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ON THE DIOPHANTINE EQUATION
(z+1)2+(z+2)2+...+(x+d)?2=y"
ZHONGFENG ZHANG, MENG BAI

Abstract: In this paper, we give all the integer solutions of the equation (z + 1) + (z + 2)? +
e (22)2 =y
Keywords: diophantine equations, binomial Thue equations.

1. Introduction
The Diophantine equation
P42k 4 a2k =yn

was studied by Lucas[4] for (k,n) = (2,2) and Schéffer|6] for the general situation.
There are many results on this equation (see [2],[3] and [5]). Further, we can
consider the more general equation

(z+DF @+ + .+ (x+d)r =y
In this paper, we discuss it for £ = 2. Since

(24124 (@42 4 (o d) = da? 4 d(d + 1) + NETDRITL)

6 )
we only need to deal with the equation
dd+1)(2d+1
da® 4+ d(d + 1)z + W =y",
that is
d(62% +6(d + 1)x + (d + 1)(2d + 1)) = 6y™. (1)
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If d = z, then equation (1) can be written as
2z +1)(Tx + 1) = 6y™. (2)
In this paper we prove the following two results.

Theorem 1.1. The integer solutions of equation (2) such thatn > 1 are (x,y) =
(0,0), (z,y,n) = (1,£2,2), (2,£5,2), (24, £182,2) or (z,y) = (—1,—1) with2 t n.

From the result of Lucas[4] and Theorem 1.1, we obtain the following interesting
fact:

12 422 4 ... +242 = 702,
(24 +1)2 4+ (24 +2)% + ... + (24 + 24)? = 1822

Theorem 1.2. Let p be a prime and p = £5 (mod 12). If p|d and v,(d) # 0
(mod n), then equation (1) has no integer solution (z,y).

2. Some preliminary result

In this section we present a lemma of A. Baszso, A. Bérczes, K. Gy6ry and A. Pintér
[1] which will be used to prove Theorem 1.1.

Lemma 2.1. Let B > A > 1 be integers such that gcd(A, B) = 1 and max{A, B} <
50, then all integer solutions (x,y,n) to equation

Ax" — By" = +£1

with |zy| > 1,n > 3 and (A, B,n) # (21,38,17), (26,41,17), (22,43,17),
(17,46,17), (31,46,17), (21,38,19) are given by

n=3, (A B,zy) =(1,7,£(21), (1,9 £(2,1)),(1,17,£(18,7)),
(1,19, +(8,3)), (1,20, +(19,7)), (1,26, £(3,1)),
(2,15, +(2,1)), (12,17, +£(2,1)), (3,10, £(3,2)),
(5,13,£(11,8)), (5,17, £(3,2)), (8,17, (9, 7)),
(8,19,%(4,3)), (11,19, +(6,5)),

n=4, (A B,zy) =(1,5+3,£2),(1,15,£2,£1),
(1,17, 42, +1), (1,39, +5, +2).

3. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. First we assume n > 3 and 2 { n in equation (2). Since
ged(z,2x+1) = 1,ged(z, 7e+1) = 1 and ged(2x+ 1,72 +1) = ged(2z+ 1,2 —2) =
ged(x — 2,5) € {1,5}, one has

T =9 _3ﬂ1y§t7 22 4+1=3% 52yl T+ 1=2%.3% -5yl
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and
a; +az =1, Br+ B2+ B3 =1, Yo+ 7v3 =0 or n.

Now we have
3062 . 5r2yn — gai+l 36111? -1 (3)

and
203 . 30 . 5rsyn 9o . 3f Ty = 1 (4)

In the discussion we can distinguish two cases.
Case 1: 75 = 0. In this case, one has

3/52?]3 _ 9o+l 351y’ib -1

from equation (3). Let A = 3%, B = 24+1.3% then (A, B) = (3,2),(3,4), (1,2),
(1,4), (1,6), (1,12). By Lemma 2.1, we obtain

(A, B,y1,y2) = (3,2,1,1),(3,4,—-1,-1),(1,2,—-1,-1)

and n arbitrary. Then we get x = 1, -2, —1 and only x = —1, y = —1 is an integer
solution of equation (2).
Case 2: v > 0. In this case, one has v =1 or v3 = 1.

e (2 = 1) From equation (3) we have
302 . by — 2L 3Py = 1,

Let A =3%.5 B =2%%1.30 then (4, B) = (15,2), (15,4), (5,2), (5,4),
(5,6), (5,12). By Lemma 2.1, we include

(A7B7y1ay2) = (15? 27 _2a _1)7 (5a47 17 1)’ (55 67 _1a _1)

and n arbitrary, which leads to x = —8,2, —3. These values yields no integer
solution to equation (2).
e (v3 =1) From equation (4) we get

200 . 30 yp — 20 . 30 Tyl = 1.

Let A =2% .30 .5 B =2% .35 .7 then we have (4, B) = (30,7), (15,7),
(15,14), (10,7), (10,21), (5,7), (5,14), (5,21), (5,42). By Lemma 2.1, we
obtain (A, B,y1,y3) = (15,14,1,1) and n arbitrary. Then we get = 2 and
it does not yield to an integer solution of equation (2) since n > 3.

We proceed to consider the situation n = 2. Since

x(2x +1)(Tz + 1) = 6y° (5)
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is an elliptic curve, we only need to find all the integer points on it. Let u =
84x,v = 504y, then (5) can be written as

v? = u? + 54u? + 504u. (6)

Using Magma we get

(u,v) = (—42,0), (—36,£72), (—32,£80), (—24, £72), (—21, +63), (—14, +28),
(—12,0), (0,0), (3,445), (6,+72), (18,+180), (28, £280),
(84,+1008), (150, £2160), (168, +2520), (363, +7425), (1458, +56700),
(2016, 4+91728), (67228, £17438120),
then
(z,y) = (0,0), (1,£2), (2, £5), (24, £182).
This completes the proof of Theorem 1.1. |

Proof of Theorem 1.2. Since p = £5 (mod 12), one has p > 5, together with
pld and v,(d) Z 0 (mod n) yields

p|62% + 6(d + 1)z + (d +1)(2d + 1).

Then we have
p|3622 +36(d + 1)z + 6(d + 1)(2d + 1),

that is
p|(62 4+ 3(d 4+ 1))? + (d 4+ 1)(3d — 3),

which is a contradiction to

(FED) 3y, "
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