POLYNOMIALS WITH POLAR DERIVATIVES

ABDULLAH MIR, AJAZ WANI

Abstract: In this paper, we present an integral inequality for the polar derivative of polynomials. Our theorem includes as special cases several interesting generalizations of some Zygmund type inequalities for polynomials.

Keywords: polar derivative, Zygmund inequality.

1. Introduction

Let P_n be the class of polynomials of degree n and we define $D_{\alpha}P(z) = nP(z) + (\alpha - z)P'(z)$, the polar derivative of the polynomial P(z) with respect to the point α . The polynomial $D_{\alpha}P(z)$ is of degree at most n-1 and it generalizes the ordinary derivative in the sense that

$$\lim_{\alpha \to \infty} \frac{D_{\alpha} P(z)}{\alpha} = P'(z).$$

Various results have been obtained for polar derivatives of polynomials. Aziz and Rather [1] proved that, if $P \in P_n$ and $P(z) \neq 0$ in |z| < 1, then for every complex number α with $|\alpha| \geq 1$ and $r \geq 1$,

$$\left\{ \int_0^{2\pi} \left| D_{\alpha} P(e^{i\theta}) \right|^r d\theta \right\}^{\frac{1}{r}} \leqslant n(|\alpha| + 1) C_r \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^r d\theta \right\}^{\frac{1}{r}}, \tag{1.1}$$

where

$$C_r = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |1 + e^{i\theta}|^r d\theta \right\}^{\frac{-1}{r}}.$$
 (1.2)

The work is sponsored by UGC, Govt. of India under the Major Research Project Scheme vide no. MRP-MAJOR-MATH-2013-29143.

²⁰¹⁰ Mathematics Subject Classification: primary: 30A10; secondary: 30C10, 30C15

2. Main results

In this paper, we generalize the above result for r > 0. The above inequality will be a consequence from the more fundamental inequality presented by the following theorem:

Theorem. If $P \in P_n$ and $P(z) \neq 0$ in |z| < 1, then for every complex numbers α, β with $|\alpha| \geq 1, |\beta| \leq 1$ and r > 0,

$$\left\{ \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(e^{i\theta}) \right|^{r} d\theta \right\}^{\frac{1}{r}} \\
\leqslant n \left\{ (|\alpha| + 1) + |\beta| (|\alpha| - 1) \right\} C_{r} \left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{r} d\theta \right\}^{\frac{1}{r}}, \quad (2.1)$$

where C_r is defined by (1.2).

Remark. If we put $\beta = 0$, in the above result, we get (1.1) extended to the case $r \in (0, \infty)$. Dividing the two sides of (2.1) by $|\alpha|$ and letting $|\alpha| \to \infty$, we get the following result.

Corollary. If $P \in P_n$ and $P(z) \neq 0$ in |z| < 1, then for every complex number β with $|\beta| \leq 1$ and r > 0,

$$\left\{ \int_0^{2\pi} \left| e^{i\theta} P'(e^{i\theta}) + \frac{n\beta}{2} P(e^{i\theta}) \right|^r d\theta \right\}^{\frac{1}{r}} \leqslant n(|\beta| + 1) C_r \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^r d\theta \right\}^{\frac{1}{r}}, \tag{2.2}$$

where C_r is defined by (1.2).

The above inequality generalizes some inequalities obtained by De-Bruijn [3] as well as Rahman and Schmeisser [5].

3. Lemmas

For the proof of the Theorem, we need the following lemmas:

Lemma 1. If $Q \in P_n$ be a polynomial such that $Q(z) \neq 0$ for |z| > 1 and $P \in P_n$. If $|P(z)| \leq |Q(z)|$ for |z| = 1, then for all complex numbers α, β with $|\alpha| \geq 1, |\beta| \leq 1$,

$$\left|zD_{\alpha}P(z)+n\beta\left(\frac{|\alpha|-1}{2}\right)P(z)\right|\leqslant \left|zD_{\alpha}Q(z)+n\beta\left(\frac{|\alpha|-1}{2}\right)Q(z)\right|,\quad for\ |z|\geqslant 1.$$

The above lemma is due to Liman, Mohapatra and Shah [4].

Lemma 2. If $P \in P_n$ and $Q(z) = z^n \overline{P(1/\overline{z})}$, then for every r > 0 and γ real,

$$\int_0^{2\pi} \int_0^{2\pi} \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right|^r d\theta d\gamma \leqslant 2\pi n^r \int_0^{2\pi} \left| P(e^{i\theta}) \right|^r d\theta.$$

The above lemma is due to Aziz and Rather [2].

4. Proof of the Theorem

Since $P \in P_n$ and $P(z) \neq 0$ in |z| < 1, the polynomial $Q(z) = z^n \overline{P(1/\overline{z})} \in P_n$ and $Q(z) \neq 0$ in |z| > 1. By Lemma 1, we have for complex numbers α, β with $|\alpha| \geq 1, |\beta| \leq 1$,

$$\left| z D_{\alpha} P(z) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(z) \right| \le \left| z D_{\alpha} Q(z) + n\beta \left(\frac{|\alpha| - 1}{2} \right) Q(z) \right|, \quad \text{for } |z| = 1.$$

$$(4.1)$$

Now for every real γ and $t \ge 1$, it can be easily verified that $|t + e^{i\gamma}| \ge |1 + e^{i\gamma}|$. Observe that for any r > 0 and $a, b \in \mathbb{C}$ such that $|b| \ge |a|$ we have

$$\int_0^{2\pi} \left| a + e^{i\gamma} b \right|^r d\gamma \geqslant |a|^r \int_0^{2\pi} \left| 1 + e^{i\gamma} \right|^r d\gamma. \tag{4.2}$$

Indeed, if a = 0 the above inequality (4.2) is obvious. In the case of $a \neq 0$ we get

$$\int_{0}^{2\pi} \left| 1 + e^{i\gamma} \frac{b}{a} \right|^{r} d\gamma = \int_{0}^{2\pi} \left| 1 + e^{i\gamma} \left| \frac{b}{a} \right| \right|^{r} d\gamma = \int_{0}^{2\pi} \left| \left| \frac{b}{a} \right| + e^{i\gamma} \right|^{r} d\gamma$$

$$\geqslant \int_{0}^{2\pi} \left| 1 + e^{i\gamma} \right|^{r} d\gamma.$$

Now, we can take

$$a = e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2}\right) P(e^{i\theta}), \ b = e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2}\right) Q(e^{i\theta}),$$

because $|b| \ge |a|$ from (4.1), we get from (4.2) that

$$\int_{0}^{2\pi} \left| \left\{ e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(e^{i\theta}) \right\} \right| \\
+ e^{i\gamma} \left\{ e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) Q(e^{i\theta}) \right\} \right|^{r} d\gamma \\
\geqslant \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(e^{i\theta}) \right|^{r} \int_{0}^{2\pi} \left| 1 + e^{i\gamma} \right|^{r} d\gamma. \quad (4.3)$$

Integrating both sides of (4.3) with respect to θ from 0 to 2π , we get

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| \left\{ e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(e^{i\theta}) \right\} \right| \\
+ e^{i\gamma} \left\{ e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) Q(e^{i\theta}) \right\} \right|^{r} d\theta d\gamma \\
\geqslant \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(e^{i\theta}) \right|^{r} d\theta \int_{0}^{2\pi} |1 + e^{i\gamma}|^{r} d\gamma. \tag{4.4}$$

As $Q(z) = z^n \overline{P(1/\overline{z})}$, we have $P(z) = z^n \overline{Q(1/\overline{z})}$. It can be easily verified that for $0 \le \theta < 2\pi$,

$$nP(e^{i\theta}) - e^{i\theta}P'(e^{i\theta}) = e^{i(n-1)\theta}\overline{Q'(e^{i\theta})}$$

and

$$nQ(e^{i\theta}) - e^{i\theta}Q'(e^{i\theta}) = e^{i(n-1)\theta}\overline{P'(e^{i\theta})}.$$

Hence

$$\begin{split} nP(e^{i\theta}) + e^{i\gamma}nQ(e^{i\theta}) &= e^{i\theta}P'(e^{i\theta}) + e^{i(n-1)\theta}\overline{Q'(e^{i\theta})} \\ &+ e^{i\gamma}\bigg(e^{i\theta}Q'(e^{i\theta}) + e^{i(n-1)\theta}\overline{P'(e^{i\theta})}\bigg) \\ &= e^{i\theta}\bigg(P'(e^{i\theta}) + e^{i\gamma}Q'(e^{i\theta})\bigg) \\ &+ e^{i(n-1)\theta}\bigg(\overline{Q'(e^{i\theta})} + e^{i\gamma}\overline{P'(e^{i\theta})}\bigg), \end{split}$$

which gives

$$n \left| P(e^{i\theta}) + e^{i\gamma} Q(e^{i\theta}) \right| \leq \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right| + \left| \overline{Q'(e^{i\theta})} + e^{i\gamma} \overline{P'(e^{i\theta})} \right|,$$

$$= 2 \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right|. \tag{4.5}$$

Also, we have

$$\left| D_{\alpha} P(e^{i\theta}) + e^{i\gamma} D_{\alpha} Q(e^{i\theta}) \right| \\
= \left| nP(e^{i\theta}) + (\alpha - e^{i\theta}) P'(e^{i\theta}) + e^{i\gamma} \left(nQ(e^{i\theta}) + (\alpha - e^{i\theta}) Q'(e^{i\theta}) \right) \right| \\
= \left| \left(nP(e^{i\theta}) - e^{i\theta} P'(e^{i\theta}) \right) + e^{i\gamma} \left(nQ(e^{i\theta}) - e^{i\theta} Q'(e^{i\theta}) \right) \right| \\
+ \alpha \left(P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right) \right| \\
= \left| \left(\overline{Q'(e^{i\theta})} + e^{i\gamma} \overline{P'(e^{i\theta})} \right) e^{i(n-1)\theta} + \alpha \left(P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right) \right| \\
\leqslant \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right| + |\alpha| \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right| \\
= (|\alpha| + 1) \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right|. \tag{4.6}$$

Using (4.5) and (4.6), we have for $0 \le \theta < 2\pi$, $|\alpha| \ge 1$, $|\beta| \le 1$, and γ real,

$$\begin{split} \left| \left\{ e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(e^{i\theta}) \right\} \right. \\ &+ e^{i\gamma} \left\{ e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) Q(e^{i\theta}) \right\} \right| \\ &\leq \left| D_{\alpha} P(e^{i\theta}) + e^{i\gamma} D_{\alpha} Q(e^{i\theta}) \right| + n|\beta| \left(\frac{|\alpha| - 1}{2} \right) \left| P(e^{i\theta}) + e^{i\gamma} Q(e^{i\theta}) \right| \\ &\leq \left(|\alpha| + 1 \right) \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right| + |\beta| \left(\frac{|\alpha| - 1}{2} \right) 2 \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right| \\ &= \left\{ \left(|\alpha| + 1 \right) + |\beta| (|\alpha| - 1) \right\} \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right|. \end{split}$$

This gives with the help of Lemma 2 for each r > 0 and γ real,

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| \left\{ e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(e^{i\theta}) \right\} \right| \\
+ e^{i\gamma} \left\{ e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) Q(e^{i\theta}) \right\} \right|^{r} d\theta d\gamma \\
\leqslant \left\{ (|\alpha| + 1) + |\beta| (|\alpha| - 1) \right\}^{r} \int_{0}^{2\pi} \int_{0}^{2\pi} \left| P'(e^{i\theta}) + e^{i\gamma} Q'(e^{i\theta}) \right|^{r} d\theta d\gamma \\
\leqslant 2\pi n^{r} \left\{ (|\alpha| + 1) + |\beta| (|\alpha| - 1) \right\}^{r} \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{r} d\theta .$$

From (4.4) we have for every α , β with $|\alpha| \ge 1$, $|\beta| \le 1$, and r > 0,

$$\int_0^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(e^{i\theta}) \right|^r d\theta \int_0^{2\pi} |1 + e^{i\gamma}|^r d\gamma$$

$$\leq 2\pi n^r \left\{ (|\alpha| + 1) + |\beta| (|\alpha| - 1) \right\}^r \int_0^{2\pi} \left| P(e^{i\theta}) \right|^r d\theta,$$

which is equivalent to (2.1).

Acknowledgements. The authors are very grateful to the referee for his comments and valuable suggestions regarding the paper.

References

[1] A. Aziz and N. A. Rather, On an inequality concerning the polar derivative of a polynomial, Proc. Indian Acad. Sci. (Math. Sci.) 117 (2003), 349–357.

- [2] A. Aziz and N. A. Rather, Some Zygmund type L^q inequalities for polynomials,
 J. Math. Anal. Appl. 289 (2004), 14–29.
- [3] N. G. De-Bruijn, Inequalities concerning polynomials in the complex domain, Nedral. Akad., Wetnesch. Proc. 50 (1947), 1265–1272, Indag. Math. 9 (1947), 591–598.
- [4] A. Liman, R. N. Mohapatra and W. M. Shah, *Inequalities for the polar derivative of a polynomial*, Complex Anal. Oper. Theory **6** (2012), 1199–1209.
- [5] Q. I. Rahman and G. Schmeisser, L^p inequalities for polynomials, J. Approx. Theory **53** (1988), 26–32.

Address: Abdullah Mir and Ajaz Wani: Department of Mathematics, University of Kashmir, Srinagar, 190006, India.

E-mail: mabdullah mir@yahoo.co.in, theajazwani@yahoo.com

Received: 4 September 2015; revised: 29 June 2016