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Abstract. We pose a variant of the classical minimum surface problem inspired

by a simple experiment with soap films: to find the surface of least area containing

a cavity of given perimeter. We show that the equilibrium surface is governed by

a system of two equations one of which is the zero mean curvature condition. The

other equation states that the curvature of the cavity’s contour is constant and that

its principal normal lies in the plane tangential to the surface. A gradient descent

simulation confirms the analytical equilibrium conditions and yields configurations

qualitatively consistent with experiment.

1. Introduction

Soap films have for centuries been a source of beautiful mathematical problems.

The mathematical problem discussed here is a variant of the classical minimal sur-

face problem: Given a curved contour Γ in three dimensions and a positive number

L, find a surface of least area that spans Γ and contains a cavity of perimeter L.

This problem is inspired by the soap film experiment in which a curved wire loop

is dipped in a soap solution. A closed loop thread is then placed inside the soap

film and the film on the interior of the thread is punctured. The system then relaxes

to the equilibrium configuration seen in Fig. 1.

Fluid film experiments, in which the film stays intact, can only expose the net nor-
mal effect of surface tension. In order to observe the influence of surface tension

more directly, one must expose the edge of the fluid film and let it deform due to

surface tension. The described experiment does just that and thereby gives greater

insight into the pointwise nature of surface tension.

Thin films have long been at the center of attention for many theorists, experimen-

talists and engineers. In recent decades, the number of unexpected and unexplained

phenomena has actually grown and this has been reflected in the volume of publica-

tions in leading scientific journals. There is little doubt that this trend will continue.

Many new problems arise from cutting edge experiments enabled by modern tools

such as high speed cameras. Remarkably, simple and inexpensive experiments
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Figure 1. Equilibrium configuration. Equations (13) and (14) shows that the

contour boundary has constant geodesic curvature k.

can also produce striking and novel effects. The experiment that gave rise to our

problem was inspired by [1] and [15]. The possibility of simple experiments is

a fortuitous circumstance given the remarkable importance of thin films and their

unique physical properties. For classical reviews of fluid films see [6], [3].

Many aspects of fluid film behavior continue to be actively researched. Static

and quasi-static effects include variation in thickness, concentration of surfactants.

Foams and smectic films are receiving a great deal of attention [26]. Dynamic

effects are significantly richer, and include changes in thickness [22], turbulence

[16], [9], [24], [20], tremendous variations in thickness [9], [24], [22], [23] the

Marangoni effect [25], draining and reverse draining [21], ejection of droplets [5],

rupture [4], self-adaptation [2], and chaotic behavior [8]. It has been shown that

surface tension can be controlled by the nanostructure properties of materials [7].

Fluid films also present an interface between two gases. When the volume of

the surrounding gas is large, the inertia of the fluid film is not essential to the

dynamics. These situations, where the film’s main role is providing the force of

surface tension, are relatively well understood and can be modeled realistically by

modern numerical methods. When the mass of the fluid film is comparable to that

of the ambient gas, as in the case of small soap bubbles, the inertia of the fluid

film plays a major role. The authors of [17] report the break down of Rayleigh’s

classical formula (extended by Love to include the effect of the surrounding gas

[18, pp 473-475]) for the oscillation of liquid drops under the influence of surface

tension. Novel theoretical modeling is required to capture these effects.

Surface tension still remains to be one of the most intriguing classical forces. Un-

der Laplace’s model, in which the total energy is proportional to the surface area

of the fluid film, the force of the surface tension acts in the plane tangential to
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the surface of the fluid film. Yet the net force acting upon a small patch points in

the normal direction. For a static, but not necessarily equilibrium, fluid film, this

follows from the formula ∫
Γ
n dΓ =

∫
S
κN dS (1)

valid for any patch of the fluid film S with boundary Γ, where κ is mean curvature,

N is the normal to the surface and n is the normal to the contour within the film’s

tangent plane as can be seen in Fig. 2.

Figure 2. Geometric elements: N is the normal to the surface, P is the

principal normal, n is the contour normal that lies within the tangent plane to

the surface.

For a moving fluid film, the same conclusion follows from the recently formulated

dynamic equations [10], [14]

∇̇ρ+∇α (ρV
α) = ρCBα

α

ρ
(
∇̇C + 2V α∇αC +BαβV

αV β
)
= −pBα

α (2)

ρ
(
∇̇V α + V β∇βV

α − C∇αC − CV βBα
β

)
= −∇αp

where ρ is the two-dimensional density of the film (that is, in essence, its thick-

ness), C and V α are the normal and the tangential velocities of the fluid film, ∇α

is the covariant surface derivative, ∇̇ is the invariant time derivative [14] and p
is the pressure associated with surface tension. The pressure p is negative since,

given an elementary patch of the fluid film, the effect of surface tension is to pull

it apart. The first equation in (2) is mass conservation, the second governs normal
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acceleration, while the third governs the tangential acceleration. Under Laplace’s

model of surface tension, p is constant

p = −σ (3)

where σ is surface tension density. Therefore the right hand sides in equations

(2) become −κσ/ρ and 0 respectively, indicating that the net surface tension force

points in the normal direction.

The dynamic equations proposed in [10], [11] and extended in [12] to include

viscosity and interaction with the ambient fluid, can be applied to more general

models of surface tension that include arbitrary dependence on thickness as well

as other parameters, such as curvature. An analysis of small oscillations of soap

bubbles based on the dynamic equations proposed in [12] was given in [13] and

included more general models of surface tension. The derived dispersion relation-

ship can explain the discrepancy between the observed oscillation frequencies [17]

and the Rayleigh’s classical formula that ignores the inertia of the interface.

A deeper understanding of surface tension is all the more relevant since the Laplace

model is insufficient in describing a number of fundamental effects associated with

fluid films. Most notably, the Laplace model does not explain the variations in the

thickness of the fluid film. For a static equilibrium fluid film configuration, the

Laplace model implies κ = 0 but allows arbitrary distribution of thickness, incon-

sistent with everyday observations. For an evolving fluid film, the Laplace model

does not provide a restoring force to a thickness disturbance and can therefore not

explain the observed peristaltic density waves.

2. Equations of Equilibrium

Let Ṽ be the virtual velocities of the points along the cavity’s boundary. Decom-

pose

Ṽ = ṼΓ + ṼP + ṼT (4)

where ṼΓ is the velocity along the boundary, ṼP is the component along the

principal normal P and ṼT is the component along the torsion vector T. Let C be

the virtual velocity of the points on the surface in the direction of the normal N.

Then the variation δS of area S reads

δS = −
∫
S
CκdS +

∫
Γ

(
ṼP + ṼT

)
· n dΓ (5)

where κ is the mean curvature of the surface.
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Let κ̃ denote the curvature of the cavity’s boundary. The constant length constraints

is characterized by the equation

d ṼΓ

d s
− κ̃ṼP = 0 (6)

where s is the contour’s arc length. Thus, δS can be written as

δS = −
∫
S
CκdS +

∫
Γ

(
1

κ̃

d ṼΓ

d s
P+ ṼT

)
· n dΓ. (7)

An integration by parts yields

δS = −
∫
S
CκdS +

∫
Γ

(
−ṼΓ

d

d s

(
P · n
κ̃

)
+ ṼT · n

)
dΓ. (8)

Therefore, the equilibrium is characterized by the three equations

κ = 0, T · n = 0, P · n = λκ̃ (9)

where λ is a constant of integration. The first equation in (9) is the familiar condi-

tion of vanishing mean curvature. As shown in Figure 2, the remaining equations

indicate that the principal curvature P is colinear with the tangent normal n and

that the curvature κ̃ of the contour boundary is constant:

P = n, κ̃ = const (10)

From (10) we can infer a condition on the geodesic curvature k of the countour

boundary. Note that the following equation is satisfied by a general minimal sur-

face (κ = 0):

κ̃P = (n ·Bn)N+ kn (11)

where B is the full curvature tensor of the surface (its trace is κ and therefore

0). The quantity κ̃P is known as the curvature normal. From equation (11) we

conclude that along the contour boundary, the surface curvature tensor B satisfies

n ·Bn = 0. (12)

Furthermore, the geodesic curvature k is constant (and matches the contour’s cur-

vature κ̃)

k = κ̃. (13)

In summary, equation (10), the highlight of our analysis, can be expressed by the

single equation

κ̃P = αn (14)

where α is constant. In words, the curvature normal κ̃P of the equilibrium contour
boundary has constant length and lies within the tangent plane of the minimal
surface.



64 Alex Benjamin, Rishon Benjamin and Pavel Grinfeld

3. Numerical simulation

The equilibrium equation (14) is deeply nonlinear and unlikely to yield analytical

solutions. On the other hand, stable equilibrium configurations can be discov-

ered numerically by implementing a gradient descent scheme that preserves the

perimeter of the cavity. We represented the surface by a triangulated mesh with

3920 nodes and 7580 elements. We initially tessellated a circle with a cavity of di-

ameter of about one quarter of the circle. Subsequently, we deformed the boundary

according to the equation 0.15 cos 2θ which is consistent with the deformation in

Figure 1. For the initial configuration we adopted the shape 0.15
(
x2 − y2

)
which

matches the boundary deformation and is relatively close to the minimal configu-

ration. The results of the gradient descent scheme can be seen in Fig. 3.

Figure 3. A gradient descent simulation of the equilibrium configuration.

The figure illustrates the curvature normal field κP. It is evident that it is of

constant magnitude and points along the tangent normal n.

4. Conclusions

We have derived the governing equations for a minimal surface with a cavity of

given perimeter. The necessary equations include the familiar zero mean curvature

condition as well as a novel equation along the contour boundary of the cavity.

The contour equation states that the curvature normal has constant length and is

tangential to the surface. The outstanding questions include the stability of the

equilibrium configuration and the extension of the equilibrium contour conditions

to dynamics.

We would like to conclude with an important technical point. Our analysis assumed

that the shape of the contour boundary is smooth. This assumption is consistent

with the experimental observation but it is not always compatible with analysis

based on the shape optimization approach. As was demonstrated in monograph

[19], the boundary of the optimal shape is often not smooth but fractal. This aspect

undoubtedly deserves further analysis.
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