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Abstract. We study the unsteady viscous flow of an incompressible, isothermal
(Newtonian) fluid whose motion is induced by the sudden swirling of a cylindrical
wall and is also starting with an axial velocity component. Basic physical assump-
tions are that the pressure axial gradient keeps its hydrostatic value and the radial
velocity is zero. In such a way the Navier-Stokes PDEs become uncoupled and can
be solved separately. Accordingly, we provide analytic solutions to the unsteady
speed components, i.e., the axial vz(r, t) and the circumferential vθ(r, t), by means
of expansions of Fourier-Bessel type under time damping. We also find: the sur-
faces of dynamical equilibrium, the wall shear stress during time and the Stokes
streamlines.
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1. Introduction

1.1. On the Navier-Stokes Equations

The Navier-Stokes system constitutes the balance between the rate of change of
momentum of a fluid element and the forces on it, as the Newton’s second law
does for a particle. Newton himself started (Principia, 1687) the dynamics of a
viscous fluid in a rather intuitive form: a definitive theory would come much later.
The second law was applied by Euler in his seminal memoir [7] of 1757, where
he provided a system of PDE ruling a frictionless fluid motion, compressible or
not, under an arbitrary set of external forces, while his antecessors had worked
on incompressible fluids only, with one (as done by Daniel Bernoulli and Johann
Bernoulli) or two (as D’Alembert) degrees of freedom.

At the beginning of the 19th century, elasticity was an important asset to engineers
looking for a sound theory of the beam bending. In 1827, Navier (1785-1836), the
founder of modern structural analysis, extended, see [16], his theory to hydrody-
namics: this led him to insert in Euler’s equations a new µ−force, (being µ the
dynamical viscosity of the fluid, namely a measure of its internal friction) revealed
by the non-uniformity of the motion itself. Stokes (1819-1903), [19], reviewing the
work of Navier and others, presented in 1849 a short rational approach to the equa-
tions of viscous fluids arriving to the Navier-Stokes equations, as we now know
them: they are applicable also to non-Newtonian fluids (i.e., whose stress is not
linearly related to the strain rate), and to both laminar and turbulent flows of liq-
uid/gas.

The main difficulty with the Navier-Stokes equations is due to their nonlinearity
arising from the convective acceleration terms, see (1). For most flow problems,
fluid particles really do have acceleration as they move from one location to an-
other in the flow field: so that the convective acceleration terms usually cannot
be neglected. However, there are a few special cases, as in our paper, where the
convective acceleration vanishes, for instance due to the flow system symmetry or
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to other causes. In such cases exact solutions become possible for an unsteady
problem too.

We say “exact solution”, as done for instance in [11], to denoting an explicit for-
mula in terms either of elementary or special functions, in contrast to “approxi-
mate solution”, which approximates a solution either in a numerical sense or in
its asymptotic limit, e.g. with a vanishingly small viscosity, and so on. Anyway,
no one of them can capture the long time behavior of phenomena. From the early
20th century, asymptotic methods extended the range of tractable problems and
numerical methods have been more and more reliable. Nevertheless the exact so-
lutions remain a valuable resource: they allow cross-checks of some numerical
approaches and immediately convey more physical insight than all the numerical
tables one could compute, specially for systems ruled by parameters for whom a
complete numerical tabulation would be neither practical nor clear.

The functions appearing in our solutions are infinite series and Bessel functions of
integer order and by their analytic structure we are allowed to infer the main flow
behaviors without long computations.

1.2. Outline of Some Contemporary Literature

There are not many unsteady analytical Navier-Stokes solutions concerning a New-
tonian, incompressible fluid. We would then exclude some sound treatments like
those of Ayub et al [10] where our same aim is pursued but for fluids (those of
magnetohydrodynamics) by a far different nature. In [5] is analyzed a planar
problem with a viscous fluid hold within an annulus where both inner and outer
cylinder walls may be rotating, while [15] studies a purely axial flow induced by
the sudden axial motion of a cylinder in a fluid initially at rest. The Batchelor’s
treatise [2] founds his treatments on the Stokes standard solution with the error
function, trying to put back each unsteady one dimensional problem to that one.
Drazin and Riley in [6] cover the unsteady state. Chapter 4 describes some un-
steady flows bounded by plane boundaries: the angled flat plate motion is solved
through the confluent Kummer hypergeometric function. Chapter 5 is devoted to
the unsteady axisymmetric flow in pipes. The pulsed flow, namely with a periodic
pressure gradient (also called Womersley’s flow) is also discussed. The article of
Knyazev [11] founds on the so called Karmán family of the Navier-Stokes exact
solutions. Some non-self-similar solutions are considered to solve the problem of
an unsteady incompressible flow between two rotating disks, one of which moves
along the common rotation axis. Detailed plots represent the solutions computed in
terms of elementary functions, though the expressions are quite intricate. In [13]
first of all Langlois and Deville analyze the motion of a viscous fluid produced
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by a flat plate in a direction parallel to it. It may be either steady from a start-
ing instant on (first Stokes problem: flow in a semi-infinite space), or periodic in
time (second Stokes problem). Since the plate oscillates with frequency cos(ωt),
a reasonable guess solution can be u(y, t) = f(y) exp(iωt). It is also treated the
transient of the channel flow with a pulsatile pressure gradient or a Poiseuille flow
with the pipe wall forced by a torsional oscillation. An interesting problem is that
of a spherical R-bubble of inviscid gas included in an unlimited liquid: assuming
the gas pressure variable with time, the radius of the bubble will also change with
time. Such a pulsating bubble will generate a velocity field within the liquid which
in turn produces a stress field. At the end one is led to a second order non-linear
differential equation, for which Langlois refers to his original articles. In the re-
cent book of Brenn [4] the hydrodynamic problem is faced not directly through the
velocity components but via the Stokes stream function PDE. Another case: flow
fields along infinite structures without any geometrical elements with length scales,
for instance along flat plates, without an imprinted flow time scale. In every case,
the form assumed for the velocity profile caused the nonlinear inertia terms in the
Navier-Stokes equation either to vanish completely or to produce only a centrifugal
force, easily balanced by a pressure gradient.

In some cases the unsteady problem will lead to some nonlinear ODE as in Shapiro’s
paper [18] about an unsteady axisymmetric incompressible case with a uniform in-
jection or suction from a porous boundary (plate), arriving at a third order nonlinear
ODE which can be transformed into a Riccati tractable equation.

The exactly-solved unsteady problems are then concerning some few and simple
geometries, but different physical conditions. The mathematical tools are: similar-
ity variable transformation, variable separation, eigenfunctions expansion; several
special functions are then involved. It is less seen the employ of integral transforms
of Fourier or Laplace, probably due to difficulties with the Bromwich contour in-
tegration.

1.3. Aim of the Work

Let us consider a cylindrical vessel of internal radiusR with a vertical upward axis,
say z, that at time t = 0 is put in rotation with angular velocity ω = Ωk, Ω ∈ R
being the modulus of the angular velocity which is kept constant during time. The
vessel holds an incompressible liquid initially at rest: we will study its unsteady
viscous motions in both directions, that is axial and circumferential (or tangential).
The liquid is under the steady loads of centrifugal and gravitational nature and, in
addition, to a vertical outside pulse, at the start up only, which is responsible of
the initial axial upward velocity v0z > 0. The velocity field v = (vr, vθ, vz) for
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the laminar incompressible viscous flow is ruled by the Navier-Stokes equations in
cylindrical coordinates (r, θ, z)

ρ

[
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
−
v2θ
r

+ vz
∂vr
∂z

]
= −∂P

∂r
+ µ

[
∂

∂r

(
1

r

∂(rvr)

∂r

)
+

1

r2
∂2vr
∂θ2

− 2

r2
∂vθ
∂θ

+
∂2vr
∂z2

]
+ ρgr (1a)

ρ

[
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+ vz
∂vθ
∂z

]
= −1

r

∂P

∂θ
+ µ

[
∂

∂r

(
1

r

∂(rvθ)

∂r

)
+

1

r2
∂2vθ
∂θ2

+
2

r2
∂vr
∂θ

+
∂2vθ
∂z2

]
+ ρgθ (1b)

ρ

[
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

]
= −∂P

∂z
+ µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2
∂2vz
∂θ2

+
∂2vz
∂z2

]
+ ρgz (1c)

hereinafter called radial (1a), circumferential (1b), axial (1c), ones, respectively.

Setting the non-vertical components of gravity to zero and the vertical one to −g,
we assume that the velocity radial component vanishes, for any r, θ, z, t, thus v =
(0, vθ(r, t), vz(r, t)) . As a consequence the circumferential and axial equations
of the Navier-Stokes system become uncoupled and can be treated separately, as
explained below.

• Equation (1c) in the unknown vz. We assume the axial pressure gradient
does not differ from its hydrostatic asset, namely: ∂P/∂z = −ρg. In such a
way we will find separately vz(r, t) as independent on the height z. Such a
velocity component must meet the upwards initial condition vz(r, 0) = v0z >
0 and in addition the no-slip one around the circular boundary: vz(R, t) = 0,
for any t > 0. Finally, when the transient is off, vz has to be extinguished,
not being any physical reason for any vertical motion going on during time.

• Equation (1b). Assuming vθ does not depend on z, we will not do any further
special assumption.

• Equation (1a) becomes

ρ
v2θ
r

=
∂P

∂r
(2)



6 Alessio Bocci, Giovanni Mingari Scarpello and Daniele Ritelli

then, after vθ has been computed, we will integrate the pressure scalar field
P (r, z, t) whose axial gradient had been assumed known. Equation (2) con-
stitutes the nonlinearity of the Navier-Stokes system studied here. Further-
more the computation of vθ implies that we can evaluate the unsteady equi-
librium surfaces of liquid and the wall shear stress as well.

2. The Axial Sub-Problem

Let the z-velocity component depend on r and t only: vz = vz(r, t) and the z-
transient flow does not affect the pressure axial gradient along such a direction

∂P

∂z
= −ρg.

This does not imply that the unsteady overpressures are physically much less than
the relevant static ones but only that axial pressure gradient is conditioned only
by weights and heights, so that it changes little due to the small change in height.
With these assumptions, the axial Navier-Stokes (1c) becomes linear

∂vz
∂t

=
ν

r

∂

∂r

(
r
∂vz
∂r

)
. (3)

Equation (3) has to be solved imposing conditions

vz(0, t) ∈ R, vz(R, t) = 0, vz(r, 0) = v0z . (4)

Where the first of (4) ensures finite velocity along the axis, the second is the no-
slip condition, since the liquid velocities appearing in all previous formulæ are
all absolute: as adherent to the wall, the liquid shall be as the wall itself at rest,
so that the second relation in (4) must hold. Finally the third of (4) is the initial
condition and v0z is the value, which we assume positive, of the initial upwards
velocity common to each r.

2.1. Axial Sub-Problem Outline

We solve (3) by separation of variables: vz(r, t) = F (r)T (t). Marking by a dot
the time derivative and by ′ the spatial derivative, we obtain

Ṫ = −η2 T, F ′′ +
F ′

r
+
η2

ν
F = 0 (5)

where η is an unknown separation constant. The second equation in (5) is a Bessel
equation whose general solution is

F (r) = CJ0

(
η√
ν
r

)
+DY0

(
η√
ν
r

)
, C, D ∈ R (6)



Unsteady Roto-Translational Viscous Flow: Analytical Solution to Navier-Stokes . . . 7

where J0 is the Bessel function of first kind and zero order and Y0 that of second
kind and zero order. By (4), we detect the integration constants of (6) and then
solve (3). From the finiteness condition, the first of (4), it shall be D = 0, since Y0
is unbounded in a neighbourhood of the origin. Imposing the non-slip condition,
that is the second of (4), we obtain a sequence of values of η connected to the zeros
of of J0, i.e., ηn =

√
νβn/R where (βn)n∈N is the infinite sequence of the zeros of

J0. Thus we obtain, writing σn = βn/R, the infinite sequence of eigenfunctions

vzn(r, t) = CnJ0(σnr)e
−νσ2

nt.

In such a way the initial axial value v0z can be represented as a series of eigenfunc-
tions

v0z =
+∞∑
n=1

CnJ0(σnr)

and each of them is connected to J0’s roots. Then, integrating between r = 0 and
r = 1, recalling the orthogonality properties of Bessel functions as expressed by
the Lommel integrals, we get

Cn = v0z

∫ 1

0
r J0(σnr) dr∫ 1

0
r J2

0 (σnr) dr

= v0z

1

σn
J1(σn)

1

2
J2
1 (σn)

=
2v0z

σn J1(σn)
·

The axial unsteady flow is then ruled by

vz(r, t) = 2v0z

+∞∑
n=1

J0(σnr)

σnJ1(σn)
e−νσ

2
nt. (7)

A large collection of 19th-century literature about the roots of Bessel functions
is available: we will refer to McMahon formula [14], quoted also in [1, p 371].
Specialized to our case, after some manipulation we arrive at

βn = π(n− 0.25) +
1

8π(n− 0.25)
− 31

384π3(n− 0.25)3

+
3779

15360π5(n− 0.25)5
− 6277237

3440640π7(n− 0.25)7
+ · · ·

We then compute the unsteady axial velocity: it can be used to investigate the
flow changes produced by starting the rotation of the circular cylinder and the
subsequent approach to a steady state. Fig. 1 obtained using Mathematica R© shows
the imposed uniform initial value v0z , the fixed points of vanishing vz at the round
boundary, and all the declining profiles, whose maximum is gradually reduced with
time, until its complete extinction.
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Figure 1. Unsteady axial velocity vz(r, t) with v0z = 1, R = 1, ν = 1.

Remark 2.1 Observe that for any t > 0 the volume flux across any section of the
unsteady axial flow field is

Q(t) = 2π

∫ R

0
vz(r, t) r dr

so that the total volume will be ∫ +∞

0
Q(t) dt.

From (7) such volume can be computed by means of Bessel functions theorems.

3. The Circumferential Sub-Problem

For this problem the treatment will be longer due to the constraint between the
circumferential velocity vθ and the radial pressure gradient. In addition, the PDE
ruling the velocity is less simple. The relevant assumptions are:

• At a fixed r-value, the circumferential velocity component does not change
with the angle θ and the height z: vθ = vθ(r, t), for any θ, z.

• Pressure P depends on time t because we are dealing with an unsteady
flow; on r due to centrifugal force; and, finally, on z due to gravity. In
addition there is no pressure gradient along the direction θ, so that P =
P (r, z, t), for any θ.

• The radial component of velocity is assumed to be identically zero, i.e. vr =
0 for any r, θ, z, t.
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In circumferential (1b), and radial (1a) Navier-Stokes equations, setting to zero
the pressure circumferential gradient, the radial velocity, the derivatives of vθ with
respect to θ and z, we get

ρ
v2θ
r

=
∂P

∂r
, ρ

∂vθ
∂t

= µ
∂

∂r

(
1

r

∂(rvθ)

∂r

)
,

∂P

∂z
= −ρg (8)

Remark 3.1 Notice that the first of the equations above shows that the radial vari-
ation of pressure simply supplies the force necessary to keep the fluid elements
moving in a circular path within the vessel.

Remark 3.2 In this situation the continuity equation

∂ρ

∂t
+

1

r

∂

∂r
(ρrvr) +

1

r

∂

∂θ
(ρvθ) +

∂

∂z
(ρvz) = 0

holds for any t and for each point inside the fluid.

3.1. Circumferential Sub-Problem Outline

Ought to problem’s linearity following [20], we represent vθ(r, t) as

vθ(r, t) = v∞θ (r)− v̂(r, t) (9)

namely by adding to the steady state circumferential velocity distribution an un-
known component v̂(r, t) depending on space and time. The steady state solution
v∞θ (r) is found as follows: putting ν = µ/ρ (kinematic viscosity), recalling that
∂tv
∞
θ = 0, by the second of (8) we have

∂

∂r

(
1

r

∂

∂r
(r v∞θ (r))

)
= 0.

Integrating, we obtain, being K1 and K2 constants of integration

v∞θ (r) =
K2

r
+
K1

2
r.

We have to impose K2 = 0 in order to deal with finite solution. Furthermore, due
to the boundary condition it shall be v∞θ (R) = ΩR, therefore K1 = 2Ω, so that:
v∞θ (r) = Ωr. Inserting in (9) we obtain

vθ(r, t) = Ωr − v̂(r, t). (10)

We then have the equation of the circumferential transient velocity v̂(r, t)

∂v̂(r, t)

∂t
= ν

(
∂2v̂(r, t)

∂r2
+

1

r

∂v̂(r, t)

∂r
− v̂(r, t)

r2

)
(11)



10 Alessio Bocci, Giovanni Mingari Scarpello and Daniele Ritelli

which is linear and to be solved imposing the following conditions

v̂(0, t) ∈ R, v̂(R, t) = 0, v̂(r, 0) = Ωr. (12)

The first condition in (12) ensures that along the z-axis the velocity shall always be
finite. The second equation (12) ensures adhesion to wall, usually referred as no-
slip condition: it implies a velocity which shall for any t > 0 be stuck on the value
ΩR of the cylinder circumferential velocity. In order to meet this, the unsteady
contribution at r = R shall be zero at any time. Finally the third of (12) is the
functional type initial condition. To similar mathematical model, but as external
motion, arrive other authors as [12] and [6].

3.2. Integration of Equation (11)

We now perform the integration of (11). We use the standard change of variable
r = ex, v̂(r, t) = u(x, t). Thus we can express the partial derivatives of u with
respect to x as

∂v̂

∂r
=
∂u

∂x

∂x

∂r
=

1

r

∂u

∂x

∂2v̂

∂r2
=

∂

∂r

(
1

r

∂u

∂x

)
= − 1

r2
∂u

∂x
+

1

r

∂2u

∂x2
∂x

∂r
= − 1

r2
∂u

∂x
+

1

r2
∂2u

∂x2
·

So that
∂u(x, t)

∂t
=

ν

e2x

[
∂2u(x, t)

∂x2
− u(x, t)

]
.

Let us look for a solution, again by separation u(x, t) = X(x)T (t) obtaining

Ṫ = −λ2T, X ′′ +

(
λ2e2x − ν

)
ν

X = 0 (13)

with λ being the separation constant set yet to be found. First equation in (13)
leads to T (t) = e−λ

2t, while the solution of the second (spatial) equation in (13)
is represented in terms of Bessel functions, see [17, p 246]

X(x) = CJ1

(
λ√
ν

ex
)

+DY1

(
λ√
ν

ex
)
. (14)

To detect the integration constants C, D in (14) we impose the relevant conditions
(12), proceeding as in Section 2. First we impose the finiteness of the solution,
see first condition in (12), therefore we must take D = 0 in (14). So that here we
connect to the zeros of J1 obtaining the infinte sequence of eigenfunctions

v̂(r, t) = CnJ1 (bnr) e−νb
2
nt (15)
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where the eigenvalues λn associated to the separation constant are determined as:
λn =

√
ναn/R where (αn)n∈N represents the sequence of zeros of the first kind

and first order Bessel function J1, see [8], and where, for simplicity, we intro-
duced bn = αn/R. Lastly we impose the initial finiteness condition obtained from
the third of (12). Let us express the continuity of the junction between the veloc-
ity distributions in the sense that at the initial time the transient component must
equate the steady component due to the fact that the overall velocity vθ shall for
any r be zero at the start-up vθ(r, 0) = 0 implies v̂(r, 0) = v∞θ (r), this is the initial
condition for r ∈ [0, R]. The problem will be solved by expanding in a series of
eigenfunctions the function Ωr: the relevant coefficients Cn have to be computed
founding on the fact that the family of the eigenfunctions forms an orthonormal
complete system

+∞∑
n=1

CnJ1 (bnr) = Ωr.

The coefficientsCn, can be found by multiplying both sides of the above expansion
by r J1(bmr) having fixed a particular integer m and integrating for r from 0 to 1,
so that ∫ 1

0

+∞∑
n=1

Cn rJ1(bnr)J1(bmr) dr = Ω

∫ 1

0
r2 J1(bm) dr.

Due to Bessel functions orthogonality and Lommel integrals, only the integral with
n = m does not vanish, that is

Cm =

Ω

∫ 1

0
r2 J1 (bmr) dr∫ 1

0
r J2

1 (bmr) dr

·

For the integral at numerator see entries 6.561.5 and 6.521.1 of [9]. Then we found
the eigenvalues discrete spectrum of Cn for any n ∈ N

Cn = Ω
(bn)−1 J2 (bn)

1

2
J2
2 (bn)

=
2Ω

bn J2 (bn)

with J2 being the first kind, order two Bessel function. So

v̂(r, t) = 2Ω
+∞∑
n=1

J1(bnr)

bnJ2(bn)
e−νb

2
nt. (16)

Therefore the overall circumferential velocity is given by

vθ(r, t) = Ωr − 2Ω

+∞∑
n=1

J1(bnr)

bnJ2(bn)
e−νb

2
nt. (17)
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Again, as previously for roots βn of J0, in order to compute all roots αn of J1
function, we will adapt the McMahon formula

αn =π(0.25 + n)− 3

8π(0.25 + n)
+

3

128π3(0.25 + n)3

− 1179

5120π5(0.25 + n)5
+

1951209

1146880π7(0.25 + n)7
− · · ·

being n = 1, . . . ,+∞ the marker of the n-th zero of J1.

3.3. A Profile Analysis of vθ

For all next computations, we took (SI units): Ω = 1, R = 1, ν = 1. The transient
component v̂(r, t) is given by (16).

t =0 s t=0.004 s

t=0.01 s

t=0.02 s

t=0.03 s

t=0.05 s

Simmetry  

axis

  wallt =0.09 s

t→ +∞

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

r m

v
[m

/s
]

Figure 2. Circumferential velocity unsteady response v̂(r, t) profiles.

At the start-up, being v̂(r, 0) = vθ(r), the transient begins with a linear behaviour.
Notice that we used thousands terms in the series (16) for earning a correct rep-
resentation of the linear profile in terms of a Fourier-Bessel expansion. Declining
the transient with time, the plot will twist in the curves shown in Fig. 2, up to
its extinction. Furthermore notice that, by setting to zero, for a fixed time t, the
derivative with respect to r of (16), we get an expression like

+∞∑
n=1

e−νb
2
nt

J2(bn)
· dJ1

dr
(bnr) = 0

r being the r > 0 value maximizing v̂(r). All the performed simulations showed
that, for increasing time, the r sequence decreases. This is due to the exponential
decay-law which rules the dJ1/dr to vanish for r → 0+. When time increases, the
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exponential factor loses its weight and then the maximum of v̂ does not change its
position any more, see (Fig. 2). The overall velocity vθ profile is then shown by
(Fig. 3).

t=0 s

t=0.004 s

t=0.01 s

t=0.02 s

t=0.03 s

t=0.05 s

Simmetry  

axis

t +

t =0.09 s

  wall

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

r [m]

v
θ
[m

/s
]

Figure 3. Circumferential overall velocity profiles, vθ(r, t).

3.4. The Pressure Field

Integrating the first of (8) we obtain

P (r, z, t) = ρ

∫ r

0

v2θ(ψ, t)

ψ
dψ + f(z, t) + β. (18)

The pressure axial gradient f(z, t) is given by −ρg, and, in order to compute the
integration constant β it will be enough to impose the condition: P (0, 0, t) = P0

being P0 an arbitrary value. Then β = P0. In such a way, the pressure field
expressed by (18) becomes

P (r, z, t) = ρ

∫ r

0

v2θ(ψ, t)

ψ
dψ − ρgz + P0. (19)

Inserting in (19) the vθ law, we obtain

P (r, z, t) = P0 − ρgz +
ρr2Ω2

2
+ ρ

∫ r

0

v̂2(ψ, t)

ψ
dψ − 2ρΩ

∫ r

0
v̂(ψ, t)dψ. (20)

So, in the full expression (20) of the overall pressure, to the hydrostatic component
three further dynamic components are added and two of them are due to v̂ so that
they will decay with time.
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Remark 3.3 After the unsteady state is over, the steady velocity is v∞θ (r) = Ωr
and, then, inserting in (19) we have

P (r, z,∞) =
ρΩ2

2
r2 − ρgz + P0

namely, the well-known steady pressure distribution of centrifugal-gravitational
nature.

3.5. The Liquid Free Surface z(r, t)

In (20) we solve with respect to z the equation P (r, z, t) = P0, being P0 a given
real number: it means that we are looking for the space locus of the liquid points for
which the internal pressure equates the atmospheric one, i.e. how the liquid free
surface is shaped in space and time. We begin introducing a first simplification,
taking into account the effect of the simultaneous transient and stationary terms of
vθ, which leads us to approximate z(r, t) obtained from (20) as

z(r, t) =
1

g

[
Ω2 r

2

2
− 2Ω

∫ r

0
v̂(ψ, t)dψ

]
. (21)

t=0 s

t=0.004 s

t=0.01 s

t=0.02 s

t=0.03 s

t=0.05 s

t=0.09 s

t +

       axis

wall
Simmetry

-1.0 -0.5 0.0 0.5 1.0
-0.06

-0.04

-0.02
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0.04

0.06

r [m]

z
[m

]

Figure 4. The liquid free surface z(r, t): transient response profiles. First
approximation, v̂

2(r,t)
r = o(1).

We discarded the penultimate term in the left hand side of formula (20) as subjected
to a more intense drop during time. (Fig. 4) shows that, immediately after the start-
up, the intersection of the liquid round surface with any plane holding the axis of
rotation, provides an array of initially concave lines. In an instant between 0 s
and 0.004 s (that can be calculated numerically), there is a change of curvature.
Next, the curves become convex till when, extinguished almost the transient (t >
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0.09 s), the free surface takes the known shape of round paraboloid. The surface
description does not seem acceptable at the beginning, when the contributions to
the overall solution, brought by the integral quadratic which we neglected, are not
yet negligible. Recalling that for t = 0 we have vθ = 0 and then from (19) we
get z(r, t) = 0. Through numerical computation in (20), the overall solution of
the free round surfaces is shown in (Fig. 5) which represents some level curves of
z(r, t). We observe that profile of such contour curves is initially flat for any r, as

t= 1s

t=0s

t= 2s

Simmetry

axis

wall

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

r[m]

I t

[m
/s
2
]

Figure 5. The unsteady free surfaces profiles z(r, t): full evaluation.

expected. The height z(r, t) is given by

z(r, t) =
1

g

[
Ω2 r

2

2
+

∫ r

0

v̂2(ψ, t)

ψ
dψ − 2Ω

∫ r

0
v̂(ψ, t)dψ

]
.

By the initial condition v̂(r, 0) = Ωr, we take that

v̂2(r, t)

r
= Ω

v̂2(r, t)

v̂(r, 0)

and therefore, since we need to study the t-dependence of the following integral,
we introduce

I(t, r) =

∫ r

0

v̂2(ψ, t)

ψ
dψ = Ω

∫ r

0

v̂2(ψ, t)

v̂(ψ, 0)
dr. (22)

We now establish a map of the time evolution of the integral I(t) which is plotted
by a different r-curve for each t. At start-up by (22) we get

I(0, r) = Ω

∫ r

0
v̂(ψ, t)dψ = Ω2

∫ r

0
ψ dψ =

Ω2

2
r2.
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At time tε = 0 + ε with ε small, we will get

I(ε, r) = Ω

∫ r

0

v̂2(ψ, ε)

v̂(ψ, 0)
dr < I(0) =

Ω2

2
r2

provided that v̂(r, ε) < v̂(r, 0) as shown by Fig. 2. Therefore for each tε the curves
plotting the integral I(t, r) will lay below the parabola graph of the integral I(0, r).
For t→ +∞ clearly we have I(∞, r) = 0.

t=0.004 s

t=0.01 s

t=0.02 s

t=0.03 s

t=0.05 s

t=0.09 s

Simmetry
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-1.0 -0.5 0.0 0.5 1.0
0.000

0.005

0.010

0.015

0.020

0.025
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]

Figure 6. Time evolution of integrals I(t), for some t, with ε2 > ε1.

4. Fluid Motion Representations

In this section we are going to compute some quantitative elements which better
define and clarify the motion characters as streamlines and shear stress.

4.1. Streamlines

We provide as dr, rdθ, dz the elements of the arc differential of the streamline
using cylindrical coordinates. Thus we have ds = dr er + r dθ eθ + dz k. So for
a rotationally symmetric flow, we have by the streamlines definition v ∧ ds = 0.
In our specific case, given any instant t0 (after it has to be considered as a variable
parameter R+), we will get

vθ(r, t0)dz = rvzdθ, vzdr = 0, vθ(r, t0)dr = 0. (23)

By the second and the third equation in (23) we soon infer it shall be r = r0 =
constant so that, inserting in the first of (23) and by integration with respect to z,
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we get a double infinity of streamlines which are helices

θ(r0, t0; z) =
vθ(r0, t0)

r0vz(r0, t0)
z + κ0 (24)

being z ∈ [0, H], θ ∈ [0, 2π], κ0 = θ(r0, t0, 0).

4.2. Shear Stress τr,θ at the Wall During Time

Any real fluid (liquid or gas) moving along a solid boundary, will undergo a shear
stress exerted by the wall. The no-slip condition dictates that the velocity of the
fluid relative to the boundary is zero. But at some distance from the boundary, the
flow speed must equate that of the unperturbed stream. The region between these
two points is aptly named the boundary layer. For all Newtonian fluids in laminar
flow the shear stress is proportional to the strain rate in the fluid, the viscosity being
the constant of proportionality. Knowing the velocity field, we may derive the shear
stress in the viscous fluid due to the spinning wall with the no-slip condition on its
surface. Let τr,θ the shear stress tangentially directed and acting on each circular
fluid element of radius r. At the wall there is vr = 0, which, put in formula (D)
of [3] provides

τr,θ = −µr ∂
∂r

(
vθ(r, t)

r

)
. (25)

Notice that by inserting the (17) in (25), the wall shear stress, as expected, can
be determined only by the transient component of the velocity v̂(r, t). Fixing a
particular time, we get the law of the shear stress in the fluid at different r values.
Repeating the process for different times, we will describe the shear stress field
with respect to time. When evaluating the stress for t → 0, as physics suggests,
τr,θ = 0. This can be explained in two different ways. The first consists of noting
that for t → 0 one shall have v̂(r, t) = Ωr (initial condition previously set) and
then, inserting it in (25) it is found τr,θ = 0. The second one consists of computing
derivatives of v̂(r, t), and inserting in (25). A plot of the relevant curve for small
times will show oscillations. But they are without any possible physical meaning
and only due to the number of the terms chosen in order to represent v̂(r, t). As a
matter of fact the number of terms which fits correctly a function, will not, in gen-
eral, be used to do the same with its derivative. Accordingly, several computations
and plots, here not attached, have been performed by making use of an adequate
number of terms of the series for v̂, and we checked that as their number increases,
the pseudo-oscillation decay until to zero. After a threshold value t, shear stress
becomes as it follows.

Because of the onset of a transient circumferential component of velocity, this
produces a darting to the shear stress for any r having its maximum at the wall. The
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Figure 7. The shear stress τr,θ unsteady response: radial profiles.

family of the stress profiles shown in Fig. 7 is decreasing quickly to equilibrium.
After the circumferential stress has been computed as a function of r and time and
it is specialised to r = R and then by multiplying by 2πR, we get the magnitude
of the circumferential shear stress for unit height of the vessel.

5. Conclusions

The Navier-Stokes analytical unsteady equations have been investigated for the
last 200 years and we outlined some of the most recent literature dealing with it.
We study the unsteady viscous flow of an incompressible, isothermal (Newtonian)
fluid whose motion is induced by the sudden swirling of a cylindrical wall and is
also starting with an axial velocity component. In order to obtain an analytically
tractable PDE system, our basic assumptions are (see our Subsection 1.3). Pressure
axial gradient kept on its hydrostatic value and no radial velocity. By means of
special functions and infinite series, we found the analytic solutions listed below.

The fluid motion has been decoupled in its simultaneous components separately
studied, so that

• The axial motion differential equation (3) has been solved under the condi-
tions (4), so that the relevant solution is found (7), plotted at Fig. 1.

• The tangential motion differential equation (11) has been solved under con-
ditions (12), so that the relevant overall solution has been obtained (17) and
plotted at Fig. 3.

Furthermore

• The pressure field has been computed according to (20).
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• The liquid free surface is found through (21), according to Subsection 3.4
and Fig. 5.

• Finally, Fig. 7 summarizes all the analyses concerning the shear stress un-
steady response, discussed in detail at Subsection 4.2.

Appendix: Nomenclature

The main symbols recurring through this paper are:

• C, D integration constants

• k, er, eθ unity vectors axial, radial, tangential of the cylindric coordinate system

• g gravity acceleration

• i, j, k unity vectors of the Cartesian coordinate system

• J0, J1, J2 Bessel functions of first kind and orders 0, 1, 2

• P (r, z, t) pressure scalar field

• Q volume flow rate through the cylinder

• r, θ, z radial, angular, axial cylindrical coordinates

• R internal radius of cylindric wall

• t time

• vr, vθ, vz radial, tangential, axial components of the v velocity field

• v∞θ (r) steady tangential velocity component

• v̂(r, t) unsteady tangential velocity component

• Y0 Bessel function of second kind and order 0

• x, y, z Cartesian coordinates of a point

• z(r, t) transient liquid free surface

• αn sequence of zeros of J1
• βn sequence of zeros of J0
• η,λ separation constants

• λn = αn
R

√
ν ease variable

• µ fluid dynamic viscosity

• ν fluid kinematic viscosity

• ρ fluid density

• σn = βn
R , bn = αn

R ease variables

• τr,θ tangential shear stress on fluid at r
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• ω angular speed vector

• Ω magnitude of angular speed

Some other few symbols have been used throughout the text as ease variables with-
out a specific meaning and do not need to be listed here.
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