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Abstract. We show in this paper that the tangent burifile, of a Poisson-Lie
groupG has a Poisson-Lie group structure given by the canonical lifting of that
of G. We determine the dual group @iG, its Lie bialgebra and its double Lie
algebra.

We also show that any Poisson actiontobn a Poisson manifol@ is lifted on a
Poisson action of'G on the tanget bundlé P.

1. Introduction

Poisson-Lie group theory was first introduced by Drinfel'd [1] [2] and Semenov-
Tian-Shansky [11]. Semenov and Kosmann-Schwarzbach [4] used Poisson-Lie
groups to understand the Hamiltonian structure of the group of dressing transfor-
mations of certain integrable systems. These Poisson-Lie groups play the role of
symmetry groups. Theory of Poisson-Lie groups was remarkably developed by
Weinstein [9] [13], Drinfel'd [3] and Jiang-Hua Lu [6] [7].

Let (G,w) be a Poisson-Lie group with Lie algelFaand multiplication

m: GExG— G.

We assume that the tangent bundl€’ is equipped with the Poisson structure
Qrq introduced by Sanchez de Alvarez in [10]. In this c@B€; has a Poisson-
Lie group structure with dual Poisson-Lie grodpG™, Q2r~+) and Lie bialgebra
(G 4G,G* - G*), whereG* is the dual ofG, G - G is the semi-direct product
Lie algebra with bracket

[(z,9), (", 9)] = ([2,27], [z, 5] + [y, 2]), where(z,y), (z,y) €G =G
andg*  G* is the semi-direct product Lie algebra with bracket

[(e, B), (o, 8)] = ([, 8] + [8, /], [8, 5]), where(a, B), (/,3) € G" x G".
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The double Lie algebr® = (G 4 G) @ (G* + G*), of the Poisson-Lie group
(TG, Qrq) is isomorphic to the semi-direct product Lie alge?ad D, where
D = G & G* is the double Lie algebra ¢f7, w).

Let H be a Poisson-Lie subgroup @F,w). Then the tangent bundEH is also
a Poisson-Lie subgroup 61'G, Q7¢).

Let P be a Poisson manifold anfl: G x P — P, be a Poisson action @f on

P. Theng has a lifted Poisson action of the Poisson Lie gréidpon the Poisson
manifoldT'P. As example of Poisson action we consider the dressing action [7].
In this case we show that the lifted action of the left dressing acti@gn*ain G is

also the left dressing action @fG* on T'G.

2. Poisson-Lie Structure on the Tangent Bundle of
a Poisson-Lie Group

The notion of a Poisson-Lie group is due to Drinfiel'd [1]. Let us recall its defini-
tion and some properties.

Definition 1. A Poisson-Lie group is a Lie grou@, equipped with a Poisson
structurew such that the product

m:GxG— G:(g,h) — m(g,h) = gh
is a Poisson map, whe@ x G is equipped with the product Poisson structure.

The Poisson tensar of a Poisson-Lie groug: vanishes at the unit elemenbf
G. Its derivatived.w € G A G, at that point is a 1-cocycle @ relative to the
adjoint representation @ onG A G. Then, there exists a Lie bracket G given
by

<[Oé, ﬁ]uh x> = dew(x)(a7 ﬁ)
wherex € T.G = G, andp € T)G = G*.
The connected and simply connected Lie gratipwith Lie algebraG* is called
the dual group of the Poisson-Lie groap It has, too, a structure of Poisson-Lie
group.
This dual group™* acted onG by the (dressing action), whose orbits determine
the symplectic leaves @F.

In this section, we give for every Poisson-Lie grad structure of Poisson Lie
group on the tangent bundBG. The Poisson structure dhG is that given by
Sanchez de Alvarez [10]. Let us recall it in the case of a Poisson maitfold
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Theorem 2. [10]. Let P be a Poisson manifold with Poisson brackgt, } ..
We denote by the canonical projection frorfi’ P on P. For all ¢ € C*°(P), we
denotep = ¢ o 7 and ¢ the tangent map ap.
ThenT P has a unique Poisson structure, denotedy }..,, such that:
I) {355 ’([}}TP =0
i) {2, 90}rp = {¢,9}rr = {0, ¥} p
”I) {(pv &}TP = {(pa w}Pa for all ©s w € COO(P)

Remark 3. [10]. Let(z;),7 = 1,...,n are local coordinates oP, such that the
bracket of P is given by{z;,z;} = w;j(x). In the local coordinategz;, &;) of
TP, the bracket{ , }TP is given by:
) {xi,z;}rp =0
) {ai,2;trp =A{xi, &5 rp = {zi, 7} = wij(2)
i) {ii, 5 brp = {mi 2} p = wij(8) = > 522 ()i
k

Proposition 4. Let G be a Lie group with Lie algebrg. We assume thatG is
equipped with the map

m:TGxTG — TG : (Xg,Yy) — LgYn + Rp Xy

ThenT'G is a Lie group with Lie algebra the semi-direct product of Lie algebras
G - G, where the bracket is given by

[(z,9), (", 9")] = ([, 2], [2,9] + [y, 2"]).

It is clear thatT'G is isomorphic to the semi-direct product Lie grou@gs- g,
associated to the adjoint action 6f on the abelian Lie groug. Then the Lie
algebra ofl'G is the semi-direct product Lie algebfa- G.

With this preparation, we can give the main result of this section.

Theorem 5. Let (G, w) be a Poisson-Lie group. We assume thét is equipped
with the multiplication

Xg. Yy = Ly Yy, + Rpe Xy

and with the Poisson structur¢ , }.... Then(T'G, { , },.) is a Poisson-Lie
group.



4 M. Boumaiza and N. Zaalani

Proof: According to Definition 1, we have to show that
{F1, FoH(Xg.Yy) = {Fix,, Fax, }(Ya) + {F1y,, Foy, }(Xy)
forall Fy, Fy € C*(TG), X, € T,G andY;, € T),G.
By Theorem 2, it is sufficient to consider the functions of typand¢y, where
p € C(P).
Letp, ¢ € C>°(P). We have
{2, V}(Xg.Yh) = {&x,,Ux, } (Vi) + {@v,,, ¥y, H(Xy) = 0.
By a simple calculation, we get
{22, 9x, }(VR) + {6vi, ¥, }(Xg) ={(0 0 L) (¥ 0 Lg) + a}(Yh)
+{(w0 Rp), (v 0 Ru) + £}(X,)
={&, ¥} Xy Yn)

wherea(h) = (¢ o Ry)(X,) andB(h) = (v o Ry)(X,).
For the last bracket we have
{Sb) w}(XQYh) = {(107 w}(Lg*Yh + Rh*Xg) )
= ({@: ¥} 0 Lg)(Ya) + ({, ¥} 0 Rp)(Xy).

If we take X, = 0,(9) = Ry« andY}, = o,(h), wherez,y € G ando, is the
fundamental vector field associated to the left translatiof,ofie get

({. ¥} 0 Ly)(oy(h)) ={p o Lg, 1 0 Ly}(ay(h))
* %{SD © Rexptyn, ¥ © Rexpryn}(9)i=0

={po Ly,4po Lg}(ay(h)) =+ {yl(SD o Ry),v o Rp}(g)
+ {0 Ry, y' (¥ o Ru)}Hg)

wherey! is the left invariant vector field whose valuecas y.
On the other hand, we have

({, ¥} o Ri)(02(9)) = {0 © Bn, o Ri}(0a(g))
+ %{90 o Lexptz.ga ?/J o Lexpt:p.g}t:o(h)

={p 0 Ri, v 0 Ru}(02(9)) + {0z 0 Lg), 0 Ly} (h)
+{po Ly, t(00 0 Lg)}(h).
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Furthermore, it is easy to verify that

Dou(g)(ay(h)) = (¢ o Lg) (oy(h) + &(oy(h))
Poy(n)(02(9)) = (o Ry)(02(9)) + & (02(9))
wherea/(g) = (¢ o Ly)(oy(h)).
Then
{Pou(9)s Yo (9) Hoy(B)) + { @0y (h) Yoy () HOw(9))
={(p o Ly) +a, (1 o Ly) + 5} (oy(h)+{(p o Rp) +&, (1 o Ry) + '} (0:(9))
={po Ly, o Ly} (oy(h)) +{(p o L), BHoy(h)) + {&, (¢ 0 Ly) Yoy ()
+ {0 Ry, o Ry} (02(9)) H{&, (¥ 0 Ry) How(9))+{(¢ 0 Rn)', '} ox(g))
={poLg, o Lg}(0y<h)) +{po Ly, B}(h)+{a,¢ o Lg}(h)
+ {0 Rn, ¢ o R} (04(9)) +{c/, v 0 Ru}(g) + {¢ © Rn, B'}(g)-

It suffices to verify the following expressions

a(h) = ¢ (0, 0 Ly)(h)

B(h) = v(0z 0 Ly)(h)

' (9) = ' (v o Rn)(9)
3'(9) =4 (¢ o Ru)(g).

We replacey, o/, 3and 3’ by these expressions we get

{09 }02(9).0y(R) = {0, (9)s Yo 9) Oy (0) + {0, () Yooy (1) } (02(9))-

This concludes the proof. O

Example 6. LetG be a Lie algebra. We assume tlgitis equipped with its linear
Poisson-Lie structure given, for al, ¢ € C*°(G*), by

{, ¥}(z) = (2, [dp(z), dy(z)]).

In local coordinategz;) of G*, this structure is expressed by

{zj,z;} = Zc Tl

wherecfj are the structure constants gf
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The linear Poisson structure @f* x G* associated to the semi-direct product
G - Gis given by

dF dG dF dG dF dG
forall F, G € C*(G* x G*), z,y € G*.
The local coordinate&z;) induce local coordinategr;, y;) onG* x G*, such that

{yi, ys}(x, ) =0
{ylﬂ $]} Z Cz]yk w’Lj

{IZ,IL’]} T y Z ij Lk — Wz]

According to Remark 3, for the local coordinates, z;) of TG*, this bracket
coincides with that of'G* .

Hence, the Poisson-Lie grodfG* is isomorphic to the Abelien Poisson-Lie group
(G 4 G)* associated to the semi-direct product Lie algeGral G.

3. Bialgebra and Dual of the Poisson-Lie Grougl'G

In this section, we study the infinitesimal version of the Poisson-Lie giio@p
namely that of Lie bialgebra and double Lie algebrgd¢f.

Definition 7. [12] LetG be a Lie algebra with dual spagg'. We say thatG, G*)
form a Lie bialgebra if there is given a Lie bracket @i such that

([, 8], [2, y]) = —[adza, Bl(y) — [, adi Bl (y) + [adya, B](2) + [a, ad,, 5] (x).

By Drinfel'd [1], if (G,w) is a Poisson-Lie group, then the derivativewfat

e defines a Lie algebra structure @i, such thatG,G*) form a Lie bialgebra.
Conversely ifG is connected and simply connected, then every structure of Lie
bialgebra(G, G*) defines a unique Poisson-Lie structure(on

On the vector spacP = G @ G*, there is a natural Lie algebra structure such that
G andG* are Lie subalgebras, whose bracket is

[z,a] = adfa — ad}x

wherezr € G anda € G*. With that structure] is called the double Lie algebra
of (G,w).
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For example, let; be a Lie algebra. Its dual spagé is an Abelian Poisson-Lie
group, where the Poisson bracket is

{9} (x) = (, [dp(z), dy(2)])

forall p,¢ € C°°(G*). The Lie bialgebra of the Poisson-Lie grogpis (G*, G),
where the bracket @* is zero.

Proposition 8. Let(G, w) be a Poisson-Lie group with Lie bialgebté, G*). Let
G 4G andG* + G* are the semi-direct products Lie algebras given above. Then
(G 4G,G* = G*) has the structure of a Lie bialgebra.

Proof: By a simple calculation, we get
ad(, (o, B) = (adza + ady 3, ad;f).

We need only to prove the relation of definition 7. Lety), («',y’') € G x G and
(o, B) € G* x G*. Since(G, G*) is a Lie bialgebra we have

([, )",y [, B), (o, B)])
=(([z, 2], [x, ] ly,2]), ([, 8 + 18,1, 18, 57))

=<[7 T [on B) + ([, 2], (8, &) + ([, 4], [8, BT) + [y, 2], (8, 51)
- [adia, 3(2") = [o ad; B')(2") + [adyya, B')(2) + [o, ady 8] ()
— [ad; 8, ol2") — [8,adia’}(2) + [ad, 8, o) (2) + [B, adyo] ()
— [ad3 8, 81(") — [8,ad; 81(y") + [adyy 8, () + 8, ady, 5] ()
[ad B, B )(a") = [8,ad;8(2') + [ady 8, B')(y) + (B, ady 5] (y)
—[ad
+ [ad

+ |
adf,, ) (a, 8), (o, B)](2",¢) = [(e, B), ad(, ) (¢, B (2, y)
ad(yr o (@ 5),(a’ﬂ)]( y) + (o, 8), [ad(, 4 (@, B), (o, 8)](z, y).
Then(G g,g* + G*) is a Lie bialgebra. 0

Definition 9. . Let (G1,w:) and (G2, w2), be two Poisson-Lie groups with Lie
bialgebras(Gi, G7) and (G2, G;). A Lie group morphisnp : G; — G» is called

a Poisson-Lie group morphism if it is also a Poisson map.

A Lie algebra morphisny : G; — G5 defines a Lie bialgebra morphism from
(G1,G7) to (G2, G3), if its transposed map is also a Lie algebra morphism.

Let ¢ : (G1,w1) — (G2,w2) be a Poisson-Lie group morphism. Then the
tangent mag.(e) : G — G2 induces a Lie bialgebra morphism froid;, G;)
to (925 g;)
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Proposition 10. Let (G, w) be a Poisson-Lie group with Lie bialgebfg, G*).
Then(G - G, G* F G¥) is the Lie bialgebra of the Poisson-Lie groipG, Qr¢).

Proof: The projection
76: TG — G: Xy—g

is a Poisson-Lie group morphism, where the Poisson structutei®fero. Then
7¢; induces a Lie bialgebra morphism

Tex(€):G4G — G : (x,y) —

where the bracket a¥* is also zero.
Hence, we have

[(a,0),(8,0)] = (0,0)

forall o, 5 € G*.
Let
t:G—TG:z+— (e,1)

where(e, z) € T.G is regarded as element @f It is clear that is a Poisson-Lie
group morphism frong to TG, whereg is the linear Poisson-Lie group associ-
ated to the Lie algebr@*. Then

t+(0): G —GxG: x+— (0,2)

induces a Lie bialgebra morphism frai@, G*) to (G 4 G, G* + G*).
Then, for alla, 5 € G*, we have

[(0, @), (0, B)] = (0, [a, B]).

For the last brackdt«, 0), (0, 3)], we need the following lemma.

Lemma 11. [12]. Let(G,w) be a Poisson-Lie group and:;) are local coordi-
nates ofGG in a neighborhood of. For all o, 8 € G* and x € G we have
&uij

[, Blu(z) = (e)a;Bjzy

N oxy,

wherea = Xo,;dx; and 8 = X 5;dz;.
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We turn to the proof of the lemma. Lét;) are local coordinates aff in a
neighborhood ot and (z;,y;) = (x;,4;), the correspondent local coordinates
of TG, in a neighberhood ofe, 0). By Remark 3, the Poisson bivector Bt is
expressed by

Zw 8 — +wii(x )i/\i
gl 6301 dy; gl dy;  y;

Leta = (o;) andB = (5;) be elements of*. We write

O)ZZEZ(dei and ahﬂ)ZZE:[%dyT
i J

It follows from the lemma that

(0,00, 0.8 = 3 28D 050 = fo (o)
2,9,k
forall (z,y) € G x G.
Hence

[(«,0), (0, 8)] = ([ev, 5], 0).

This concludes the proof of the proposition. O

Corollary 12. Let(G,w) be a Poisson-Lie group with dual grodg*. ThenT'G*
is the dual group of the Poisson-Lie groUpG, Qr¢q), i.e.,(TG)*=T(G*).

Proof: Itis clear that the map
p - g*Xg*_>g*><g>: p(aaﬂ)'—>(/87a)

is a Lie bialgebra isomorphism frofg* 4 G*,G - G) to (G* + G*,G 4 G).
According to Proposition 1dG* 4 G*, G F G) is the Lie bialgebra of'G*. Since
TG* is connected and simply connectedsan be integrated to an isomorphism
of Poisson Lie groups frodi'G* to the dual of TG, Q7¢). O

Proposition 13. LetD = G @ G* be the double Lie algebra associated &, w)
andD = (G 4 G) & (G* + G*) be the double Lie algebra associated to the
Poisson-Lie grougT'G, Qr¢). ThenD is isomorphic to the semi-direct product
Lie algebraD - D.
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Proof: We consider the map

[:(GH4G) @ (G FG) — (GG ) x(Gagh)
(z,y) + (. B) — (z + B,y + a).

It suffices to show thaf is an isomorphism of Lie algebras frofnto D 4 D.
In fact, we have

F(,9), (@, B)lp) = flad, ) (@, B) — ad(, g)(,y))
= f((—adjz, —ad,x — adj(y)) + (adzor + ady 5, ad; 3))
= (ad; 8 — adjz, adja — adlz + ad;, f — adjy)

= ([z, 8], [z, 0] + [y, B]) = [(z,9), (B, ®)lpp

= [f(z,y), f(, B)]p-p

forall z and y € G, a and 8 € G*.
Similarly, we get

O

Proposition 14. Let H be a Poisson-Lie subgroup ¢f,w). ThenT H is also a
Poisson-Lie subgroup afG.

Proof: By definition, a Poisson-Lie subgroup 6fis a Lie subgroupHd of G,
such that the injection map: H — G, is a Poisson morphism.

It is clear that the tangent maf. is a Lie group morphism fronfT’'H to T'G.
Furthemore, by theorem 2, the injection nifipis also a Poisson map. Hence
TH is a Poisson-Lie subgroup &fG. O

4. The Exact Case

Now, we shall discuss an important example of Poisson Lie groups, which is the
exact case. Throughout this section, we supposgthatconnected.

A Poisson-Lie groupG, w) is said to be exact, if the cocyalew is a coboundary;

i.e: there exists € G A G such thatlew(z) = ad,(r), forallz € G.
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Letr € G A G, we define a bivector field o&' by

w(g) = Lgsr — Rgyr, forall geG.
By Drinfel'd [1] [2], (G,w) is a Poisson-Lie group if and only if the algebraic
Schouten bracket [r,r] is invariant under the adjoint actio/@in G A G A G.

Proposition 15. Let (G,w) be an exact Poisson-Lie group with coboundary
dew(x) = ad,(r), where

T:ZTZ‘]‘TZ‘/\TJ‘ €EGAG.
(]
Then(T'G,Qr¢) is also an exact Poisson-Lie group with coboundary
d(e,O)Q(xv y) = ad(:z:,y) (’F)
where

= " rii((r4,0) A (0,75) + (0,75) A (7,0) € G x GAG % G.
ij

Proof: We sets(z) = d.w(z), so that
e(z)(a, B) = [, B](x) = ady(r)(«, B) = r(adia, B) + r(a, adlf).

We also set(z,y) = d(c0)z, y).
Letr =r; Aro, foralla, 3, o/, 8/ € G* andz, y € G, we have

gz, y) (e, B), (¢, 3) = [(a, B), (&, )] (=, y)
=lo, B(z) + [B, o] (z) + [B, B](y) = r1 Ara((adier, B') + (a, ad} )
+riAra((adif, of) + (8, (adya’)) + 11 A ra(((ady B, 8) + (8, (adyy3))
=ri(adja)ra () — ra(adie)ri(8') + ri(e)ra(ad;8) — ra(a)ri(ad; )

+ri(ad;B)ra(d) — ra(adyB)ri(d) + ri(B)ra(adza’) — ra(B)ri(adza’)
+ri(ad)B)ra(B8) — r1(8)r2(adyB) + r1(B)r2(ady )
—ra(B)ri(adyd) = ri(adja + adyB)r2(8') — r1(a’)r2(ad;3)
+ri(a)re(adif’) — ro(B)r1 (adlia’ + ad;ﬁ ) + i (adkB)ra (o)
—r1(#)r2(adza + adyB) + ra(adie’ + ady8)ri(8) — ra(a)ri(ad; )

= (r1,0) A (0,m2)((adzor + ady B, ad; 8), (o, 3))
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+ (r1,0) A (0,72) (e, B), (adia + ad} 8, ads )
+(0,71) A (r2,0)((adhar + ad 8, ad3), (o, 8))
+(0,71) A (r2,0)((ev, B), (adia/ + ad}3, ad% )

= ((r1,0) A (0,72) + (0,71) A (r2,0))((ad(,, ) (@, B), (o, 5))

+ ((a 8),ad(,, ) (o, 8) = ad () (F) (e, B), (o, 5))

)

where
7= (r1,0) A (0,72) +(0,71) A (72,0) € (G x G) A (G x G).
For the general case:= }_, ri;r; A rj, we get

7= er ((r3,0) A(0,75) + (0,73) A (r5,0)).

O

Remark 16. If G is connected and simply connected, the biveetisrof the form
w(g) = Lgsr — Rgsr

where[r, r] is Adg-invariant. Sincel'G is also connected and simply connected,
and as¢ is exact, the bivectdR ¢ is given by

Q(Xg) = Lxg*f — Rxg*f.

Furthermore[#, 7] is Adrg-invariant.

5. Poisson Action Lifting

One of the fundamental notions related to Poisson-Lie groups is that of Poisson
action. The famous example of dressing action [7], plays an important role for the
description of the Poisson structure@f

In this section, we will be interested in the lifting of Poisson actions.

Definition 17. A left actiong : G x P — P of a Poisson-Lie groupG,w) on a
Poisson manifoldP is called a Poisson action, if it is a Poisson map with respect
to the product Poisson structure énx P
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Let¢ : G x P — P be a Poisson action @f on P. Naturally, we have to regard
the lifted action ofG onT' P given by

¢: GXxTP —TP:(g,up) — ¢gu(up).

In the particular case, wheH is equipped with the trivial Poisson structugeis
just an action of7 on P by Poisson morphisms. Thenis also an action of; on

T P by Poisson morphisms. Sin€gis trivial, ¢ is a Poisson action.

In the general case, this is not true. In factpifs the left translation ofz, for all
v, € C®(G), g,h € Gand Xy, € T,G we have

{9 g} (Xn)H{ D, ¥, H(9) = {(poLy), (b0 Lg)}(Xp)+{po R, o R }(g).

Since{¢, &}(Lg*Xh) = 0, ¢ is a Poisson action if and only if

{@OmeORh}:O

forall p, ¢ € C*(G), i.e. G is trivial.
For this reason, we will be interested in an other lifted action, thd@ti@fon T'P.

Theorem 18. Let¢ : G x P — P be a Poisson action of the Poisson-Lie group
(G, w) on a Poisson manifolé. We assume thdt P is equipped with the Poisson
structure given in Theorem 2. Let

Q:TGXxTP —TP : (Xg,up) — Typd(Xg,up) = gutiy + dpsXyg.

Then,® is a Poisson action of the Poisson-Lie grolipG, Q27 ) on the Poisson
manifold (TP, Qrp).

Proof: We know that the tangent mapy : 7'(G x P) — TP is a Poisson
morphism. It suffices to show that the canonical bundle isomorphism

p:T(GxP)—TGxTP
X — (M1 X, 724 X)

is a Poisson morphism, where andms are respectively the canonical projections
fromG x P onG andP.

Let (z;) be local coordinates o6 and (y;) be local coordinates on P. Then
sends the local coordinatés;, y;, ;, y;) of T'(G x P) to the local coordinates
(i, @), (y5,9;)) of TG x TP.
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According to Remark 2 and Remark 3 and using the definition of direct Poisson
structure, we have the following equalities:

{zi, 25} raxpy = Wis yitraxpy = {7, Yitr@axp) =0

{zis 25} raxpy = {7i, Titoxp = {@i, v} ¢ = wij(z)

Wi, Uitraxp) = ¥ Yitaxp = i, yitp = tij(y)

{20, Ui raxp) = {7i, Y eoxp =0

{d4, 5 r(axp) = {20 T} gup = @ij (@)

{9, U5 raxp) = {¥i, Vitaxp = tii ()

{&0, U raxp) = {0 i} aup = 0.

Similarly, we get

{zi, 25 raxTp = {yi, YiyraxTp = {xi, yj}raxTp =0
{zi,j}raxrp = {xi, &5 ra = {zi, 25} a = wij ()
{vi, 95 raxre = {vi.vi}re = {vi, it p = tij(y)
{zi,95}raxrp =0

{0, 35} raxrp = {¢5}ra = {2, 25} ¢ = diy (@)
Wi, 95}raxre = {9, Ui e = {visyjtp = ti;(y)
{Zi,95}raxTp = 0.

The proof is completed. O

Remark 19. If we consider the case of the left action(obn itself we can deduce
Theorenb.

Example 20. Let
¢+ GXxG" —G" (9,8 — Adgé

be the coadjoint action aff on g*. It is a Poisson action, whe& is equipped
with the trivial Poisson structure an@* with the linear Poisson structure.

We have

®: TG xTG* — TG*
(ng (&m) — (¢g(€)7 d’g*(n) + ¢€*Xg)-
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Then
d: (GxG)x(G"xG") — G"xG*
((g,2), (&m) — (Adgg, Adgn + deu(Rgu)).
On the other hand, we have:
(¢ © Rg)(h) = Adyy,(€) = Adj(AdyE)
(¢ 0 Ry)s(x) = —ad’(AdLE).
Consider the semi-direct produ€t 4 G. By duality and transposition, we obtain

the following formula for the coadjoint action, which is valid for alke G, x €
G,{€Gandneg”

Adgg2yen) = (Ad;g — ad;(Ad;),Ad;n).
Corresponding to Examplg 7'G* is identified with(G 4 G)* by
TG" — G x G : (§n) — (n,§).

SinceG - G is also equipped with the null Poisson structure and sif#ds the
coadjoint action associated to the semi prodatH G, the map® is a Poisson
action.

6. Dressing Actions

Example 20 is a particular case of dressing actions [5,7]. Let us recall this notion.

In the following, we assume thé&t7, w) is a simply connected Poisson-Lie group,
with dual groupG*. Let D be the simply connected Lie group, with Lie algebra
D =G ®Gg*. By|[7], the map

v GXG*— D : (g,u) — gu

is a local diffeomorphism. When it is a global diffeomorphisi,is called a
double Lie group. In this case, lete G andu € G*, the produciug can be
uniquely written as ug = g“u9, whereg* € G anduf € G*. This define a left
action ofG* on G by

¢ :G"xG— G : (g,u) — g*
and a right action oz on G* by
¢ GxG— G : (g,u) — ul.

These actions are called dressing actions, they are Poisson actions. The orbits of
¢ and¢’ are respectively the symplectic leavesdandG*.
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Proposition 21.

i) Assume thab is a double Lie group. Then D is a double Lie group.
i) Let
¢ :G"xG— G : (g,u) — g*
be the left dressing action 6t* on G. Then the lifted action
D TG*x TG — TG : (Xy,Yy) — dusYy + ¢gu Xy

is exactly the left dressing action 817* on T'G.

Proof:

i) SinceD is a double Lie group, then
Ty : TG x TG* — TD : (X,,Y,) — Lg.Yu + Rus X,
is a vector bundle isomorphism. Furthermore fog)l Y,, € T'D we have
XyYy = LguYy + Rus Xy
HenceT D is a double Lie group associated to the Poisson-Lie gfioGp
ii) By definition
D TG* X TG — TG : (X, Yy) — (9% dusYy + dgue Xu).
On the other hand,
ug = g"uw? = ¢u(9)-¢y,(9)-
Then, we have
LuwYy = Lguadyu Yy + Russthun Yy,
Similarly, we have
Ry Xy = Lgusy (Xou) + Rusudgs (Xo).
Hence
XYy = LY, + Ry Xy,
= Lgus(9ysYg + 0guXu) + Ruor(PusYy + dgu Xu)
= (9", bun Yy + Gge Xu) (09, 9. Yy + ¢, Xu).
Then the left dressing action @fG* onT'G is given by
TG*xTG — TG : (Xy,Yy) — (g dusYy + g Xu)-

This conclued the proof. 0
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