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Abstract. The ring of invariant polynomialsC[V ]G over a given finite dimensional
representation space V of a connected complex reductive group G is known, by a
famous theorem of Hilbert, to be finitely generated. The general proof being non-
constructive, the generators and their degrees have remained a subject of interest.
In this article we determine certain divisors of the degrees of the generators. Also,
for irreducible representations, we provide lower bounds for the degrees, deter-
mined by the geometric properties of the unique closed projective G-orbit X, and
more specifically its secant varieties. For a particular class of representations, where
the secant varieties are especially well behaved, we exhibit an exact correspondence
between the generating invariants and the secant varieties intersecting the semistable
locus.
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1. Introduction

Let G be a connected complex reductive algebraic group and V be a finite dimen-
sional G-module. A famous theorem of Hilbert asserts that the ring of invariant
polynomials C[V ]G is finitely generated. The general proof being nonconstruc-
tive, the generators and their degrees have remained a topic of significant interest.
The generators can be chosen homogeneous. The finite set of generators is clearly
not unique, but, their degrees of a minimal set of generators are uniquely deter-
mined, if one convenes to an increasing order and takes multiplicity into account.
We say that C[V ]G admits a generator of degree d > 0, if the degree component
C[V ]Gd is not contained in the subring generated by C[V ]G<d. The maximal degree
of a generator is called the Noether number, No(G,V ), this is the minimal d for
which C[V ]G≤d generates C[V ]G. If C[V ]G 6= C, we denote by d1 the minimal
positive degree of a generator.
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In the following theorem we identify certain divisors of the degrees of the genera-
tors. The proof is given in Section 2.

Theorem 1. Let H ⊂ G be a Cartan subgroup with weight lattice Λ and root
system ∆ ⊂ Λ. Let Λ(V ) be the set of H-weights of a given finite dimensional
G-module V . Suppose that M ⊂ Λ(V ) satisfies the following two properties:

i) M ∩ (M + ∆) = ∅ (we call such sets root-distinct)

ii) M is linearly dependent over Z>0 and minimal with this property (we call
such sets balanced simplices, and we denote by bM =

∑
ν∈M

bν , where bν ∈

Z>0 are the unique coefficients with greatest common divisor one such that∑
ν∈M

bνν = 0)

Then the ring of invariants C[V ]G admits a generator of degree kbM for some
integer k ≥ 1.

Remark 2. The above notion of a root-distinct set generalizes a notion introduced
by Wildberger [15], in his study of momentum maps. Wildberger’s approach was
taken further by Sjamaar [12], Franz [4], Smirnov [13], and Hristova, Macia̧żek
and the author [6]. Let us note that in [4] the root-distinct sets are called “free
sets”. We prefer the more descriptive name used by Wildberger. All these works
seek to understand momentum images or, equivalently, Brion polytopes. In the
present note we relate the root-distinct sets to degrees of invariants. A similar
construction of invariants corresponding to sets of weights has been introduced
by Wehlau [14], but limited to the case of tori, where the root-distinctness is
clearly irrelevant. Wehlau’s condition is indeed an analogue to ii). Thus, the root-
distinctness property given in condition i) is, in a sense, a supplementary assump-
tion allowing to generalise Wehlau’s construction from tori to general reductive
groups.

Let P = P(V ) be the projective space of V with the induced group action. We
denote by J = C[V ]G≥1 the ideal in the invariant ring vanishing at 0. Let Pus ⊂ P
be the zero-locus of J , also known as the unstable locus, or the nullcone. The
complement Pss = P \ Pus is called the semistable locus. We denote by

√
I(J)

the radical ideal of C[V ] generated by J .

In the second part of the article, we focus on the case whereG is semisimple and V
is irreducible and nontrivial, so that V = V (λ), where λ 6= 0 is the highest weight
with respect to a fixed Borel subgroup B ⊂ G. There is a unique closed G-orbit in
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the projective space, the orbit of highest weight vectors, which we denote by

X = G[vλ] ⊂ P.

For r ∈ N, the secant variety σr(X) is defined as the Zariski closure of the union
of linear spaces spanned by r points on X

Σr = σr(X) =
⋃

x1,...,xr∈X
PSpan(x1, . . . , xr) ⊂ P.

Since the representation is irreducible, X spans the projective space. Thus, for
sufficiently large r, we get σr(X) = P. The minimal such r is called the generic
rank in P with respect to X, denoted here by rg.

The secant varieties behave naturally well with respect to the group action, but
their definitions are independent of the group, once the variety X is given. Thus
the properties of these varieties, their ideals and coordinate rings could be expected
to have nontrivial consequences on the properties of invariant rings. The closed
orbit is always unstable: X ⊂ Pus. As a corollary of a result of Landsberg and
Manivel [9], we obtain the following theorem.

Theorem 3. i) Let rus = max{r ∈ N ; σr(X) ⊂ Pus}. Then rus < d1.

ii) If Pus ⊂ σr(X) 6= P for some r, then
√
I(J)r+1 contains the (r − 1)-st

prolongation of the degree two component of the ideal of X, i.e.,

I2(X)(r−1) = (I2(X)⊗ Sr−1V ∗) ∩ Sr+1V ∗ ⊂
√
I(J)r+1.

The proof is presented in Section 3 along with some basic material about secant
varieties. In Section 4, we consider a class of homogeneous varieties with par-
ticularly well behaved secant varieties, the so-called rs-continuous varieties intro-
duced in [11]. We show that the generators of the invariant ring correspond exactly
to the secant varieties intersecting the semisitable locus and, in particular, there
is a bijective correspondence between the sets of numbers {rus + 1, . . . , rg} and
{d1, . . . ,No(G,V )}. Remarkably, in several cases these sets are in fact equal.

2. Root-Distinct Sets of Weights and Invariants

In this section we give a proof of the Theorem 1 stated above.

Proof: Let T ⊂ H be the maximal compact subgroup of the given torus H ⊂ G,
and let K ⊂ G be a maximal compact subgroup of G containing T . Let 〈 , 〉 be a
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K-invariant Hermitean form on V . We consider the Killing form on k and use it to
set an isomorphism between k and k∗, and to embed t∗ as a subspace of k∗.

We consider the K-equivariant momentum map

µ : P −→ ik∗, µ[v](ξ) =
〈ξv, v〉
〈v, v〉

, [v] ∈ P, ξ ∈ k.

We denote the fibres of the momentum byMξ = µ−1(ξ). ThenM0, if non-empty,
is preserved by K, contained in the semistable locus and, by a theorem of Kirwan,
one hasM0/K = Pss//G, where the latter denotes the GIT-quotient [8].

The weight space decomposition V = ⊕ν∈Λ(V )Vν is orthogonal. For any subset
M ⊂ Λ(V ), we denote VM = ⊕ν∈MVν and PM = P(VM ) ⊂ P.

Lemma 4 (Wildberger) . If M ⊂ Λ(V ) is a root-distinct set of weights, then
µ(PM ) = Conv(M) ⊂ t∗.

In fact, Wildberger [15], proved a similar statement for some very special sets of
weights, namely Weyl group orbits, but his method goes through in the general
case, as we show below.

Proof: Let g = h⊕ (⊕α∈∆gα) be the weight space decomposition with respect to
T and let ∆+ be the system of positive roots for a fixed Borel subgroup B ⊂ G
containing T . It is well known that the root vectors eα ∈ gα can be chosen so that
k is spanned by t and eα − e−α, i(eα + e−α) for α ∈ ∆+. The defining formula
for µ clearly extends to a map P → g∗ and we denote the coordinate functions,
for ξ ∈ g, by µξ : P → C, µξ[v] = 〈ξv, v〉/〈v, v〉. It is easy to see that the
simultaneous vanishing of µeα−e−α and µi(eα+e−α) is equivalent to the vanishing
of µeα and µe−α . Hence µ[v] ∈ it∗ if and only if µeα [v] = 0 for all α.

The root vectors send weight spaces to weight spaces: eα(Vν) ⊂ Vν+α. For a given
nonzero v ∈ V , the orthogonal projections to the weight spaces, prν : V → Vν ,
define a unique decomposition as a sum of weight vectors v =

∑
prν(v). The

set St(v) = {ν ∈ Λ(V ) ; prν(v) 6= 0} is called the support of v. Now observe
that St(v) is a root-distinct set if and only if St(v) ∩ St(eαv) = ∅ for all α ∈ ∆.
In such a case, the orthogonality of weight spaces implies µeα [v] = 0 for all α,
and by the above remarks we get µ[v] ∈ it∗. In fact µ[v] = µT [v], where µT
denotes the momentum map for the T -action, which is equal to the composition of
µ with the orthogonal projection from ik∗ to it∗. We can conclude that, for a given
root-distinct set M ∈ Λ(V ), we have

µ(PM ) = µT (PM ).

The latter is equal to Conv(M) by the well known theorem of Atiyah for mo-
mentum maps of tori [1]. However, for the case at hand, the direct calculation of
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µT [v] is also easily accessible. We may assume that ||v|| = 1. For ν ∈ St(v), put

aν = ||prν(v)|| and vν =
1

aν
prν(v). Then

µT [v] = µT [
∑

ν∈St(v)

aνvν ] =
∑
ν∈M
|aν |2ν with

∑
ν∈M
|aν |2 = 1.

This implies µ(PM ) = Conv(M) ⊂ it∗. �

Let us return to the proof of the theorem. By the above lemma, the hypothesis i) im-
plies that µ(PM ) = Conv(M). Form hypothesis ii) we infer that 0 ∈ Conv(M),
and henceM0 ∩ PM 6= ∅. In particular, picking any set of weight vectors vν ∈ Vν
of norm one, and setting

v =
∑
ν∈M

√
bνvν we get µ[v] =

1

||v||
∑
ν∈M

bνν = 0.

By Heckman’s theorem [5], it follows that [v] /∈ Pss and hence there exists a
nonconstant homogeneous invariant polynomial f ∈ C[V ]G with f(v) 6= 0. The
restriction of f to the torus orbit Hv ⊂ V is a nonzero constant. The orbit closure
L = H[v] ⊂ PM is a projective toricH-variety and, accidentally, a linear subspace
of P. Let R denote the homogeneous coordinate ring of L and let res : C[V ]→ R
denote the quotient morphism, which is surjective and H-equivariant. We have
res(C[V ]G) ⊂ RH . This restricted map is not necessarily surjective, but we have
res(f) 6= 0. Since L is a toric variety, RH is isomorphic to a polynomial ring on
one variable. The hypothesis (ii) and specifically the supplementary assumption
gcd{bν ; ν ∈M} = 1 implies that RH is generated by res(p), where

p =
∏
ν∈M

zbνν , deg(p) = bM

and zν denotes the coordinate to vν . Indeed, p is H-invariant, it does not vanish on
v, it is not a power of any other polynomial, and there is no H-invariant monomial
of smaller degree in the variables zν , ν ∈M .

We have res(f) 6= 0, hence res(f) = res(p)k for some k, and deg(f) = kbM . �

Example 5 (The adjoint representation of a simple group) . Consider the case
where G is simple of rank ` and V = g is the adjoint representation. It is well
known that C[g]G is isomorphic to a polynomial ring in ` variables. The degrees
d1, . . . , d` of the generators are also well known, and are related to a variety of
important objects associated to G. The minimal degree is two and the maximal is
the Coxeter number h of G.
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The set of weights with respect to a Cartan subgroup H is ∆ ∪ {0}. Let Π be the
set of simple roots with respect to a fixed Borel subgroup B and let θ =

∑
α∈Π

mαα

be the highest root, which is also the highest weight of g. The Coxeter number,
which we also denote by hΠ when necessary, is the given by

h = hΠ = 1 +
∑
α∈Π

mα.

Denote ΠQ = Π ∪ {−θ}. This set is a root-distinct balanced simplex with

bΠQ = 1 +
∑
α∈Π

mα = hΠ.

More generally, consider any subset Π̃ ⊂ Π corresponding to a simple subgroup
of G, i.e., to a connected subdiagram of the Dynkin diagram. We denote Π̃Q =
Π̃∪{−θ̃}, where θ̃ is the highest root of the sub-root-system generated by Π̃. Then
Π̃Q is a root-distinct balanced simplex in Λ, and bΠ̃Q = hΠ̃ is the Coxeter number
of the corresponding simple root system. Hence there is an invariant generator of
degree q̃hΠ̃ for some q̃ ∈ N. A connected Dynkin diagram with ` nodes admits
connected subdiagrams of with ˜̀nodes for any 1 ≤ ˜̀≤ `. Since #Π̃Q = #Π̃ + 1,
the root system ∆ admits root-distinct balanced simplices of all dimensions from
one to `. Using the known values Coxeter number and the degrees of generating
invariants, one finds out that this procedure yields all generators. An a priori proof
of this fact could be of interest.

3. Secant Varieties and Degrees of Invariants

We assume now that V = V (λ) is an irreducible representation of a semisimple
group G, with λ ∈ Λ+ being the highest weight of V with respect to a fixed pair
of Cartan and Borel subgroups H ⊂ B ⊂ G. We let X = G[vλ] ⊂ P = P(V ) be
the orbit of the highest weight line, the unique closed projective G-orbit. We also
assume that λ 6= 0, so that the representation is nontrivial.

We consider linear combinations of points from the affine cone over X. Since
the representation is irreducible the variety X spans the ambient space. The rank
function on P with respect to X is defined as

rkX : P −→ N, rkX[v] = min{r ∈ N ; v = x1 + . . .+ xr, [xj ] ∈ X}.

The rank subsets of P are defined as

Xr = {[v] ∈ P ; rkX[v] = r}.
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The r-th secant variety of X is defined as the Zariski closure of the union of linear
spaces spanned on r points of X

Σr = Σr(X) =
⋃

x1,...,xr∈X
PSpan(x1, . . . , xr) =

⋃
s≤r
Xs.

The border rank on P with respect to X is defined as

rkX : P ≤ N, rkX[v] = min{r ∈ N ; [v] ∈ Σr}.

There is a unique integer rg ≥ 1 for which Xrg is open in P and this is the smallest
r for which Σr = P and rg is called the generic rank. We also denote by rmax the
maximal value of rkX. The rank function is G-invariant, and consequently the sets
Xr and Σr are preserved byG. We have containments of varietiesX ⊂ Σ2 ⊂ . . . ⊂
Σrg = P and there is a corresponding chain of G-stable ideals I(X) ⊃ I(X2) ⊃
. . . ⊃ 0. The ideal of X is generated in degree 2, by a suitable generalization of the
Plücker relations, due to Kostant, see e.g. [10]. The following theorem describes
the first nonzero degree component of the ideal of the r-th secant variety of a
variety cut out by quadrics. We formulate it here for the case in hand. We use the
identification of C[V ] with the space of symmetric tensors SV ∗ inside the tensor
algebra on V ∗.

Theorem 6 (Landsberg and Manivel [9]) . The first nonzero homogeneous com-
ponent of the ideal I(Σr) is in degree r+1 and is given, for r ≥ 2, by the (r−1)-st
prolongation of the generating space I2(X) of the ideal of X, i.e.,

Ir(Σr) = 0, Ir+1(Σr) = Sr+1V ∗ ∩ (I2(X)⊗ Sr−1V ∗).

Definition 7. The rank of instability of the irreducible representation V = V (λ)
is defined as

rus = max{r ∈ N ; Σr ⊂ Pus}.

When C[V ]G 6= C, so that the semistable locus is nonempty, the rank of semista-
bility is defined as

rss = min{r ∈ N ; Σr ⊂ Pss 6= ∅} = rus + 1.

Remark 8. 1) The closed G-orbit X ⊂ P belongs to Pus as long as the represen-
tation is nontrivial, thus rus ≥ 1.

2) The incidence with the nullcone for a projective variety can be tested via the
momentum map with respect to a maximal compact subgroup K ⊂ G and an
invariant Hermitean form on V . We have: Σr ⊂ Pus if and only if 0 /∈ µ(Σr).



80 Valdemar V. Tsanov

The following proposition is an interpretation of a result of Zak [16, Ch. III].

Proposition 9. If V (λ) � V (λ)∗, then Σ2 ⊂ Pus. If C[V (λ)]G 6= C, then rss = 2
if and only if V (λ) ∼= V (λ)∗.

The above results have the following direct consequence.

Theorem 10. If a nonconstant homogeneous invariant f ∈ C[V (λ)]G vanishes on
Σr, then deg(f) > r. Suppose that C[V (λ)]G 6= C and let d1 be the minimal
positive degree of a homogeneous invariant polynomial. Then

rss ≤ d1.

In view of the above theorem, it is natural to ask: given Σr∩Pss 6= 0, is there indeed
an invariant of degree r? Such an invariant may or may not appear (see Example
12) but the relation between rank and degree is not accidental. It stems from the
fact that certain monomials of invariant polynomials have the form (z1 . . . zr)

k,
where zj are coordinates with respect to vectors x1, . . . , xr in the affine cone X̂,
taken as a part of a basis in V (λ). The construction is based on Theorem 1 and
formulated below after introducing some notation.

Let W = NG(H)/H denote the Weyl group. Given λ ∈ Λ+, the weights wλ,w ∈
W are called the extreme weights of the irreducible G-module V (λ). The corre-
sponding projective points are exactly the H-fixed points in X = G[vλ]

XH = {xw = [vwλ] ; w ∈W}.

This set is in a one-to-one correspondence with the coset space W/Wλ.

Corollary 11. Let λ ∈ Λ+ and X = G[vλ] ⊂ P(V (λ)). If the Weyl group orbit
Wλ contains a root-distinct balanced simplex with r-elements, then C[V (λ)]G

admits a generator which does not vanish on the secant variety σr(X) and r ≥ rss.

Proof: The hypothesis means that there exist w1, . . . , wr ∈ W satisfying the fol-
lowing two conditions

i) The set of weights is root-distinct, i.e., wjλ− wkλ /∈ ∆.

ii) w1λ, . . . , wrλ form a balanced simplex.

Thus the set {w1λ, . . . , wrλ} satisfies the hypothesis of Theorem 1. The construc-
tion from the proof of the theorem yields a generator f of the ring of invariants
C[V (λ)]G, whose restriction to the secant space PSpan(vw1λ, . . . , vwrλ) is the
monomial (zb11 . . . zbrr )q, where q is a positive integer, zj are the coordinates as-
sociated to the weight vectors vwjλ, and b1, . . . , br is the unique set of positive
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integers with greatest common divisor 1 such that
∑
bjwjλ = 0. Now, clearly f

does not vanish on PSpan(vw1λ, . . . , vwrλ) ⊂ σr(X). �

Example 12 (Veronese varieties) . Consider G = SLn acting on V = SkCn
with k, n ≥ 2. The associated homogeneous projective variety is the Veronese
variety X = Verk(Pn−1) ⊂ P(V ). The extreme weight vectors for a given Cartan
subgroupH the are k-th powers vkj of the corresponding basis vectors v1, . . . , vn ∈
Cn, the W -orbit of the highest weight λ = kω1 forms a balanced (n− 1)-simplex
centered at 0, with bWλ = #Wλ = n. This simplex is root-distinct, as k ≥ 2.
(For k = 1, the natural representation of SLn has no root-distinct sets of weights
with more than one element, which amounts to the fact that the projective space
is a single SLn-orbit.) Hence C[SkCn]SLn admits a generator of degree qn for
some q ∈ N. It is not hard to see that, for 1 ≤ r ≤ n, G has an open orbit in
the secant variety Σr and the momentum image µ(Σr)∩ it∗ is the r-skeleton of the
simplex Conv(Wλ). Thus Σr ⊂ Pus for r < n and rss = n. We can conclude that
d1 ≥ n, where d1 is the minimal degree of a nonconstant homogeneous polynomial
in C[SkCn]SLn . For k = 2, the determinant of symmetric matrices is an invariant
of degree n. The case n = 3 shows that, for large k, invariants in degree n may or
may not occur.

Example 13. Let us consider the case λ = kρ, where ρ = 1
2

∑
α∈∆+

α. For k ≥ 2,

we have µ(P) = µ(Σ2) = Conv(Kkρ).

Remark 14. The rank function rkX on P is independent of any group actions on
X, but the notions of rank of instability and semistability depend on the group. We
use the notation rus,G, rss,G, when the group needs to be specified. Certain homo-
geneous projective varieties admit transitive actions by proper subgroups of their
automorphism group, say G̃ ⊂ G = AutX. Such transitive actions of subgroups
have been classified by Onishchik. For simple G, G̃ is also simple, and the cases
include P2n−1, homogeneous under SL2n and Sp2n. The varieties of pure spinors
in the irreducible spin-representation, which are the same for SO2n and SO2n−1,
the quadric Q5, homogeneous under SO7 and G2. In general, a homogeneous
projective variety has a semisimple automorphism group and splits as a product of
homogeneous varieties X = X1× . . .Xk corresponding to the simple factors of G.
Then a transitive subgroup G̃ ⊂ G is necessarily a product G̃ = G̃1 × · · · × G̃k,
with G̃j transitive on Xk.

Let us consider the behaviour of the rank for (infinitesimally) simple G and a
proper subgroup G acting transitively on X. It turns out that G̃ is a simple group
without outer automorphisms, i.e., all of its representations are self dual. Thus
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rus,G̃ = 1. Whenever semistable points exist (the only exception the transitive ac-
tion on the entire projective space X = P2n−1, by G̃ = Sp2n ⊂ SL2n = G, where
we have rmax = 1) the rank of semistability for the subgroup is rss,G̃ = 2 and the
representation admits an G̃-invariant of even degree.

4. Rank-Semi-Continuous Varieties

The correspondence between secant varieties intersecting the semistable locus and
generating invariants turns out to be exact for a class of homogeneous projective
varieties whose rank and border rank functions coincide.

Definition 15. A projective variety X ⊂ P is called rank-semicontinuous, or rs-
continuous, if the rank and border rank functions on P with respect to X coincide:
rkX = rkX, i.e., points of higher rank cannot be approximated and the Zariski
closure in the definition of secant varieties is not necessary.

Remark 16. The problem of classifying rs-continuous homogeneous varieties had
been stated by Baur, Draisma and de Graaf in [3] along with other open questions
and conjectures concerning secant varieties of homogeneous varieties. In an ear-
lier article [2], Baur and Draisma had studies adjoint varieties of simple classical
groups, giving new proofs that these varieties are rs-continuous for SLn and Sp2n,
while for SOn they are not rs-continuous. In the latter case these authors also
describe the nilpotent orbits appearing in the r-th secant variety. Landsberg and
Manivel [9], studied the secant varieties of subcominuscule varieties (the closed
projective orbits in the isotropy representations of irreducible Hermitian symmet-
ric spaces). Their results imply immediately rs-continuity for these varieties. The
complete classification was obtained by Petukhov and the author and is stated be-
low.

Theorem 17. ([11]) A homogeneous projective variety X ⊂ P is rs-continuous if
and only if Σ2 = X ∪ X2, i.e., the required property holds for all r if and only if it
holds for r = 2. The classification of the homogeneous rs-continuous varieties is
given in the Table 1.

Table 1 contains the list of rs-continuous homogeneous varieties along with their
linear automorphism groups, the values of the rank function on the semistable lo-
cus, whenever the latter is nonempty, and the degrees d1, . . . , dk of a minimal
generating set of homogeneous elements of the invariant ring C[V (λ)]G. The de-
grees can be found in Kac’s table [7]. (All rs-continuous varieties turn out to have
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Table 1. rs-continuous varieties, semistable range of rank, degrees of
invariants.

Variety X ⊂ P(V ) G = AutX rss, . . . , rmax d1, . . . , dk

P(Cn) = P(Cn) SLn rus = rmax = 1 0
Ver2(P(Cn)) ⊂ P(S2Cn) SLn rss = rmax = n n

Gr2(Cn) ⊂ P(Λ2Cn) SLn rus = rmax = bn
2
c 0 for odd n

rss = rmax = bn
2
c n/2 for even n

Fl1,n−1(Cn) ⊂ P(sln) SLn 2, . . . , n 2, . . . , n

Qn−2 ⊂ P(Cn) SOn 2 2

S10 ⊂ P15 = P(ΛevenC5) Spin10 rus = rmax = 2 0
Gr2(C2n, ω) ⊂ P(Λ2

0C2n) Sp2n 2,. . . ,n 2,4,6. . . ,2n-2
E16 ⊂ P26 = P(Herm3×3(O)C) E6 3 3

F15 ⊂ P25 = P(SHerm3×3(O)C) F4 2, 3 2, 3

Seg(Pm−1 × Pn−1) ⊂ P(Cm ⊗ Cn) SLm × SLn rus = rmax = min{m,n} 0 for m 6= n
rss = rmax = m m for m = n

polynomial invariant rings.) The nullcones are also known in all cases, see e.g. in
Zak [16, Ch. 3]. We put d1 = 0 if C[V ]G = C. This is reflected as rus = rmax in
the rank column.

Note that most of the ambient spaces are spaces of matrices or bilinear forms and
the rank notion has a classical interpretation.

The notation in Table 1 is as follows: Ver2 denotes the quadratic Veronese embed-
ding, Gr2 is the Grassmannian of two-planes, Fl1,n−1 denotes the two-step flag va-
riety of lines contained in hyperplanes, Qn−2 is the (n− 2)-dimensional quadratic
hypersurface, S10 is the 10-dimensional variety of pure spinors, Gr2(C2n, ω) is the
variety of two-planes in C2n isotropic for a given nondegenerate skew-symmetric
form ω, Herm3×3(O)C denotes the complexified space of octonionic Hermitean
3 × 3-matrices and SHerm3×3(O)C is the subspace defined by vanishing of the
trace, E16 is the set of such matrices with rank one, which can be defined using the
Freudenthal determinant and F15 = E16 ∩ P(SHerm3×3(O)C). Here Seg denotes
the Segre embedding of a product of projective spaces.

We obtain the following.

Theorem 18. Suppose that X ⊂ P is rs-continuous and G is the linear automor-
phism group of X. Then the invariant ring is polynomialC[V (λ)]G = C[f1, . . . , fk].
The degrees of the generators, ordered nonincreasingly, coincide with the values
of the rank function on the semistable locus

{rss, . . . , rmax} = {d1, . . . , dk}

except in the case of Sp2n acting on Gr2(C2n, ω) ⊂ P(Λ2
0C2n), where the two sets

are related by the bijection dj = 2(rj − 1). Furthermore, the generators can be
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chosen to vanish on the secant varieties as follows

Σr ⊂ Z(fk−(rmax−r−1), . . . , fk) for rus ≤ r ≤ rmax − 1.

Our proof is obtained by a case by case analysis, which is skipped here for brevity.
The statement that the invariant rings are polynomial is obtained using the clas-
sification of Kac [7]. Let us note the for most varieties of the above list, both the
invariant rings and the secant varieties are classically known. Interesting additional
information on the secant varieties of the adjoint variety of SLn can be found in [2].
The only “nonclassical” cases are S10,E16,F15 and the necessary information for
these cases can be found in [16, Ch. III, §§1 and 2].

Remark 19. 1) The rs-continuous varieties, where either rus = rmax or rss =
rmax (so that by the theorem C[V (λ)]G has either zero or one generator) are ex-
actly the subcominuscule varieties. Incidentally, these varieties are exactly the
varieties obtained as closed projective orbits in irreducible representations of re-
ductive groups where the action on the projective space is spherical, but the spher-
ically acting group can be a subgroup of the automorphism group.

2) In the remaining three cases, where rss < rmax (so that C[V (λ)]G has more
than one generator), the variety X is a hyperplane section in an rs-continuous
variety X̃ of the first type, and the rank function is obtained by restriction. These
are Fl1,n−1(Cn) = Segre(Pn−1× (Pn−1)∗)∩P(sln), Gr2(C2n, ω) = Gr2(C2n)∩
P(ω⊥) and F15 = E16 ∩ P(SHerm3×3(O)C). The corresponding embeddings of
linear automorphism groups are symmetric subgroups, i.e., given by fixed point
sets of involutions SLn ⊂ SLn × SLn, Sp2n ⊂ SL2n and F4 ⊂ E6.
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