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ALGEBRAIC INDEPENDENCE OF RECIPROCAL SUMS OF
POWERS OF CERTAIN FIBONACCI-TYPE NUMBERS

Peter Bundschuh, Keijo Väänänen

Abstract: The Fibonacci-type numbers in the title look like Rn = g1γn1 +g2γn2 and Sn = h1γn1 +
h2γn2 for any n ∈ Z, where the g’s, h’s, and γ’s are given algebraic numbers satisfying certain
natural conditions. For fixed k ∈ Z>0, and for fixed non-zero periodic sequences (ah), (bh), (ch)
of algebraic numbers, the algebraic independence of the series
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)
is studied. Here the main tool is Mahler’s method which reduces the investigation of the algebraic
independence of numbers (over Q) to that of functions (over the rational function field) if they
satisfy certain types of functional equations.
Keywords: algebraic independence of numbers, Mahler’s method, algebraic independence of
functions.

1. Introduction and main results

Take a binary linear recurrence (Rn) ∈ ZN0 defined by

Rn+2 = ARn+1 +BRn (n = 0, 1, . . .), (1)

where A,B ∈ Z \ {0},∆ := A2 + 4B > 0, and not both of R0, R1 ∈ Z vanishing.
Consider, for ` ∈ Z, k,m, r ∈ N, r > 2, series of the form

∞∑
h=0

′ bh
(Rkrh+`)m

, (2)

where (bh)h>0 is a sequence of algebraic numbers, and
∑ ′

h>0 is taken over those
h ∈ N0 for which krh + ` > 0 and Rkrh+` 6= 0.

Systematic studies on the transcendence of examples of special series of type (2),
based on the arithmetic properties of solutions of certain functional equations in
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several variables, began with Mahler around 1930 and seriously continued in the
mid-1990s with the work of Becker and Töpfer [1]. As main result, in the particu-
lar case m = 1, (bh) periodic but not identically vanishing, and the extra condition
that ∆ is not a perfect square, these authors succeeded in completely characteriz-
ing when (2) is algebraic.

Shortly later, Nishioka and her school obtained comprehensive results on the
arithmetic nature of series of type (2). In particular, not only transcendence but
also questions on the algebraic independence of sums of type (2) were studied. For
instance, in the particular situationm = 1, (Rn)n>0 is not a geometric progression,
(bh) is a linear recurrence (but without the above extra condition on ∆), Nishioka
[8] fully determined the two exceptional cases, where the sums

∞∑
h=0

′ bh
Rkrh+`

(` ∈ Z)

are algebraically dependent. Notice that here k, r ∈ N, r > 2 are fixed. Under
the same hypotheses, but the one on (bh) now strengthened to the effect that this
sequence is periodic and not identically zero, Nishioka [9] characterized the single
exceptional case, where the sums

∞∑
h=0

′ bh
Rkrh+`

(` ∈ Z, r ∈ N, r > 2)

are algebraically dependent; here only k ∈ N is fixed.
Whereas Nishioka’s papers [8, 9] discussed right before considered only the case

m = 1 of (2), Nishioka, Tanaka and Toshimitsu [10] allowed general m ∈ N at the
cost of restricting B to 1 or −1. Their main result, Theorem 1.1, reads as follows.
Let (bh) be a non-zero periodic sequence of algebraic numbers, and assume k ∈ N
to be fixed. Then the numbers

∞∑
h=0

′ bh
(Rkrh+`)m

(` ∈ Z, m, r ∈ N, r > 2) (3)

are algebraically independent except in the following case. If R`0 = 0 for some
`0 ∈ Z (see the remark below) and (bh) is constant, then θ0 :=

∑ ′

h>0 bh/Rk2h+`0

is algebraic, and the numbers (3), except θ0, are algebraically independent.
Before stating our own results, we make the following remark. Assume that an

integer recurrence (Rn) satisfies (1), has (R0, R1) 6= (0, 0), AB 6= 0,∆ > 0 (as at
the very beginning), and is not a geometric progression. Then we know that the
two distinct non-zero real roots γ1, γ2 of the companion polynomial X2−AX −B
of (1) may be assumed to satisfy |γ1] > max(1, |γ2|). Further, with g1 := (R1 −
γ2R0)/(γ1 − γ2), g2 := (R1 − γ1R0)/(γ2 − γ1), we know

Rn = g1γ
n
1 + g2γ

n
2 (n ∈ N0),

where g1g2 6= 0 since (Rn) is not a geometric progression. We may also define Rn
for all n ∈ Z by this formula.
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This simple consideration motivates our next procedure. Namely, let γ1 and
γ2 be non-zero algebraic numbers satisfying |γ1| > max(1, |γ2|), and define

Rn := g1γ
n
1 + g2γ

n
2 , Sn := h1γ

n
1 + h2γ

n
2 (n ∈ Z),

where g1, g2, h1, h2 are non-zero algebraic numbers. Moreover, let Ω := (g1h2)/(g2h1).
In particular, the special choice (Rn) = (Fn), (Sn) = (Ln) with Fn, Ln the ordi-
nary Fibonacci and Lucas numbers, respectively, yields Ω = −1. Next, for fixed
k ∈ N, we introduce for ` ∈ Z,m, r ∈ N, r > 2 the three series

Qr :=

∞∑
h=0

ah

γkr
h

1

, R`, r,m :=

∞∑
h=0

′ bh
(Rkrh+`)m

, S`, r,m :=

∞∑
h=0

′ ch
(Skrh+`)m

, (4)

where (ah)h>0, (bh)h>0 and (ch)h>0 are non-zero periodic sequences of algebraic
numbers.

In the following results, we consider three cases:

i) γ1 and γ2 are multiplicatively independent,
ii) the product γ1γ2 is 1 or −1,
iii) γ1 = ±γκ, γ2 = ±γν with an algebraic γ, |γ| > 1 and κ, ν ∈ Z satisfying

κ > max(0, ν).

Of course, in the (mutually not exclusive) cases ii) and iii), γ1 and γ2 are multi-
plicatively dependent.

Theorem 1. Assume that Ω = δ(γ1/γ2)`1 with some `1 ∈ Z and |δ| = 1, δ 6= 1.
Then the numbers

Qr, R`, r,m, S`, r,m (` ∈ Z, m ∈ N, r ∈ N \{1}, r /∈ 22N−1) (5)

are algebraically independent in cases i) and ii).

We note that, in the case ii), [4, Theorem 2] gives algebraic independence of

Qr, R`, r, 1, S`, r, 1 (` ∈ Z, r ∈ N \{1})

except in four explicitly given special cases. Some extra condition like r /∈ 22N−1

is needed for m > 2, see [2, Theorem 2 and Remark 5].
For the following corollary, we denote by F`, r,m and L`, r,m the numbers R`, r,m

and S`, r,m in (4) if Rn and Sn are replaced by Fn and Ln, respectively.

Corollary 1. The numbers

Qr, F`, r,m, L`, r,m (` ∈ Z, m ∈ N, r ∈ N \{1}, r /∈ 22N−1)

are algebraically independent, where Qr is defined as in (4) with the particular
γ1 = (1 +

√
5)/2.
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This gives a partial generalization of [3, Theorem 7] for all r /∈ 22N−1. But note
that this Theorem 7 is also valid for r ∈ 22N−1 except for r = 2. Moreover, also
here [4, Theorem 1] implies algebraic independence of

Qr, F`, r, 1, L`, r, 1 (` ∈ Z, r ∈ N \{1})

unless (bh) is constant. In this special case F0,2,1 is algebraic, but all other numbers
are algebraically independent.

Theorem 2. In the cases i) and ii), the numbers

Qr, R`, r,m (` ∈ Z, m ∈ N, r ∈ N \{1}) (6)

are algebraically independent except in the following situation. In case ii) there
exists an `0 ∈ Z with R`0 = 0, and the sequence (bh) is constant. Then R`0, 2,1 is
algebraic but all other numbers in (6) are algebraically independent.

Clearly, Theorem 2 fully contains [10, Theorem 1.1] quoted above since the
hypothesis B = ±1 there is equivalent to γ1γ2 = ±1 describing just our case ii).

Theorem 3. Let the assumptions of Theorem 1 hold. Then, in case iii), the
numbers

Q∗r :=

∞∑
h=0

ah

γkrh
, R`, r,m, S`1+`, r,m (` ∈ Z, ` 6= `0, m ∈ N, r ∈ N\{1}, r /∈ 22N−1)

(7)
are algebraically independent. Here `0 ∈ Z satisfies

∣∣g1g
−1
2 (γ1/γ2)`0

∣∣ = 1 if such
an integer exists; otherwise the condition ` 6= `0 has to be omitted. Further, the
numbers

Q∗r , R`, r,m (` ∈ Z, ` 6= `0, m ∈ N, r ∈ N \{1}) (8)

are algebraically independent.

The preceding Theorems 1 and 3 concern the case |Ω| = |γ1/γ2|`1 for some
`1 ∈ Z. If this condition is not satisfied, then we obtain analogously to Theorem
2 the following result.

Theorem 4. Assume that |Ω| /∈ |γ1/γ2|Z. Then, in cases i) and ii), the numbers

Qr, R`, r,m, S`, r ,m (` ∈ Z, m ∈ N, r ∈ N \{1}) (9)

are algebraically independent except if, in case ii), there exists an `0 ∈ Z with
R`0 = 0 and (bh)h>0 is constant (or S`0 = 0 and (ch)h>0 is constant). In this
special case, R`0, 2,1 (or S`0, 2,1, respectively) is algebraic but all other numbers in
(9) are algebraically independent. In case iii), the numbers

Q∗r , R`, r,m, S`, r ,m (` ∈ Z, m ∈ N, r ∈ N \{1}) (10)

are algebraically independent except if there exists an `0 ∈ Z such that∣∣g1g
−1
2 (γ1/γ2)`0

∣∣ = 1 or
∣∣h1h

−1
2 (γ1/γ2)`0

∣∣ = 1. In such a case, one has to omit all
numbers R`0, r,m (or S`0, r,m, respectively) with r > 2,m > 1 from (10), and then
the remaining numbers are algebraically independent.
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To compare our results briefly with previous results in the literature, it appears
that numbers of the type Qr are never included in the statements. Also the
occurrence of two moderately interrelated types of series (2), namely R`, r,m and
S`, r,m in Theorems 1, 3, 4 and Corollary 1, seems to be new (apart from our
results [3, Theorems 7 and 8] and [4, Theorem 2]). On the other hand, there are
two papers [5, 6] investigating the arithmetical nature of series of the form

∞∑
h=0

′ bh
(Rkrh+` + c)m

, (11)

generalizing (2), where c is a fixed algebraic number. In [5, Theorems 1.2 and 1.3]
and [6, Theorem 1.1], the authors establish, in the case m = 1 but for various
algebraic sequences (bh), the precise conditions for (11) to be algebraic. In [6,
Theorem 1.2] one can find a first result on algebraic independence of sums of type
(11), again only for m = 1. Clearly, this remark points in a possible direction of
further research.

The main ideas of the proofs of our results are based on the works [3], [9] and
[10]. First, in Section 2, we consider linear independence of Mahler-type functions
related to the results, and then the algebraic independence of these functions.
After that, [9, Corollary of Theorem 4] (in case i)) or [10, Lemma 2.1] (in cases
ii) and iii)) can be applied to obtain algebraic independence of function values
with different r > 2. In the final Section 5, the connection of the numbers in our
theorems with such function values implies the validity of Theorems 1-4.

2. Linear independence of functions

In our first lemma, we are interested in the Mahler-type functions

Fi(z) :=

∞∑
h=0

ah
Ai(z

rh)

Bi(zr
h)
, i = 0, 1, . . . ,m,

where r > 2 is an integer, a 6= 0 is a complex number, Ai(z), Bi(z) ∈
C[z] \ {0}, Ai(0) = 0, B0(z) ≡ 1, and, for any i > 1, Ai(z) and Bi(z) are coprime,
and the Bi(z) are distinct, non-constant, and monic. Clearly

aFi(z
r) = Fi(z)−

Ai(z)

Bi(z)
, i = 0, 1, . . . ,m.

Lemma 1. Assume that t1, . . . , tm and u are positive integers. For each i =
1, . . . ,m, let Bi(z) be a polynomial having exactly ti distinct zeros and assume
that all these zeros have the same absolute value ωi > 0. Assume further that the
polynomial Bm+1(z) has exactly u distinct zeros all having absolute value 1. If
ωi 6= 1 for all i = 1, . . . ,m, ωi 6= ωj for i 6= j and (r − 1)ti > tj for all i, j, then

g(z) := c0F0(z) + · · ·+ cmFm(z) + cm+1Fm+1(z)

with (c0, . . . , cm+1) 6= 0 is rational if and only if c1 = · · · = cm = 0 and g1(z) :=
c0F0(z) + cm+1Fm+1(z) is rational.
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Proof. The function g(z) satisfies the functional equation

ag(zr) = g(z)− c0A0(z)− c1
A1(z)

B1(z)
− · · · − cm

Am(z)

Bm(z)
− cm+1

Am+1(z)

Bm+1(z)
. (12)

We assume that g(z) is a rational function, say g(z) = P (z)/Q(z), with coprime
polynomials P (z) and Q(z). If (c1, . . . , cm) 6= 0, then g(z) has a pole of absolute
value 6= 1. Assuming that there exists a pole of absolute value > 1, let p be such
a pole with maximal absolute value. Then |p| = ωi with some 1 6 i 6 m. Now p
is not a pole of g(zr), so the assumptions of our lemma together with (12) imply
that all ti distinct zeros of Bi(z), say αi,ν (ν = 1, . . . , ti), are poles of g(z), and
therefore rti numbers r

√
αi,ν are poles of g(zr). By the assumption ωi 6= ωj for

i 6= j, the function ag(zr)−g(z) has exactly tj poles of the same absolute value ωj
(if cj 6= 0), and therefore at least rti− tj > ti of the above r

√
αi,ν are poles of g(z)

(assuming r
√
ωi = ωj). Let these be q1, . . . , qv with v > ti. The rv numbers r

√
qi

are poles of g(zr), and again at least rv − tk > ti of these are poles of g(z). By
repeating this, we get a contradiction. The same argument works also if g(z) has a
pole of absolute value < 1. Therefore (c1, . . . , cm) = 0 proving our Lemma 1. �

We now begin to consider the special class of the above functions

γµ(a, z) :=

∞∑
h=0

ahzµr
h

(µ = 1, . . . , r − 1), (13)

ϕ`,m(a, z) :=

∞∑
h=0

ah
( zr

h

z2rh − α`

)m
(` ∈ Z, m > 1), (14)

where a and all α` are non-zero complex numbers. The functions γµ(a, z) and
ϕ`,m(a, z) satisfy the functional equations

aγµ(a, zr) = γµ(a, z)− zµ, aϕ`,m(a, zr) = ϕ`,m(a, z)−
( z

z2 − α`

)m
. (15)

Lemma 2. Let L and M be positive integers. Assume that |α0| = 1, and
|α`1 | 6= |α`2 | for `1 6= `2. If cµ, c`,m are complex numbers, not all zero, then
the function

r−1∑
µ=1

cµγµ(a, z) +

L∑
`=−L

M∑
m=1

c`,mϕ`,m(a, z) (16)

is rational if and only if c`,m = 0 for all ` 6= 0,m = 1, . . . ,M , and the function

r−1∑
µ=1

cµγµ(a, z) +

M∑
m=1

c0,mϕ0,m(a, z) (17)

is rational.
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Proof. If g(z) denotes the function (16), then

ag(zr) = g(z)−A(z)−
L∑

`=−L

M∑
m=1

c`,m

( z

z2 − α`

)m
,

where A(z) := c1z + · · · + cr−1z
r−1. We may now use Lemma 1 with t` = 2 for

all ` having some non-zero c`,m, which gives c`,m = 0 for all ` 6= 0,m = 1, . . . ,M .
This proves Lemma 2. �

Lemma 3. If r > 3, then the function (17) is not rational. If r = 2 and a /∈ 22N,
then the function (17) is not rational except in the case a = 1, α0 = 1. In that
special case, ϕ0,1(1, z) is rational, but the functions γ1(1, z) and ϕ0,m(1, z) (m =
2, . . . ,M) are linearly independent over C modulo C(z).

Proof. Let now g(z) denote the function (17), where at least one of the coefficients
cµ, c0,m is non-zero, and assume g(z) ∈ C(z). Then

ag(zr) = g(z)−A(z)−
M∑
m=1

c0,m

( z

z2 − α0

)m
, (18)

where A(z) is the same polynomial as in the proof of Lemma 2. If all c0,m = 0,
then A(z) 6= 0 and we have a contradiction. So let m = M0 be the greatest m
such that c0,m 6= 0. Clearly, all poles ω of g(z) satisfy |ω| = 1. Further, if t
is the number of distinct poles, then tr 6 t + 2 or t 6 2/(r − 1). Thus we get
a contradiction if r > 4.

In the case r = 3, g(z) may have one pole ω. Then g(z3) has poles with
arguments τ/3, τ/3 + 2π/3, τ/3 + 4π/3, where 0 6 τ = argω < 2π. The right-
hand side of (18) has possible poles with arguments τ, φ/2, φ/2+π, where 0 6 φ =
argα0 < 2π, a contradiction.

Next let r = 2, α0 = 1. If g(z) has a pole ω 6= 1, take such a pole with minimal
argω = τ, 0 < τ < 2π. Then τ/2 = π, a contradiction. Thus the only possible pole
of g(z) is z = 1 and g(z) = P (z)/(z − 1)N , P (1) 6= 0. Now (18) implies N = M0

and

aP (z2) = P (z)(z + 1)N −A(z)(z2 − 1)N −
N∑
m=1

c0,mz
m(z2 − 1)N−m.

This gives
aP (1) = P (1)2N − c0,N , aP (1) = −(−1)Nc0,N .

Since P (1) 6= 0, we get a(1− (−1)N ) = 2N . If N is even, we have a contradiction.
If N is odd, we get a = 2N−1. By our assumption a /∈ 22N, we have a contradiction
if N > 1. In the case N = 1, we get a = 1, and we know that ϕ0,1(1, z) ∈ C(z),
see [8, Lemma 4]. Omitting ϕ0,1(1, z) from g(z) in this special case, then N > 1,
and we have a contradiction as we saw just before.
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Let then r = 2, α0 6= 1. Then 0 < argα0 = φ < 2π. As noticed before,
the number of distinct poles of g(z) is 6 2. By comparing the poles on both
sides of (18), we see that g(z) must have two distinct poles, say ω1, ω2, with
0 6 argω1 = τ1 < argω2 = τ2 < 2π. Now the comparision of poles on both sides
of (18) gives only the one possibility τ1 = 0, τ2 = φ = π. This leaves us with the
functional equation

ag(z2) = g(z)−A(z)−
M0∑
m=1

c0,m

( z

z2 + 1

)m
,

where
g(z) =

P (z)

(z − 1)N (z + 1)T
, P (±1) 6= 0.

Thus N = T = M0 and

aP (z2) = P (z)(z2 + 1)N −A(z)(z4 − 1)N − (z2 − 1)N
N∑
m=1

c0,mz
m(z2 + 1)N−m,

implying aP (1) = P (1)2N , aP (1) = P (−1)2N , aP (−1) = −c0,N iN (−2)N ,
aP (−1) = −c0,N (−i)N (−2)N . Thus, a = 2N , P (1) = P (−1) and, by the last
two equations, N is even, which is impossible since we assumed a /∈ 22N. �

We next study dependence relations of the functions (13), (14) and

λ`,m(a, z) =

∞∑
h=0

ah
( zr

h

z2rh − β`

)m
(` ∈ Z, m > 1), (19)

which again satisfy

aλ`,m(a, zr) = λ`,m(a, z)−
( z

z2 − β`

)m
. (20)

If |α`1 | 6= |β`2 | for `1, `2, we can apply Lemmas 2 and 3. In the case |α`| =
|β`| , α` 6= β`, we prove the following results.

Lemma 4. Let r > 3, and assume that L,M and α` are as in Lemma 2, β` =
δ`α`, |δ`| = 1, δ` 6= 1 for all ` ∈ Z. If cµ, c`,m, d`,m are complex numbers, not all
zero, then the function

r−1∑
µ=1

cµγµ(a, z) +

L∑
`=−L

M∑
m=1

c`,mϕ`,m(a, z) +

L∑
`=−L

M∑
m=1

d`,mλ`,m(a, z) (21)

is rational if and only if c`,m = 0, d`,m = 0 for all ` 6= 0,m = 1, . . . ,M , and the
following sum is rational:

r−1∑
µ=1

cµγµ(a, z) +

M∑
m=1

c0,mϕ0,m(a, z) +

M∑
m=1

d0,mλ0,m(a, z). (22)
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Proof. Assume that (21) is rational, and let g(z) denote this sum. Then

ag(zr) = g(z)−A(z)−
L∑

`=−L

M∑
m=1

c`,m

( z

z2 − α`

)m
−

L∑
`=−L

M∑
m=1

d`,m

( z

z2 − β`

)m
,

where A(z) = c1z + · · · + cr−1z
r−1. If, for all ` 6= 0, we have either c`,m = 0 or

d`,m = 0, (m = 1, . . . ,M), then the claim follows as in Lemma 2. Assume now
that, for some ` 6= 0, there exist non-zero numbers c`,M1

, d`,M2
, and take here

M1,M2 maximal with this property. Then

M1∑
m=1

c`,m

( z

z2 − α`

)m
+

M2∑
m=1

d`,m

( z

z2 − β`

)m
=

P (z)

(z2 − α`)M1(z2 − β`)M2
,

where P (z) 6= 0 is a polynomial prime to (z2 − α`)(z
2 − β`). Thus, we may

apply Lemma 1 with t` = 2 or 4 for all ` having non-trivial c`,m, d`,m, which gives
a contradiction. Thus, c`,m = d`,m = 0 for all ` 6= 0,m = 1, . . . ,M , proving
Lemma 4. �

Lemma 5. Let the assumptions of Lemma 4 hold and assume a /∈ ±3N. Then the
sum (22) is not rational.

Proof. If g(z) denotes the function (22), then

ag(zr) = g(z)−A(z)−
M∑
m=1

c0,m

( z

z2 − α0

)m
−

M∑
m=1

d0,m

( z

z2 − β0

)m
. (23)

By virtue of Lemma 3, we may suppose that at least one of c0,m, m = 1, . . . ,M, and
similarly, at least one of d0,m, m = 1, . . . ,M, does not vanish, and let c0,M1

, d0,M2

have maximal m-values with this property.
This time, we get the upper bound t 6 4/(r − 1) for the number of distinct

poles of g(z). Thus, we need to consider only the values r = 3, 4, 5 and t 6 2 if
r = 3, and t = 1 otherwise. By comparing the arguments of the possible poles on
both sides of (23), we immediately get a contradiction if r = 5.

Assume now r = 4, and let ω denote the pole of g(z) with 0 6 argω = τ < 2π.
The arguments of the poles on the left-hand side of (23) are τ/4+jπ/2, j = 0, . . . , 3,
and the arguments of the possible poles on the right-hand side are τ, φ1/2, φ1/2 +
π, φ2/2, φ2 + π, where φ1 = min(argα0, arg β0), φ2 = max(argα0, arg β0), 0 6
φ1 < φ2 < 2π. This is only possible if τ = 2φ1, φ2 = φ1 + π and τ = τ/4 + jπ/2
with some j = 0, . . . , 3. Thus, we have three possibilities, τ = 0, 2π/3, or 4π/3.
Without loss of generality, we may assume argα0 = φ1. To simplify the notations,
let us denote α0 = α, c0,m = cm, d0,m = dm. Since ω = α2, (23) is now of the form

a
P (z4)

(z4 − α2)N
=

P (z)

(z − α2)N
−A(z)−

M1∑
m=1

cm

( z

z2 − α

)m
−

M2∑
m=1

dm

( z

z2 + α

)m
(24)
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with P (α2) 6= 0. In the cases φ1 = 0, 2π/3, we have α3 = 1 giving z2 − α =
(z − α2)(z + α2), and in the case φ1 = π/3, α3 = −1, z2 + α = (z − α2)(z + α2).
Therefore, by comparing the orders of poles above, we get M1 = M2 = N in all
three cases. If φ1 = 0 or 2π/3, then (24) implies

aP (z4) = P (z)((z + α2)(z2 + α))N −A(z)(z4 − α2)N

− (z2 + α)N
N∑
m=1

cmz
m(z2 − α)N−m − (z2 − α)N

N∑
m=1

dmz
m(z2 + α)N−m.

At z = ±α2, we get

aP (α2) = P (α2)4N − (2α)NcNα
2N , aP (α2) = −(2α)NcNα

2N (−1)N

giving a(1 − (−1)N ) = 4N , whence N is odd. Further, let ±ζ be the solutions of
z2 = −α. Then, at z = ±ζ,

aP (α2) = −(−2α)NdNζ
N , aP (α2) = −(−2α)NdN (−ζ)N .

Since N is odd, we get the contradiction aP (α2) = 0.
Similarly, we get a contradiction in the third case φ1 = π/3.
Assume now r = 3. Then t 6 2, and we immediately see that we must have

t = 2. Let ω1 and ω2 be the distinct poles of g(z) with arguments 0 6 τ1 <
τ2 < 2π, respectively. The arguments of the poles on the left-hand side of (23) are
τ1/3 + j2π/3, τ2/3 + j2π/3, j = 0, 1, 2, and the arguments of the possible poles on
the right-hand side are τ1, τ2, φ1/2, φ1/2 + π, φ2/2, φ2/2 + π, where φ1 and φ2 are
as above.

If τ1 = 0, then comparision of the arguments of the poles gives us one possibility,
where φ1 = 2π/3, φ2 = 4π/3, τ1 = 0, τ2 = π. By denoting θ = eπi/3, we get
z3 − 1 = (z − 1)(z − θ2)(z − θ4), z3 + 1 = (z + 1)(z − θ)(z − θ5), z2 − α0 =
(z − θ)(z − θ4), z2 − β0 = (z − θ2)(z − θ5), where we assumed (without loss of
generality) φ1 = argα0, φ2 = arg β0. Now (23) takes the shape

a
P (z3)

(z3 − 1)N (z3 + 1)T
=

P (z)

(z − 1)N (z + 1)T
−A(z)−

M1∑
m=1

cm

( z

(z − θ)(z − θ4)

)m
−

M2∑
m=1

dm

( z

(z − θ2)(z − θ5)

)m
with P (±1) 6= 0. By comparing the orders of poles, we obtain N = T = M1 = M2,
which then yields

aP (1) = P (1)((1− θ)(1− θ2)(1− θ4)(1− θ5))N = P (1)3N .

Since P (1) 6= 0, this contradicts our assumption a /∈ 3N.



Algebraic independence of reciprocal sums of powers of certain Fibonacci-type numbers 57

In the case τ1 > 0, we have also one possibility, φ1 = π/3, φ2 = 5π/3, τ1 =
π/2, τ2 = 3π/2. By (23),

a
P (z3)

(z3 − i)N (z3 + i)T
=

P (z)

(z − i)N (z + i)T
−A(z)

−
M1∑
m=1

cm

( z

z2 − θ

)m
−

M2∑
m=1

dm

( z

z2 − θ5

)m
,

where P (±i) 6= 0. As before, N = T = M1 = M2 and

a2P (i) = aP (−i)3N = P (i)32N ,

which contradicts our assumption a /∈ ±3N, whence our Lemma 5. �

We next consider the functions

x`,m(a, z) :=

∞∑
h=0

ah
( zκr

h

z(κ−ν)rh − α`

)m
(` ∈ Z, m > 1),

y`,m(a, z) :=

∞∑
h=0

ah
( zκr

h

z(κ−ν)rh − β`

)m
(` ∈ Z, m > 1),

where κ, ν ∈ Z satisfy κ > max(0, ν).

Lemma 6. If the assumptions of Lemma 4 are valid, and if cµ, c`,m, d`,m are
complex numbers, not all zero, then the function

r−1∑
µ=1

cµγµ(a, z) +
∑

0<|`|6L

M∑
m=1

c`,mx`,m(a, z) +
∑

0<|`|6L

M∑
m=1

d`,my`,m(a, z)

is not rational. Moreover, if r = 2 and c1, c`,m are complex numbers, not all zero,
then the following function is not rational:

c1γ1(a, z) +
∑

0<|`|6L

M∑
m=1

c`,mx`,m(a, z).

Proof. The proof is a similar application of Lemma 1 as the proof of Lemma 4,
but this time we have t` = κ − ν or 2(κ − ν), hence (r − 1)ti > tj for all r > 3.
When dealing with the second claim, we have t` = κ − ν for all `, and Lemma 1
applies also if r = 2. �

3. Algebraic independence of functions

For a sequence (ah)h>0 of complex numbers, we denote by (a
(j)
h )h>0, j ∈ N, the

sequences

(a
(1)
h ) = (a0, a1, . . .), (a

(2)
h ) = (a0, 0, a1, 0, a2, 0, . . .),

(a
(3)
h ) = (a0, 0, 0, a1, 0, 0, a2, 0, 0 . . .), . . . .

By [10, Lemmas 2.7 and 2.8], these sequences have the following properties:
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a) If (ah)h>0 is a periodic sequence, not identically zero, then the sequences
(a

(j)
h )h>0 (j > 1) are linearly independent over C.

b) If (ah)h>0 is a periodic sequence with period length greater than 1, then
(1), (a

(j)
h )h>0 (j > 1) are linearly independent over C, (1) being the obvious

constant sequence.
The following lemma will be needed (see [10, p.106]).

Lemma 7. Let p be a positive integer, (Bh)h>0 a periodic sequence with period
length dividing p, and let R(z) be the quotient of two polynomials in z = (z1, . . . , zn)
such that the numerator vanishes at the origin of Cn but the denominator does not.
Further, define

fr(z) =

∞∑
h=0

BhR(zr
h

).

Then, for any s ∈ N,
frj (z

rs!p) = frj (z) +Rr,j(z)

holds for j = 1, . . . , s with rational functions Rr,j(z). (Note here zk = (zk1 , . . . , z
k
n)).

Proof. According to the definition of fr(z), we have frj (z) =
∑
h>0BhR(zr

jh

),
hence

frj (z
rs!p) =

∞∑
h=0

BhR(zr
j(h+(s!/j)p)

)

=

∞∑
h̃=(s!/j)p

Bh̃−(s!/j)pR(zr
jh̃

) =

∞∑
h̃=h̃(j)

Bh̃R(zr
jh̃

)

(with h̃(j) := (s!/j)p ∈ N), and this equals frj (z) up to addition by a rational
function. �

Let now t1, t2, t3 ∈ N, and suppose

qk,χ(z) ∈ C(z1, . . . , zn) (k = 1, 2, 3; χ = 1, . . . , tk),

where the numerators vanish at the origin but the denominators do not. Then we
define

fk,χ(a, z) :=

∞∑
h=0

ahqk,χ(zr
h

) (k = 1, 2, 3; χ = 1, . . . , tk). (25)

Further, let (bk,h)h>0 (k = 1, 2, 3) be non-zero periodic sequences of complex
numbers with period lengths pk, respectively, put p := lcm(p1, p2, p3), and denote

fk,χ,r(z) :=

∞∑
h=0

bk,hqk,χ(zr
h

) (k = 1, 2, 3; χ = 1, . . . , tk). (26)

By following ideas of [10, pp.106-107], we can now prove
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Lemma 8. If, for any root of unity ζ, the functions (25) formed with a = ζ are
linearly independent over C modulo C(z1, . . . , zn), then the functions

fk,χ,rj (z) (j ∈ N; k = 1, 2, 3; χ = 1, . . . , tk)

are algebraically independent over C(z1, . . . , zn).

Proof. Assume, on the contrary, that there exists an s ∈ N such that the functions

fk,χ,rj (z) (j = 1, . . . , s; k = 1, 2, 3; χ = 1, . . . , tk)

are algebraically dependent. By Lemma 7, we may apply [7, Corollary of Theorem
3.2.1], whence these functions are linearly dependent over C modulo C(z1, . . . , zn).
Thus, there exist complex numbers ak,χ,j , not all zero, such that

G(z) :=

3∑
k=1

tk∑
χ=1

s∑
j=1

ak,χ,jfk,χ,rj (z) ∈ C(z1, . . . , zn).

Since

fk,χ,rj (z) =

∞∑
h=0

bk,hqk,χ(zr
jh

) =

∞∑
h=0

b
(j)
k,hqk,χ(zr

h

),

we obtain

G(z) =

3∑
k=1

tk∑
χ=1

∞∑
h=0

( s∑
j=1

ak,χ,jb
(j)
k,h

)
qk,χ(zr

h

).

Here all sequences ( s∑
j=1

ak,χ,jb
(j)
k,h

)
h>0

are periodic with period lengths dividing s!p, and therefore there exist complex
numbers Ak,χ,i such that, for all h > 0,

s∑
j=1

ak,χ,jb
(j)
k,h =

s!p−1∑
i=0

Ak,χ,iω
ih (27)

with a primitive (s!p)-th root of unity ω. By property a) from the beginning of
this section, not all Ak,χ,i vanish. Thus, G(z) has the form

G(z) =

3∑
k=1

tk∑
χ=1

s!p−1∑
i=0

Ak,χ,ifk,χ(ωi, z) =

s!p−1∑
i=0

Gi(z) ∈ C(z1, . . . , zn), (28)

where

Gi(z) :=

3∑
k=1

tk∑
χ=1

Ak,χ,ifk,χ(ωi, z).
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Here
ωiGi(z

r)−Gi(z) ∈ C(z1, . . . , zn).

Let now J := {i : 0 6 i 6 s!p − 1 and at least one Ak,χ,i 6= 0}. As noted above,
J is not empty. By applying again [7, Corollary of Theorem 3.2.1] to the functions
Gi(z), i ∈ J , it follows that there exists an i0 ∈ J such that Gi0(z) ∈ C(z1, . . . , zn)
(note that the ωi are distinct). By our hypothesis on the linear independence of the
fk,χ(ωi0 , z), we get the contradiction that all Ak,χ,i0 vanish, proving Lemma 8. �

For z := (z1, z2) we now define roots of unity ζ, and α`, β` as in Lemma 4,

tµ,r(ζ, z) :=

∞∑
h=0

ζhzµr
h

1 , u`,r,m(ζ, z) :=

∞∑
h=0

ζh
( zr

h

1

zr
h

2 −α`

)m
,

(29)

v`,r,m(ζ, z) :=

∞∑
h=0

ζh
( zr

h

1

zr
h

2 −β`

)m
(µ = 1, . . . , r − 1; −L 6 ` 6 L; m = 1, . . . ,M).

Lemma 9. If r > 3, then the functions (29) are linearly independent over C
modulo C(z1, z2). If r = 2, then the same holds for the functions t1,2(ζ, z) and
u`,2,m(ζ, z).

Proof. Assume that there exist complex numbers aµ, b`,m, c`,m, not all zero, such
that

G(z) :=

r−1∑
µ=1

aµtµ,r(ζ, z) +

L∑
`=−L

M∑
m=1

(b`,mu`,r,m(ζ, z) + c`,mv`,r,m(ζ, z)) ∈ C(z1, z2).

By [7, Lemma 3.3.10], there exist polynomials A(z1, z2), B(z1, z2) ∈ C[z1, z2] such
that

G(z1, z2) =
A(z1, z2)

B(z1, z2)
, B(0, 0) 6= 0.

By choosing z1 = z, z2 = z2, Lemmas 4 and 5 lead to a contradiction for all r > 3.
Let r = 2, and assume that

g(z) := a1t1,2(ζ, z) +

L∑
`=−L

M∑
m=1

b`,mu`,2,m(ζ, z) ∈ C(z1, z2)

with non-trivial complex coefficients. Again

g(z1, z2) =
A(z1, z2)

B(z1, z2)
, B(0, 0) 6= 0.

Thus the choice z1 = z, z2 = z2 leads to

g(z, z2) = a1γ1(ζ, z) +

L∑
`=−L

M∑
m=1

b`,mϕ`,m(ζ, z) ∈ C(z).
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By Lemma 2, b`,m = 0 holds for all ` 6= 0,m = 1, . . . ,M , implying

g(z) = a1t1,2(ζ, z) +

M∑
m=1

b0,mu0,2,m(ζ, z) ∈ C(z1, z2).

Now the choice z1 = z2 = z gives

g∗(z) := g(z, z) ∈ C(z),

satisfying

ζg∗(z2) = g∗(z)− a1z −
M∑
m=1

b0,m

( z

z − α0

)m
.

Now, comparing the possible poles on both sides, we see that the only possibility
is α0 = −1, g∗(z) = P (z)/(z − 1)N with P (1) 6= 0 and N being the maximal
m ∈ {1, . . . ,M} satisfying b0,m 6= 0. Thus,

ζP (z2) = P (z)(z + 1)N − a1z(z
2 − 1)N − (z − 1)N

N∑
m=1

b0,mz
m(z + 1)N−m,

which gives ζ = 2N , a contradiction. This proves Lemma 9. �

Next, let us define

tµ,r(z) :=

∞∑
h=0

ahz
µrh

1 , u`,r,m(z) :=

∞∑
h=0

bh

( zr
h

1

zr
h

2 − α`,r

)m
,

v`,r,m(z) :=

∞∑
h=0

ch

( zr
h

1

zr
h

2 − β`,r

)m (30)

for µ = 1, . . . , r − 1, ` ∈ Z, m ∈ N. Then Lemmas 8 and 9 immediately give the
following.

Lemma F1. Assume that r > 3, that α`,r and β`,r satisfy the conditions on α`
and β` in Lemma 4, and that α`,rj := α`,r, β`,rj := β`,r for any j ∈ N. Then the
functions

tµ,rj (z), u`,rj ,m(z), v`,rj ,m(z) (µ = 1, . . . , r − 1, ` ∈ Z, j,m ∈ N)

are algebraically independent over C(z1, z2). If r = 2, the same holds for the
functions t1,2j (z) and u`,2j ,m(z).

To prepare the case γ1γ2 = ±1, we consider the functions of one variable

γµ,r(z) :=

∞∑
h=0

ahz
µrh (µ = 1, . . . , r − 1), (31)
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ϕ`,r,m(z) :=

∞∑
h=0

bh

( zr
h

z2rh − α`,r

)m
(` ∈ Z, r,m ∈ N, r > 2), (32)

λ`,r,m(z) :=

∞∑
h=0

ch

( zr
h

z2rh − β`,r

)m
(` ∈ Z, r,m ∈ N, r > 2). (33)

Using Lemmas 4, 5 and 8, we obtain

Lemma F2. Assume r > 3, and let α`,r and β`,r satisfy the conditions of Lemma
F1. Then the functions

γµ,rj (z), ϕ`,rj ,m(z), λ`,rj ,m(z) (µ = 1, . . . , r − 1, ` ∈ Z, j,m ∈ N) (34)

are algebraically independent over C(z).

Lemma F3. Assume r > 2, let α`,r satisfy the conditions on α` in Lemma 2, and
let α`,rj := α`,r for all j ∈ N. Then the functions

γµ,rj (z), ϕ`,rj ,m(z) (µ = 1, . . . , r − 1, ` ∈ Z, j,m ∈ N) (35)

are algebraically independent over C(z) except if r = 2 and (bh) is constant and
α0,2 = 1. In this special case, ϕ0,2,1(z) ∈ C(z), but all other functions in (35) are
algebraically independent over C(z).

Proof. Lemma F3 is a special case of Lemma F2 if r > 3. Assume now r = 2.
We may apply the proof of Lemma 8, where (b1,h) = (ah), (b2,h) = (bh), f1,1(a, z) =
γ1(a, z) (with r = 2), f1,1,2j (z) = γ1,2j (z) (t1 = 1, j > 1), f2,χ(a, z)
(t2 = (2L + 1)M) are the functions ϕ`,m(a, z) (−L 6 ` 6 L, m = 1, . . . ,M) with
r = 2, and f2,χ,2(z) are the functions ϕ`,2,m(z) (−L 6 ` 6 L, m = 1, . . . ,M), and
all functions with k = 3 are omitted (all a3,χ,j = 0). In particular, let ϕ0,1(a, z) =
f2,1(a, z) and ϕ0,2,1(z) = f2,1,2(z). Assume also that ϕ0,2,1(z) = f2,1,2(z) is omit-
ted if (bh) is constant and α0,2 = 1, so a2,1,1 = 0 in this case.

In the case α0,2 6= 1, we get a contradiction as in Lemma 8 by using Lemmas 2
and 3. If α0,2 = 1, then f2,1(1, z) = ϕ0,1(1, z) ∈ C(z), and thus (28) yields

G(z)−A2,1,0f2,1(1, z) =

s!p−1∑
i=0

G∗i (z) ∈ C(z),

where G∗i (z) = Gi(z) for i ∈ N but G∗0(z) = G0(z) − A2,1,0f2,1(1, z). We now
define J∗ as J in the proof of Lemma 8, but this time A2,1,0 is replaced by 0 in
this definition (thus we may have 0 ∈ J but 0 /∈ J∗). If J∗ is not empty, we
get a contradiction as in the proof of Lemma 8. Therefore we now deduce that
Ak,m,i = 0 for all (k,m, i) 6= (2, 1, 0). Thus, A2,1,0 6= 0 and, by (27),

s∑
j=1

a2,1,jb
(j)
h = A2,1,0 (h ∈ N0).
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If (bh)h>0 is not constant, then the sequences (b
(j)
h )h>0 (1 6 j 6 s) and (1)h>0 are

linearly dependent contrary to property b) from the beginning of this section. If
(bh)h>0 is constant, then a2,1,1 = 0, and hence (b

(j)
h )h>0 (2 6 j 6 s) and (1)h>0

are linearly dependent contrary to property a). Thus, Lemma F3 holds. �

We finally need to consider the functions

x`,r,m(z) :=

∞∑
h=0

bh

( zκr
h

z(κ−ν)rh − α`,r

)m
(` ∈ Z, r,m ∈ N, r > 2),

y`,r,m(z) :=

∞∑
h=0

ch

( zκr
h

z(κ−ν)rh − β`,r

)m
(` ∈ Z, r,m ∈ N, r > 2).

By Lemmas 6 and 8, we obtain the following.

Lemma F4. Assume r > 3, and let α`,r, β`,r satisfy the conditions of Lemma F1.
Then the functions

γµ,rj (z), x`,rj ,m(z), y`,rj ,m(z) (µ = 1, . . . , r− 1, ` ∈ Z \ {0}, j,m ∈ N) (36)

are algebraically independent over C(z). If r = 2, the same assertion holds for the
functions γ1,2j (z), x`,2j ,m(z).

Remark. Note that, in [9], the author is able to remove the condition ` 6= 0, if
m = 1 and the functions γµ,rj (z), y`,rj ,1(z) are omitted.

4. Algebraic independence of function values

For the following consideration, along the lines of [10], we define

R := {r ∈ N : r 6= an with a, n ∈ N, n > 2}.

Then, according to [10, p. 105], N\{1} = {rj : r ∈ R, j ∈ N} and log r1/ log r2 /∈ Q
for distinct r1, r2 ∈ R.

Let r1, . . . , rt ∈ R, 3 6 r1 < · · · < rt, and let R1 := {r0, r1, . . . , rt}, where
r0 = 2 or r0 = 4. Then log ri/ log rk /∈ Q holds for i 6= k. Thus, by using Lemma 7
and [10, Lemma 2.1] or [9, Corollary of Theorem 4], we may consider our functions
with r ∈ R1.

Now, let L,M and s be positive integers. Assume that, for each r ∈ R1, we have
non-zero algebraic numbers α`,r, β`,r (−L 6 ` 6 L) as in Lemmas F1–F3 above. If
α and β are algebraic numbers with 0 < |α|, |β| < 1, then we may choose an h0 ∈ N
in such a way that max(|α|, |β|)2h0 < min(|α`,r|, |β`,r| : −L 6 ` 6 L, r ∈ R1). If
the functions

Tµ,r(z1, z2), U`,r,m(z1, z2), V`,r,m(z1, z2), Γµ,r(z),

Φ`,r,m(z), Λ`,r,m(z), X`,r,m(z), Y`,r,m(z)
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are defined as in (30)–(34) and (36) above but now with summation starting from
h0, then all numbers

Tµ,rj (α, β), U`,rj ,m(α, β), V`,rj ,m(α, β), Γµ,rj (α),

Φ`,rj ,m(α), Λ`,rj ,m(α), X`,rj ,m(α), Y`,rj ,m(α)

with

r ∈ R1, 1 6 µ 6 r − 1, −L 6 ` 6 L, 1 6 j 6 s, 1 6 m 6M (37)

are defined. For these numbers, we can state the following results.

Theorem F1. Assume r0 = 4, and let α`,r, β`,r satisfy the conditions of Lemma
F1. Then the numbers

T1,rj (α, β), U`,rj ,m(α, β), V`,rj ,m(α, β)

(r ∈ R1,−L 6 ` 6 L, 1 6 j 6 s, 1 6 m 6M) (38)

are algebraically independent if α and β are multiplicatively independent. Further,
the numbers

Γµ,rj (α), Φ`,rj ,m(α), Λ`,rj ,m(α) (39)

with (37) are algebraically independent.

Theorem F2. Let r0 = 2 and α`,r satisfy the conditions of Lemma F2. Then the
numbers

T1,rj (α, β), U`,rj ,m(α, β) (r ∈ R1,−L 6 ` 6 L, 1 6 j 6 s, 1 6 m 6M)
(40)

are algebraically independent if α and β are multiplicatively independent. Also the
numbers

Γµ,rj (α), Φ`,rj ,m(α) (41)

with (37) are algebraically independent if α0,2 6= 1. If (bh) is not a constant se-
quence, then the same holds in the case α0,2 = 1. If (bh) is constant and α0,2 = 1,
then the number Φ0,2,1(α) is algebraic but all other numbers in (41) are alge-
braically independent.

Theorem F3. Assume r0 = 4, and let α`,r, β`,r satisfy the conditions of Lemma
F1. Then the numbers

Γµ,rj (α), X`,rj ,m(α), Y`,rj ,m(α)

(r ∈ R1, 1 6 µ < r, 0 < |`| 6 L, 1 6 j 6 s, 1 6 m 6M) (42)

are algebraically independent. If r0 = 2, then the same assertion holds for the
numbers Γµ,rj (α), X`,rj ,m(α).
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The proofs of these results are similar, using the corresponding Lemmas F1–F4
above. Therefore, we give here only a proof for Theorem F1.

Proof of Theorem F1. We begin by applying Lemma 7 to the functions

Tµ,rj (z1, z2), U`,rj ,m(z1, z2), V`,rj ,m(z1, z2)

with r, µ, `, j,m as in (37). This gives a system of functional equations of the
type used in [9, Corollary of Theorem 4]. Further, log rs!pi / log rs!pk /∈ Q holds for
distinct ri, rk ∈ R1. Therefore, by [9, Corollary of Theorem 4], to prove Theorem
F1, it is enough to show that, for a given r ∈ R1, the functions

Tµ,rj (z1, z2), U`,rj ,m(z1, z2), V`,rj ,m(z1, z2)

(1 6 µ < r, −L 6 ` 6 L, 1 6 j 6 s, 1 6 m 6M)

are algebraically independent over C(z1, z2). Thus, Lemma F1 implies the validity
of the first part of Theorem F1. The proof of the second part is similar. We just
replace [9, Corollary of Theorem 4] by [10, Lemma 2.1], and then use Lemma F2.

�

5. Proof of Theorems 1–4

We first introduce some preliminaries. By the definition of Rn and Sn, we get

Rkrh+` = D`,rγ
krh

1 ((γ2/γ1)kr
h

− d`,r), D`,r = g2γ
`
2, d`,r = −g1g

−1
2 (γ1/γ2)`,

(43)

Skrh+` = E`,rγ
krh

1 ((γ2/γ1)kr
h

− e`,r), E`,r = h2γ
`
2, e`,r = −h1h

−1
2 (γ1/γ2)`.

(44)

Note here that d`,rj , e`,rj , D`,rj and E`,rj (j ∈ N) do not depend on j, and |d`,r|
and |e`,r| do not depend on r. The condition |Ω| /∈ |γ1/γ2|Z gives |d`1,r| 6= |e`2,r|
for `1, `2. Further, the condition Ω = δ(γ1/γ2)`1 means that d`,r = δe`1+`,r for all
`, r. In particular, we then have |d`,r| = |e`1+`,r| for all `, r.

To prove Theorems 1–3, we divide our consideration into three cases: i) γ1 and
γ2 are multiplicatively independent, ii) γ1γ2 = ±1, iii) γ1 = ±γκ, γ2 = ±γν with
κ, ν ∈ Z satisfying κ > max(0, ν). The cases i), ii) will lead to Theorems 1, 2, and
case iii) to Theorem 3.

Case i). Assume that the numbers (5) in Theorem 1 are algebraically depen-
dent. Then there exist a finite set R0 ⊂ N \ {1} and positive integers L0,M such
that the numbers

Qr, R`,r,m, S`,r,m (r ∈ R0, −L0 6 ` 6 L0, 1 6 m 6M)

are algebraically dependent. Since we assumed r /∈ 22N−1, there exist a finite set
R1 with 4 ∈ R1 as above and a positive integer s such that R0 ⊂ {rj : r ∈ R1, 1 6
j 6 s}. We choose α`,r := d`0+`,r, β`,r := e`1+`0+`,r for ` ∈ Z if some `0 with
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|d`0,r| = 1 exists; otherwise we choose `0 = 0. Let L = L0 + |`1|+ |`0|, and choose
h0 such that

(max(|γ1|−k, |γ2/γ1|k))2h0 < min(|α−L,r|, |β−L,r|).

According to Theorem F1, the numbers

T1,rj (α, β), U`,rj ,m(α, β), V`,rj ,m(α, β)

(r∈R1, −L 6 ` 6 L, 1 6 j 6 s, 1 6 m 6M)

are algebraically independent. Since, by (43) and (44),

Qr −
h0−1∑
h=0

ah

γkr
h

1

= T1,r(γ
−k
1 , (γ2/γ1)k), (45)

R`,r,m −
h0−1∑
h=0

′ bh
(Rkrh+`)m

= D−m`,r U`−`0,r,m(γ−k1 , (γ2/γ1)k), (46)

S`,r,m −
h0−1∑
h=0

′ ch
(Skrh+`)m

= E−m`,r V`−`1−`0,r,m(γ−k1 , (γ2/γ1)k), (47)

we have a contradiction to the assumption from the beginning of the proof. To
show that the numbers (6) are algebraically independent, we just take r0 = 2 in
the above proof and use Theorem F2 (omitting the numbers S`,r,m).

Case ii). In this case, γ2 = δ0/γ1, δ0 = ±1 holds, and the equations (43) and
(44) now take the shape

Rkrh+` = D`,rγ
krh

1 (γ−2krh

1 − d`,r), D`,r = δkr0 g2γ
`
2, d`,r = −δkr+`0 g1g

−1
2 γ2`

1 ,

Skrh+` = E`,rγ
krh

1 (γ−2krh

1 − e`,r), E`,r = δkr0 h2γ
`
2, e`,r = −δkr+`0 h1h

−1
2 γ2`

1 .

The condition Ω = δ(γ1/γ2)`1 = δδ`10 γ
2`1
1 means that d`,r = δe`1+`,r, |d`,r| =

|e`1+`,r| for all `, r.
To prove the algebraic independence of the numbers (5), or of the numbers (6),

we may now repeat the above proof in case i) and note that, in this case, (45)–(47)
have the form

Qr −
h0−1∑
h=0

ah

γkr
h

1

= Γ1,r(γ
−k
1 ),

R`,r,m −
h0−1∑
h=0

′ bh
(Rkrh+`)m

= D−m`,r Φ`−`0,r,m(γ−k1 ),

S`,r,m −
h0−1∑
h=0

′ ch
(Skrh+`)m

= E−m`,r Λ`−`1−`0,r,m(γ−k1 ).
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Furthermore, note that the condition R`0 = 0 is equivalent to α0,2 = d`0,2 = 1.
Thus, Theorems 1 and 2 are proved.

Case iii). By denoting γ1 = δ1γ
κ, γ2 = δ2γ

ν , we now have

Rkrh+` = D`,rγ
kκrh(γk(ν−κ)rh− d`,r), D`,r = δkr+`2 g2γ

ν`,

d`,r = −(δ1δ2)kr+`g1g
−1
2 γ(κ−ν)`, Skrh+` = E`,rγ

kκrh(γk(ν−κ)rh− e`,r),
E`,r = δkr+`2 h2γ

ν`, e`,r = −(δ1δ2)kr+`h1h
−1
2 γ(κ−ν)`.

In this case, the condition Ω = δ(γ1/γ2)`1 = δ(δ1δ2)`1γ(κ−ν)`1 means once more
that d`,r = δe`1+`,r, |d`,r| = |e`1+`,r| for all `, r. Note also that |d`0,r| = 1 if and
only if

∣∣g1g
−1
2 (γ1/γ2)`0

∣∣ = 1.
Again, as in case i) above,

Q∗r −
h0−1∑
h=0

ah

γkrh
= Γ1,r(γ

−k),

R`,r,m −
h0−1∑
h=0

′ bh
(Rkrh+`)m

= D−m`,r X`−`0,r,m(γ−k),

S`,r,m −
h0−1∑
h=0

′ ch
(Skrh+`)m

= E−m`,r Y`−`1−`0,r,m(γ−k).

The validity of Theorem 3 now follows from Theorem F3.
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