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Abstract.  Applying the concept of a momentum map for supersymplectic su-
pervectorspaces to the one-dimensional Bose-Fermi oscillator, we show that the
largest symmetry group that admits a momentum map is the identity component
of the intersection of the orthosymplectic gro0fp(2|2) and the group of super-
symplectic transformations. This gives a systematic characterization of a certain
class of odd supersymmetry transformations that were originally introduced in an
ad hoc way.

1. Introduction

Supermechanics is the classical counterpart of quantum field theories involving

Bose and Fermi fields. The most prominent use of supermechanics from a math-
ematical perspective is the role of the classical free particle Lagrangian in the

supersymmetric proofs of various index theorems [2]. There has also been some
interest in making the geometric description of supermechanics mathematically

rigorous, both from a Lagrangian and Hamiltonian point of view [3,9, 10].

In this note, we are concerned with the classical one-dimensional supersymmet-
ric harmonic oscillator, or Bose-Fermi oscillator. By “classical’, we mean that
we treat it as a supermechanical system, defined on a supersymplectic flat man-
ifold [10, 13]. It is a simple but a really nontrivial example of a system with
supersymmetries, that is, symmetries that mix the fermionic and the bosonic de-
grees of freedom. It first appeared as one example of a supersymmetric quantum
mechanical system in Witten’s ground-breaking 1981 paper [15] and was further
investigated in the 1980’s and 1990's.

The infinitesimal supersymmetry transformations of the harmonic oscillator were
initially introduced in an ad hoc way [5]. It was later realized that the stabilizer
algebra of the dynamics is the orthosymplectic superalgeipe|2) [4]. In this
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note, we use the concept of a momentum map to investigate the supersymmetries
of the harmonic oscillator.

We show how the (ad hoc) supersymmetry transformations [5] can be derived in
a systematic way. Namely, we construct a Lie superalgéfii2) whose odd

part consists of these transformations and show Gh@]2) is the intersection

of osp(2]2) and the Lie superalgebra of linear supersymplectic transformations.
Alternatively, bf(2|2) is the Lie superalgebra of the largest connected subgroup
of OSp(2/2) that admits a momentum map. This is essentially parallel to the
ungraded case, since the group of canonical transformations admits a momentum
map in any dimension.

The paper is organized as follows: In Sections 2 and 3, we review some facts about
the theory of supermanifolds, in particular super Lie groups and the super version
of Lie’s first theorem. In Section 4, we give a short description of the Bose-
Fermi oscillator and write down a class of supersymmetries, taken from DeWitt's
book [5]. We construct the supersymmetry Lie algebra of these supersymmetries
and name ibf(2|2). The corresponding groupB¥(2|2). We then give a general
definition of the concept of a momentum map in supermechanics, and show that
it is preserved under the flow of Hamiltonians that are invariant under the group
action. This is a generalization of the variant of Noether’s theorem in ungraded
classical Hamiltonian mechanics [1]. In the last section, we shovBFiéz|2) has

the properties stated above. We also verify that the momentum map is equivariant
and read off the conserved quantities.

2. Supergeometry over4d

There are two approaches to the definition of supermanifolds: An algebraic ap-
proach which stresses the role of superfunctions [7, 8] and an analytic approach
which stresses the points [5, 11, 13]. The analytic approach, which is implicitly
used in the majority of the physics literature, has sometimes been criticized by
mathematicians for its perceived lack of rigor. However, Tuynman has metic-
ulously worked out the mathematical details in a recent textbook [13] and his
definition of supergeometry over a graded commutative algdbmaw provides

a rigorous and solid foundation for the analytic approach. In the following, we
give a very brief overview — ample details and careful proofs can be found in
Tuynman’s book [13].

The idea of the analytic approach to supergeometry is to do geometry with the
real numbers replaced by some algebra of supernurohdvore precisely, A =
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Ao @ A; is aZy-graded commutative real algebra with a natural isomorphism
A ~ RaN whereN denotes the nilpotent elements. The projection onto the real
part is called the body map and denoted/ByOne also assumes thdthas the
property that for any nonzero in A there exists an odd such thata - b # 0.

The standard case for such ahis the Grassmann algebygR> of an infinite
dimensional real vector space [5, 11]. It is best to thinkdods a parameter of
this analytic formulation, much like the structure of the sheaf of superfunctions is
a parameter of the algebraic formulation.

A free gradeA-module E' of dimensionm/|n (i.e. m even,n odd dimensions)

is called anA-vector space provided that there is a natural equivalence class of
“real” bases, i.e. bases whose transition matrices have only real entries. If their
R-span is denoted bR g, this is equivalent of having a natural isomorphism

E=TRg®NEg,
whereNg = N ® E. This gives an extension of the body mB&p: £ — Rg.

The DeWitt topology ofF is the coarsest topology which makBscontinuous.

Tuynman [?, 13] has given a nice rigorous construction of smooth functions that
circumvents the problem that limits are not unique and hence useless in the DeWitt
topology. The upshot is as follows:

Let £y denote the even part of a#-vector space. Then a smoafth: £y — A
function has an expansion

f@,. om0 ) = Z &8 (Gfiyan) (1, ) (1)

117 ’ln—o
wheref;, ;. € C*> (BU,R)andG denotes the Taylor-expansion in the nilpotent
part, that is ifx =Bx + n, with n € Az, then

n

(Gfi) ()= 3y (D), ().

In particular, a smooth function must mdpFE, to BA = R. So a constant
function whose value is a nilpotent supernumber is not smooth.

The form(1) gives the characterization
C™ (Eo, A) ~ C* (BEy,R) @ /\R™.

Using this as thalefinition for the sheaf of smooth functions is of course the
starting point for the algebraic approach to supermanifolds.
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The patrtial derivatives of are

afil---l'n
ax] Z g < oz, )(xl,...,a:m)

9 TR i fin i
26 = (s et g (G ) (1, )

U1 yeeey in=

for1 < j <mandl < j < n,where™ denotes omission. By definition, the
chain rule takes the form

9 B Ox; Of 0&, Of
ayif(X(y,n),E(}a77)) = z]: dy: O, - Z Dys OEn
and likewise

ony (. m) Z Oy Oz Z Oy 9,
With the concept of smoothness, one can now develop the theotynaénifolds,
vector bundles, Lie groups, etc. almost exactly as in the ungraded case. We will
need the concept of flows of vector fields [9]. Since in a way only even vector
fields are really infinitesimal directions, this is usually done for even vector fields
only. The flow of a vector field& € X, (M) is a smooth ma@ : U — M, where

U is an open subset oy x M, such that ifo; is the pullback of the canonical
vector field on4y to U. Then

TPody =X od.

With the initial condition® (x,0) = x we have existence and uniqueness of the
flow in the usual sense [9]. In a way, the functians-> ® (¢, x) (for fixed x)
are the integral curves of, only they need not be smooth in the above sense.

3. Super Linear Algebra

In this section, we fix further notations and give our conventions for supervectors
and supermatrices. We essentially followites [8].

Form,n € N, we consider thed-vector spaced™®" = A™ x A", with the

following grading: an elementx, &) € A™®" is even iffx € A" and¢ €
AT and it is odd iffx € A" and§ € Aj'. There are two natural superscalar
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multiplications: the right one and the left one. Since it will be more convenient
when dealing with matrices, we fix the action 4f on A™®" to be the right
multiplication, i.e.

(xlv"'a$ma£1a"'7£n)'a: (:Elav"'7$ma7£1aa"'a£na)'

The generalization of the Euclidean space is the supersff4te: = (ATEm) =
Afr x AT

Matrices with entries fromA4 will be called supermatrices, and will be denoted
by X' = (), We can identify the set dfim +n) x (m + n) supermatrices,
Mat(m|n), with Endg (A™®™), the space of right linead endomorphisms

Endy (A™") = Mat(m|n), ¢H(w,»j):([¢(ei)]j) i @

=1,
=1,.....m+n

J
Then¢ (z) = Xz, where the right hand side is the usual matrix multiplication.
Likewise, if ¢ < X andy « Y, theng oy «— XY

The following grading orMat(m|n) is natural: call a supermatriX even if it
preserveg A™®™)  and odd if it mapg.A™®™), to (A™®™),. Equivalently, if

A B
X < ar ) 3)
whered is anm x m, Banm x n, C ann x m, andD ann x n matrix with
entries fromA, thenX is even iff all entries ofA and D are even, and all entries
of B andC are odd, and\ is odd iff all entries ofA andD are odd, and all entries
of B andC are even. Now, the pull back of th4& graded bimodule structure on

Endp (A™®™) to Mat(m|n) via (2) yields the following rules for multiplications
by a superscalar:

(2 5) (e caibun)

for a homogeneous elemant A with parity p(a), where the multiplications on
the right hand side are just the entry-wise multiplicationsglin

For an even supermatrix, the supertranspose is defined to be
A B\ AT T
C D ~\ =BT DT

where” denotes the usual transposition. This way, #orc Mat(m|n)o and
x € A™l" we have that Xx)%7 = x5T X 5T so that the matri¥3 of a bilinear
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form on. A" transforms under a linear coordinate change with maras B —
X5TBX.

If we define the bodyB (X) of a supermatrix to be the real matrix whose entries
are the bodies of the entries &f, it holds that an even supermattk of the form

(3) isinvertible iff B (A) andB (D) are invertible as real square matrices [8]. The
group of even invertiblém + n) x (m + n) supermatrices is super Lie group of
dimension(m? + n?|2mn). Itis denoted byGL(m|n). Its Lie superalgebra is
Mat(m|n), and the super Lie bracket is the usual supercommutator

[X,Y] = XY — (—1)PF PPy x

The concept of the exponential of matrices carries over to the super case, namely

o0

1
Exp (X) =)~ X"
n=0 "

is smooth and magslat(m|n)y to GL(m|n). Itis locally invertible.

Finally, let us mention that we have the usual relation between connected sub
Lie supergroups and sub Lie superalgebras, that is, to any sub Lie superalgebra
of Mat(m|n) corresponds one and only one connected super Lie subgroup of
GL(m|n) [13]. This correspondence is given by exponentiation and taking the
tangent space at the identity, respectively. It allows us to move freely from Lie
supermatrix algebras to Lie supermatrix groups. We will make frequent use of it.
A detailed exposition and proofs may be found in Tuynman’s book [13].

4. The Bose-Fermi Oscillator

In the Lagrangian formulation, the configuration space of the Bose-Fermi oscilla-
tor is A2 equipped with the Lagrangian

E(q7§17€27 q.aé:lvéé) = %QQ + %(glfl + 5252) - %w2q2 + W§1§2

whereg is an eveng; and¢, two odd variables, and is a positive parameter. The
Lagrangian consists of kinetic and potential energies in the bosonic and fermionic
sectors, respectively.

We use the following Hamiltonian description of this system — the phase space is
A2I2 with Hamiltonian

H(q,p.&1,6) = = (p° + w’¢®) — wii&e.

1
2



On the Supersymmetry Group of the Classical Bose-Fermi Oscillator 51

_1 O 1 W T
write H as the graded quadratic form

2
fwewriteM =( O 1)1 —(“6 (1)>andQ:(q,p,§1,£g)T,wecan

_1 st L 0 _} ST
=359 <0 —wM)Q_QQ HQ.

Here we wroteH for the matrix of the Hamiltoniad!. We equip.42/? with the
standard supersymplectic form

1
Q=dpdg+ 3 (déf + d&3)

-M 0

i.e., in matrix form, we havé)l =
0 Iy

> . Then Hamilton’s equations

Q=Q"'VH (Q) yield
q =D p = _W2Q7 € = _WMS'

Here,q, p and¢ denote the components of the flow of the Hamiltonian, rather than
components of a supercurve, see Section 2. One checks (formally) that these are
the dynamic equations of the Lagrangién

The Hamiltonian is preserved under the following infinitesimal supersymmetry
transformations, taken from DeWitt [5]:

6q = €T (4)
op = w€TMéax (5)
6& = (plz — wgM) dax (6)

whereda € A? is a vector of odd supernumbers. That is

0H OH 0H
0q- — 4+ 0p- — + 06T — =0.
1B +0p ap + 0& o€
Note that these transformations mix the odd and even components, that is, the
bosonic and the fermionic variables. This is really what makssgersymmetric
In matrix notation(4) — (6) read

dq 0 0 —(fa)" q
op | = 0 0 w(0a)'M p |. @)
b13 ~wMéa S 0 §
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We now construct a sub Lie algebraldht(2|2) that contains as a subspace the
transformation of the form (4)-(4). For this, let us define 2fzsquare superma-
trices

0 0 —el
A = 0 0 w-el'M fori=1,2
wMei —€; 0
:))2 _01 0 0 0 0
Ci = 0o | Cy = 00
0 0 0 0 —w - M

wheree; denotes the canonical basis®f. ThenA; € Mat(2|2); andC; €
Mat(2]2)o, and these matrices have the following supercommutators:

[A;, Aj] = 20;; (—C1 + C2) (8)
[A41,C] = —w - Az 9)
[A2,Ci] =w - Ax (20)
[C;,C5] = 0. (11)

Thus, theirA-span defines a sub Lie superalgebrafiat(2|2). In the following,

we call this span the Lie superalgebra of Bose-Fermi supersymmetry and denote
it by bf(2|2) = span, (A1, A2, C1,C2). The corresponding connected sub Lie
supergroup ofzL(2|2), BF (2|2) = (Exp (bf(2]2),)) will be referred to as the

Lie supergroup of Bose-Fermi supersymmetry.

We note thabf (2|2), = (Ao @r spar (C;)) @ (A1 ®r spar (4;)), and that the
matrix in (7) isday - A1 + das - A, Also, one sees nicely that the matricés
represent transformations that mix odd and even variables whereas the nt@trices
represents transformations among the bosonic and the fermionic parts themselves.

We show thaBF (2|2) leaves the Hamiltonia#/ invariant, as expectedH is
preserved under the action by the orthosymplectic giofip (2|2), that is, the
group of all supermatriceR that satisfyR°T HR = H. It is an embedded super
Lie subgroup ofGL(2|2) of dimension4|4. The even part of its Lie superalgebra
osp (2]2), consists of all matrice( that satisfy the infinitesimal version of the
preservation off,

X5TH + HX = 0.

With X = ( 4 B ) this reads

C D
ATL, = 1,4, D™ =-MD, andwC =MBTIL,. (12)
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One can check thatf (2|2), C osp (2]2), by verifying that the matrice€’; and

a - A; (for an odd supernumbaersatisfy(12). So the Bose-Fermi supersymmetry
groupBF (2]2) is a super Lie subgroup @Sp (2|2) of dimensior2|2. Thus the
Bose-Fermi supersymmetry group is not the whole stabilizer of the Hamiltonian.
In section 6, we give two reasons why this makes sense.

We close this section with the following useful alternative characterization of
bf(2|2), which is not hard to check:

An elementX = ( é g > € 0sp(2]2)p lies inbf(2]2) if and only if
MB = C7T, (MA)T =MA, and DT = —-D. (13)

5. Momentum Map

Before we come to the characterizationBif(2|2) indicated in the introduction,

we have to introduce the concept of a momentum map. Since this is a general
concept, we formulate it for ayl-vector space of arbitrary dimension equipped
with an even supersymplectic form.

Recall that in ungraded symplectic geometry, a momentum map for the action
of a Lie groupG on a symplectic manifold M, w) is a linear map/ : g —

C° (M) such that the Hamiltonian vector field generated/b) is the vector

field associated tg € g via the differential of the action Equivalently, we can
considerJ : M — g* by setting(J (z),€) = J (€) (2).

This definition can essentially be carried over to the graded caseFE lbet an
A-vector space, and I€1 be an even supersymplectic form éh

Definition 1. A momentum map for the action of a supermatrix gréuyith Lie
superalgebrgy on E' is a smooth map

J:igox Eg— A
such that
QO V,J (X, z) = Xz (14)

forall X € go, z € Ey, whereV,. denotes the spatial gradient.

Note that there is a technical problem though. For fiédthe functionz +—

~

J (X, z) is in generahot smooth. Namely, ifX is not real, there is nothing that
guarantees that the images of real vectors will be real. We solve this technical
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problem by considering to be defined om x Ey. ThenV,.J is defined for any
X and the above condition makes sense.

We have the following result analogous to the variant of Noether’s theorem in
ungraded mechanics [1]

Lemma 2. Suppose € C* (Ep, A) is a Hamiltonian that is invariant under
the action ofG and thatG admits a momentum mapon Ej.

Then.J is preserved under the Hamiltonian flow. That isift, =) denotes the
flow of the Hamiltonian vector field, then

9 .
aJ(X,@(t,:U)) =0

forany X € g.

The verification of this fact works almost like in the ungraded case. There is
one complication, and we therefore indicate the computation. Let us safhat

has dimensionn|n. We introduce the matri®,,,, = ( +0]Im —(])I ) Then

(5T)5T = P, for any supervector itky. Also, the matrix of the supersym-
plectic form( satisfies)” = —QP,,,- With this, we have:

%j(x, B(t,2)) = (B,0)TV,J(X, ) = (' VHYTOX D
= (VH)*"T( Q@ HTQX® = —(VH)'P,,, X P
= —(Ppn X ®)°T(VH)")*T = (X0)°TP2, VH

mln
= (X0)TVH

where we use@2~!)57Q = —P,, ,, and the dynamical equations= Q' VH ().

But this last expression is zero, as it is the derivativéloflong X, which pre-
servesH.

6. Two Characterizations of BF(2|2)
We now come to the main result:

Theorem 3. 1. BF(2[2) is the identity component of the intersectiol®&p(2]2)
and the group of linear supersymplectic transformations.
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2. BF(2]2) is the largest connected subgroup©$p(2|2) whose action on
A?2 admits a momentum map.

Proof: In order to understand the Theorem 3, let us note that the infinitesimal
version of preserving the supersymplectic fornki”'Q + QX = 0. One checks
that this is equivalent to the conditions(ii3).

We now prove Theorem 3. The differential equation (14) for the momentum map
J reads

Vo] (X.9.6) —QX< Z )

Here we have made use of the abbreviatjon (¢, p)”. SowithX = ( 4 B )

C D
Vo) = —-MAq — MB¢ (15)
Ved = Cq + DE. (16)

We determine for whichX this has a solution for allg, £). Assume first that
there exists a solution. Then

0,04, ] = —0¢, (€] MBE) = el MBe;
0q,0¢,J = 0y, (ef Cq) =e] Ce; = el CTe;

so that necessarilylB = C7.
Therefore

Vq (j - sch) — _MAq
Ve (j . éTC’q) — DE.
HenceJ — £7'Cq must be of the form
J—€'Ca=q"Aq+€"D'¢
with some2 x 2 matrices4’ and D’ with entries from4g. Then
Vq (j _ sTCq) = (A'+4T)q
Ve (j . £TCq) — (D' -D7)¢

sothat-MA = A’ + AT andD = D’ — D'"'. ThusMA is symmetric andD
antisymmetric(MA)” = MA andD” = —D.
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Hence a necessary condition for the existence of a solution isktsatisfies the
conditions(13).

On the other hand, if these conditions are satisfied, then

R 1 1

J(X)=5Q°0XQ = S (—a'MAq + £ D) +£"Cq (A7)
solves(15) — (16), so that they are also sufficient. This completes the proof of the

theorem.
With the explicit formula(17), one can now verify thaf is BF (2|2) equivariant,
i.e. that

J(X,GQ)=J(G'XG,Q)
for X € bf (2|2),, G € BF (2]2) andQ €.A?~.
Indeed, this follows from the fact th&F(2|2) preserves the supersymplectic
form Q.

We can read off conserved quantities frohT), given the result about the preser-
vation of the momentum map from section 5. Namely, explicitly, if we have
X = Zi:l,? (Ci -Ci+a; - AZ) € bf (2|2)0 with ¢; € Ap anda; € A1, then

(—a"MAq +£7DE) + €7 Cq

NN

(e1+ (W¢” +1°) +co- wE™™E) +p (&1 - a1 + & - ap)
—wq (& a2 — & - ar)
1¢,,2.2 2y \71
(3 (W +p?) 1 T( @1
This recovers the first integrals of motigr{w?¢? + p?) andiw&” ME, the Bose-
and Fermi-energies, as well as two new supersymmetric conserved quantity, given
by (plz + wgM) €. One checks that this last quantity is in fact the preserved super

Noether charge that one obtains by a formal use of Noether's theorem from the
transformationg4) — (6) applied to the Lagrangiad.
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