ON THE DIOPHANTINE EQUATION

$(x+1)^{2}+(x+2)^{2}+\ldots+(x+d)^{2}=y^{n}$
Zhongfeng Zhang, Meng Bai

Abstract: In this paper, we give all the integer solutions of the equation $(x+1)^{2}+(x+2)^{2}+$
$\ldots+(2 x)^{2}=y^{n}$. $\ldots+(2 x)^{2}=y^{n}$.
Keywords: diophantine equations, binomial Thue equations.

1. Introduction

The Diophantine equation

$$
1^{k}+2^{k}+\ldots+x^{k}=y^{n}
$$

was studied by Lucas[4] for $(k, n)=(2,2)$ and $\operatorname{Schäffer[6]~for~the~general~situation.~}$ There are many results on this equation (see [2],[3] and [5]). Further, we can consider the more general equation

$$
(x+1)^{k}+(x+2)^{k}+\ldots+(x+d)^{k}=y^{n} .
$$

In this paper, we discuss it for $k=2$. Since

$$
(x+1)^{2}+(x+2)^{2}+\ldots+(x+d)^{2}=d x^{2}+d(d+1) x+\frac{d(d+1)(2 d+1)}{6}
$$

we only need to deal with the equation

$$
d x^{2}+d(d+1) x+\frac{d(d+1)(2 d+1)}{6}=y^{n}
$$

that is

$$
\begin{equation*}
d\left(6 x^{2}+6(d+1) x+(d+1)(2 d+1)\right)=6 y^{n} . \tag{1}
\end{equation*}
$$

[^0]If $d=x$, then equation (1) can be written as

$$
\begin{equation*}
x(2 x+1)(7 x+1)=6 y^{n} . \tag{2}
\end{equation*}
$$

In this paper we prove the following two results.
Theorem 1.1. The integer solutions of equation (2) such that $n>1$ are $(x, y)=$ $(0,0),(x, y, n)=(1, \pm 2,2),(2, \pm 5,2),(24, \pm 182,2)$ or $(x, y)=(-1,-1)$ with $2 \nmid n$.

From the result of Lucas[4] and Theorem 1.1, we obtain the following interesting fact:

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+24^{2} & =70^{2} \\
(24+1)^{2}+(24+2)^{2}+\ldots+(24+24)^{2} & =182^{2}
\end{aligned}
$$

Theorem 1.2. Let p be a prime and $p \equiv \pm 5(\bmod 12)$. If $p \mid d$ and $v_{p}(d) \not \equiv 0$ $(\bmod n)$, then equation (1) has no integer solution (x, y).

2. Some preliminary result

In this section we present a lemma of A. Baszsó, A. Bérczes, K. Győry and Á. Pintér [1] which will be used to prove Theorem 1.1.
Lemma 2.1. Let $B>A \geqslant 1$ be integers such that $\operatorname{gcd}(A, B)=1$ and $\max \{A, B\} \leqslant$ 50 , then all integer solutions (x, y, n) to equation

$$
A x^{n}-B y^{n}= \pm 1
$$

with $|x y|>1, n \geqslant 3$ and $(A, B, n) \neq(21,38,17),(26,41,17),(22,43,17)$, $(17,46,17),(31,46,17),(21,38,19)$ are given by

$$
\begin{aligned}
n=3, \quad(A, B, x, y)= & (1,7, \pm(2,1)),(1,9, \pm(2,1)),(1,17, \pm(18,7)), \\
& (1,19, \pm(8,3)),(1,20, \pm(19,7)),(1,26, \pm(3,1)), \\
& (2,15, \pm(2,1)),(12,17, \pm(2,1)),(3,10, \pm(3,2)), \\
& (5,13, \pm(11,8)),(5,17, \pm(3,2)),(8,17, \pm(9,7)), \\
& (8,19, \pm(4,3)),(11,19, \pm(6,5)), \\
n=4, \quad(A, B, x, y)= & (1,5, \pm 3, \pm 2),(1,15, \pm 2, \pm 1), \\
& (1,17, \pm 2, \pm 1),(1,39, \pm 5, \pm 2) .
\end{aligned}
$$

3. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. First we assume $n \geqslant 3$ and $2 \nmid n$ in equation (2). Since $\operatorname{gcd}(x, 2 x+1)=1, \operatorname{gcd}(x, 7 x+1)=1$ and $\operatorname{gcd}(2 x+1,7 x+1)=\operatorname{gcd}(2 x+1, x-2)=$ $\operatorname{gcd}(x-2,5) \in\{1,5\}$, one has

$$
x=2^{\alpha_{1}} \cdot 3^{\beta_{1}} y_{1}^{n}, \quad 2 x+1=3^{\beta_{2}} \cdot 5^{\gamma_{2}} y_{2}^{n}, \quad 7 x+1=2^{\alpha_{3}} \cdot 3^{\beta_{3}} \cdot 5^{\gamma_{3}} y_{3}^{n}
$$

$$
\begin{equation*}
\text { On the diophantine equation }(x+1)^{2}+(x+2)^{2}+\ldots+(x+d)^{2}=y^{n} \tag{75}
\end{equation*}
$$

with

$$
\alpha_{i}, \quad \beta_{i}=0,1, \quad \gamma_{j}=0,1, n-1
$$

and

$$
\alpha_{1}+\alpha_{3}=1, \quad \beta_{1}+\beta_{2}+\beta_{3}=1, \quad \gamma_{2}+\gamma_{3}=0 \quad \text { or } \quad n .
$$

Now we have

$$
\begin{equation*}
3^{\beta_{2}} \cdot 5^{\gamma_{2}} y_{2}^{n}-2^{\alpha_{1}+1} \cdot 3^{\beta_{1}} y_{1}^{n}=1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{\alpha_{3}} \cdot 3^{\beta_{3}} \cdot 5^{\gamma_{3}} y_{3}^{n}-2^{\alpha_{1}} \cdot 3^{\beta_{1}} \cdot 7 y_{1}^{n}=1 \tag{4}
\end{equation*}
$$

In the discussion we can distinguish two cases.
Case 1: $\gamma_{2}=0$. In this case, one has

$$
3^{\beta_{2}} y_{2}^{n}-2^{\alpha_{1}+1} \cdot 3^{\beta_{1}} y_{1}^{n}=1
$$

from equation (3). Let $A=3^{\beta_{2}}, B=2^{\alpha_{1}+1} \cdot 3^{\beta_{1}}$, then $(A, B)=(3,2),(3,4),(1,2)$, $(1,4),(1,6),(1,12)$. By Lemma 2.1, we obtain

$$
\left(A, B, y_{1}, y_{2}\right)=(3,2,1,1),(3,4,-1,-1),(1,2,-1,-1)
$$

and n arbitrary. Then we get $x=1,-2,-1$ and only $x=-1, y=-1$ is an integer solution of equation (2).

Case 2: $\gamma_{2}>0$. In this case, one has $\gamma_{2}=1$ or $\gamma_{3}=1$.

- $\left(\gamma_{2}=1\right)$ From equation (3) we have

$$
3^{\beta_{2}} \cdot 5 y_{2}^{n}-2^{\alpha_{1}+1} \cdot 3^{\beta_{1}} y_{1}^{n}=1
$$

Let $A=3^{\beta_{2}} \cdot 5, B=2^{\alpha_{1}+1} \cdot 3^{\beta_{1}}$, then $(A, B)=(15,2),(15,4),(5,2),(5,4)$, $(5,6),(5,12)$. By Lemma 2.1, we include

$$
\left(A, B, y_{1}, y_{2}\right)=(15,2,-2,-1),(5,4,1,1),(5,6,-1,-1)
$$

and n arbitrary, which leads to $x=-8,2,-3$. These values yields no integer solution to equation (2).

- $\left(\gamma_{3}=1\right)$ From equation (4) we get

$$
2^{\alpha_{3}} \cdot 3^{\beta_{3}} \cdot 5 y_{3}^{n}-2^{\alpha_{1}} \cdot 3^{\beta_{1}} \cdot 7 y_{1}^{n}=1
$$

Let $A=2^{\alpha_{3}} \cdot 3^{\beta_{3}} \cdot 5, B=2^{\alpha_{1}} \cdot 3^{\beta_{1}} \cdot 7$, then we have $(A, B)=(30,7),(15,7)$, $(15,14),(10,7),(10,21),(5,7),(5,14),(5,21),(5,42)$. By Lemma 2.1, we obtain $\left(A, B, y_{1}, y_{3}\right)=(15,14,1,1)$ and n arbitrary. Then we get $x=2$ and it does not yield to an integer solution of equation (2) since $n \geqslant 3$.

We proceed to consider the situation $n=2$. Since

$$
\begin{equation*}
x(2 x+1)(7 x+1)=6 y^{2} \tag{5}
\end{equation*}
$$

is an elliptic curve, we only need to find all the integer points on it. Let $u=$ $84 x, v=504 y$, then (5) can be written as

$$
\begin{equation*}
v^{2}=u^{3}+54 u^{2}+504 u . \tag{6}
\end{equation*}
$$

Using Magma we get

$$
\begin{aligned}
(u, v)= & (-42,0),(-36, \pm 72),(-32, \pm 80),(-24, \pm 72),(-21, \pm 63),(-14, \pm 28), \\
& (-12,0),(0,0),(3, \pm 45),(6, \pm 72),(18, \pm 180),(28, \pm 280), \\
& (84, \pm 1008),(150, \pm 2160),(168, \pm 2520),(363, \pm 7425),(1458, \pm 56700), \\
& (2016, \pm 91728),(67228, \pm 17438120),
\end{aligned}
$$

then

$$
(x, y)=(0,0),(1, \pm 2),(2, \pm 5),(24, \pm 182) .
$$

This completes the proof of Theorem 1.1.
Proof of Theorem 1.2. Since $p \equiv \pm 5(\bmod 12)$, one has $p \geqslant 5$, together with $p \mid d$ and $v_{p}(d) \not \equiv 0(\bmod n)$ yields

$$
p \mid 6 x^{2}+6(d+1) x+(d+1)(2 d+1) .
$$

Then we have

$$
p \mid 36 x^{2}+36(d+1) x+6(d+1)(2 d+1)
$$

that is

$$
p \mid(6 x+3(d+1))^{2}+(d+1)(3 d-3)
$$

which is a contradiction to

$$
\left(\frac{-(d+1)(3 d-3)}{p}\right)=\left(\frac{3}{p}\right)=-1 .
$$

References

[1] A. Baszsó, A. Bérczes, K. Györy and Á. Pintér, On the resolution of equations $A x^{n}-B y^{n}=C$ in integers x, y and $n \geqslant 3$, II, Publ. Math. Debrecen 76 (2010), 227-250.
[2] M. Bennett, K. Györy and Á. Pintér, On the Diophantine equation $1^{k}+2^{k}+$ $\ldots+x^{k}=y^{n}$, Compositio Math. 140 (2004), 1417-1431.
[3] M. Jacobson, Á. Pintér, G. Walsh, A computational approach for solving $y^{2}=1^{k}+2^{k}+\ldots+x^{k}$, Math.Comp. 72 (2003) 2099-2110.
[4] É. Lucas, Problem 1180, Nouvelle Ann. Math. 14 (1875), 336.
[5] Á. Pintér, On the power values of power sums, J. Number Theory 125 (2007), 412-423.
[6] J. Schäffer, The equation $1^{p}+2^{p}+\ldots n^{p}=m^{q}$, Acta Math. 95 (1956), 155-189.

On the diophantine equation $(x+1)^{2}+(x+2)^{2}+\ldots+(x+d)^{2}=y^{n}$

Addresses: Zhongfeng Zhang: School of Mathematics and Information Science, Zhaoqing University, Zhaoqing 526061, P.R. China;
Meng Bai: School of Mathematics and Information Science, Zhaoqing University, Zhaoqing 526061, P.R. China.
E-mail: zh12zh31f@yahoo.com.cn, baimeng.clare@yahoo.com.cn
Received: 7 April 2012; revised: 24 May 2012

[^0]: Supported by the Guangdong Provincial Natural Science Foundation (No. S2012040007653) and the Zhao Qing University Scientific Research Fund.

 2010 Mathematics Subject Classification: primary: 11D41; secondary: 11D61

