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POLYNOMIALS WITH POLAR DERIVATIVES

ABDULLAH MIR, AJAZ WANI

Abstract: In this paper, we present an integral inequality for the polar derivative of polynomials.
Our theorem includes as special cases several interesting generalizations of some Zygmund type
inequalities for polynomials.
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1. Introduction

Let P, be the class of polynomials of degree n and we define D, P(z) = nP(z) +
(o — 2)P'(z), the polar derivative of the polynomial P(z) with respect to the
point «. The polynomial D, P(z) is of degree at most n — 1 and it generalizes the
ordinary derivative in the sense that
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Various results have been obtained for polar derivatives of polynomials. Aziz
and Rather [1] proved that, if P € P, and P(z) # 0 in |z| < 1, then for every
complex number « with |a] > 1 and r > 1,
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2. Main results

In this paper, we generalize the above result for » > 0. The above inequality will
be a consequence from the more fundamental inequality presented by the following
theorem:

Theorem. If P € P, and P(z) # 0 in |z| < 1, then for every complex numbers
a, B with |a] = 1,|8| <1 and r > 0,
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where C, is defined by (1.2).

Remark. If we put S = 0, in the above result, we get (1.1) extended to the case
€ (0,00). Dividing the two sides of (2.1) by || and letting |a] — oo, we get the

following result.
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Corollary. If P € P, and P(z) # 0 in |z| < 1, then for every complex number

with |8] < 1 and r > 0,
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where Cy is defined by (1.2).
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The above inequality generalizes some inequalities obtained by De-Bruijn [3]
as well as Rahman and Schmeisser [5].

3. Lemmas

For the proof of the Theorem, we need the following lemmas:

Lemma 1. If Q € P, be a polynomial such that Q(z) # 0 for |z| > 1 and
P e P,. If |P(z)| < |Q(2)| for |z| = 1, then for all complex numbers o, with
lal > 1,18/ < 1,

2DoP(2) + ﬂ(o" >P(z) )Q(z)

The above lemma is due to Liman, Mohapatra and Shah [4].
Lemma 2. If P € P, and Q(z) = z"P(l/E then for every r > 0 and =y real,
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The above lemma is due to Aziz and Rather [2].
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4. Proof of the Theorem

Since P € P, and P(z) # 0 in |z| < 1, the polynomial Q(z) = 2"P(1/z) € P,
and Q(z) # 0 in |z] > 1. By Lemma 1, we have for complex numbers «a, § with

lof > 1,]8] <1
2D P(2) + B<M|_1>P@)

ol =

, for |z|=1.

(4.1)
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Now for every real v and t > 1, it can be easily verified that [t + e?| > |1 + €%7|.
Observe that for any r > 0 and a, b € C such that |b| > |a| we have
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Indeed, if a = 0 the above inequality (4.2) is obvious. In the case of a # 0 we get
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Now, we can take

a=e?D,P(e) +np (M;)P(ew), b=¢"D,Q(e) + nﬁ(%) Q(e),
because |b| > |a| from (4.1), we get from (4.2) that
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Integrating both sides of (4.3) with respect to 6 from 0 to 27, we get
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As Q(z) = 2" P(1/%z), we have P(z) = z"Q(1/Z). It can be easily verified that for
0<6<2m,

nP(e?) — e P'(eif) = ei(n—l)GW’
and
nQ(e?) — Q' () = ei(nq)em'
Hence
nP(e®) + e"nQ(e") = e P'(et?) + ei(n—l)em
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Using (4.5) and (4.6), we have for 0 < 8 < 27, |a| = 1, || < 1, and ~ real,
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This gives with the help of Lemma 2 for each » > 0 and ~y real,
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From (4.4) we have for every «, f with || > 1, |8] <1, and r > 0,
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which is equivalent to (2.1).
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