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Abstract. The Sturm spirals which can be introduced as those plane curves whose

curvature radius is equal to the distance from the origin are embedded in to one

parameter family of curves. In this paper, we consider the spacelike and timelike

Sturmian spirals in Lorentz-Minkowski plane.
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1. Introduction

The general theory of curves in Euclidean space (more generally in a Riemannian

manifold) has been developed long time ago and we have a deep knowledge of their

local and global geometries [7]. When the ambient space is a Lorentz-Minkowski
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space (and more generally a semi-Riemannian space or a semi-Riemannian mani-

fold), our knowledge is definitely more restricted in comparison with the Euclidean

case.

Nevertheless the fundamental existence and uniqueness theorem in the theory of

plane curves which states that a curve is uniquely determined (up to Euclidean

motion) by its curvature given as a function of its arc-length (see [1] and [12]) is

still valid. However, again the simplicity of the situation is elusive as in many cases

it is impossible to find the curve explicitly.

One should notice also that while some classes of space curves in the Lorentz-

Minkowski space like helices, Bertrand and Mannheim curves (see [3–5], [8]), are

well documented as in the Euclidean case, the studies on planar curves in pseudo-

Euclidean plane are not so many. For example, up to our knowledge, spiral curves

are not studied in the Lorentz-Minkowski plane. They are representatives of the

plane curves whose curvature depends solely on the distance from the origin in the

Euclidean plane. These class of curves was already studied in some detail in [2,13]

and [14] where it was proven that they could be reconstructed via quadratures.

Also, Singer [13] proved that the problem of determining a curve whose cur-

vature is κ(r), where r is the distance from the origin, is solvable by quadra-

tures. It is known that Sturmian spirals provide examples of such curves. These

curves and their generalizations were studied in [10]. Here we take the same prob-

lem in Lorentz-Minkowski plane and consider both spacelike and timelike plane

curves. The paper is organized as follows: Section 2 reviews some basic notions

in Lorentz-Minkowski plane. In Section 3, we consider the spacelike Sturmian

spirals and their generalization. Section 4 deals with their timelike analogues. All

cases are presented by analytic formulas and illustrated graphically.

2. Preliminaries

The Lorentz-Minkowski plane E
2
1 is the Euclidean plane E

2 equipped with indefi-

nite flat metric given by

g = −dx2 + dz2

where (x, z) are the rectangular coordinates on E
2
1. Recall that a vector v ∈

E
2
1\{0} is spacelike if g(v, v) > 0, timelike if g(v, v) < 0 and null (lightlike)

if g(v, v) = 0. In particular, the vector v = 0 is said to be a spacelike. The norm

of a vector v is given by ||v|| =
√

|g(v, v)|. Two vectors v and w are said to be

orthogonal, if g(v, w) = 0. An arbitrary curve α(s) in E
2
1, can locally be space-

like, timelike, if all its velocity vectors α′(s) are respectively spacelike, timelike.
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A spacelike or timelike curve α is parametrized by the arclength parameter s if

g(α′(s), α′(s)) = ±1 ([11]).

A spacelike curve in Lorentz-Minkowski plane can be parametrized ([6], [7], [9])

as

x(s) =

(∫ s

0
sinhΦ(s)ds,

∫ s

0
coshΦ(s)ds

)
(1)

with the Frenet vector fields

T (s) = (sinhΦ(s), coshΦ(s)) , N (s) = (coshΦ(s), sinhΦ(s)) (2)

and the curvature function

κ (s) = g

(
dT (s)

ds
,N (s)

)
= −dΦ (s)

ds
· (3)

The Frenet vectors fields satisfy the relations

dx

ds
= T,

dT

ds
= −κN,

dN

ds
= −κT. (4)

A timelike curve in Lorentz-Minkowski plane can be parametrized [6] respectively

as

x(s) =

(∫ s

0
coshΦ(s)ds,

∫ s

0
sinhΦ(s)ds

)
(5)

with the Frenet vector fields

T (s) = (coshΦ(s), sinhΦ(s)) , N (s) = (sinhΦ(s), coshΦ(s)) (6)

and the curvature function

κ (s) = g

(
dT (s)

ds
,N (s)

)
=

dΦ (s)

ds
· (7)

In this case the Frenet vectors fields satisfy the relations

dx

ds
= T,

dT

ds
= κN,

dN

ds
= κT. (8)

3. Spacelike Spirals in Lorentz-Minkowski Plane

In this section, we consider the spacelike Sturmian spirals and the generalized

spacelike Sturmian spirals by using the following relation

κ(s) =
σ

r
, r =

√
|g (x(s),x(s))|. (9)
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Let x is a spacelike curve and the position vector x be specified as

x (s) = ξ(s)T(s) + η(s)N(s) (10)

where ξ and η are differentiable functions of s. Differentiating (10) with respect

to s and using (4), we get

T = (ξ′ − ηκ)T+
(
η′ − ξκ

)
N. (11)

From (10) and (11), we have

ξ′ = 1 + ηκ, η′ = ξκ, κ =
σ

r
=

σ√
ε (ξ2 − η2)

(12)

where ε = ±1 is chosen so ε
(
ξ2 − η2

)
≥ 0.

By multiplying the first equation in (12) by ξ, the second one by η and summing

the so obtained expressions, we find

ξ = εrr′. (13)

Substituting back (13) into the second equation in (12) and integrating the so ob-

tained expression we end up with the formula

η = ε

∫
rκ (r) dr + c (14)

where c is the integration constant.

3.1. Spacelike Sturmian Spirals

By the very definition [15] of these curve, they have the property that at each point

their curvature radius R is equal to the distance r from the origin. Thus, κ is given

by the third equation in (12) and σ = 1.

From (13) and (14), we get

η = εr + c, r′ =
ε
√

(1 + ε) r2 + 2εcr + c2

r
· (15)

Now, we consider ε = 1 and ε = −1 cases separately.

i) Let ε = 1. Then we have

η = r + c, r′ =

√
2r2 + 2cr + c2

r
, c > 0. (16)
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It is convenient to perform the respective integration in (16) by switching to a new

independent variable t defined by

ds

dt
= r. (17)

This leads to the following results

ξ (t) =
c√
2
cosh
(√

2t
)
, η (t) =

c

2

(
sinh
(√

2t
)
+ 1
)

(18)

r (t) =
c

2

(
sinh
(√

2t
)
− 1
)
, Φ = −t.

By rewriting (10) in its components, we obtain the relations

x = ξ sinhΦ + η coshΦ, z = ξ coshΦ + η sinhΦ (19)

which combined with the above findings provide the sought parameterization of

the Sturmian spirals

x = − c√
2
cosh
(√

2t
)
sinh t+

c

2

(
sinh
(√

2t
)
+ 1
)
cosh t

(20)
z =

c√
2
cosh
(√

2t
)
cosh t− c

2

(
sinh
(√

2t
)
+ 1
)
sinh t.

ii) Let ε = 1 and c = 0. Then we have

ξ (s) = 2s+
√
2d, η (s) =

√
2s+ d, d ∈ R

(21)

r(s) =
√
2s+ d, Φ(s) = − 1√

2
ln
∣∣∣√2s+ d

∣∣∣ .
Thus, it can be easily obtained that

x =
(
2s+

√
2d
)
sinhΦ +

(√
2s+ d

)
coshΦ

(22)
z =
(
2s+

√
2d
)
coshΦ +

(√
2s+ d

)
sinhΦ.

iii) Let ε = −1. Then from (15) we get

η = −r + c, r′ =
−
√
c2 − 2cr

r
, c < 0. (23)

Exchanging as before the arc-length parameter with t via (17), we obtain

ξ (t) = ct, η (t) =
c

2

(
1 + t2
)
, r (t) =

c

2

(
1− t2
)

(24)
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where t ∈ (−∞,−1) ∪ (1,∞).

The integration of (3) leads to

Φ = −t (25)

which combined with (19) produces the parametrization

x = −ct sinh t+
c

2

(
1 + t2
)
cosh t

(26)
z = ct cosh t− c

2

(
1 + t2
)
sinh t.

Figure 1. The standard spacelike Sturmian spirals generated by (20) with

c = 1 (left), by (22) with d = 0 (middle) and by (26) with c = −1 (right).

3.2. Generalized Spacelike Sturmian Spirals

Forgetting about the restriction on the value of σ in previous section, one can con-

sider as well the other two obvious possibilities, σ > 1 and 0 < σ < 1 which have

to be viewed as a generalization of the spacelike Sturmian spirals.

Case 1. Let σ > 1. Then from (13) and (14), we get

ξ =
√
σ2
εr

2 + 2εσcr + c2, η = εσr + c, σε =
√
σ2 + ε (27)

and

r′ =
ε
√
σ2
εr

2 + 2εσcr + c2

r
· (28)

Now, let us consider again the cases ε = 1 and ε = −1 separately.
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i) Let ε = 1. Then we have

η = σr + c, c ∈ R. (29)

and

r′ =

√
σ2
+r

2 + 2σcr + c2

r
, σ+ =

√
σ2 + 1. (30)

Changing the parameter as in (17), we get

ξ (t) =
c

σ+
cosh (σ+t) , η (t) =

c

σ2
+

(σ sinh (σ+t) + 1)

(31)
r (t) =

c

σ2
+

(sinh (σ+t)− σ) , Φ = −σt.

Further on, by making use of formula (10) one finds easily the parametrization of

the generalized Sturmian spirals

x =

[
− c

σ+
cosh (σ+t)

]
sinh (σt) +

[
c

σ2
+

(σ sinh (σ+t) + 1)

]
cosh (σt)

(32)

z =

[
c

σ+
cosh (σ+t)

]
cosh (σt)−

[
c

σ2
+

(σ sinh (σ+t) + 1)

]
sinh (σt) .

ii) Let ε = −1. Then from (27) and (28), we get

ξ = −
√
σ2−r2 − 2σcr + c2, η = −σr + c, σ− =

√
σ2 − 1, c > 0 (33)

and

r′ = −

√
σ2−r2 − 2σcr + c2

r
· (34)

One easily concludes that the expression under the radical on the right-hand side

is positive provided that c > 0 and if r lies in the interval

c

σ + 1
< r <

c

σ − 1
· (35)

Passing to the t-parametrization (17), we find

ξ (t) = − c

σ
−

sinh (σ−t) , η (t) = − c

σ2−
(σ cosh (σ−t) + 1)

(36)
r (t) =

c

σ2−
(cosh (σ−t) + σ) , Φ = −σt.
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By using (36) in (10), we get the components of the Sturmian spirals

x =

[
c

σ−
sinh (σ−t)

]
sinh (σt)−

[
c

σ2−
(σ cosh (σ−t) + 1)

]
cosh (σt)

(37)

z =

[
− c

σ−
sinh (σ−t)

]
cosh (σt) +

[
c

σ2−
(σ cosh (σ−t) + 1)

]
sinh (σt) .

Case 2. Let σ > 1 and c = 0. Then from (27) and (28), we obtain

ξ = σεr, η = εσr, r′ = εσε. (38)

These lead further to the useful formulas

ξ (s) = εσ2
εs+ dσε, η (s) = σσεs+ dεσ, d ∈ R

(39)

r (s) = εσεs+ d, Φ(s) = −εσ

σε
ln |εσεs+ d| .

Inserting these results in (10) one finds the parametrization

x =
[
εσ2

εs+ dσε
]
sinhΦ + [σσεs+ dεσ] coshΦ

(40)
z =
[
εσ2

εs+ dσε
]
coshΦ + [σσεs+ dεσ] sinhΦ.

Figure 2. The generalized spacelike Sturmian spirals generated by (32) with

c = 1 and σ = 2 (left), by (37) with c = 1 and σ = 2 (middle), by (40) with

d = 0 and ε = 1 (right).

Case 3. Let 0 < σ < 1. This time via (27) and (28), we get

ξ =
√
σ2
εr

2 + 2εσcr + c2, η = εσr + c, c ∈ R (41)
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and

r′ =
ε
√
σ2
εr

2 + 2εσcr + c2

r
· (42)

As before we consider ε = 1 and ε = −1 cases separately.

i) Let ε = 1. Then we have

η = σr + c, r′ =

√
σ2
+r

2 + 2σcr + c2

r
. (43)

By going to the new independent variable t as in (17), we find

ξ (t) =
c

σ+
cosh (σ+t) , η (t) =

c

σ2
+

(σ sinh (σ+t) + 1)

(44)
r (t) =

c

σ2
+

(sinh (σ+t)− σ) , Φ = −σt.

Rewriting (10) in its components, we obtain the parametrization

x =

[
− c

σ+
cosh (σ+t)

]
sinh (σt) +

[
c

σ2
+

(σ sinh (σ+t) + 1)

]
cosh (σt)

(45)

z =

[
c

σ+
cosh (σ+t)

]
cosh (σt)−

[
c

σ2
+

(σ sinh (σ+t) + 1)

]
sinh (σt) .

ii) Let ε = −1. Then from (27) and (28), we get

η = −σr + c, r′ = −

√
σ2−r2 − 2σcr + c2

r
· (46)

One easily concludes that the expression under the radical on the right-hand side

is positive provided that

c > 0 and 0 < r <
c

σ + 1
· (47)

By the similar techniques used till now we obtain

ξ (t) =
c

ω
cos (ωt) , η (t) =

c

ω2
(1 + σ sin (ωt)) , ω =

√
1− σ2

(48)
r (t) =

c

ω2
(− sin (ωt) + σ) , t ∈

[
− π

2ω
,
π

2ω

]
, Φ = −σt.
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Substituting (44) in (10), we have

x =
[
− c

ω
cos (ωt)

]
sinh (σt) +

[ c
ω2

(1 + σ sin (ωt))
]
cosh (σt)

(49)
z =
[ c
ω
cos (ωt)

]
cosh (σt)−

[ c
ω2

(1 + σ sin (ωt))
]
sinh (σt) .

Case 4. Let 0 < σ < 1, c = 0 and ε = 1. Then we have

ξ (s) = σ2
+s+ dσ+, η (s) = σσ+s+ σd

r (s) = σ+s+ d, Φ(s) = − σ

σ+
ln |σ+s+ d| .

Considering the equations (10) and (48) together, we find the following

x =
[
σ2
+s+ dσ+

]
sinhΦ + [σσ+s+ σd] coshΦ

(50)
z =
[
σ2
+s+ dσ+

]
coshΦ + [σσ+s+ σd] sinhΦ.

Figure 3. The generalized spacelike Sturmian spirals generated by (45) with

c = 1, σ = 1
2 (left) by (49) with c = 1, σ = 1

2 (middle) and by (50) with

d = 1
2 and σ = 1

2 (right).

4. Timelike Sturmian Spirals in Lorentz-Minkowski Plane

In this section, we study the timelike Sturm spirals and the generalized timelike

Sturmian spirals by considering relations (9).

Let x be a timelike curve and the position vector x is presented in the form

x (s) = ξ(s)T(s) + η(s)N(s) (51)
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where ξ and η are differentiable functions of s.

Differentiating (51) with respect to s and using (8), we get

T = (ξ′ + ηκ)T+
(
η′ + ξκ

)
N. (52)

From (51) and (52), we have

ξ′ = 1− ηκ, η′ = −ξκ, κ =
σ

r
=

σ√
ε (η2 − ξ2)

(53)

where ε = ±1 and such that ε
(
η2 − ξ2

)
≥ 0.

Multiplying the first equation above by ξ, the second one by η and summing the so

obtained expressions we end up with the equation

ξ = −εrr′. (54)

Substituting back the relation (54) into the second equation of (53) and integrating

we have finally

η = ε

∫
rκ (r) dr + c (55)

where c is the integration constant.

4.1. Timelike Sturmian Spirals

From [15] these curves have the property that at each point their curvature radius

R is equal to the distance r from the origin. Thus, κ is given by the third formula

in (53) in which σ = 1. From (54) and (55) we have

η = εr + c , r′ =
−ε
√
(1− ε) r2 + 2εcr + c2

r
, c > 0 (56)

and let us consider again the cases ε = 1 and ε = −1 separately.

i) Let ε = 1. Then we have

η = r + c , r′ =
−
√
2cr + c2

r
· (57)

Using (17), we get the followings

ξ (t) = ct, η (t) =
c

2

(
t2 + 1
)
, r (t) =

c

2

(
t2 − 1
)
, Φ = t. (58)

By rewriting (51) in its components, we obtain the relations

x = ξ coshΦ + η sinhΦ, z = ξ sinhΦ + η coshΦ (59)
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which combined with the above findings leads to the parametrization of the Sturm

spirals

x = ct cosh t+
c

2

(
t2 + 1
)
sinh t, z = ct sinh t+

c

2

(
t2 + 1
)
cosh t. (60)

ii) Let ε = −1. Then from (56) we have directly

η = −r + c, r′ =

√
2r2 − 2cr + c2

r
, c > 0. (61)

Changing the parameter like in (17), leads to

ξ (t) =
c√
2
cosh
(√

2t
)
, η (t) =

c

2

(
1− sinh

(√
2t
))

(62)

r (t) =
c

2

(
1 + sinh

(√
2t
))

, Φ = t. (63)

By using (51), we get finally

x =
c√
2
cosh
(√

2t
)
cosh t+

c

2

(
1− sinh

(√
2t
))

sinh t

(64)
z =

c√
2
cosh
(√

2t
)
sinh t+

c

2

(
1− sinh

(√
2t
))

cosh t.

iii) Let ε = −1 and c = 0. Then we have

ξ (s) = 2s+
√
2d, η (s) = −

√
2s− d, d ∈ R

(65)

r(s) =
√
2s+ d, Φ(s) =

1√
2
ln
∣∣∣√2s+ d

∣∣∣ .
Thus, it can be easily obtained that

x =
(
2s+

√
2d
)
coshΦ +

(
−
√
2s− d

)
sinhΦ

(66)
z =
(
2s+

√
2d
)
sinhΦ +

(
−
√
2s− d

)
coshΦ.

4.2. Generalized Timelike Sturmian Spirals

Disregarding the restriction on the value of σ, one can consider as well the other

two obvious possibilities, σ > 1 and 0 < σ < 1 which have to be viewed as

generalizations of the timelike Sturmian spirals.
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Figure 4. The standard timelike Sturmian spirals generated by (60) with

c = 1 (left), (64) with c = 1 (middle) and (66) with d = 0 (right).

Case 5. Let σ > 1. Then from (54) and (55), we get

ξ =
√
(σ2 − ε) r2 + 2εσcr + c2, η = εσr + c (67)

and

r′ = −ε
√
σ2
εr

2 + 2εσcr + c2

r
· (68)

Let us consider the cases ε = 1 and ε = −1 separately.

i) Let ε = 1. Then we have

η = σr + c, r′ = −

√
σ2−r2 + 2σcr + c2

r
, c > 0. (69)

Using as independent variable t and (51), we find

ξ (t) = − c

σ−
sinh (σ−t) , η (t) =

c

σ2−
(σ cosh (σ−t)− 1)

(70)
r (t) =

c

σ2−
(cosh (σ−t)− σ) , Φ = σt.

If we rewrite (51) in its components, we get the parametrization

x =

[
− c

σ−
sinh (σ−t)

]
coshσt+

[
c

σ2−
(σ cosh (σ−t)− 1)

]
sinhσt

(71)

z =

[
− c

σ−
sinh (σ−t)

]
sinhσt+

[
c

σ2−
(σ cosh (σ−t)− 1)

]
coshσt.

ii) Let ε = −1. Then from (67) and (68), we get

ξ =
√
σ2
+r

2 − 2σcr + c2, η = −σr + c, c > 0 (72)
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and

r′ =

√
σ2
+r

2 − 2σcr + c2

r
· (73)

By a similar change of the parameter as in (17), we have

ξ (t) =
c

σ+
cosh (σ+t) , η (t) =

c

σ2
+

(1− σ sinh (σ+t))

(74)
r (t) =

c

σ2
+

(sinh (σ+t) + σ) , Φ = σt.

Relying on the equations (51) and (74) one gets at the end

x =

[
c

σ+
cosh (σ+t)

]
coshσt+

[
c

σ2
+

(1− σ sinh (σ+t))

]
sinhσt

(75)

z =

[
c

σ+
cosh (σ+t)

]
sinhσt+

[
c

σ2
+

(1− σ sinh (σ+t))

]
coshσt.

Case 6. Let σ > 1 and c = 0. Then from (67) and (68), we obtain

ξ =
√
σ2 − εr, η = εσr, r′ = −ε

√
σ2 − ε. (76)

It can be easily obtained that

ξ (s) = −ε
(
σ2 − ε

)
s+ d
√
σ2 − ε, η (s) = −σ

√
σ2 − εs+ dεσ

r (s) = −ε
√
σ2 − εs+ d, Φ(s) =

−εσ√
σ2 − ε

ln
∣∣∣−ε
√
σ2 − εs+ d

∣∣∣ .
Thus, we have

x =
(
−ε

(
σ2 − ε

)
s+ d

√
σ2 − ε

)
coshΦ +

(
−σ

√
σ2 − εs+ dεσ

)
sinhΦ

(77)
z =

(
−ε

(
σ2 − ε

)
s+ d

√
σ2 − ε

)
sinhΦ +

(
−σ

√
σ2 − εs+ dεσ

)
coshΦ.

Case 7. Let 0 < σ < 1. Then via (67) and (68), we get

ξ =
√
(σ2 − ε) r2 + 2εσcr + c2, η = εσr + c (78)

and

r′ =
−ε
√
(σ2 − ε) r2 + 2εσcr + c2

r
· (79)
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Figure 5. The generalized timelike Sturmian spirals generated by (71) with

c = 1, σ = 2 (left), by (75) with c = 1, σ = 2 (middle), and via (77) with

d = 0, ε = 1 and σ = 2 (right).

Now, we consider ε = 1 or ε = −1 separately.

i) Let ε = 1. Then we have

η = σr + c , r′ =
−
√
(σ2 − 1) r2 + 2σcr + c2

r
· (80)

One easily concludes that the expression under the radical on the right-hand side

is positive provided that

c > 0 and 0 < r < − c

σ + 1
·

Using new independent variable, we find

ξ (t) =
c

ω
cosh (ωt) , η (t) =

c

ω2
(−σ sinh (ωt) + 1)

(81)
r (t) =

c

ω2
(− sinh (ωt) + σ) , Φ = σt

This time equations (51) and (81) give rise to

x =
[ c
ω
cosh (ωt)

]
coshσt+

[ c
ω2

(−σ sinh (ωt) + 1)
]
sinhσt

(82)
z =
[ c
ω
cosh (ωt)

]
sinhσt+

[ c
ω2

(−σ sinh (ωt) + 1)
]
coshσt.

ii) Let ε = −1. Then from (67) and (68), we get

η = −σr + c, r′ =

√
σ2
+r

2 − 2σcr + c2

r
c > 0. (83)
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By using as independent variable t defined in (17), we find immediately

ξ (t) =
c

σ+
cos (σ+t) , η (t) =

c

σ2
+

(1− σ sin (σ+t))

(84)
r (t) =

c

σ2
+

(sin (σ+t) + σ) , Φ = σt, t ∈ [− π

2σ+
,

π

2σ+
].

From (51) and (84), we reach the equations below

x =

[
c

σ+
cos (σ+t)

]
coshσt+

[
c

σ2
+

(1− σ sin (σ+t))

]
sinhσt

(85)

z =

[
c

σ+
cos (σ+t)

]
sinhσt+

[
c

σ2
+

(1− σ sin (σ+t))

]
coshσt.

Figure 6. The generalized timelike Sturmian spirals generated by (82) with

c = 1, σ = 1
2 (left), and (85) with c = 1, σ = 1

2 (right).

Case 8. Let 0 < σ < 1, c = 0 and ε = −1. Then we get

ξ (s) = σ2
+s+ dσ+, η (s) = −σσ+s− σd

r (s) = σ+s+ d, Φ(s) =
σ

σ+
ln |σ+s+ d| .

By rewriting (51) in its components, we get

x =
[(
σ2
+

)
s+ dσ+

]
coshΦ + [−σσ+s− σd] sinhΦ

(86)
z =
[(
σ2
+

)
s+ dσ+

]
sinhΦ + [−σσ+s− σd] coshΦ.
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Figure 7. The generalized timelike Sturmian spirals generated by (86) with

d = 2 and σ = 1
2 (left), with d = 0 and σ = 1

4 (right).

5. Conclusion

In [3], Mladenov et al have studied Sturmian spirals, planar curves whose curva-

ture functions obey to the relation κ(s) = σ
r , where r ∈ R

+ is the distance from the

origin in the Euclidean plane E
2. By drawing inspiration from this work, here we

consider spacelike and timelike Sturmian spirals in the Lorentz-Minkowski plane

E
2
1. More precisely we obtain the parametric equations of spacelike and time-

like Sturmian spirals, generalized spacelike and timelike Sturmian spirals in the

Lorentz-Minkowski plane. We present many figures of these curves and the graph-

ics are realized using Mathematica. Further, we believe that the results in this

paper suggest that other curves like Serret’s curves, Bernoulli’s Lemniscate and

the plane curves whose curvatures depend on the distance from some axis in the

Lorentz-Minkowski plane E
2
1 deserve to be studied as well. Work in this direction

is in progress and will be reported elsewhere.
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