
JGSP4 (2005) 45–58

ON THE SUPERSYMMETRY GROUP OF THE CLASSICAL
BOSE-FERMI OSCILLATOR

TILMANN GLIMM AND RUDOLF SCHMID

Communicated by Gregory L. Naber

Abstract. Applying the concept of a momentum map for supersymplectic su-
pervectorspaces to the one-dimensional Bose-Fermi oscillator, we show that the
largest symmetry group that admits a momentum map is the identity component
of the intersection of the orthosymplectic groupOSp(2|2) and the group of super-
symplectic transformations. This gives a systematic characterization of a certain
class of odd supersymmetry transformations that were originally introduced in an
ad hoc way.

1. Introduction

Supermechanics is the classical counterpart of quantum field theories involving
Bose and Fermi fields. The most prominent use of supermechanics from a math-
ematical perspective is the role of the classical free particle Lagrangian in the
supersymmetric proofs of various index theorems [2]. There has also been some
interest in making the geometric description of supermechanics mathematically
rigorous, both from a Lagrangian and Hamiltonian point of view [3,9,10].

In this note, we are concerned with the classical one-dimensional supersymmet-
ric harmonic oscillator, or Bose-Fermi oscillator. By “classical”, we mean that
we treat it as a supermechanical system, defined on a supersymplectic flat man-
ifold [10, 13]. It is a simple but a really nontrivial example of a system with
supersymmetries, that is, symmetries that mix the fermionic and the bosonic de-
grees of freedom. It first appeared as one example of a supersymmetric quantum
mechanical system in Witten’s ground-breaking 1981 paper [15] and was further
investigated in the 1980’s and 1990’s.

The infinitesimal supersymmetry transformations of the harmonic oscillator were
initially introduced in an ad hoc way [5]. It was later realized that the stabilizer
algebra of the dynamics is the orthosymplectic superalgebraosp(2|2) [4]. In this
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note, we use the concept of a momentum map to investigate the supersymmetries
of the harmonic oscillator.

We show how the (ad hoc) supersymmetry transformations [5] can be derived in
a systematic way. Namely, we construct a Lie superalgebrabf(2|2) whose odd
part consists of these transformations and show thatbf(2|2) is the intersection
of osp(2|2) and the Lie superalgebra of linear supersymplectic transformations.
Alternatively, bf(2|2) is the Lie superalgebra of the largest connected subgroup
of OSp(2|2) that admits a momentum map. This is essentially parallel to the
ungraded case, since the group of canonical transformations admits a momentum
map in any dimension.

The paper is organized as follows: In Sections 2 and 3, we review some facts about
the theory of supermanifolds, in particular super Lie groups and the super version
of Lie’s first theorem. In Section 4, we give a short description of the Bose-
Fermi oscillator and write down a class of supersymmetries, taken from DeWitt’s
book [5]. We construct the supersymmetry Lie algebra of these supersymmetries
and name itbf(2|2). The corresponding group isBF(2|2). We then give a general
definition of the concept of a momentum map in supermechanics, and show that
it is preserved under the flow of Hamiltonians that are invariant under the group
action. This is a generalization of the variant of Noether’s theorem in ungraded
classical Hamiltonian mechanics [1]. In the last section, we show thatBF(2|2) has
the properties stated above. We also verify that the momentum map is equivariant
and read off the conserved quantities.

2. Supergeometry overA

There are two approaches to the definition of supermanifolds: An algebraic ap-
proach which stresses the role of superfunctions [7, 8] and an analytic approach
which stresses the points [5, 11, 13]. The analytic approach, which is implicitly
used in the majority of the physics literature, has sometimes been criticized by
mathematicians for its perceived lack of rigor. However, Tuynman has metic-
ulously worked out the mathematical details in a recent textbook [13] and his
definition of supergeometry over a graded commutative algebraA now provides
a rigorous and solid foundation for the analytic approach. In the following, we
give a very brief overview – ample details and careful proofs can be found in
Tuynman’s book [13].

The idea of the analytic approach to supergeometry is to do geometry with the
real numbers replaced by some algebra of supernumbersA. More precisely,A =
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A0 ⊕ A1 is aZ2-graded commutative real algebra with a natural isomorphism
A ' R⊕N whereN denotes the nilpotent elements. The projection onto the real
part is called the body map and denoted byB. One also assumes thatA has the
property that for any nonzeroa in A there exists an oddb such thata · b 6= 0.
The standard case for such anA is the Grassmann algebra

∧
R∞ of an infinite

dimensional real vector space [5, 11]. It is best to think ofA as a parameter of
this analytic formulation, much like the structure of the sheaf of superfunctions is
a parameter of the algebraic formulation.

A free gradeA-moduleE of dimensionm|n (i.e. m even,n odd dimensions)
is called anA-vector space provided that there is a natural equivalence class of
“real” bases, i.e. bases whose transition matrices have only real entries. If their
R-span is denoted byRE , this is equivalent of having a natural isomorphism

E = RE ⊕NE ,

whereNE = N ⊗ E. This gives an extension of the body mapB : E → RE .
The DeWitt topology ofE is the coarsest topology which makesB continuous.

Tuynman [?, 13] has given a nice rigorous construction of smooth functions that
circumvents the problem that limits are not unique and hence useless in the DeWitt
topology. The upshot is as follows:

Let E0 denote the even part of anA-vector space. Then a smoothf : E0 → A
function has an expansion

f (x1, . . . , xm, ξ1, . . . , ξn) =
1∑

i1,...,in=0

ξi1
1 . . . ξin

n · (Gfi1...in) (x1, . . . , xm) (1)

wherefi1...in ∈ C∞ (BU,R) andG denotes the Taylor-expansion in the nilpotent
part, that is ifx =Bx + n, with n ∈ NE , then

(Gfi1...in) (x) =
n∑

k=0

1
k!

(
Dkfi1...in

)
Bx

(n, . . . , n) .

In particular, a smooth function must mapBE0 to BA = R. So a constant
function whose value is a nilpotent supernumber is not smooth.

The form(1) gives the characterization

C∞ (E0,A) ' C∞ (BE0,R)⊗
∧
Rn.

Using this as thedefinition for the sheaf of smooth functions is of course the
starting point for the algebraic approach to supermanifolds.
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The partial derivatives off are

∂

∂xj
f =

1∑

i1,...,in=0

ξi1
1 . . . ξin

n ·
(

G
∂fi1...in

∂xj

)
(x1, . . . , xm)

∂

∂ξk
f =

1∑

i1,...,in=0

(−1)i1+···+ik−1 δ1,ikξi1
1 . . . ξ̂ik

k . . . ξin
n · (Gfi1...in) (x1, . . . , xm)

for 1 ≤ j ≤ m and1 ≤ j ≤ n, where ̂ denotes omission. By definition, the
chain rule takes the form

∂

∂yi
f(x(y, η), ξ(y, η)) =

∑

j

∂xj

∂yi

∂f

∂xj
+

∑

k

∂ξk

∂yi

∂f

∂ξk

and likewise

∂

∂ηl
f(x(y, η), ξ(y, η)) =

∑

j

∂xj

∂ηl

∂f

∂xj
+

∑

k

∂ξk

∂ηl

∂f

∂ξk
.

With the concept of smoothness, one can now develop the theory ofA-manifolds,
vector bundles, Lie groups, etc. almost exactly as in the ungraded case. We will
need the concept of flows of vector fields [9]. Since in a way only even vector
fields are really infinitesimal directions, this is usually done for even vector fields
only. The flow of a vector fieldX ∈ X0 (M) is a smooth mapΦ : U → M , where
U is an open subset ofA0 × M, such that if∂t is the pullback of the canonical
vector field onA0 to U . Then

TΦ ◦ ∂t = X ◦ Φ.

With the initial conditionΦ(x, 0) = x we have existence and uniqueness of the
flow in the usual sense [9]. In a way, the functionst 7→ Φ(t,x0) (for fixed x0)
are the integral curves ofX, only they need not be smooth in the above sense.

3. Super Linear Algebra

In this section, we fix further notations and give our conventions for supervectors
and supermatrices. We essentially follow Leı̆tes [8].

For m,n ∈ N, we consider theA-vector spaceAm⊕n = Am × An, with the
following grading: an element(x, ξ) ∈ Am⊕n is even iff x ∈ Am

0 and ξ ∈
Am

1 and it is odd iffx ∈ Am
1 andξ ∈ Am

0 . There are two natural superscalar
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multiplications: the right one and the left one. Since it will be more convenient
when dealing with matrices, we fix the action ofA on Am⊕n to be the right
multiplication, i.e.

(x1, . . . , xm, ξ1, . . . , ξn) · a = (x1a, . . . , xma, ξ1a, . . . , ξna) .

The generalization of the Euclidean space is the superspaceAm|n := (Am⊕n)0 =
Am

0 ×An
1 .

Matrices with entries fromA will be called supermatrices, and will be denoted
by X = (xij)ij . We can identify the set of(m + n) × (m + n) supermatrices,
Mat(m|n), with EndR (Am⊕n), the space of right linearA endomorphisms

EndR

(Am⊕n
) ∼= Mat(m|n), φ ↔ (xij) =

(
[φ (ei)]j

)
i=1,...,m+n
j=1,....,m+n

. (2)

Thenφ (x) = Xx, where the right hand side is the usual matrix multiplication.
Likewise, if φ ↔ X andψ ↔ Y , thenφ ◦ ψ ↔ XY .

The following grading onMat(m|n) is natural: call a supermatrixX even if it
preserves(Am⊕n)0, and odd if it maps(Am⊕n)0 to (Am⊕n)1. Equivalently, if

X =
(

A B
C D

)
(3)

whereA is anm ×m, B anm × n, C ann ×m, andD ann × n matrix with
entries fromA, thenX is even iff all entries ofA andD are even, and all entries
of B andC are odd, andX is odd iff all entries ofA andD are odd, and all entries
of B andC are even. Now, the pull back of theA graded bimodule structure on
EndR (Am⊕n) to Mat(m|n) via (2) yields the following rules for multiplications
by a superscalar:

a ·
(

A B
C D

)
=

(
aA aB

(−1)p(a) aC (−1)p(a) aD

)

for a homogeneous elementa ∈ A with parityp(a), where the multiplications on
the right hand side are just the entry-wise multiplications inA.

For an even supermatrix, the supertranspose is defined to be
(

A B
C D

)ST

=
(

AT CT

−BT DT

)

whereT denotes the usual transposition. This way, forX ∈ Mat(m|n)0 and
x ∈ Am|n, we have that(Xx)ST = xST XST , so that the matrixB of a bilinear
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form onAm|n transforms under a linear coordinate change with matrixX asB →
XST BX.

If we define the bodyB (X) of a supermatrix to be the real matrix whose entries
are the bodies of the entries ofX, it holds that an even supermatrixX of the form
(3) is invertible iffB (A) andB (D) are invertible as real square matrices [8]. The
group of even invertible(m + n)× (m + n) supermatrices is super Lie group of
dimension

(
m2 + n2|2mn

)
. It is denoted byGL(m|n). Its Lie superalgebra is

Mat(m|n), and the super Lie bracket is the usual supercommutator

[X,Y ] = XY − (−1)p(X)·p(Y ) Y X.

The concept of the exponential of matrices carries over to the super case, namely

Exp (X) =
∞∑

n=0

1
n!

Xn

is smooth and mapsMat(m|n)0 to GL(m|n). It is locally invertible.

Finally, let us mention that we have the usual relation between connected sub
Lie supergroups and sub Lie superalgebras, that is, to any sub Lie superalgebra
of Mat(m|n) corresponds one and only one connected super Lie subgroup of
GL(m|n) [13]. This correspondence is given by exponentiation and taking the
tangent space at the identity, respectively. It allows us to move freely from Lie
supermatrix algebras to Lie supermatrix groups. We will make frequent use of it.
A detailed exposition and proofs may be found in Tuynman’s book [13].

4. The Bose-Fermi Oscillator

In the Lagrangian formulation, the configuration space of the Bose-Fermi oscilla-
tor isA1|2 equipped with the Lagrangian

L(q, ξ1, ξ2, q̇, ξ̇1, ξ̇2) =
1
2
q̇2 +

1
2
(ξ̇1ξ1 + ξ̇2ξ2)− 1

2
ω2q2 + ωξ1ξ2

whereq is an even,ξ1 andξ2 two odd variables, andω is a positive parameter. The
Lagrangian consists of kinetic and potential energies in the bosonic and fermionic
sectors, respectively.

We use the following Hamiltonian description of this system – the phase space is
A2|2 with Hamiltonian

H (q, p, ξ1, ξ2) =
1
2

(
p2 + ω2q2

)− ωξ1ξ2.
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If we writeM =
(

0 1
−1 0

)
, Iω =

(
ω2 0
0 1

)
andQ = (q, p, ξ1, ξ2)

T , we can

write H as the graded quadratic form

H =
1
2
QST

(
Iω 0
0 −ωM

)
Q =

1
2
QSTHQ.

Here we wroteH for the matrix of the HamiltonianH. We equipA2|2 with the
standard supersymplectic form

Ω = dp dq +
1
2

(
dξ2

1 + dξ2
2

)

i.e., in matrix form, we haveΩ =
( −M 0

0 I2

)
. Then Hamilton’s equations

Q̇ = Ω−1∇H (Q) yield

q̇ = p, ṗ = −ω2q, ξ̇ = −ωMξ.

Here,q, p andξ denote the components of the flow of the Hamiltonian, rather than
components of a supercurve, see Section 2. One checks (formally) that these are
the dynamic equations of the LagrangianL.

The Hamiltonian is preserved under the following infinitesimal supersymmetry
transformations, taken from DeWitt [5]:

δq = ξT δα (4)

δp = ωξTMδα (5)

δξ = (pI2 − ωqM) δα (6)

whereδα ∈ A2
1 is a vector of odd supernumbers. That is

δq · ∂H

∂q
+ δp · ∂H

∂p
+ δξT ∂H

∂ξ
= 0.

Note that these transformations mix the odd and even components, that is, the
bosonic and the fermionic variables. This is really what makes itsupersymmetric.
In matrix notation(4)− (6) read




δq
δp
δξ


 =




0 0 − (δα)T

0 0 ω (δα)T M
−ωMδα δα 0







q
p
ξ


 . (7)
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We now construct a sub Lie algebra ofMat(2|2) that contains as a subspace the
transformation of the form (4)-(4). For this, let us define the2|2 square superma-
trices

Ai =




0 0 −eT
i

0 0 ω · eT
i .M

ωMei −ei 0


 for i = 1, 2

C1 =




0 −1
ω2 0

0

0
0 0
0 0


 , C2 =




0 0
0 0

0

0 −ω ·M




whereei denotes the canonical basis ofR2. ThenAi ∈ Mat(2|2)1 andCi ∈
Mat(2|2)0, and these matrices have the following supercommutators:

[Ai, Aj ] = 2δij (−C1 + C2) (8)

[A1, Ci] = −ω ·A2 (9)

[A2, Ci] = ω ·A1 (10)

[Ci, Cj ] = 0. (11)

Thus, theirA-span defines a sub Lie superalgebra inMat(2|2). In the following,
we call this span the Lie superalgebra of Bose-Fermi supersymmetry and denote
it by bf(2|2) = spanA (A1,A2, C1, C2). The corresponding connected sub Lie
supergroup ofGL(2|2), BF (2|2) = 〈Exp (bf (2|2)0)〉 will be referred to as the
Lie supergroup of Bose-Fermi supersymmetry.

We note thatbf (2|2)0 = (A0⊗R spanR (Ci))⊕ (A1⊗R spanR (Ai)), and that the
matrix in (7) isδα1 · A1 + δα2 · A2. Also, one sees nicely that the matricesAi

represent transformations that mix odd and even variables whereas the matricesCi

represents transformations among the bosonic and the fermionic parts themselves.

We show thatBF (2|2) leaves the HamiltonianH invariant, as expected.H is
preserved under the action by the orthosymplectic groupOSp (2|2), that is, the
group of all supermatricesR that satisfyRST HR = H. It is an embedded super
Lie subgroup ofGL(2|2) of dimension4|4. The even part of its Lie superalgebra
osp (2|2)0 consists of all matricesX that satisfy the infinitesimal version of the
preservation ofH,

XSTH+HX = 0.

With X =
(

A B
C D

)
this reads

AT Iω = −IωA, DTM = −MD, and ωC =MBT Iω. (12)
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One can check thatbf (2|2)0 ⊆ osp (2|2)0 by verifying that the matricesCi and
a ·Ai (for an odd supernumbera satisfy(12). So the Bose-Fermi supersymmetry
groupBF (2|2) is a super Lie subgroup ofOSp (2|2) of dimension2|2. Thus the
Bose-Fermi supersymmetry group is not the whole stabilizer of the Hamiltonian.
In section 6, we give two reasons why this makes sense.

We close this section with the following useful alternative characterization of
bf(2|2), which is not hard to check:

An elementX =
(

A B
C D

)
∈ osp(2|2)0 lies inbf(2|2)0 if and only if

MB = CT , (MA)T = MA, and DT = −D. (13)

5. Momentum Map

Before we come to the characterization ofBF(2|2) indicated in the introduction,
we have to introduce the concept of a momentum map. Since this is a general
concept, we formulate it for anA-vector space of arbitrary dimension equipped
with an even supersymplectic form.

Recall that in ungraded symplectic geometry, a momentum map for the action
of a Lie groupG on a symplectic manifold(M, ω) is a linear mapĴ : g →
C∞ (M) such that the Hamiltonian vector field generated byĴ (ξ) is the vector
field associated toξ ∈ g via the differential of the action Equivalently, we can
considerJ : M → g∗ by setting(J (x) , ξ) = Ĵ (ξ) (x).
This definition can essentially be carried over to the graded case: LetE be an
A-vector space, and letΩ be an even supersymplectic form onE.

Definition 1. A momentum map for the action of a supermatrix groupG with Lie
superalgebrag onE is a smooth map

Ĵ : g0 ×E0 → A

such that
Ω−1∇xĴ (X,x) = Xx (14)

for all X ∈ g0, x ∈ E0, where∇x denotes the spatial gradient.

Note that there is a technical problem though. For fixedX, the functionx 7→
Ĵ (X, x) is in generalnot smooth. Namely, ifX is not real, there is nothing that
guarantees that the images of real vectors will be real. We solve this technical
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problem by considerinĝJ to be defined ong0×E0. Then∇xĴ is defined for any
X and the above condition makes sense.

We have the following result analogous to the variant of Noether’s theorem in
ungraded mechanics [1]

Lemma 2. SupposeH ∈ C∞ (E0,A) is a Hamiltonian that is invariant under
the action ofG and thatG admits a momentum map̂J onE0.

ThenĴ is preserved under the Hamiltonian flow. That is, ifΦ(t, x) denotes the
flow of the Hamiltonian vector field, then

∂

∂t
Ĵ(X, Φ(t, x)) ≡ 0

for anyX ∈ g.

The verification of this fact works almost like in the ungraded case. There is
one complication, and we therefore indicate the computation. Let us say thatE0

has dimensionm|n. We introduce the matrixPm|n =
(

+Im 0
0 −In

)
. Then

(xST )ST = Pm|nx for any supervector inE0. Also, the matrix of the supersym-
plectic formΩ satisfiesΩST = −ΩPm|n. With this, we have:

∂

∂t
Ĵ(X,Φ(t, x)) = (∂tΦ)ST∇xĴ(X, Φ) = (Ω−1∇H)ST ΩXΦ

= (∇H)ST (Ω−1)ST ΩXΦ = −(∇H)STPm|nXΦ

= −(Pm|nXΦ)ST ((∇H)ST )ST = (XΦ)STP2
m|n∇H

= (XΦ)ST∇H

where we used(Ω−1)ST Ω = −Pm|n and the dynamical equationsẋ = Ω−1∇H (x).
But this last expression is zero, as it is the derivative ofH alongX, which pre-
servesH.

6. Two Characterizations ofBF(2|2)

We now come to the main result:

Theorem 3. 1. BF(2|2) is the identity component of the intersection ofOSp(2|2)
and the group of linear supersymplectic transformations.
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2. BF(2|2) is the largest connected subgroup ofOSp(2|2) whose action on
A2|2 admits a momentum map.

Proof: In order to understand the Theorem 3, let us note that the infinitesimal
version of preserving the supersymplectic form isXST Ω + ΩX = 0. One checks
that this is equivalent to the conditions in(13).
We now prove Theorem 3. The differential equation (14) for the momentum map
Ĵ reads [

∇(q,ξ)Ĵ
]
(X, q, ξ) = ΩX

(
q
ξ

)
.

Here we have made use of the abbreviationq = (q, p)T . So withX =
(

A B
C D

)

∇qĴ = −MAq−MBξ (15)

∇ξĴ = Cq + Dξ. (16)

We determine for whichX this has a solution for all(q, ξ). Assume first that
there exists a solution. Then

∂ξi
∂qj Ĵ = −∂ξi

(
eT

j MBξ
)

= eT
j MBei

∂qj∂ξi Ĵ = ∂qj

(
eT

i Cq
)
=eT

i Cej = eT
j CTei

so that necessarilyMB = CT .
Therefore

∇q

(
Ĵ − ξT Cq

)
= −MAq

∇ξ

(
Ĵ − ξT Cq

)
= Dξ.

HenceĴ − ξT Cq must be of the form

Ĵ − ξT Cq = qT A′q + ξT D′ξ

with some2× 2 matricesA′ andD′ with entries fromA0. Then

∇q

(
Ĵ − ξT Cq

)
=

(
A′ + A′T

)
q

∇ξ

(
Ĵ − ξT Cq

)
=

(
D′ −D′T )

ξ

so that−MA = A′ + A′T andD = D′ − D′T . ThusMA is symmetric andD
antisymmetric:(MA)T = MA andDT = −D.
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Hence a necessary condition for the existence of a solution is thatX satisfies the
conditions(13).
On the other hand, if these conditions are satisfied, then

Ĵ (X) =
1
2
QST ΩXQ =

1
2
(−qTMAq + ξT Dξ) + ξT Cq (17)

solves(15)− (16), so that they are also sufficient. This completes the proof of the
theorem.

With the explicit formula(17), one can now verify that̂J is BF (2|2) equivariant,
i.e. that

Ĵ (X, GQ) = Ĵ
(
G−1XG,Q

)

for X ∈ bf (2|2)0 , G ∈ BF (2|2) andQ ∈A2|2.

Indeed, this follows from the fact thatBF(2|2) preserves the supersymplectic
form Ω.

We can read off conserved quantities from(17), given the result about the preser-
vation of the momentum map from section 5. Namely, explicitly, if we have
X =

∑
i=1,2 (ci · Ci + ai ·Ai) ∈ bf (2|2)0 with ci ∈ A0 andai ∈ A1, then

Ĵ (X) =
1
2

(−qTMAq + ξT Dξ
)

+ ξT Cq

=
1
2

(
c1 ·

(
ω2q2 + p2

)
+ c2 · ωξTMξ

)
+ p (ξ1 · a1 + ξ2 · a2)

− ωq (ξ1 · a2 − ξ2 · a1)

=
(

1
2

(
ω2q2 + p2

)
1
2ωξTMξ

)T (
c1

c2

)
+ [(pI2 + ωqM) ξ]T

(
a1

a2

)
.

This recovers the first integrals of motion1
2

(
ω2q2 + p2

)
and1

2ωξTMξ, the Bose-
and Fermi-energies, as well as two new supersymmetric conserved quantity, given
by (pI2 + ωqM) ξ. One checks that this last quantity is in fact the preserved super
Noether charge that one obtains by a formal use of Noether’s theorem from the
transformations(4)− (6) applied to the LagrangianL.
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