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Abstract. We determine surfaces of genus zero in four-dimensional hyperkähler

manifolds whose twistor lifts are harmonic sections. As corollary, we prove that a

surface of genus zero in four-dimensional Euclidean space is twistor holomorphic

if its twistor lift is harmonic section.

1. Introduction

The twistor lifts play an important role and have been studied for oriented sur-

faces in oriented four-dimensional Riemannian manifolds by many researchers.

For examples, in [2], it is proved that any oriented surface admits a conformal,

superminimal immersion into the four-dimensional sphere. The twistor space is

endowed with an almost complex structure, which is integrable when the base

manifold is self-dual (see [1]). Surfaces with holomorphic twistor lifts are called

twistor holomorphic surfaces (see [6]). The surfaces whose twistor lifts are har-

monic sections have been studied in [8] and [9]. If the ambient spaces are self-dual

Einstein, the twistor lifts of twistor holomorphic surfaces are harmonic sections.

Note that recently surfaces whose twistor lifts are harmonic sections have been

studied from the view point of the integrable systems in [3] and [11].

In this paper, we announce results for surfaces of genus zero in four-dimensional

hyperkähler manifolds whose twistor lifts are harmonic sections. If certain condi-

tions for the curvature tensors are satisfied and the twistor lift is a harmonic sec-

tion, then the mean curvature vector field is a holomorphic section of the normal

bundle with respect to the Koszul-Malgarange holomorphic structure (see [3], [8]

and [9]). In general, holomorphic sections are not parallel. It is well-known that a

compact constant mean curvature surface of genus zero immersed in R3 is totally

umbilic, which is proved by Hopf in 1951. This theorem has been generalized

in various settings, like higher codimension cases (see [4]). In these generaliza-

tions results, the mean curvature vector field is assumed to be parallel with respect
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to the normal connection. If the mean curvature vector field is parallel, then the

surface is totally umbilic using our result (see for example [4]). Thus our main

theorem is a generalization of the Hopf’s theorem to surfaces with holomorphic

mean curvature vector fields. Moreover, we can also show that a Lagrangian sur-

face of genus zero in complex Euclidean plane with conformal Maslov form is the

Whitney sphere (see [5]).

2. Harmonic Sections

Throughout this paper, all manifolds and maps are assumed to be smooth. Let

E be a vector bundle over a manifold M and Ex the fiber of E over x ∈ M .

We write TP for the tangent bundle of a manifold P . For vector bundles E, E ′

over M , we denote the homomorphism bundle whose fiber is the space of linear

mappings Ex to E′
x by Hom(E, E′), and set End(E) := Hom(E, E). The space

of all sections of a vector bundle E is denoted by Γ(E). Let ϕ : N → M be a

smooth map and E a vector bundle over M . The pull back bundle of E by ϕ is

denoted by ϕ#E.

In this section, we summarize the fundamental formulae for sections of the sphere

bundles. Let E be a Riemannian vector bundle with a fiber metric gE and a

metric connection ∇E over an n-dimensional Riemannian manifold (M, g). Let

KE : TE → E be the connection map with respect to ∇E . The canonical metric

G on E is defined by

G(ζ, ζ) = g(p∗(ζ), p∗(ζ)) + gE(KE(ζ), KE(ζ))

for ζ ∈ TE, where p : E → M is the bundle projection. We note that the

projection p : (E, G) → (M, g) is a Riemannian submersion with totally geodesic

fibers. We call kerp∗ (respectively kerKE) the vertical (respectively horizontal)

subbundle of TE. Set UE(= U(E)) := {u ∈ E ; gE(u, u) = 1}. The set of all

sections ξ ∈ Γ(E) such that ξ(M) ⊂ UE is denoted by Γ(UE). We define H∇E

by

H∇E

(X, Y )ξ := −∇E
X∇E

Y ξ + ∇E
∇XY ξ

for X , Y ∈ Γ(TM) and ξ ∈ Γ(E). The rough Laplacian Δ̄∇E

of ∇E is defined

by

Δ̄∇E

(ξ) =
n∑

i=1

H∇E

(ei, ei)(ξ) = −
n∑

i=1

(∇E
ei
∇E

ei
ξ −∇E

∇ei
ei

ξ)

for ξ ∈ Γ(E), where e1, . . . , en is an orthonormal frame of (M, g). We assume

that M is compact. Let e be the energy functional defined on the space of all
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smooth maps from M to UE. For a section ξ ∈ Γ(UE), the energy e(ξ) is given

by

e(ξ) =
n

2
vol((M, g)) +

1

2

∫
M

‖∇Eξ‖2dv (1)

where dv denotes the Riemannian measure of (M, g) and vol((M, g)) is the vol-

ume of (M, g). We say that ξ ∈ Γ(UE) is a harmonic section if ξ is a stationary

point of e|Γ(UE). The second term of the right hand side in (1) is called the vertical
energy of ξ ∈ Γ(UE). In our restricted variational problem, the vertical energy is

important. Obviously, if a section is a harmonic map in the usual sense, then it is

a harmonic section. A section ξ ∈ Γ(UE) is a harmonic section if and only if the

equation

Δ̄∇E

(ξ) = ‖∇Eξ‖2ξ

holds (see [15]).

3. Twistor Spaces and Twistor Lifts for Surfaces

Let (M̃, g̃) be an oriented four-dimensional Riemannian manifold. The Hodge

star operator is denoted by ∗. Since ∗2 = id for all two-forms, the bundle Λ2(M̃)
of all two-forms on M̃ is decomposed into

Λ2(M̃) = Λ2
+(M̃) ⊕ Λ2

−(M̃)

where Λ2
±(M̃) = {ω ∈ Λ2(M̃) ; ∗ω = ±ω}. Using the metrics, we can identify

Λ2
−(M̃) with a vector subbundle Q of End(TM̃). A section J ∈ Γ(UQ) satisfies

J2 = −I , g̃(JX, JY ) = g̃(X, Y ) for all X , Y ∈ TM̃ and – ΩJ ∧ ΩJ = dμ,
where ΩJ is the fundamental form of J and dμ is the volume form of M̃ compat-

ible with the orientation. Note that Q is a parallel subbundle in End(T M̃) with

respect to the connection which is induced by the Levi-Civita connection ∇̃ of M̃ .

We use the same letter ∇̃ for the induced connection. The twistor space Z over

M̃ is the unit sphere bundle UQ of Q. The bundle projection p : Z → M̃ and the

connection ∇̃ induce the decomposition

TZ = T hZ ⊕ T vZ

into the horizontal subbundle T hZ and the vertical subbundle T vZ. On Z, a

natural almost complex structure JZ is defined by JZ(X) = (J(p∗(X)))h
J for all

horizontal vectors X at J ∈ Z and JZ(V ) = Jv(V ) for all vertical vectors V ,
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where ( · )h stands for the horizontal lift and Jv is the canonical complex structure

on each fiber (� the two-dimensional unit sphere). Let R̃ be the curvature tensor

of g̃. The curvature tensor R̃ induces the endomorphism R̂ of Λ2(M̃). It is well-

known that R̂ can be decomposed into

R̂ = W+ + W− + N +
τ

6
id

where W+ (respectively W−) is the self-dual (respectively anti-self-dual) part of

the Weyl curvature tensor, N represents the traceless Ricci part and τ is the scalar

curvature. If W− = 0, then M̃ is called a self-dual manifold. The almost complex

structure JZ on the twistor space is integrable if and only if W− = 0 (see [1]).

If the Ricci tensor is proportional to the Riemannian metric, then M̃ is called an

Einstein manifold.

Let f : (M, g) → (M̃, g̃) be an isometric immersion from an oriented sur-

face (M, g) into an oriented four-dimensional Riemannian manifold (M̃, g̃). The

Levi-Civita connection of g is denoted by ∇. Let T⊥M be the normal bundle of

f and ∇⊥ the normal connection of T⊥M . We say that an orthonormal frame

e1, e2, e3, e4 of f#(TM̃) is adapted if

1) e1, e2, e3, e4 is compatible with the orientation of M̃

2) e1, e2 is compatible with the orientation of M

3) e3, e4 are normal to M .

Using an adapted frame, we define J : TM → TM by J(e1) = e2 and J(e2) =
−e1, and J⊥ : T⊥M → T⊥M by J⊥(e3) = −e4 and J⊥(e4) = e3. It is evident

that ∇J = 0 and ∇⊥J⊥ = 0. We set

J̃(X) := J(X) and J̃(ζ) := J⊥(ζ)

for X ∈ TM and ζ ∈ T⊥M . Then J̃ is a section of U(f#Q)(= f#(Z)) and

J̃ is called the twistor lift of M . Hereafter, we often omit the symbol “f” for the

induced objects of the immersion f if there is no confusion for the sake of simplic-

ity. For example, we use the same letter ∇̃ for the pull back connection f#∇̃ by f .

We say that M is a superminimal surface if the twistor lift is a horizontal map, that

is, ∇̃J̃ = 0. If J̃∗ ◦J = JZ ◦ J̃∗ (precisely, (f# ◦ J̃)∗ ◦J = JZ ◦ (f# ◦ J̃)∗, where

f# : U(f#Q) → UQ is the bundle map), then M is called a twistor holomorphic
surface. Let α (respectively H) be the second fundamental form (respectively the
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mean curvature vector field) of M . We define a T⊥M -valued symmetric tensor

B by

B(X, Y ) = α(X, JY ) − J⊥α(X, Y ) + J⊥α(JX, JY ) + α(JX, Y )

for all X, Y ∈ TM . We see that M is twistor holomorphic if and only if B = 0
(see [8]). Note that a surface is superminimal if and only if it is minimal and

twistor holomorphic (see [6]).

4. Surfaces Whose Twistor Lifts are Harmonic Sections

Let f : (M, g) → (M̃, g̃) be an isometric immersion from an oriented surfaces

(M, g) into an oriented four-dimensional Riemannian manifold (M̃, g̃). For β ∈
Γ(Hom(TM ⊗ TM, T⊥M)), we define ∇′β by

(∇′
Xβ)(Y, Z) = ∇⊥

Xβ(Y, Z) − β(∇XY, Z) − β(Y,∇XZ)

for all X , Y , Z ∈ Γ(TM). A T⊥M -valued one-form δβ is defined by

(δβ)(X) = −
2∑

i=1

(∇′
ui

β)(ui, X)

for all X ∈ TM , where u1, u2 is an orthonormal frame of M . In [8], we have

proved that the twistor lift J̃ is a harmonic section if and only if the equation

(δα)(JX) = J⊥(δα)(X)

holds for all X ∈ TM . Obviously, the twistor lift of a superminimal surface is a

harmonic section. In [9], we have proved

Theorem 1. Let M be an oriented surface in a self-dual Einstein manifold. Then
the following statements are mutually equivalent:

1) The twistor lift J̃ is a harmonic section

2) The mean curvature vector H satisfies ∇⊥
JXH =J⊥∇⊥

XH for all X∈ TM

3) δB = 0.

Typical examples of self-dual Einstein manifolds are four-dimensional sphere S4,

the projective plane CP2 and a K3-surface with an Einstein-Kähler metric relative

to the opposite orientation of the canonical one. Let M̃ be a four-dimensional
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hyperkähler manifold which hyperkähler structure is generated by I1, I2 and I3.

If an orientation of M̃ is given by

−
3∑

i=1

ΩIi
∧ ΩIi

then we have I1, I2, I3 ∈ Γ(Z), where ΩIi
is the two form defined by ΩIi

(X, Y ) =
g̃(IiX, Y ) for X , Y ∈ TM (i = 1, 2, 3). We note that M̃ is a self-dual Einstein

(in fact, Ricci flat) manifold with respect to this orientation. The twistor space Z
of M̃ is M̃ × S2(1). Let p̂ : Z → S2(1) be the projection. We define the normal

curvature K⊥ by K⊥ = g̃(R⊥
e1,e2

e4, e3), where e1, e2, e3, e4 is an adapted frame

and R⊥ is the curvature of the normal connection. The Euler characteristic of

T⊥M is denoted by χ(T⊥M). We have the following theorem.

Theorem 2. Let M̃ be a four-dimensional hyperkähler manifold and M an ori-
ented, connected, compact surface in M̃ . If the twistor lift of M is a harmonic
section and the genus of M is zero, then we have

1) M is a non-superminimal minimal surface when χ(T⊥M) ≥ 4

2) M is a superminimal surface when χ(T⊥M) = 2

3) M is a non-superminimal twistor holomorphic surface when χ(T⊥M)≤0.

Note that χ(T⊥M) is an even integer if M̃ is a hyperkähler manifold. For example

this is true (see [12] and [13]) for minimal surfaces in hyperkähler manifolds, in

particular, for K3 surfaces with the hyperkähler metric. In the case where M̃ does

not admit any compact minimal surfaces, for example M̃ = R4, we can obtain

the following corollary immediately.

Corollary 3. Let M be an oriented, compact, connected surface of genus zero in
R4. If the twistor lift of M is a harmonic section, then M is a non-superminimal
twistor holomorphic surface.

In general, the holomorphic mean curvature vector field is not parallel. In the

case where the mean curvature vector is parallel, using Corollary 3, we have the

following corollary (see e.g. [4]).

Corollary 4. Let M be an oriented, connected, compact surface of genus zero
in R4. If the mean curvature vector field is parallel with respect to the normal
connection, then M is totally umbilic.
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It is easy to obtain the Hopf’s theorem for a constant mean curvature surface of

genus zero in R3 using by Corollary 4. In fact, by considering the totally geodesic

immersion from R3 to R4, the constant mean curvature surface can be seen as

immersed surface in R4 with parallel mean curvature vector field. Thus our main

theorem is a generalization of the Hopf theorem.

To compare Corollaries 3 and 4, we recall the Grassmannian manifold and the

Gauss map. Let G4,2
o be the Grassmannian manifold of all oriented two-planes in

R4. As a manifold G4,2
o is isomorphic to S2

+(1) × S2
−(1), where S2

±(1) are the

unit spheres in the three-dimensional vector spaces of all self-dual and anti-self-

dual two-forms, respectively. Let p± : G4,2
o (∼= S2

+(1) × S2
−(1)) → S2

±(1) be the

projection onto each factor in the product. On the other hand, the twistor space

Z of R4 is R4 × S2(1). The projection from Z onto S2(1) is denoted by p̂. The

map f# ◦ J̃ can be identified with the map M � x �→ ω1 ∧ ω2 − ω3 ∧ ω4, where

ω1, . . . , ω4 is the dual basis of an adapted basis e1, . . . , e4 at each point x ∈ M .

Then we have

p̂ ◦ J̃ = p− ◦ ϕ

where ϕ : M → G4,2
o is the Gauss map of M in R4. Therefore, if the twistor

lift of M in R4 is a harmonic section, then a part of the Gauss map is harmonic.

On the other hand, surfaces in Euclidean space whose (e) Gauss map is harmonic

have parallel mean curvature vector fields (see [14]).

Finally, we give an application to a Lagrangian surface in C2(∼= R4). Let (M̃, g̃, φ)
be a four-dimensional Kähler manifold with the complex structure φ and denote

the Kähler form of M by Ω. If a surface M in M̃ is Lagrangian, that is, φ(TM) =
T⊥M , then we define the Maslov form ω on M by ω(X) = (1/π)Ω(X, φH) for

all X ∈ Γ(TM). For a Lagrangian surface M , the Maslov form on M is said to

be conformal if the tangent vector φH is a conformal vector field (see [5]). Define

an immersion w : S2(1) → C2 by

w(x, y, z) =
1

1 + z2
(x(1 +

√−1z), y(1 +
√−1z)).

The immersion w is called the Whitney immersion or the Whitney sphere, which

is a Lagrangian immersion. Since the Whitney immersion is twistor holomorphic,

it is a Willmore surface, that is, it is a stationary point for the Willmore functional.

More details on these subjects can be found in [7]. By using Corollary 3, we have

the following fact which is proved in [5].

Corollary 5. Let M be an oriented, connected, compact, Lagrangian surface of
genus zero in C2. If the Maslov form on M is conformal, then M is congruent to
the Whitney immersion.
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