’ (z0) = 0.

Hence we have that 7o € M. O

3.4. The upper estimation of the Hausdorff dimension.
Proposition 3.13. Let n € Ny. For any w # 7 € I* and for any A € D*, there exists
Jnwr € Fu such that
72 (@) = T2 (1) = A Pronsian frwoa (.
Proof. Foreach w # 7 € I,

T (W) = Ty a(7) = Z Pusjw ;A — Z PusjTid!
=0 =0

= Z Prij(wj—THV

J=lwAT]|

(o]
_ lwAt| j
=41 Plortn+ j(@lontisj = Tiwar+ A
J=0

= Zp|m,+n+jajﬂ-/’ (ap € {~1,1},a; € {~1,0, 1} for j € N)
J=0
p\w/\‘rl+n+j

Plontl+n Z aj/lj-
=0 Plont|+n

— /llw/\‘rl

Since piuari+n/ Plwar+ndo € {—1, 1} and for ;ach J €N, Plortien+j/ Plordnaj € Gy j, we have
that f, (1) := Z;io Plont+n+jl Pload+n@jd’ € F,. Then we have proved our proposition. O
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Lemma 3.14. Let m € Ny and n € Ny. For any w,t € I” with |w A T| > j,,» and for any
A e D with 4] < 1/ V2,

—log|A|

mn1(@) = 0 A (D] < Co(D)pnm(w, T) 2,
where C,() 1= X320 by jlAl < o0, b, j := max G, ;.

Proof. By Proposition 3.13, there exists f, ., € F, such that

—log||

log2
Plontl+n |fn,a),‘r(/l)|-

|7Tn,/l(a)) - 7Tn,/l(T)| = |/1|lwATlpla}/\‘anlfn,w,T(/l)l = (

2lwht|

Since || < 1/ V2,

—log|A|
m
Plontl+n < (p\w/\'r|+n) log2

Hence we have that

—log|l —log|d|
1 log?2 1 log2
(m) p\w/\‘rl+n|fn,w,1’(/l)| < (W)
—log||

< Cn(/l)pn,m(w, T) log2 O

—log|A|
(plw/\‘r|+n)m log2 |fn,w,‘r(/1)|

Theorem 3.15. Let n € Ny. Then for any A € D,
log 2

i An S .
dimia(A,(0) < =

Proof. Fix A € D*. Since 1/ 42 — 1 as m — oo, there exists mo such that || < 1/ V2.
By Lemma 3.14, for any w, 7 € I* with |w A 7| > jm,,

0 (@) = Tp A(D)] < Coal Dy (@, T) 7

Hence we have that

. log2 . log 2
d A,(1) < d °)= —2~
imp (A, (1) < Tog 1] imp,, (1) “Tog
by Proposition 3.5 (see [4, Proposition 3.3]). |

4. Some lemmas

4.1. Frostman’s Lemma and an inverse Frostman’s Lemma.

DeriNiTioN 4.1 (FROSTMAN MEASURE). Let m be a Borel measure on R?. Let r > 0. Let
E be a Borel subset of R?. We say that m is a Frostman measure on E with exponent ¢ if
0 < m(E) < oo and there exists a constant C = C, > 0 such that for each x € R¢ and for each
r> 0, m(B(x,r)) <Cr.

Let H' be the ¢-dimensional Hausdorff outer measure on RY with respect to | - |. We give
the following lemma, which is known as Frostman’s Lemma.

Lemma 4.2 ([4, Corollary 4.12]). Let E be a Borel subset of RY with H'(E) > 0. Then
there exists a Frostman measure on E with exponent t.
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Corollary 4.3. Let 0 < t < 2. For each x € R? and for each r > 0, there exists a Frostman
measure m on B(x, r) with exponent t.

Proof. If 0 < ¢ < 2, by Lemma 4.2, there exists a Frostman measure m on B(x, r) with
exponent ¢ since H'(B(x,r)) = co. If t =2, we setm = L. m]

DEFINITION 4.4 (5-ENERGY OF MEASURES). Let m be a Borel measure on RY. For any s > 0,
we define the s-energy of m as

I;(m) = f f ! -dm(x)dm(y).
Re JRre |X =yl

We give the following lemma, which is known as an inverse Frostman’s Lemma.

Lemma 4.5 ([4, Theorem 4.13]). Let A be a Borel subset of R? with m(A) > 0. If
I;(m) < oo, then dimy(A) > s.

4.2. Differentiation of measures. Let d € N. Let u and m be Borel measures on R? such
that u(G) < oo and A(G) < oo for any compact subset G. We say that the measure u is
absolutely continuous with respect to the measure m if m(A) = 0 implies u(A) = 0 for all
Borel subsets A.

DErINITION 4.6. The lower derivative of u with respect to m at a point x € R? is defined
by

e (B )
D(u,m, x) := 111;11_) 1311“ m—(B(x, )’

Note that the function x — D(u, m, x) is Borel measurable. For the details of differentia-
tion of measures, see [7, p. 36]. The lower derivatives of measures are related to the absolute
continuity of measures by the following.

Lemma 4.7 ([7, 2.12 Theorem]). Let yu and m be Borel measures on R" such that u(G) <
oo and m(G) < oo for any compact subset G. Then u is absolutely continuous with respect
to m if and only if D(u, m, x) < oo for pa.e. x € R".

4.3. A technical lemma for the transversality. We give a technical lemma for the
transversality condition. In order to prove it, we give some definition and remark.

DerNTION 4.8. Let G be a compact subset of RY. We say that a family of balls {B(x;, ri)}fle

in R? is a packing for G if for each i € {1, ...,k}, x; € G and foreach i, j € {1,...,k} with i # j,
B(x,-, I",‘) N B()Cj, I"J') =0.

Remark 4.9. Let G be a compact subset of R?, let r > 0 and let {B(x;, r)}f.‘:1 be a family
of balls in R?. If {B(x;, r)}\_, is a packing for G, then there exists N € N which only depends
on G and r such that k < N.

Proof. There exists a finite covering {B(y;, r/ 2)}?’: ; for G since G is compact. Here, N
only depends on G and r. Since x; € G for each i, there exists j; such that x; € B(y;,, r/2).
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Since {B(x;, r)}f.‘:1 is a disjoint family, if i # [ € {1, ..., k}, then j; # j;. Thus k < N. O

We now give a slight variation of [16, Lemma 5.2].

Lemma 4.10. Let H be a compact subset of the space of holomorphic functions on D.
We set

My = {1 e D" : there exists f € H such that (1) = £ (1) = 0}.

Let G be a compact subset of D*\Mjyq. Let t > 0 and let L' be a Frostman measure on G
with exponent t. Then there exists K > 0 such that for any f € H and for any r > 0,

€] L'{1eG:fQ) <) <KF.

Proof. Since M is compact and the set My is the set of possible double zeros, we have
that there exists 6 = 9 > 0 such that for any f € H,

&) [f(D)] <6=|f' (D) >6 fordeG.
We assume that r < ¢, otherwise (4) holds with K = £'(G)/&". Let
A = {eG:If() < 7).

Let Co(G) be the convex hull of G. We set M = Mg := sup{|g”’ ()| € [0,0) : 1 € Co(G), g €
H}. Since Co(G) is compact and H is compact, M < oo. Fix zp € A,. By Taylor’s formula,
for z € G,

|f(2) = f(zo)l =

Flo)z—20) + f (- O ()de|.

where the integration is performed along the straight line path from zq to z. Then |f"(z9)| > ¢
by (5). Hence

1f @) = f@o)l = I @o)llz — 20l = Mlz = zo* > 6lz — 20l — Mz — zo[*.

Now if we set

. 4r 0
AZ()J = {Z eD E < |Z—Z0| < m}

then forany z € A, ,,

4r 6
Slz = zol = Mz = zol* = |z = 2ol(6 - M|Z—Zo|)>E§=2r,

and |f(2)| = |f(z) = f(zo)| = |f(zo)| > r. It follows that the annulus A, , does not intersect A,..

Assume that 4r/5 < §/4M, otherwise (4) holds with K = £/(G)(16M/6%)". Then the disc
B(zp,6/4M) centered at zy with the radius 6/4M covers A, N {z : |z — z0| < §/2M}. Then
fix z; € A;\{z ¢ |z — 20l < 6/2M}. Since the annulus A_, . does not intersect A, B(z1,0/4M)
covers (A \{z : |z—z0l < 6/2M})N{z : |z—z1| < 6/2M} and B(zg,6/4M)NB(z;,6/4M) = 0. If
we repeat the procedure, we get a finite covering {B(z;, 6/4M )}f“:0 for A, since A, is compact.
Then {B(z;, 0 /4M)}i.‘:0 is packing for G. By Remark 4.9, there exists N € N which only
depends on 7 and G such that kK < N. Since the annulus A, , does not intersect A, for each
i €{0,...,k}, {B(z, 41*/(5)}5.‘:0 is also a covering for A,. Hence we have
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k k t t
4 4
ﬂm»sﬂLJW@Aw@}=§¥ﬂw@Aw@DsM%lj=Ncp)ﬂ
i=0 i=0 0 0
where C denotes a constant which appears in the definition of L. If we set K := NC(4/6)",
we get the desired inequality. |

5. Proofs of main results

5.1. The lower estimation of the Hausdorff dimension for typical parameters. For
each n € Ny, we endow [ with the metric p, o (for the definition of p, o, see Definition
3.3). Since the metric p, o does not depend on n, we set py := pno. We consider the address
maps m,, . (I7,p0) = Cfor A € D*. We set A,(1) := 7, ,(I”). Fix § > 0. Then for any
A,n € B0,6) ND* and any w = wow; -+ € [,

70 2(@) = T g(@)] < Y P jeos! = 17
=0

< puejlA=lQA AP+ LAl + g

<

M 1D

2 P

J

Il
(e}

Hence we have the following.

RemARk 5.1. Let 1 € D*. If A; — A as j — oo, then 7, 4,(-) uniformly converges to 7, a(+)
on [*. In particular, the sequence of sets {A,(4 j)};‘;l converges to A,(4) in the Hausdorff
metric.

By Proposition 3.13, if we set C,,(1) := Z;io b,,,jlxll-f < oo, where b, j ;= max G, j,

|7Tn,/l(a)) - ﬂn,/l(T)l < |/l||wAT‘p|w/\‘r|+nCn(/l)

for any w, 7 € I. If pp(wj, w) = 1/2") — 0 as j — oo, then ||/ py, nyn — 0. Hence
for each A € D*, the map w — 7, )(w) is continuous on /™. We set @ : D* — [0, c0) by

—log|4]
A) = ——.
() log2
For any compact subset G ¢ D*, we set @ := sup{a(d) : 1 € G}. We set U, := D*\ M, (for
the definition of M,,, see Definition 3.10).

Lemma 5.2. Let G be a compact subset of U, and let L be a Frostman measure on G
with exponent t for some t > 0. Then there exists K, > 0 such that for any r > 0 and any
w#*TEI®,

ﬁ’({/l eG: |7Tn7,1(a)) — 7'['”’/1(7')| <r)< Kn,GPO((U, T)_mcrt,

Proof. By Proposition 3.13, for any w # 7 € I, there exists f,,r € F, such that
Ta (@) = 7y 2(7) = A" popctin frwo (). Hence for any r > 0,



PLaNAR SETS witH UNBOUNDED DIGITS 769

{A€G : mi(w) =m0 < 1} = {/l €G | fnw: (D] < po(w, T)“’“);r} :

Ploatl+n
Since F, is a compact subset of the space of holomorphic functions on D, by Lemma 4.10

we have that for any compact subset G C D*\M,,, there exists K, > 0 such that for any
r>0,

L'({A1€G : ma(w) —moa(D < 1) = L' ({a €G : | frw( Dl < po(w, r)‘“w#r})

Plont|+n

1

S——
(plw/\THn)t
< Kugpo(w, )", O

< K, po(w, T) @@ !

Let u be the (1/2,1/2)-Bernoulli measure on /. We set v, ; = m, 1. This is a Borel
probability measure on m, (1) = A,(4), since the map w +— 7, 1(w) is continuous on /.

Lemma 5.3. Let 0 < s < 1. Then

f1 ) j; _po(w, 1) dp(w)dp() < co.

Proof. Foranyi € I, we set
- 1 @=0
i =
0 @=1).

f, ) f, pole, 7Y due)dtr) = f, ) f, 2 (o)
_ f 3 f 299 ()du(r)
I~ 7=0 {wilwAT|=j}

_ f > 2¥u(lwor -1y 7 Dda(r)

1 (< :
= Ef Zz(s_l)]dlu(ﬂ

1~

Then

| |
~2 f,m =20 K
11

T 21-260

Lemma 54. Let A € D*. Let sy > 55 2 0. If

f f |t — o]~ dv, )(W)dv, 1(v) = o,

R2 JR2

f f lu = 0] ™" dvy 2 (W)dv, 1 (v) = .
R2 JR2

then
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Proof. Since for any Borel subset B ¢ R? with BN A,(1) = 0, vpa(B) = 0, we have

f = 0| ™" dv, 2 (W)dv, 2 (v) = f f lu — 0" dvy 2 ()dv, 1 (v).
R2 JR2 A1) JA, ()

If we set D := sup,, ,e4, (1 [# — v| < oo, then we have

—_ -
f f = 0| ™" dvy 2 (W)dvy () = f f D‘“(u) dvu  (w)dv, 1 (v)
A(D) JAL) A,(D) JA, D) D
— -2
> f f D-Sl(—'” D"') v ()1 (0)
A, JA,0)

=Dt fz i lu — o™ dvy ()dvy 1 (v)
R? JR
= Q.

Lemma 5.5. The function

A f f lu — o] dy, (v, ()
R2 JR2

is Borel measurable on D*.

Proof. For any 4 € D*,
D) = f f lu = o D dy, (v (v)
R2 JR2

_ f (@) = Tod (O D du(w)dua().
[®° JI®

Fix a sequence {1;}2, — A as j — co. Then |m,,(w) — 70, (D7) — |7, 2(w) -

j=1
7,207 € (0, 00] as j — oo for each w, T € I by Remark 5.1 and the continuity of a.
By Fatou’s Lemma,

f aa(@) = T (DD dpa(w)dpa(r)
[® JI®

= f liminf 7,4, (@) = 70, (D] /%Y dps(w)du(r)
= JI

00 ]—)OO

<timint [ @) = 1 O du(rduco)
1~ JI>®

j—oo

Hence the function A — ®(A1) is lower semi-continuous, and hence Borel measurable. |

We give key lemmas as the following.

Lemma 5.6. Let0 <t <2. Forany g € U,N{A1 € D*: 1/a(A) < t} and any € > 0, there
exists § > 0 such that for any Frostman measure L' on B(Ay, §) with exponent t,

f 2 f = o| M= gy, (u)dv, 1(v) < 00
R R

for L'-a.e. A in B(Ay,0).
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Proof. Fix 4o € U, N {1 € D* : 1/a(1) < t} and any € > 0. There exists 6 > 0 such
that 1/a(dp) — € < 1/aapu,.s) since a is continuous. Below, we set s = 1/a(Ag) — € and
G = cl(B(1p,6)). Then

f f po(w, 7)™ du(w)du(t) < oo
> Jre

by Lemma 5.3 since sag < 1. If we prove

S = f f lu— o™ dv, (W)dv, (v)dL' () < oo,
G Jr? Jr2

we get the desired result. By changing variables and Fubini’s Theorem,

S = f f f |7Tn’/1((.¢)) - ﬂ'n,/l(T)rS dﬁt(/l)d,u(w)dﬂ(T)
> Jre Jo
By using Lemma 5.2 and £/(G) < oo, we have that for any r > 0 and any w, 7 € I,
L'({A € G : Imya(w) — w1 (7)| < r}) < Const. min{1, po(w, )" r'}.

Here, we set Const. := max{1, £L/(G)}K, c, where K, s comes from Lemma 5.2. Then by
using that s < ¢, we obtain

L (@) = T2 (D7 L) = fo L'{2€G : mya(w) = mua ()™ 2 x}) dx

< Const. f min{1, po(w, )" x7"*} dx
0

po(w,7) "G co
= Const. f 1 dx + po(w, )% f xS dx)
0 p()(a),‘l')fm(;

= Const.” po(w, )%,

Here, we set Const.” := (Const. + I/S%l) . Hence we have S < co. O

Lemma 5.7. Forany dg € U, N {1 € D* : 1/a(A) > 2}, there exists 6 > 0 such that
L(A,()>0
for L-a.e. 1in B(Ay,0).
Proof. Fix any g € U, N {4 € D* : 1/a(d) > 2} and any € > 0 with (1 — €)/a(dy) > 2.
Then by Lemma 5.3,

f f po(w, )19 du(w)du(t) < .
[° JI®

There exists 6 > 0 such that (1 — €)/acB,s) > 2 since « is continuous. It suffices to
prove that v, is absolutely continuous with respect to £ for L-a.e. 4 in B(dy, ). We set
G = cl(B(1yp,0)). Let

e Vaa(B, 1)
DO, w) = lim inf =77 =

be the lower derivative of v, ; with respect to £ at the point u. If we show that
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S = f f D(vy,p,u) dvy 2 dL(A) < o0,
G JR?

then for L-a.e. 1 € G we have D(v, 4, u) < oo for v, -a.e. u and hence v, , is absolutely
continuous by Lemma 4.7. By Fatou’s Lemma,

S < Const. hm 1nfr ff VuA(B(u, r)) dvy (w)dL(A).
R2
Then

f Vpa(B(u, 1)) dv, a(u) = f f X B(u,r)(V) AV 1 ()dV, 1 (1)
R2 R2 JR?

= f f Xirel™: m(@)-ma(0)<r) AU(T)dp(w),
= Jre

where y4 is the characteristic function with respect to the set A. By Fubini’s Theorem,
integrating with respect to 4,

=)

S < Const. hm mfr f f LUA1e G : mp)(w) — 11D < 1)) du(w)p(T).
o

By using Lemma 5.2, we have that

SSConst.’f fpo(a),‘r)_Q"G du(w)du(t),
= Jre

which is finite since 2@ < 1 — € by Lemma 5.3. O

Theorem 5.8. Let n € Ny.

o g log2
@) dimy(An(D) 2 — oz

(i) L(Ay(1) >0 for L-ae. A€ {deD : 1/V2 < |1 < I\M,

for L-ae. 1 e{leD*:0< |4 < 1/V2\M

Proof. We first prove (i). Weset V,, := {1 e D" : 0 < |1 < 1/\5}\./\;1,1. Fix k € N. We
prove

(6) f i f i |t — o]~V OVR gy, (w)dv, 1 (v) < 00
rR2 JR

for L-a.e. 2in V.
Suppose that (6) does not hold. Then there exists a Lebesgue density point 4y € V,, of the

set
{/l ev,: f f lu — v/ D=1k dvy(w)dvy 2 (v) = oo}.
R JR?

Then there exists &y > 0 such that for each § € (0, &),

c ({/l € B(1,0) : f 2 f 2 |t — v~ VAO=VR gy, (w)dv, \(v) = oo}) > 0.
R R

By the continuity of the function 4 — 1/a(A), if § is small enough, then 1/a(1) — 1/k <
1/a(Ag) — 1/2k for each A € B(Ay, ). Hence for all sufficiently small §, by Lemma 5.4, we
have that
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c ({/l € B(A9,0) : f f |u — o VA2 gy (u)dv, 1 (0) = oo}) > 0.
RZ JR2

This however contradicts Lemma 5.6 since L is a Frostman measure on B(Ay, 6) with expo-
nent 2. Thus we have proved (6). By Lemma 4.5, we have that

log2 1 i
O forfeae. de{leD :0<|d < 1/V2NM,.
—log|d] &k

By letting k — oo, we prove (i).
Statement (ii) follows from Lemma 5.7 in a similar way. a

dimp(A,(1)) >

Corollary 5.9.

log?2
—log|4|
L(Ag(A) > 0 for L-ae. A€ {deD" : 1/V2 < |1 < INM.

dimg(Ag(Q)) > for L-ae. A€e{leD":0< |1 < 1/\/5}\./\71;
Proof. By Theorem 5.8 and Corollary 3.8, we have that

dimg(Ag(2)) > for L-ae. A€ {1 eD":0< A < 1/V2\My;

—log|4|
L(Ag(A) > 0 for L-ae. A€ {1eD": 1/V2 < |4 < 1]\ M,.

By Lemma 3.12, letting n — oo, we get our corollary. O

We use the following theorem in order to prove our main result.

Theorem 5.10 ([17, Proposition 2.7]). A power series of the form 1 + Z;’;l a;z!, with
aj € [-1, 1], cannot have a non-real double zero of modulus less than 2x57/8 ~0.73143 (>

1/2).

Finally, we get the following theorem by using Theorem 3.15, Corollary 5.9 and Theorem
5.10.
Theorem 5.11.

log?2
—log /4|

L(Ay(D) > 0 for L-ae. e {leD : 1/V2 < | < 1]\ M.

dimg(Ag(2) = for L-ae.AefleD*:0<|A < 1/V2}

5.2. The estimation of local dimension of the exceptional set of parameters. Recall
that U, = D*\M,, and (1) = —log|A|/log2 for A € D*. Note that Unery, Un = D*\ M by
Lemma 3.12.

Lemma 5.12. Let G be a compact subset of U,. Then we have
log?2 log2
dimy ({/1 € G : dimy(A,() < —& }) < sup —BZ_
—log || 16 —log 4|

Proof. We set sg := sup,.;log2/—1log|A|. By the countable stability of the Hausdorff
dimension, it suffices to prove that for each k € N,
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log2 1
dimy ({1 € G - dimy(A4,(1) < —2 — ~ 1) < g6
—logl|d| k&

Since G is compact, it is enough to prove that for each A € G, there exists ¢ > 0 such that

log2 1
dimy ({1 € B, 8) - dimy(A,() < —2=_ _ 2 ) < .
—log|d| &k

Suppose that this is false, that is, there exists 49 € G such that for any 6 > 0,

log2 1
dimy ({1 € By, 6) : dimpu(A, (1) < —2=_ _ ~ 1} 5 4.
—log|d| &k

By the continuity of the function A +— log2/—1log|A4|, there exists ¢y > 0 such that for any
0< 68 <dp,

. . log?2 1
dimg ({/1 € By, 6) : dimp(A, (1)) < ﬁ - ﬁ}) > s

Take 01 > 0 with §; < ¢y so that Lemma 5.6 holds with r = s and € = 1/2k. By Lemma
4.5, we have

{/l € B(lo.61) : dimp(A, () < —282 1 }

—log|lo| 2k
C {/l € B(10,61) : f u — o7 VAW=ZR gy (w)dy, 1 (v) = oo} = E.
R? JR?

By Lemma 5.5, the set E is a Borel subset of D*. Since H*¢(E) > 0, by Lemma 4.2, there
exists a Frostman measure £°¢ on E with exponent sg. However this contradicts Lemma 5.6
since L£°¢ is also a Frostman measure on B(dy, d;) with exponent s¢. |

Theorem 5.13. Let G be a compact subset of D*\M. Then we have

log 2 log 2
dimy ({/l € G : dimp(Ag() < —2 }) < sup —2°
—log|4] 16 —log|A|

Proof. Since e, Un = D*\ M, there exists ny € Ny such that G c U,,. By Lemma 5.12,
we have

log2 log 2
dimy ({/1 € G : dimy(A,() < —& }) < sup —BZ_
—log || 16 —log 4|

By Corollary 3.8, we have that

log2 log 2
dimy ({/l € G - dimy(Ag() < —& }) < sup —BZ_ o
—log || 1e6 —log|4|

Theorem 5.14. Forany 0 <R < 1/V2,

log 2 log 2
dimy ({1 €D 0 < 4] < R, dimp(Ag(D)) < —F < 982 o
—log |4 —logR

Proof. Let 0 < r < R < 1/V2. If R < 1/2, by (1) and since M C M,
{eD* i r<|l<R}\M ={1eD":r<|A <R}.
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For each k € N, we set Gy := {1 e€D*:r+1/k <|4| < R—-1/k}. Then Gy is a compact
subset of D*\M and | ey G = {1 € D* : r < |A] < R}. By Theorem 5.13 and the countable
stability of the Hausdorft dimension, we have that

log 2 log 2
dimy ({/1 €D r <Al <R, dimp(Ag(D)) < —= }) <%

log|d)) ~ —logR’
If 1/2 < R < 1//2, by Theorem 5.10,

AeD :r<AI<RI\M={1eD\R:r <A <RJU{A€R:r < |1 <R} \M).
For each k € N, we set

Gy:={1eD":r+1/k<|A <R-1/k,Im(2) > 1/k}
U{dleD" :r+1/k <|A <R - 1/k,Im(Q) < —1/k},
where Im(1) denotes the imaginary part of 1. Then Gy is a compact subset of D*\.M and

Ukenn Gk = {4 € D"\R: r <|1] < R}. By Theorem 5.13 and the countable stability of the
Hausdorff dimension, we have that

log 2 log 2
dimy ({1 € D\R : r < 4| < R, dimp(Ag(d)) < —2 < 8L
—log|A| —logR

Since dimgy(R) = 1 < log2/—1log R, we have that

log 2 log 2
dimy ({4 €D : r < [ < R, dimp(Ag()) < —F < 82
—log|A| —logR

By the countable stability of the Hausdorff dimension, we have that

log 2 log 2
dimy (11 € D" 0 < 4] < R, dimp(Ag(d)) < —= < 8L O
—log |4 —logR
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