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NOTE ON THE CLASS NUMBER OF THE pTH CYCLOTOMIC
FIELD

Shoichi Fujima, Humio Ichimura

Abstract: Let p be a prime number of the form p = 2`f +1 with an odd prime number `, and h−p
the relative class number of the pth cyclotomic field K = Q(ζp). When f = 1, it is conjectured
that h−p is odd, and there are several results related to this conjecture. In this paper, we deal
with the case f > 2. For 0 6 t 6 f , let h−p,t denote the relative class number of the imaginary
subfield Kt of K of degree 2`t over Q. We show that the ratio h−p,f/h

−
p,f−1 is not divisible

by a prime number r if r is a primitive root modulo `2. Further, when r 6 47, we give some
computational results on the ratio h−p,t/h

−
p,t−1 for 1 6 t 6 f . In the range of our computation,

we find that the ratio is divisible by r only in some exceptional cases.
Keywords: relative class number, cyclotomic field, computation.

1. Introduction

Let p be an odd prime number. Let K = Q(ζp) be the pth cyclotomic field, and h−p
the relative class number of K. Here, for an integer m > 2, ζm denotes a primitive
mth root of unity. Consider for a while, a prime number of the form p = 2` + 1
with ` an odd prime number. Then it is conjectured that h−p is odd with many
numerical examples and it is known that h−p is odd if 2 is a primitive root modulo
`. For these, see the papers of Davis [3], Estes [4] and Stevenhagen [11]. Further,
Metsänkylä [9, Theorem 1] proved more generally that for a prime number r, the
ratio h−p /hQ(

√
−p) is not divisible by r if r is a primitive root modulo `, where

hQ(
√
−p) is the class number of Q(

√
−p). (This contains the result for the case

r = 2 since hQ(
√
−p) is odd.)

In this paper, we deal with a prime number p of the form p = 2`f + 1 for f > 2
with an odd prime number `. For each odd f , it is conjectured that there exist
infinitely many prime numbers p of this form. For this, see Bateman and Horn [1].
When f is even, we easily see that p = 2`f + 1 can be a prime number only for the
case ` = 3. For instance, it is known that h−p is even when p = 163 = 2 · 34 + 1.
Thus an exact analogue of the classical conjecture for the case f = 1 (p = 2`+ 1)
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does not hold in general. For 0 6 t 6 f , denote by Kt the imaginary subfield of K
of degree 2`t over Q, and by h−p,t the relative class number of Kt. Thus we have
Kf = K, K0 = Q(

√
−p) and h−p,f = h−p . We can easily show that h−p,t−1 divides

h−p,t using class field theory or the analytic class number formula (see the formula
(4) in Section 2). In this paper, we study the ratio h−p,t/h

−
p,t−1 (and not the whole

class number h−p ). When p = 163 = 2 · 34 + 1, the ratio h−p,1/h
−
p,0 is even but

h−p,t/h
−
p,t−1 is odd for 2 6 t 6 4. For this, see for instance, the table of Yamamura

[14] on the relative class number of Q(ζpn+1) for pn+1 < 10000. First, we show the
following analogue of the above mentioned theorem of Metsänkylä.

Theorem. Let f > 2 be an integer, and r a prime number. Let p = 2`f + 1 be
a prime number with an odd prime number ` 6= r. Then r does not divide the ratio
h−p,f/h

−
p,f−1 if r is a primitive root modulo `2.

To show this theorem, we give a necessary and sufficient condition for
r - h−p,t/h

−
p,t−1 (1 6 t 6 f). The condition is given in terms of some polyno-

mials related to a trace of Bernoulli numbers. It is of classical nature dating back
to the paper of Washington [12] on the non-p-part of the class number in a cyclo-
tomic Zp-extension, and is quite analogous to the ones given in [5, Lemma 12] and
[6, Lemma 4]. Using the condition, we checked whether or not the ratio h−p,t/h

−
p,t−1

is divisible by r for several couples (f, `) and prime numbers r with r 6 47 and
r 6= `. The computational results are summarized in Section 4. In the range of
our computation, we found (i) that r - h−p,f/h

−
p,f−1 even when r is not a primitive

root modulo `2 and (ii) that h−p,t/h
−
p,t−1 is divisible by r only in some exceptional

cases. The above theorem and the computation are quite analogous to the results
for the classical situation where r = 2 and f = 1 (p = 2`+ 1).

Remark 1. Several results are obtained on the divisibility of the class number of
a subfield of the real abelian fieldQ(ζp)

+. See for instance, Jakubec [8], Metsänkylä
[10] and Yoshino [15].

2. Analytic class number formula

We fix an integer f > 2 and a prime number r. Let p = 2`f +1 be a prime number
with an odd prime number ` 6= r. In all what follows, we assume that p 6= r. (For
this, see Remark 3 at the end of this section.) We put t0 = ord`(r

`−1− 1). For an
integer x ∈ Z, denote by sp(x) the unique integer satisfying sp(x) ≡ x mod p and
0 6 sp(x) < p. We have

sp(−x) = p− sp(x) (1)

when p - x. We choose and fix a primitive root g modulo p. For each integer t with
1 6 t 6 f , we define a polynomial Gt,j0 or Ht in Z[T ] as follows. When t0 < f
and t0 + 1 6 t 6 f , we put

Gt,j0 = Gt,j0(T ) =

`t0−1∑
v=0

`f−t−1∑
u=0

sp(g
2(`tu+`t−t0v+j0))

T v (2)
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with an integer j0 > 0. When 1 6 t 6 min(t0, f), we put

Ht = Ht(T ) =

`t−1∑
v=0

`f−t−1∑
u=0

sp(g
2(`tu+v))

T v. (3)

Further, we denote by Φ`t(T ) the `tth cyclotomic polynomial. For a polynomial
F = F (T ) in Z[T ], let F̃ = F mod r ∈ Fr[T ], where Fr is the finite field with r
elements. For each t with 1 6 t 6 f , we put

Dt =

{
GCD(G̃t,j0 , Φ̃`t0

∣∣ 0 6 j0 6 `t−t0 − 1), when t0 + 1 6 t 6 f

GCD(H̃t, Φ̃`t), when 1 6 t 6 min(t0, f).

Here, GCD(∗) denotes the greatest common divisor of polynomials in Fr[T ].

Remark 2. We can easily show that

TGt,j0+`t−t0 (T ) ≡ Gt,j0(T ) mod (T `
t0 − 1)

from the definition of Gt,j0 . From this, it follows that when t0 + 1 6 t 6 f , the
polynomial Dt equals the greatest common divisor of Φ̃`t0 and the set of G̃t,j0 for
all integers j0 > 0.

Proposition 1. For an integer t with 1 6 t 6 f , we have r - h−p,t/h
−
p,t−1

if and only if Dt = 1.

For an odd Dirichlet character ψ of conductor m, let

B1,ψ =
1

m

m−1∑
a=1

aψ(a)

be the generalized Bernoulli number. Denote by δ the quadratic character of
conductor p, which is an odd character as p ≡ 3 mod 4. It follows from Conner
and Hurrelbrink [2, Lemma 13.5] that the unit index of each imaginary abelian
field Kt equals 1. Therefore, by the analytic class number formula (cf. Washington
[13, Theorem 4.17]), we have

h−p,t/h
−
p,t−1 =

∏
ϕt

(
−1

2
B1,δϕt

)
(4)

where ϕt runs over the even Dirichlet characters of conductor p and order `t. We

put Et = Q(ζ`t), the field of `tth roots of unity. We easily see that
1

2
B1,δϕt is

an algebraic integer of Et. Since the class in (Z/pZ)× containing g2 is of order
`f = (p− 1)/2, any integer 1 6 a 6 p− 1 satisfies a ≡ ±g2j mod p for some j with
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0 6 j 6 `f − 1. Then noting that δ (resp. ϕt) is odd (resp. even) and using (1),
we observe that

1

2
B1,δϕt =

1

2p

p−1∑
a=1

aδ(a)ϕt(a)

=
1

2p

`f−1∑
j=0

(
sp(g

2j)ϕt(g
2j)− sp(−g2j)ϕt(g

2j)
)

=
1

p

`f−1∑
j=0

sp(g
2j)ϕt(g

2j) =
1

p

`f−1∑
j=0

sp(g
2j)ζj`t (∈ Et) (5)

where ζ`t = ϕt(g
2) is a primitive `tth root of unity.

Proof of Proposition 1 for the case t0 + 1 6 t 6 f . Let t be an integer with
t0 +1 6 t 6 f . Let ϕt be an arbitrary Dirichlet character of conductor p and order
`t, and ζ`t = ϕt(g

2). We easily see that the system ζj`t with 0 6 j 6 `t−t0 − 1
constitutes an integral basis of Et/Et0 . Hence, we can uniquely write

1

2
B1,δϕt =

`t−t0−1∑
j=0

ajζ
j
`t

for some integer aj of Et0 . Let Tr denote the trace map from Et to Et0 . We see
that for integers j0 and j with 0 6 j0, j 6 `t−t0 − 1, ζj−j0`t is contained in Et0 if
and only if j = j0. Hence, it follows that

`t−t0aj0 = Tr

(
1

2
ζ−j0`t B1,δϕt

)
. (6)

Let Pt be an arbitrary prime ideal of Et over r, and set ℘ = Pt ∩ Et0 . As
t0 + 1 6 t 6 f , ℘ remains prime in Et. First, we show that the congruence

1

2
B1,δϕt ≡ 0 mod Pt (7)

holds if and only if aj0 ≡ 0 mod ℘ for all j0 with 0 6 j0 6 `t−t0 − 1. The “if" part
is obvious. Assume that (7) holds. Then, as ℘ remains prime in Et, it follows that

Tr

(
1

2
ζ−j0`t B1,δϕt

)
≡ 0 mod ℘

for all j0. Hence, we see from (6) that aj0 ≡ 0 mod ℘ for all j0.
Next, we show that

aj0 =
1

p
Gt,j0(ζ`t0 ). (8)
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Here, ζ`t = ϕt(g
2) and ζ`t0 = ζ`

t−t0
`t = ϕt(g

2`t−t0 ). Using (8) and the above
assertion on the congruence (7), we obtain Proposition 1 for the case t0 +1 6 t 6 f
from the class number formula (4).

From (5), we see that

1

2
ϕt(g

−2j0)B1,δϕt =
1

p

`f−1∑
j=0

sp(g
2j)ϕt(g

2(j−j0)) =
1

p

`f−1∑
j=0

sp(g
2(j+j0))ζj`t

replacing j−j0 with j. We have Tr(ζj`t) = `t−t0ζj`t or 0 according as `t−t0 divides j
or not. For those j divisible by `t−t0 , we put j = `t−t0k with 0 6 k 6 `f−t+t0 − 1.
Then it follows from the above that

Tr

(
1

2
ϕt(g

−2j0)B1,δϕt

)
=
`t−t0

p
×
`f−t+t0−1∑

k=0

sp(g
2(`t−t0k+j0))ζk`t0 .

Writing k = `t0u+ v, we obtain

Tr

(
1

2
ϕt(g

−2j0)B1,δϕt

)
=
`t−t0

p
×
`t0−1∑
v=0

`f−t−1∑
u=0

sp(g
2(`tu+`t−t0v+j0))

 ζv`t0

=
`t−t0

p
×Gt,j0(ζ`t0 ).

The formula (8) follows from this and (6). �

Proof of Proposition 1 for the case 1 6 t 6 min(t0, f). Writing j = `tu + v,
we can rewrite the formula (5) as

1

2
B1,δϕt =

1

p

`t−1∑
v=0

`f−t−1∑
u=0

sp(g
2(`tu+v))

 ζv`t =
1

p
Ht(ζ`t). (9)

We can show the assertion from this and the class number formula (4). �

Remark 3. If r = p (= 2`f +1), we have t0 = f . We imposed the condition p 6= r
because of the denominator p in (9).

3. Proof of Theorem

We begin with the following elementary lemma.

Lemma. Let p be an arbitrary prime number and r > 2 an integer with p - r. For
integers x and y with 1 6 x < y 6 p − 1, we have sp(rnx) 6≡ sp(r

ny) mod r for
some n > 0.
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Proof. Assume to the contrary that

sp(r
nx) ≡ sp(rny) mod r (10)

for all n > 0. We show by induction on n that

a

rn
p < x < y <

(a+ 1)

rn
p (11)

holds for some a with 0 6 a 6 rn−1. When n = 0, the assertion holds with a = 0.
Assume that (11) holds for an integer n > 0 with some a. Then it follows that

arp < rn+1x < rn+1y < (a+ 1)rp = arp+ rp. (12)

For an integer z with p - z and arp < rn+1z < arp + rp, there uniquely exists an
integer kz with 0 6 kz 6 r − 1 satisfying

arp+ kzp < rn+1z < arp+ (kz + 1)p.

Then we see that

sp(r
n+1z) = rn+1z − arp− kzp ≡ −kzp mod r,

and hence the integer kz is uniquely determined by the value sp(rn+1z) mod r
because p and r are relatively prime. Therefore, from the congruence (10) for
n+ 1 and (12), we observe that

arp+ kp < rn+1x < rn+1y < arp+ (k + 1)p

for some k with 0 6 k 6 r − 1. It follows that

ar + k

rn+1
p < x < y <

ar + k + 1

rn+1
p

and hence the assertion (11) holds for n+ 1. Thus (11) holds for all n. However,
the inequality (11) is impossible when rn > p. Therefore, the congruence (10)
does not hold for some n. �

Proof of Theorem. We work under the setting and notation of Section 2. In
particular, p = 2`f + 1 with an odd prime number `, and r is a prime number
with r 6= `. Assume that r is a primitive root modulo `2. Then, we have r 6= p

and t0 = 1. We put xv = sp(g
2`f−1v) for 0 6 v 6 ` − 1. As g is a primitive root

modulo p, these ` integers are different from each other. As t0 = 1, we have

Gj0 = Gf,j0(T ) =

`−1∑
v=0

sp(g
2(`f−1v+j0))T v =

`−1∑
v=0

sp(g
2j0xv)T

v.

Assume that r divides the ratio h−p,f/h
−
p,f−1. Then it follows from Proposition 1

and Remark 2 that
GCD(G̃j0 , Φ̃`) 6= 1
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for all j0. As r is a primitive root modulo `, the polynomial Φ̃`(T ) is irreducible
over Fr. Therefore, we see that G̃j0 = cΦ̃` for some constant c ∈ Fr. Hence, it
follows that the congruence

sp(g
2j0x0) ≡ sp(g2j0x1) ≡ · · · ≡ sp(g2j0x`−1) mod r

holds for all j0. For each n > 0, we have rn ≡ g2j0 or −g2j0 modulo p for some
j0 since p ≡ 3 mod 4 and g is a primitive root modulo p. Hence, we see from the
above congruence and (1) that

sp(r
nx0) ≡ sp(rnx1) ≡ · · · ≡ sp(rnx`−1) mod r

for all integers n > 0. However, this is impossible by Lemma. �

4. Numerical results

For each prime number p = 2`f + 1 with p < 256 and each prime number r with
2 6 r 6 47 and r 6= `, we computed the polynomial Dt in §2 mainly for t with
t0 + 1 6 t 6 f . If Dt = 1, then we obtain r - h−p,t/h

−
p,t−1 by Proposition 1. There

are 1500 pairs (f, `) of an integer f > 2 and an odd prime ` for which p = 2`f + 1
is a prime number with p < 256. When f is even (and ` = 3), the condition is
satisfied for f = 2, 4, 6, 16 and 30. When f = 3 (resp. 5, 7, 9), there are 1468
(resp. 21, 2, 2) primes ` satisfying the condition. When f = 13 or 17, there is
just one such `. For the other f , there are no such `. For these, see Table 3.
Summing up, there are 5 + 1468 + 21 + 2 + 2 + 1 + 1 = 1500 pairs (f, `). For these
(f, `), we always have p 6= r (6 47). For these ` and r with 2 6 r 6 47, we found
that t0 = 1 or 2. In Table 4, we give a list of r, ` and f for which t0 = 2 (and
p = 2`f + 1 is a prime). We have t0 = 2 only for relatively small `, except for the
case where ` = 48947, f = 3 and r = 17. For the exceptional case, see a comment
in a paragraph on the computation complexity near the end of this section.

Table 3: Pairs (f, `) for odd f

f ` (p < 256)

3 5, 11, 29, 59, 71, 107, 149, 191, 197, 227, 269, 431, 479, 491, 857, . . . , 328421,
329267, 329627, 329687, 329729 (1468 pairs)

5 3, 23, 29, 53, 149, 251, 389, 401, 443, 839, 953, 983, 1061, 1103, 1319, 1361,
1409, 1451, 1481, 1613, 1733 (21 pairs)

7 29, 179
9 3, 11
13 5
17 3
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Proposition 2. For each of the 1500 pairs (f, `) and each prime number r with
2 6 r 6 47 and r 6= `, we have Dt = 1 and hence r - h−p,t/h

−
p,t−1 for any t with

t0 + 1 6 t 6 f except for the case where (f, `) = (3, 48947) and r = 17, t = 3.

Table 4: List of (r, `, f) with t0 = 2

r ` f

3 11 3, 9
7 5 3, 13
11 71 3
17 3 2, 4, 5, 6, 9, 16, 17, 30
17 48947 3
19 3 2, 4, 5, 6, 9, 16, 17, 30
37 3 2, 4, 5, 6, 9, 16, 17, 30
41 29 3, 5, 7
43 5 3, 13

As for those t with 1 6 t 6 min(t0, f), we obtained results for each of 294 pairs
(f, `) in Table 5. We give in Table 6 a list of ten quadruplets (f, `, t, r) and the
polynomial Dt for which we found that degDt > 1 and hence r divides h−p,t/h

−
p,t−1.

Table 5: 294 pairs (f, `) for the case 1 6 t 6 min(t0, f)

f ` Number of pairs
2,4,6,16,30 3 5
3 5, 11, 29, 59, 71, . . . , 39749, 39761, 39839 274
5 3, 23, 29, 53, 149, 251, 389, 401, 443, 839 10
7 29 1
9 3, 11 2
13 5 1
17 3 1

Proposition 3. For each of the 294 pairs (f, `) in Table 3 and each prime number
r with 2 6 r 6 47 and r 6= `, we have Dt = 1 and hence r - h−p,t/h

−
p,t−1 for any t

with 1 6 t 6 min(t0, f) except for those given in Table 6.

Remark 4. From these computational results with r 6 47, we might expect that
the ratio h−p,t/h

−
p,t−1 is not divisible by r for any triple (f, `, t) and a relatively

small prime number r when p = 2`f + 1 is a prime and t0 + 1 6 t 6 f . We already
know that r - h−p,f/h

−
p,f−1 when r is a primitive root modulo `2 (Theorem).
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Table 6: Quadruplets (f, `, t, r) and the polynomial Dt with degDt > 1

(f, `) t r Dt

(3,5) 1 11 2 + T

(4,3) 1 2 1 + T + T 2 (Ht mod 2 = 0)

(5,3) 1 7 3 + T

(5,3) 2 37 26 + 21T + T 2

(5,23) 1 47 44 + 43T + 30T 2 + T 3

(6,3) 1 31 6 + T

(16,3) 1 13 4 + T

(17,3) 1 13 10 + T

(17,3) 2 37 21 + T

(30,3) 1 2 1 + T + T 2

To show Proposition 2 (t0 + 1 6 t 6 f), our calculation for each triple (f, `, t)
was carried out as follows. For each r and j0 > 0, we put

GCDj0 = GCD(Gt,j mod r,Φ`t0 mod r
∣∣ 0 6 j 6 j0)

for brevity. If we can compute GCDj0 = 1 for some j0, then we obtain Dt = 1.
We denote by n] the primorial of n, the product of prime numbers less than or
equal to n. Since 47] < 263, a coefficient of a polynomial mod 47] can be stored
in one word (4 bytes). The calculation for the triple is organized as follows.

(I) For each prime r with 2 6 r 6 47 and r 6= `, we proceed as follows:
(II-i) Compute the actual value of t0 = ord`(r

`−1 − 1).
(II-ii) If t 6 min(t0, f), we skip the r and go back to (I).
(III) Compute GCDj0 one by one for j0 = 0, 1, · · · , until we obtain Dt = 1 as

follows:
(III-i) Compute the coefficients of Gt,j0(T ) mod 47] (which depends on t0), if

we have not yet computed it.
(III-ii) Calculate Gt,j0(T ) mod r.
(III-iii) Compute the polynomial GCDj0 :

GCDj0 =

{
GCD(Gt,j0(T ) mod r,Φ`t0 mod r) (j0 = 0)

GCD(Gt,j0(T ) mod r,GCDj0−1) (j0 > 1)

by Euclidean algorithm.

Except for the single case mentioned in Proposition 2, we were able to find that
Dt = 1 with j0 6 3. It is noteworthy that, in almost all cases, the value j0 = 0
worked for showing Dt = 1. Table 7 is a list of the number of triples (f, `, t) for
which we needed j0 = 1, 2 or 3.
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Table 7: Number of triplets (f, `, t) for which we needed j0 > 1.

r 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
j0 = 1 17 1 1 8 5 8 0 14 4 1 11 7 5 3 2

2 3 3 1 1 2
3 1 1

On the other hand, for Proposition 3 (1 6 t 6 min(t0, f)), steps (II-ii)-(III-iii)
in the above process are replaced by the following.
(II-ii) If t > min(t0, f), we skip the r and go back to (I).
(III-i) Compute the coefficients of Ht(T ) mod 47], if we have not yet computed

it.
(III-ii) Calculate Ht(T ) mod r.
(III-iii) Compute Dt = GCD(Ht(T ) mod r,Φ`t mod r) by Euclidean algorithm.

Remark 5. For an odd prime number p, let h∗n denote the relative class number
of the pn+1st cyclotomic field Q(ζpn+1). In [5], we gave a condition for 2 - h∗n/h∗n−1

similar to Proposition 1, and showed that when p 6 509, the ratio h∗n/h∗n−1 is
odd for all n > 1 with the help of computer. Similarly to the above, “j0 = 0"
was enough for showing 2 - h∗n/h∗n−1 in almost all cases (see [5, §4.3]). Similar
phenomenon also appeared in [7] where we dealt with the 3-part of class numbers.

Let us comment on the computation complexity. The complexity of computing
G = Gt,j0 (resp. H = Ht) modulo #47 is measured by the number of terms sp(∗)
in the formula (2) (resp. (3)). Therefore, the order of the complexity for G
(resp. H) is O(`f−(t−t0)) (resp. O(`f )). Thus, the computation of G (resp. H) is
very hard when f − (t− t0) (resp. f) is large. In the range of our computation, it
was hardest when (f, `) = (30, 3) and (5, 839) with small t. When (f, `) = (30, 3),
we encountered four polynomials Gt,j0 with (t, j0, t0) = (2, 0, 1), (2, 1, 1), (3, 0, 2),
(3, 1, 2), which have 329 (∼ 7× 1013) terms sp(∗). Each needed computation time
of 35-50 days. Further, two polynomials Ht with t = 1, 2 have 330 (∼ 2 × 1014)
terms. Each needed computation time of 3.5 months. When (f, `) = (5, 839), H1

modulo #47 is

318301740960876433 + · · ·+ 62872069834174101T 838,

which has 8395 (∼ 4×1014) terms sp(∗) in the formula (3). It needed computation
time of 9.5 months.

For computing the GCD by Euclidean algorithm, the complexity is measured
by the product of the degrees of the related two polynomials. Hence, the order is
O(`2t0) (resp. O(`2t)) for G (resp. H). GCD computation of the exceptional case
in Proposition 2 has `2t0 = 489474 (∼ 6 × 1018) steps, so that its computation
time is estimated to be greater than many years.

The computations in Propositions 2 and 3 were done in parallel by assignment
of each triplet (f, `, t) to a thread of personal computer(s) one by one. They
started at 21 Feb., 2013 and finished at 20 July, 2014, in a personal computer with
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8 threads, Intel Core i7-3840QM CPU and 32GB RAM. Temporarily, additional
40 threads of 11 PCs with Intel i7, i5 or Core 2 CPU were used for 37 days in
Sep.-Oct., 2013. Java program language was used.

Acknowledgements. The authors are gratefull to Shoichi Nakajima and the
anonymous referee for several valuable comments and suggestions which improved
the presentation of the whole paper.
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