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DIOPHANTINE APPROXIMATION IN Q(v/=30), Q(v/—33)
AND Q(v=57)
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Abstract: For the imaginary quadratic fields with discriminants -120, -132 and -248, the first
three, five and two points of the Lagrange and Markov spectra respectively are found.
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1. Introduction

1.1. History

Let a be a real irrational number. In 1891 A. Hurwitz [7] showed that the inequal-

ity
la—a/c| < 1/(he?)

has infinitely many solutions in coprime integers a and ¢ when h = /5, and /5
is the best constant possible. In 1917 the first geometric proof of this result was
obtained by L. Ford in [3], where he makes use of properties of the modular group.

Let d > 0 be a square-free integer. Let Oy be the ring of integers of the field
Q(v—d).Let§ e C—Q (\/fd). Denote by n(p, q) the norm of the ideal generated
by p,q € Oq4. Let

6 —
l9(q p)lj (1.1)

n(p,q)

where p,q € Oq4, g # 0. Then the inequality

vq(6) = lim inf

p n(p, q)
‘9 - q‘ < vg(0) PE (1.2)

has infinitely many solutions in p,q € Oy with n(p,q) < 2vd (see e.g. [3],
$17(5), XVI*, for the justification of this inequality). The set of numbers L4 =
{Vd(ﬁ), feC—-Q (\/ —d)} is the Lagrange spectrum for the imaginary quadratic
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field Q (\/Td) and Cy = sup Ly the Hurwitz constant for the field. If ko, is the
highest limit point of L4, then £4 N (kso, 00) is called the discrete part of Lg.

In 1925 Ford [4], applying his method to the Picard group PSLs(O;), showed
that the Hurwitz constant for the Gauss field Cy =1/ /3. For the fields with class
number one with d =1, 2, 3, 7, 11, and 19, the Hurwitz constants were found by
Ford [4], Perron [9], [10], [11], Hofreiter [6], Poitou [12]), (see also A. Schmidt [14]).
After Ford [4], none of these authors applied his geometric ideas to Diophantine
approximation of complex numbers. In [27], these ideas, as they were developed in
[29], were used to obtain an upper bound for the Hurwitz constant of an imaginary
quadratic number field (see Theorem 3.1 below). In the cases of d = 1, 2, 5, 6,
30 and 33, this bound is sharp [27], [35]. For the class two field with d = 15,
the Hurwitz constant was found in [30]. For d = 2 and 7, the second minimum
is known [14]. For d = 1 (A. Schmidt [15], Vulakh [20], [21]), d = 3 (A. Schmidt
[17]), d = 5, d = 6 (Vulakh [31]) and d = 11 (A. Schmidt [16]), the discrete part
of the Lagrange spectrum (which coincides with the discrete part of the Markov
spectrum) was found. Applying the results of [22], it can be shown that the
Lagrange spectrum of an imaginary quadratic field is continuous in its lower part.
There are known upper (see Hofreiter [6], Perron [11]) and lower [23], [35] bounds
for the Hurwitz constants Cy. Lower bounds for the highest limit point of L4 for
some values of d are given in [23] and [35].

1.2. Main results

The Hurwitz constants for the fields Q (v/=30) and Q (v/—33) are found in [35].

The Hurwitz constants for the field Q (\/ —57) is found in Section 5 of the present
paper. Here, the method, which was used in [31] to find the discrete part of the
Lagrange spectrum of the fields Q (\/ —5) and Q (\/ —6), is applied to the fields

Q (\/730), Q (\/ 733) and Q (\/757). It is based on application of the Farey
polygons associated with the extended Bianchi groups By, introduced in [30], to
reduce the problem of finding the discrete part of the Markov spectrum for By
to the corresponding problem for one of its maximal Fuchsian subgroups. Such
reduction is used in Sections 3, 4 and 5 to show that

L0 N (2.2936, 00) = {\/37/7, V22/2, \/%/2},
L3 N [M/z oo) - { V11/2, \/437/124, 2, V17/2, @/z},
£5701(3.1735,00) = {VA1/2, V6/2}

respectively.

1.3. Background and Terminology

The upper half-space H®> = {(z,t) : z € C, t > 0} with the metric ds?> =
t=2(|dz|? + dt?) can be used as a model of the 3-dimensional hyperbolic space.
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PSLy(C) is the group of orientation-preserving isometries of H®. The action of

F= ( CcL Z ) € PSLy(C) on (z,t) € H? is given by

Flot) = ((az+b)(cz+d) —l—aEtQ’ t ) (1.3)
lcz + d|? + |¢|?t? lcz + d|? + |¢|?t?
(see e.g. [2], p. 58, or [18], p. 15). The Bianchi group PSLy(0y) is a geometri-
cally finite discrete subgroup of PSLy(C). We denote by By the maximal discrete
subgroup of the group of isometries of H3, which contains PSLy(O4) (see [25]; in
[26], this group is denoted by RBy). The type of g € By is elliptic, parabolic or
lozodromic depending on whether it has a fixed point in H3, a single fixed point
in C, or exactly two fixed points in C. If g is loxodromic, the geodesic connecting
its fixed points is called the azis of g. The transformation g is hyperbolic if it is
loxodromic and every plane containing its axis is g-invariant. The set of parabolic
fixed points (cusps) of By can be identified with Q(v/—d).
Let P be a Dirichlet polygon of G, = Stab(oco, Bg) in C. Denote Py, =
{(z,t) € H? : z € P}. The region

D=P.Nn{zxcH®: |¢g(x) <1, g€ By} (1.4)

is an isometric fundamental domain for By in H? (see [1], p. 66, or [18], p.18).
Here ¢'(x) stands for the Jacobian of the transformation g.
Denote
K = K(0) = G D, K(u) = gK(00), (1.5)

where u = g(00). It is clear that UK (u) = H3, u € Bgoo, and that dim (K (u) N
K(u')) < 2 if u # u/. We shall call the tessellation of H® by K(u), u € Bgoo,
the K-tessellation. Let OK be the boundary of K. We shall say that 0K N D is
the floor of D. The components of 9K (and D) of dimensions 0, 1, and 2 will
be called the vertices (or cusps), edges, and faces of K respectively. The vertices
(and edges) of K which belong to D will be called the vertices (and edges) of D.
For any region R in H3, the components of the boundary of R of dimension 2
which lie in vertical planes will be called the vertical faces of R. (Notice that, in
general, according to these definitions, the components of the boundary of D of
dimension 0 (or 1) which lie in the vertical faces of D are not vertices (or edges)
of D).

A geodesic in H? is a semicircle or a ray, which is orthogonal to C. For
a geodesic L with endpoints 0, 6’ in C, denote k(L) = |0—6’| and v(L) = inf |g(0)—
g(0")]71, the infimum being taken over all g € By. A geodesic L is said to be
extremal with respect to By if v(L) = 1/k(L). Note that an extremal L cuts
K(00). The set of numbers M(By) = {v(L)} is called the Markov spectrum for
By.

Denote by CI(K) the class group of a field K = Q (v/—d). There are 65 fields
K such that By(co) = K, that is oo is the only cusp of a fundamental domain of
Bg in H3. The condition By(oo) = K holds for
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1) d=1,2,3,7,11,19,43,67, 163 with CI(K) = (1),

2) d = 5,6,10,13,15,22,35,37,51,58,91, 115, 123, 187, 235, 267, 403, 427 with

Cl(K) = (2),

3) d = 21,30,33,42,57,70,78,85,93,102, 130, 133, 177, 190, 195, 253, 435, 483,
555,595,627, 715, 795, 1435 with Cl(K) = (2,2),

4) d = 105,165,210,273,330,345, 357, 385,462, 1155, 1995, 3003, 3315 with
CUK) = (2,2,2),

5) d = 1365 with CI(K) = (2,2,2,2).

Weinberger ([36], Theorem 2) showed that there is at most one imaginary
quadratic field with exponent 2 and d > 1365. It follows that the condition
By(o0) = K holds for at most one field K with d > 1365.

For all these values of d, and therefore for d = 30, 33 and 57, M(By) coincide
with the Markov spectrum of the field Q(v/—d) (see [31], p. 41).

Let

Mu(Bg) = {v(L) € M(By), L is the axis of a hyperbolic g € By}.

In all the known cases (see [20], [21], [31], [15], [16], [17]), almost all the points in
the discrete part of M(By) (that is the part of M(By) that lies above its highest
limit point) belong to My (By). Since every hyperbolic g € B, belongs to some
maximal Fuchsian subgroup of By, the problem of finding Mj,(Bg) can be reduced
to the problem of finding the Markov spectra for the maximal Fuchsian subgroups
of By. The classification of such subgroups of By is known (see [24], [25], [33],
[8]). They can be identified with the Bs-unit groups of indefinite integral binary
Hermitian forms.

1.4. Outline

It is shown in [25] how the problem of classification of maximal Fuchsian subgroups
of By can be reduced to the problem of classification of indefinite primitive Her-
mitian forms (see [31], Theorem 2.1, see also [33], [8]). Let S be a hemisphere in
H? with center in C. Denote G's = Stab(S, By). Let L be a geodesic in S. Denote
vs(L) = inf |g(6) — g(0')]7!, the infimum being taken over all ¢ € Gg. We say
that a geodesic L C S is extremal with respect to Gg if vg(L) = 1/k(L). Denote
Mg = {vs(L),L C S}. Theorem 2.2 from [31] contains a suflicient condition
for a geodesic L C S, which is extremal with respect to Gg, to be extremal with
respect to By.

Let H4 be the spectrum of minima of binary indefinite Hermitian forms over
Oy (see e.g. [31], Chapter 2). It is shown in [34] that (1/2)H4 C M(By) and that,
for any point v € Hg, there is a one-parameter family of extremal geodesics Ly,
0 < 6 < 27, such that v(Lg) = v/2 ([34], Theorem 1.1). Moreover, the geodesics
Ly, which are the axes of some elements in By, form a dense subset of this family
(see [34] for more details).

For a one-parameter family of extremal geodesics Lg, 0 < 6 < 27, introduced
in Theorem 1.1 from [34], the point v(Lg) = 1/(2R) = v(®)/2 in the Markov
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spectrum of By (and in the Lagrange spectrum L) is called a Hermitian point. Let
H, be the largest Hermitian point in M(By). It is shown in [34], that Hsq = v/5,
Hsz = \/11/2 and Hs; = v/38/2 (see Sections 3, 4 and 5 below).

In Section 2, we recall some definitions and results from [30] related to the
Farey polygons associated with the groups By.

Denote by S(b, R) the hemisphere in H? with center b € C and radius R. In
Subsection 3.1, the Farey polygons are used to show that, for d = 30, Theorem 2.2
from [31] is applicable to the hemisphere S = S (1/2 - 12/w, 1/\/%) For this
hemisphere S, it is shown in Section 3 that

M(Bso) N (vV/5,v23/2] = Mg N (V5,v23/2). (1.6)

This reduction is used in Subsection 3.3 to prove Theorem 3.1, which is one of
the three main results of this paper.

The outline of Section 4 is similar to that of Section 3. However, for d = 33, the
reduction similar to (1.6) does not exist. In Subsection 4.1, the Farey polygons
are used to show that, for d = 33, Theorem 2.2 from [31] is applicable to the
hemisphere S = § (2w/11, 1/\/ﬁ) For this hemisphere S, by Lemma 4.1,

M(Bss) N (V14/2,V19/2) = Ms 0 (V14/2,v19/2] U {2},

where 2 € M(Bs3) is not attained at any geodesic L C S. However, this reduction
is sufficient to prove Theorem 4.1, which is the second main result of this paper.

In Subsection 5.1, the generators (Theorem 5.1) and the isometric funda-
mental domain of Bs; are found. Then the Farey polygons are used to show
that, for d = 57, Theorem 2.2 from [31] is applicable to the hemisphere S =
S (1/2 - 33/(2w),1/+/38). For this hemisphere S, it is shown in Section 5 that

M (Bs7) N [V/38/2,V46/2] = Mg N [V38/2,1/46/2).

This reduction is used in Subsection 5.3 to prove Theorem 5.2, which is the third
main result of this paper.

In each of these three cases, a face of the isometric fundamental domain D of
By lies in the hemisphere S, the reflection in S in H? belongs to By and the radius
of S is the smallest among all the hemispheres containing the faces of D, which
makes the reduction mentioned above relatively easy. Not all the hemispheres
defined by the Hermitian forms enumerated in the Tables 1-5 of [35] possess these
properties. Thus, in the cases of d = 19, 43, 67 and 163, none of them holds.

The author thanks the referee for the remarks.

2. Farey polygons

Here we summarize some results from [30], Section 2. Assume that the summits of
all the edges in the floor of K(c0) belong to K(00). (Anke Pohl has indicated that
this assumption should be made in the statement of Theorem 5.4 from [30]). Let
v € H? be a vertex of K(u). Assume that v belongs to the edges ej, j=1,...,t.
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Let F; be the plane through u which is orthogonal to e;. Denote by A(u,v) the
part of K (u) which is bounded by the planes Fjj, j = 1,...,t. Thus, each of the
sets A(u,v) has one cusp u and one vertex v. The union of all the sets A(u,v)
with the same cusp « is K(u). The union of all A(u,v) with the same vertex v is
called the v-cell (see [30]). Denote the v-cell by N(v). The faces of N(v) are called
hyperbolic Farey polygons and the vertical projections of the faces of N(v) from oo
into C the Farey polygons. Let B be a face of N(v) with vertices at the cusps
m = 1,...,n. Let h(B) be the largest value of k such that the horoballs bounded
by the horospheres Q(u,,, k), m = 1, ..., n, cover B. Recall that the horosphere
Q(p/q, k), where p,q € Oy, is a euclidean sphere in H® with center (p/q,r) and
radius r = n(p, q)/(k|q|?). We shall call the number h(B) the Farey constant of B.
Denote by kg the smallest value of h(B) over all the faces B of all the v-cells. By
Theorem 3.1 from [31], the Hurwitz constant for the field Q(v/—d), Cq < 1/kg. It
is shown in [27], [35] and in the present paper that this bound is sharp for d = 1,
2,5, 6, 30, 33 and 57.

3. Diophantine approximation in Q(1/—30)

3.1. Reduction

Let d = 30 and w = v/—30. Then {1,w} is the standard basis of the ring of
integers Q3¢ of the field Q(v/—30). The group G = Stab(oco, Bsg) is generated
by reflections in the vertical plains in H?® through the lines Rez = 0, Rez = 1/2,
Imz = 0 and Im z = v/30/2 in C, which will be denoted by S;1, Ss, S, and Sy
respectively. It is shown in [13] that the group Bsg is generated by reflections in
the faces of its fundamental domain D, whose four faces lie in these vertical planes
and the floor of D lies in seven hemispheres

—12 1 1 15 1
Sy =S T = = |> S5 =5 o =4 /=1
) (@ \/5> ’ (2 VD 2@)
1 10 1 1 24 1
Se=s(t 10 L) g g2 L
" (2 VD m) ' (2 VD ws)
For S; = S(b;, R;), let ®;(x,y) = |z — by|?> — R2|y|> = (1,b;, |b:]*> — R?), so

7
that ®;(z,1) + t> = R? is an equation of the hemisphere S; in H3. Then the
corresponding Hermitian forms ®; are integral (see e.g. [31], p. 29) and the values
of r(®;) = R?|D| = 60,40,24,15,10,6 for S;, i = 2,3,...,7 respectively. Notice
that

q)i(xay) = (bi+3($ - ya2y)a i = 2a37 (1)4(1'7 _y) = @7(,1,’ - (1 +w)y72y)

The hemisphere S7 is anisotropic, that is the only solution of ®7(z,y) = 0 in
xz,y € Ozp is x = y = 0, and the lowest face of D lies in S7. Since the diameter of
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S is 1/4/5, the highest Hermitian point of M(Bsg) is
Hszo =5

(cf. [34], Example 5.1). Denote by h;; the height of the edge L;; = S; NS} of D.
Then

V3 1 1 1
h18:7, hzszi, h23:*5, h14:%7

1 1 1 1
has = —=, hgs = —, hyg = —, hig = hus = —,
34 \/g 35 \/ﬁ 38 \/ﬁ 16 45 \/ﬁ

1 1 1 1
hag = —,  hse= —,  hop=—, hyr=—.
AT /20 T2 23

Since the height of any edge of D > 1/4/23, there is no extremal geodesic L in H3,
whose height is less than 1/1/23 (see [28], Theorem 1).

The relations can be given in terms of 7;, where 7; is the reflection in the plane
Si in HS.

The group G = Stab(S7, B3g) = (72, 73, 78). Since (1273)% = (1278)* = (137:)% =
1, the group G contains the (2,4, 6)-triangle group as a subgroup of index two.
The triangular face Dg of D, which lies in S;, with vertices at

o= (Lpow 1 vy = (L3 1 v (2201
T\ T 12y T2 "8 32) 37 \5 " 55

is a fundamental domain of G, S7 N K (00) consists of two copies of Dg. and

Stab(v1, Bso) = {72, 77,7 : (1277)” = (1778)? = (1872)* = 1},
T

Stab(’U%B;go) = {T37T7,’7'8 : (T3T7)2 = ( 77—8)2 = (7‘87—3)6 = 1}7
(rars)? =

Stab(vg,,Bgo) = {TQ,Tg,T7 : T27’3) (7'37'7)2 = (7'77'2)2 = 1}

The geodesic Lj37 is perpendicular to Sy and the axis Lsg of 7g373. Denote
U = (7'87'3)3. Then F37 = Stab(L37,B30) = <7'2,U>. Let t1 = L37 N SQ and
tog = L3z N Lsg. Then the arc [t1,t2] = Lsz N K(00) is a fundamental domain of
I's7 on L3z and, by Corollary 24, [30], Ls7 is extremal. Since the height of Ls7 is
1/4/23 and, as shown above, the height of any extremal geodesic is at least 1/ V23,
the Hurwitz constant of the field (\/—30) is

C30 = V/23/2
(cf. [35], Table 1).

3.1.1. The v-cells N(v1), N(v2), and N (v3).

The hemisphere S7 contains four vertices of D, vy, v, v and v = 7g(v3). The
v-cell N(v3) is a rectangular parallelepiped. The v-cells N(v1) and N(vy) are
square and hexagonal prisms respectively.
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The vertices of N(vs) are the points B = w/2, C = w/3, D = 2w/5, E =
1/2+2w/5, F =2/5+2w/5, J = (10 + 9w)/23, K = (10 + 9w)/22 in C and
A = oo. The projection of N(v3) from infinity into C is the triangle with vertices
at B, C and E. The Farey constant of the congruent faces ABDC and KEJF
is 2ho3 = 2/4/5, the Farey constant of the congruent faces ABKE and CDFJ is
2ho7 = 2/4/22 and the Farey constant of the congruent faces ACJE and BDFK
is 2h37 = 2/1/23. Since the v-cells N(vs) and N (vj) are symmetrical with respect
to the vertical plane in H? through the line Rez = 1/2 in C, if X is a vertex of
N(v3), then X’ =1 — X is the corresponding vertex of N (v}).

The vertices of N(vy) are the points B, B’ =14w/2, By =1/2+w/2, E, K,
K' =124+ 9w)/22, L =1/2+5w/12 in C and A = co. The projection of N(v;)
from infinity into C is the triangle with vertices at B, B’ and E. There are two
congruent square faces ABB1 B’ and EKLK’, whose Farey constant is 2hag = 1,
and four congruent rectangular faces ABKE, BB1LK, AB'K'E, B'B;LK'. (We
call these faces squares and rectangles only because of their groups of symmetry).
The axis of 772 is the axis of order four in N(vy).

The vertices of N(vy) are the points C, ¢/ =1+ w/3, C; = (1+w)/3, Cy =
1/24+w/3, C] =2+ w)/3, E, J, J = (13+9w)/23, M =1/2+ 3w/8, N =
(134 11w)/29, N' = (16 + 11w)/29 in C and A = co. The projection of N(vq)
from infinity into C is the triangle with vertices at C, C' and E. There are two
congruent hexagonal faces ACC,1C2C{C" and EJNMN'J', whose Farey constant
is 2h3g = 1/\/§, and six congruent rectangular faces ACJE, CC1NJ, C1NMCs,
AC'J'E, C'C,N'J', C,N'MC}, whose Farey constant is 2h3; = 2/1/23. The axis
of 7g73 is the axis of order six in N(vs).

Let 2/v/23 < k < 1/v/5. Then N(v;, k) has a geodesic face ¢ if and only if
¢ lies in a rectangular face of N(v;), which is congruent to ABKE or ACJE,
since only for such a face the Farey constant is less than 1/1/5. But, the centers
of all such faces lie in S7. Hence, if the height of an extremal geodesic L is less
than 1/4/20, then g(L) C S; for some translation g € Bsp. Indeed, an extremal
geodesic L, which cuts N (v, k), must enter through one of its geodesic faces and
exit through another. Since the limit points of the sequence of v-cells cut by L are
the endpoints of L and they lie in S7, L itself lies in Sy.

Lemma 3.1. If the height of an extremal geodesic L in H?® is less than 1/+/20,
then L C gS, g € Goo. Thus, M(Bso) N (v/5,v/23/2] = Ms N (vV/5,v/23/2].

3.2. A group with signature (0;2,4,6)

The reflections 75, 73 and 73 are represented in G by 1577, 7377 and 7gT;. respec-
tively. By Theorem 2.2 from [31], if a geodesic L C S7 is extremal with respect to
Gg, then L is extremal with respect to Bsg, and therefore Mg C M(Bsy).

(1)%7 ?7 . Let Cy be the circle |z — b;| = 1/4/20 in the complex
plane C. Then Gg = Stab(Cy, Bsg) and C; = p(C), where C is the unit circle
|z| = 1. The Klein model D? of the hyperbolic plane, which is used in [32], is

Letp:(
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obtained as the projection of the unit upper hemisphere model of the hyperbolic
plane in H? from oo into C, so that C' is the boundary of D? (cf. [19], p. 68).

The group I' = p~!Gg p is a discrete cocompact subgroup of the group of
isometries G¢ of D?. Below, we shall denote the fixed point of ' € G¢ by the
corresponding lower case letter. Thus, the fixed point of Fj is f;. The fixed point
of F = < % g ) € G¢o in Cis f =ib/Ima. The fixed points of F and F’ in G
are said to be I'-equivalent if there is g € T such that F' = gFg

Let ¢ = v/5 4+ iv6 and ¢; = —3v5 + 2iv/6. The group I' is generated by
reflections

o -1 -¢ 023—5 0:01
c 1| 0 aa =3 |’ ! -1 0
across the sides of the triangle with vertices a = —iv/6/4, b = i1/6/6, and s =
—1/+/5, which are the fixed points of A = 0109, B = 010, S = o0y. Here
o= p 'marp, 00 = p~tryTrp and o1 = p~lrgTrp. One has S? = A5 = B* = id,
and I' = <U, 00,01 : (000)% = (001)* = (0100)% = 1>.

Denote Oir1 = AO’i, i = 0,..,5, and Oite = Oy, S1 = ASA-! = 0'150'1,
Sy = A2SA7? = 0(So}, where o = 09 = 010001, U = A3, ¢ = So = 035,
¢1 = 0'S = Sog, pa = 0(,S = Sy0(,, where 0’/ = g1007.

It is shown above that the axis Ls; of p¢p~! is extremal with respect to Bsg.
Similarly, the axes of pp1p~! and pgop~! are also extremal with respect to Bso.

-1

Lemma 3.2. For the fized points f, f1, fo of ¢, 1 and ¢o respectively, we have

(fyow) = (f,o3w) = —(f, cow) = —(f, Sw) = —(f,Uw) =1,
(f1,0'w) = (fi,00w) = —(f1,0w) = —(f1, Sw) = —(f1, B*w) =1,
(f2,00w) = (f2, SopSw) = —(fa, paw) = —(f2, Saw) = —(f2, Sw) = 1.

Proof. Since f is the fixed point of the reflection o, (f,oow) = —1. Since f is
the fixed point of ¢ = So = 035, (f,ow) = (f,03w) = —(f,Sw) = 1. Since U =
ooos, (f,Uw) = —1.

Similarly, since f; is the fixed point of the reflection o, (f1,cw) = —1, and since
f1 is the fixed point of ¢ = 0’'S = Soy, (f1,0'w) = (f,o0w) = —(f, Sw) = 1.
Since B? = o0’, (f, B*w) = —1.

The last statement is true because f3 is the fixed point of ¢o = 0, S. ]

3.3. Uniqueness

Denote by D the disc |2| < 11/v/6 and D) = {z € Dy : Rez < 0}. Since
I'y, = (01), we can assume that z € D/.. Below, we assume that z € D/, is an
extremal point.

Definition 3.1. For any g € G¢, denote by P(g) and N(g) the conditions
(z,9w) = 1 and (z, gw) < —1 respectively.
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If P(o) and P(0p) hold, then z € Dr, a fundamental domain of I". If N(¢')
holds, then |z| > 11/v/6. If N(o}) holds, then |z| > 23/(2v/6). In both cases,
z ¢ Dl.. Thus, for z € D, P(o’) and P(0() both hold. If P(S) holds, then an
indefinite z € D7, belongs to p(U). Hence any indefinite z € D/, belongs to DY,
the part of D, where P(c’), P(o() and N(S) hold.

Assume that z € D;. If P(op) holds, then either, by Lemma 3.2, z = f; =
—/5 4+ V6 or N(og) holds. If N(op) and N(B?) hold, then |22 > 33 and an
extremal z ¢ D;. Hence, P(B?) holds. If N(o) and P(B?) hold, then |z| >
| —2v5+4i/v6| =11/v/6 and z ¢ Dy.. Thus, P(c) holds. If P(c) and P(3) hold,
then either, by Lemma 3.2, z = f = —v/5 —i2v/6 or N(O’g) holds. If N(o3) and
P(¢2) hold, then [z| > |23/ —i3EV6]| and z §é Dy. Hence, N(¢2) holds. If
P(S5) and N(¢2) hold, then |z|? > 97 and z ¢ D7. Hence, (Sg) holds.

If N(S2) and N(So}S) hold, then |z|? > |,§f —ig \f| and z ¢ D... Thus,
P(Sc(S) holds and, by Lemma 3.2, z = f3 = —/5 — zg 6.

We have proved the following.

Lemma 3.3. Let an extremal z € D}.. Then z = f = —V5 — z%x/é, orz=f1=
V5 +iV6, or 2z = fo = \/5723 6, or|z| > 11/\/6.

Let S = S(b,R) and let L be a geodesic in S of height h. Let p(S) = S(0,1).
Let f be the pole of the projection of p(L) from oo into C in H3. Then

h=R\1—-|f]2 (3.1)

Thus, by (3.1) and Lemma 3.3, the first three points of M(Bsy) are v/23/2,
Vv/22/2 and 4/37/7. We have proved the following.

Theorem 3.1. M(Bso) N (2.2936, 00) = {\/37 V22/2, \ﬁ/Q}

Let Lo, Ly and Ly be the axes of pop~t, pd1p~' and poop~"' respectively.

If v(L) = \/23/2 for a geodesic L in H?, then L = g(Lg) for some g € Bsg.
If v ( ) V'22/2 for a geodesic L in H?, then L = g(L,) for some g € Bsg.
If v(L) = /37/7 for a geodesic L in H3 then L = g(Ls) for some g € Bsp.

As mentioned above, M(Bjgg) coincides with the Markov spectrum of the field
Q(+/—=30), which, as follows from Theorem 3.1, equals to L3¢ in the interval
(2.2936,00) (see e.g. [31], p. 41).

4. Diophantine approximation in Q(1/—33)

4.1. Reduction

Let d = 33 and w = v/—33. Then {1,w} is the standard basis of the ring of
integers O35 of the field Q(v/—33). The group G = Stab(oco, Bs3) is generated
by reflections in the vertical plains in H? through the lines Rez = 0, Rez = 1/2,
Imz=0and Imz = \/ﬁ/Q in C, which will be denoted by S7, Ss, Sg, and Sig
respectively. It is shown in [13] that the group Bsg is reflective. But Bsg itself is
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not generated by reflections in the faces of their isometric fundamental domain D.
The floor of D lies in six hemispheres

14+ 1 1
S, = 5(0,1), So =S (2“\@) : S5 =S (;’\/g)

3+w 1 14w 1 2w 1
Si=S|——,— ), Ss =8 y— |, Se=5—,— ).
! ( 6 \/6> ° < 4 2x/§> ‘ (11 ¢11>

The reflections in the hemispheres S;, ¢ # 3, belong to Bsz, but the reflection in

S3 does not. The axis of pg = ( i:; 12w ) € Bz with endpoints w/3 + 1/v/3
-3

in C belongs to S35, po(00) = w/3 and po(S3) = Ss.

We have @3 = (1, (1+w)/2,8), &5 = (1, (1+w)/4,2), and p§P2pg = P35, where
o5 = (po)T. Hence p(S2) = S5. Thus, Bss is generated by p and the reflections in
the hemispheres S;, 1 < i < 10, ¢ # 3.

The hemisphere Sg is anisotropic, and the lowest face of D lies in Sg. Since
the diameter of Sg is 2/4/11, the highest Hermitian point of M(Bs3) is

Hsy = V/11/2

(cf. [34], Example 5.3). Denote by h;; the height of the edge L;; = S; NS; of D.
Then

V3 1 1 1
hig = 55 hor = > haz = 7 hag = 7
1 5 1 1
h = —, h = h = —, h = h = —, h = —,
14 NG 35 23 ) 38 16 v 45 i
1 1 1
hs7 = hsg = - hae = ) hse = '
57 58 = 46 i 56 T

Since the height of any edge of D > 1/4/19, there is no extremal geodesic L in H?3,
whose height is less than 1/1/19 (see [28], Theorem 1).

Denote by 7; the reflection in the plane S;, i # 3, in H3.

The group FS = Stab(SG,ng) = <T1,T4,T5,T7>. Since (7'17'7)2 = (7'17'4)2 =
(1475)? = (1577)* = 1, the group I's contains a group with signature (0;2,2,2,4)
as a subgroup of index two. The quadrangular face Dg of D, which lies in Sg, with
vertices

14w 1 1+w 1 2w 1
U1 = T s 0 == > V2 = T oF | V3 = a0 /o= |-
! 6 /18 2 5 5 3 927
and vy = (w/6,1/v/12) = S; N S N S7 is a fundamental domain of T'g,
and Sg N K(o0) = Dg U 77(Dg) is the pentagon with vertices at vy, va, vs,
77(v1) and 77(v2). Thus, by Theorem 2.2 from [31], if a geodesic L C Sg is
extremal with respect to I'g, then L is extremal with respect to Bss, and therefore
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Mg C M(Bsz). We have

Stab(vi, Bss) = {71, 74,75 : (1174)* = (1a76)* = (1671)* = 1},
Stab(v27B33) = {T47T5,’7'6 : (T4T5)2 = (7-57—6)2 = (7—67—4)2 = 1}7

Stab(vs, Bss) = {75, 76,77 : (1776)* = (1675)° = (7577)* = 1}.

The geodesic Lsg is perpendicular to the planes Sy and S{ = 77(S5). Denote
Té = T7T5T7. Then F56 = Stab(L56,ng) = <7'4,T5/>. Let t1 = L56 n 54 and
to = Lsg N SE. Then the arc [t1,t2] = Lsg N K(00) is a fundamental domain of
I's¢ on Lsg and, by Corollary 24, [30], Lsg is extremal. Since the height of Lsg is
1/4/19 and, as shown above, the height of any extremal geodesic is at least 1/+/19,
the Hurwitz constant of the field Q (v/—33) is

O3 = V19/2

(cf. [35], Table 3).

4.2. The v-cells N(v1), N(v2) and N (v3)

The v-cells N(v;) and N (v2) are rectangular parallelepipeds and N (v3) is a square
prism.

The vertices of N(v;) are the points B = 0, C = w/6, D = 2w/11, E =
6/(1—w), F=(1+w)/6, J=6/(3-w), K=(3+w)/6in C and A= co. The
projection of N(vy) from infinity into C is the triangle with vertices at B, D and
K. The Farey constant of the congruent faces ABDC and K EF.J is 2h1s = 1//3,
the Farey constant of the congruent faces ABJK and CDEF is 2hy4 = 2//T and
the Farey constant of the congruent faces ADEK and BOFJ is 2hgs = 2/V/17.

The vertices of N(vqg) are the points D, E, K, L = (1 +w)/5, M = (1+
w)/4, N = (24 4w)/19, P = (5 4 3w)/14 in C and A = oo. The projection of
N(vz) from infinity into C is the triangle with vertices at M, D and K. The
Farey constant of the congruent faces ADNM and KELP is 2hss = 2/4/19, the
Farey constant of the congruent faces AK PM and DELN is 2hys = 2/+/14 and
the Farey constant of the congruent faces ADEK and LNMP is 2hys = 2//17.

Since the v-cells N(vy) and N(vy,), k = 1,2, are symmetrical with respect to
the vertical plane in H? through the line Rez = 1/2 in C, if X is a vertex of
N (vg), then X’ =1 — X is the corresponding vertex of N (v},).

The vertices of N(v3) are the points Ay = w/4, D, D; = 2w/9, M, M’ =
(-14+w)/4, N, N’ = (—2+4w)/19in C and A = co. The projection of N(v1) from
infinity into C is the triangle with vertices at D, M and M’. There are two con-
gruent square faces AM A1 M’ and DN D1 N’, whose Farey constant is 2hog = 1/2,
and four congruent rectangular faces ADNM, AyD{NM, ADN'M’, A;DN'M’.
(We call these faces squares and rectangles only because of their groups of sym-
metry). The axis of 7577 is the axis of order four in N(v3).

Let 2/ VI9< k<2 / V14, If a geodesic L cuts a square face, which is congruent
to AMA{M’, we can assume that L cuts AM A, M’. If L is extremal, then L cuts
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the geodesic face ¢ in AMA; M’, which exists for 1/2 < k < 2/y/14. For these
values of k, ¢ C Q(w/3, k), the horoball with equation |z —w/3|? + (t —1/(3k))? <
1/(3k)? in H3. Hence, there is no extremal geodesic, which cuts a square face of
N(v3). Thus, an extremal geodesic can cut only the rectangular faces of N(v;).
Assume that an extremal geodesic L cuts N (v;, k). Then L cuts the geodesic faces
of N(v;, k), which lie in the rectangular faces of N(v;) congruent to ADNM or
ADFEK, whose Farey constants are less than 2/ V/14. The centers of all such
rectangular faces lie in Sg. Hence, if the height of an extremal geodesic L is less
than 1/y/14, then g(L) C Sg for some translation g € Bss. Indeed, an extremal
geodesic L, which cuts N(v;, k), must enter through one of its geodesic faces and
exit through another. Since the limit points of the sequence of v-cells cut by L are
the endpoints of L and they lie in Sg, L itself lies in Sg.
The reflection 717 with respect to the hemisphere

l1+w 1
5115(373)

belongs to B3z and S11NSs = S3N.Sg. Let vg = S11NSsNS5 and vy = S4,NSgN.Ss.
Then
1 19w 1 1 5w 1

vt wdw) vt mum):

and

Stab(vy, Bag) = {75, 78, 711 : (11175)? = (1578)* = (78711)* = 1},

Stab(vs, Bas) = {74, 75,78 : (1a75)? = (1578)* = (1374)* = 1}.

4.3. The v-cells N(v4) and N (vs)

The geodesic Lsg = Ss N Sy is a common axis of order four of N(vy) and N (vs)
both. N(v4) is the same v-cell, which appears in the case of d = 6 (see [31],
Sec. 5.1). It is a cube whose vertices and edges are replaced by triangular and
rectangular faces respectively. N(vs) is a square prism.

We describe the v-cell N(vy4). Denote

14w 10—w -10 343w
P1 = T8T11 = 3 9w )¢ T =T11T5 = 14w 10 )

The group Sy = (7, p1) is the subgroup of the orientation-preserving isomorphisms
in Stab(v, Bs3). One has 72 = p3 = (7p1)* = id. The order of Sy is 24. The
vertical plane Sg in H3 is the plane of symmetry of the v-cell N(v4). Hence, if X
is a vertex of N(v) in C, then X’ =1 — X is also a vertex. Thus it is enough to
enumerate the vertices of N(v4) on the line Re z = 1/2 and to the left of this line.
At any vertex of N(v4), one triangular, one square, and two rectangular faces of
N (v4) meet. The group Sy acts transitively on the vertices of N(vy4).
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Thus N (vs) has 24 vertices: B=(14+w)/4, C = (1+w)/3, D =5(14+w)/17,
E = (13 + 9w)/29, F = (15 + 11w)/37, H = (27 + 17w)/58, K = (3 + 2w)/T,
L = (274 16w)/57, M = (11 + 8w)/29, N = (17 4+ 10w)/37 and their reflections
across the line Rez = 1/2 in C, the points By = 1/2+w/4, G =1/2 + 3w/10 and
J =1/2419w/66 on this line, and A = oo. The projection of N(v4) from infinity
into C is the trapezoid with vertices at B, C, C’, B'.

The v-cell N(vy) has 6 congruent square faces: ABB1B’, CDFE, C'D'F'FE’,
GHJH', KLNM, K'L' N'M', whose Farey constant equals 2hss = 1/2; 12 con-
gruent rectangular faces: ABDC, AB'D'C’, BB{NM, B'BiN'M’', DFKM,
D'FK'M',JLKH, JUK'H', EFHG, F'F'H'G, LNN'L' and CEE'C’, whose
Farey constant equal 2hs 11 = 2/ V17; and 8 congruent triangular faces: ACC’,
GEE', JLL', BBNN', BDM, B'D'M’, FHK and F'H'K’, whose Farey constant
equals 2h3g = 1//3.

The vertices of N (v5) are the points B, By, B’ = (3+w)/4, P =1/24w/6, R =
(543w)/14, R’ = (943w)/14, T = 1/2+5w/22 in C and A = co. The projection of
N (vs) from infinity into C is the triangle with vertices at B, B’ and P. There are
two congruent square faces ABB1 B’ and PRTR', whose Farey constant is 2hsg =
1/2, and four congruent rectangular faces ABRP, BBiTR, AB'R'P, B'B;TR/,
whose Farey constant is 2hy; = 2/ v/14. The axis of 7375 is the axis of order four
in N(vs).

Let 2/\/@ <k < 2/\/ﬁ If a geodesic L cuts a rectangular face, which is
congruent to ABDC, we can assume that L cuts ABDC. If L is extremal, then
L cuts the geodesic face ¢ in ABDC, which exists for 2/v/17 < k < 2/+/14. For
these values of k, ¢ C Q(w/3,k). Hence, there is no extremal geodesic, which
cuts a triangular or rectangular face of N(v4). Thus, an extremal geodesic L,
which cuts N(v4) or N(vs), can cut only the square faces of these v-cells. Up to
a symmetry, L cuts either (1) the opposite or (2) adjacent square faces of N(vy).
If L cuts only the opposite faces of cubes, then L = Lsg, whose endpoints are
1/2 + w/4 £ i/4. Since the arc [vy,v5] = L N K(00) is a fundamental domain of
Stab(L, Bsz) on L, L is an extremal geodesic and v(L) = 1/(2hss) = 2.

Let Ty = ((14w)/44++/1/8 — k2/4,k/2) and T} = ((34+w)/4—+/1/8 — k?/4,k/2).
The geodesic face ¢ of N(vy4,k) that lies in the common vertical square face
ABB1 B’ of N(vq) and N(vs) has one side ToT1, which lies on the line ¢t = k/2
or, more precisely, on Q(A, k) N ABB; B’. The opposite side T5T3 of 1 lies on the
circle Q(B1, k) N ABB1B’. The diagonals ToT5 and T1T5 of ¢ lie on S5 N ABB, B’
and S; N ABB) B’ respectively. Here S4 = S((3+w)/4,1/+/8). The point of inter-
section of these diagonals is Cs = (1/2 + w/4,1/4). Tt is the center of symmetry
of both ABB; B’ and 1. Notice that when k = 1/v/2, all four vertices of 1 lie on
the boundary of ABB;B'.

Assume that an extremal geodesic L cuts two adjacent square faces of N(vs).
We can assume that L cuts ¢ and p(1)), the geodesic face in p(ABB1B’) = CDFE.
Then L also cuts 74(1)), the geodesic face in the square face 74(ABB1B’) of N(vy)
with center (1/2 + 3w/14,1/154). But, any geodesic which cuts p(1) and 74(v))
does not meet . Hence there is no extremal geodesic L, which cuts two adjacent
square faces of N (vs).
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Geodesic Ly is perpendicular to the hemisphere Sg. Since the arc [va,v5] =
Lys N K (o) is a fundamental domain of Stab(Lygs, Bsz) on Lys, Lygs is an extremal
geodesic and v(Lys) = 1/(2h45) = 2/V/14.

We have proved the following.

Lemma 4.1. Let the height of a geodesic L in H® be less than 1/v/14. If L is
extremal, then L is equivalent to Lsg or L C gSs, g € Goo. Thus, M(Bs3z) N
(V14/2,v/19/2] = Mg N (V14/2,v/19/2] U {2}.

The geodesic Lys is extremal with respect to Bss and v(Lys) = 2/V/14.

Remark. The hemisphere S, is anisotropic and r(®4) = 22. The group
Stab(Sy, Bss) is generated by reflections in Lyg, L14, L4s, and Ly with heights
1/v/6, 1/\/7, 1/3/14, and 1/+/17 respectively. It contains a subgroup with signa-
ture (0;2,2,3,4) as a subgroup of index 2.

4.4. A group with signature (0;2,2,2,4)

w
complex plane C. Then Gg = Stab(C1, Bs3) and C; = p(C), where C' is the unit
circle |z| = 1. The group I' = p~1T'g p is a discrete cocompact subgroup of the
group of isometries Gg of D?. It is generated by reflections

(s ™) (it ).

o 01 o — -2ivV3 1+w
U1 0 ) T l1-w 203

across the sides of the quadrilateral with vertices so = i(4/9)V3, v = —i\/3/6,
$1 = (\/11 - 2\/3) /6, and u = (\/11 + 2\/3) /5, which are the fixed points of

Now let p = ( 6\/5 -6 ) . Let C} be the circle |z — 2w/11| = 1/4/11 in the

A = ogoq, V = o010, S1 =009, U = o909

respectively. One has A* = V2 = §2 = U? = ABS;U = id, and ' =<
0,00,01,02 : (0go1)* = (010)? = (002)? = (0200)? = 1 >. Here o = p~trg71p,
oo = p '16Tsp, 01 = p 1eTrp and oo = pT L6 Tsp.

For g € Gg, denote ¢’ = o1g901. If z is the fixed point of g, then the fixed

points of ¢’ is —z. Denote
SO:Aza QOZU/O—Oa 1/):0051>
Foy=U'Sy = goy, Hy = US; = 029,

H=9p) ' =U'S,, H' =0gHoog= ¢ *H 'p =y tH 1 = o 1.
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Then

1 3 1 1
fO:—Z\/11+zZ\/§, ho = 5\/11—16M§,

1 29 5 7
h=—-V1l+i=— B = V11 +i—

3 —|—z24\/§, 3 +z24\/§

and fp is the common fixed point of o, Lp and Fpy, hg is the common fixed points
of 03, ¥ and Hy. We have Fy = U’'Sy = o409 and Hy = US; = 0go.

Lemma 4.2. For the fixed points of Fy, Hy, H and H”,

= (fo,o3w) = —(fo, ogw) = —(fo, Sow) = —(fo,U'w) =1
) = —(ho, o2w) = —(hg, S1w) = —(ho, Uw) =1,

h,Yw) = —(h,oqw) = —(h, Sew) = (h U'w) =

= (", ¢ tw) = —(h", oow) = —(h", S1w) =

Proof. Since " = —oph, we have (h,U'w) = —(ooh”,U'w) = —(h",0oU'w) =
—(h', o~ w) = =1 and (h,yw) = (h, HYw) = (h, pw) = 1. Similarly,

(h",Slw) = 7(00h,51’w) = 7(h,0051ﬂ)) = 7(h,’l/)’w) = —

and

(0", w) = (0, (") Yo hw) = (", 07 w) = 1,

since H" = ¢ Y H 1) = = Ypp~Tp = o~ 1ap. u

4.5. Uniqueness

Denote by Dr the disc |2]? < 14/3 and D} = {z € D : Rez < 0}. Since
Iy, = (01), we can assume that z € D/

If N(o) holds, then |z|? > | —i2v/3|?> = 12. Thus, for an extremal z € D/,
P(o) holds. If P(o¢) and P(03) hold, then z € Dr, a fundamental domain of T'.

If N (o) and P(oo) hold, then z = ho = v/11/2—iv/3/6, |ho|? = 17/6 = 2.8333
(see Lemma 4.2).

Let us assume that P(o2) and N(og) hold. If P(o() holds, then z = f{
= (V11 +13v/3) /4, | fo|* = 19/8 = 2.375 (see Lemma 4.2).

If P(U) holds, then z € Dr. Hence we can assume that N(U) holds. If N(o{)
holds, then |z|? > |M/|? = [V/11/8 4 i29v/3/24|? = 427/96 = 4.55208333.

If N(o2) and N(og) hold, then N(S;) and N(og) hold, in which case |2|? >
7|2 = |5y/I1/8 + i7/3/24]2 = 427/96 = 4.55208333.
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We have proved the following.

Lemma 4.3. Let an extremal indefinite z € Dl.. Then z = fy or z = hg or

1) N(o{) and N(U) hold, or
2) N(S1) and N(op) hold.

1) Assume that N(og) and N(U’) hold. If P(p) and P(%) hold, then z =

—/11/8 +i29+/3/24 (see Lemma 4.2). If N(y) and N(op) hold, then |z|? >
5.27348. If N(¢) and N(U’) hold, then |2|2 > 6.24218. If N(p) and N (1) hold,
then |z|? > 8.3383. Thus, if N(og) and N(U’) hold, then either z = h or |2|? >
5.27348.

2) Let N(og) and N(S;) hold. If P(p~1) and P(¢p=1) hold, then z = h” =
5v/11/8+i7+/3/24 (see Lemma 4.2). If N(o~!) and N(S;) hold, then |z|? > 5.2324.
If N(p~1) and N(x»~1) hold, then |2|? > 8.3383. If N(¢)~1) and N(oyg) hold, then
|z|? > 5.9738. Thus, if N(0g) and N(S;) hold, then either z = A" or |2|? > 5.2324.

We have proved the following.

Lemma 4.4. Let an extremal indefinite z € Dl.. Then z = fl orz=hg orz=h
orz="h".

By (3.1), Lemmas 4.1 and 4.4 imply the following.

Theorem 4.1. M(Bs3) N [V14/2,00) = {\/14/2,/437/124,2,/17/2,+/19/2}.
Let Lo, L1 and Ly be the axes of pFop~t, pHop~' and pHp~' respectively.
If v(L) = v/19/2 for a geodesic L in H?, then L = g(Lg) for some g € Bss.
'fu(L) = /17/2 for a geodesic L in H?, then L = g(L,) for some g € Bss.
If v(L) = 2 for a geodesic L in H?, then L = g(Lsg) for some g € Bas.
If v(L) = +/437/124 for a geodesic L in H?, then L = g(Lz) for some g € Bas.
The geodesic Lys is extremal with respect to Bss and v(Lys) = 2/v/14.

As mentioned above, M(Bss) coincides with the Markov spectrum of the field
Q(+v/—33), which, as follows from Theorem 4.1, equals to L33 in the interval
[V14/2,00) (see e.g. [31], p. 41).

5. Diophantine approximation in Q(1/—57)

5.1. Reduction

Let d = 57 and w = iv/57. The group Go, = Stab(oco, Bs7) is generated by
reflections in the vertical plains in H? through the lines Rez = 0, Rez = 1/2,
Imz=0and Imz = JET?/2 in C, which will be denoted by Si5, S16, S17, and Sig
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respectively. The floor of the isometric fundamental domain D lies in hemispheres

Sl:S(O7l)a S2:S
1

Sy=85|—,—

4 ( 6 7\/6
2 1

Sr=9(—, —
’ (w Nt
9+w 1
SlOS<9_wa\/ﬁ>a Sii=58
B 2(14+w) 1 B 14w 1 _ -3B3+w 1
512—S< 5 a5>7 313_5’( )a 514—5( 2w 7\/@)

The forms @5 = (2,(1 +w)/2,7) and P = (2,w/3,3) are reflection forms since
A(D5) = 1/2, A(Pg) = 1/3 and 6|D (see [26], Lemma 4). Reflections in hemi-
spheres S;, i = 1,2,3,5,6,14,15,16,17,18, belong to Bs7. Hemispheres Ss, S
and S14 are mutually perpendicular. Also, Si4 is a boundary hemisphere with
r(®14) = 6. Denote by 7; reflection in the hemisphere S; and

oo | 24w [ 244w 1810w
= 1w 12 ] T3-w —2U-w |

; { 3+w 9-w ]
6 —3-w | 4’

Hy = 7Hy and Hs = 7/(Hy) 1. The axis of H; lies in the plane Re z = 0, the axis

of 7/ is perpendicular to the plane Rez = 1/2 and the axis of 7 is perpendicular

to the hemispheres S5 and Sj3.

Since the isometric fundamental domain of (H7) is the exterior of the hemi-
spheres S; and Sg in H?, the isometric fundamental domain of (Hs) is the exterior
of the hemispheres S15 and 715(S13) in H?, the isometric fundamental domain of
(H3) is the exterior of the hemispheres Sjp and 715(S11) in H?, 7(Sg) = S¢ and
7/(S4) = S4, we have proved the following,.

Theorem 5.1. The extended Bianchi group Bsy is generated by T, 7/, Hy and by
reflections in S;, i = 1,2,3,5,6,14,15,16,17, 18.

The hemisphere S14 is anisotropic, and the lowest face of D lies in S14. Since
the diameter of Sy4 is 2/4/38, the highest Hermitian point of M(Bs7) is

Hs7 = V/38/2.

(cf. [34], Example 5.1). Denote by h;; the height of the geodesic L;; = S; N S;.
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Then
ho 15 = %, has = \/%» hz 16 = \/%7 hs15 = hs,16 = i,
hae = \/%78’ hia7 = hiag = \/%7 hio1 = hi1,16 = %,
hss = har %7 hag \/%7 h3g %,
hio,4 = ha3 = hi211 ; 2; har = hes % 137
hi3g = hg 12 = ho7 = % % hs13 = ho 12 \/12—9 ;lga
h106*h113*% %, he,13 = h3 12 \/% %;
1 1 1

has = hi1a = 75 h3ia = ViT hs 14 = 7

If the center of S; is located in Sy5 (or Sig) then h; 15 = R; (or hi16 = R;).

The hemispheres S1, Sg, S19 and S5 meet at a vertex of D, and the hemispheres
S, S11, S12 and Sig meet at another vertex of D.

The group Gs = Stab(Si4, Bs7) = (7,%,71), where v = 75714, Y0 = 73714,
Y1 = T167T14-

The heights of all the edges in the floor of D, which do not lie in Si4, are
greater than 1//38. Thus, the reduction for d = 57 is similar to that for d = 30.

Let S = vy9, A = 170, B = 71v. Then S2 = A% = B* = id. Thus the group
G contains the (2,4, 6)-triangle group as a subgroup of index two. The triangular
face Dg of D, which lies in S14, with vertices at

oo (95w L\ (543w 1\ (342 1
1 — 18 7\/5272_ 10 ,\/%,3_ 7 377

is a fundamental domain of Gg, S14 N K (c0) consists of two copies of Dg. and

Stab(v1, Bsy) = {75,714, 716 : (T5714)% = (114716)° = (T1675)" = 1},
Stab(ve, Bs7) = {73,714, 716 : (t3714)% = (T14716)* = (71673)° = 1},
Stab(vs, Bsr) = {73, 75, 714 ¢ (1375)% = (15714)” = (11473)* = 1}.
The geodesic Ls 14 is perpendicular to S5 and to the axis Ls 16 of 71675. Denote
U = (7'167'5)2, Then F5714 = Stab(L5714,B57) = <7'37U>_ Let tl — L5714 N SS and

to = L5 14 N L5 16. Then the arc [t1,t2] = L5 14 N K(00) is a fundamental domain
ofl'5 14 on L5 14 and, by Corollary 24, [30], L5 14 is extremal. Since the height of
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L5 14 is 1/4/46 and, as shown above, the height of any extremal geodesic is at least
1//46, the Hurwitz constant of the field Q (v/—=57) is

Cs7 = V46/2.

(cf. [35], Table 1).
The hemisphere S14 contains four vertices of D, vy, va, v3 and v§ = T16(v3).

The v-cells N(v1), N(vz), and N(vs3) are of the same type as in the case of
d = 30 (see Section 3). The v-cell N(v3) is a rectangular parallelepiped. The v-
cells N(v1) and N(vs) are square and hexagonal prisms respectively. The geodesic
L5 16 is the axis of symmetry of order 4 in N(vy) and L3 16 is the axis of symmetry
of order 6 in N(vs).

The common rectangular face ¢35 of N(v3) and N(vs) has vertices at w/3, (19+
12w) /41, (=33 + w)/(2w) and oco. Its Farey constant is 2h3 14 = 2/v/41. All the
rectangular faces of N(vy) are congruent to this face.

The common rectangular face ¢13 of N(v3) and N(v1) has vertices at (1 +
w)/4, (21+13w) /46, (—33+w)/(2w) and cc. Its Farey constant is 2hs 14 = 2/+/46.
All the rectangular faces of N(v;) are congruent to this face.

Let 2/\/4T6 <k < 2/\/@ Then N(v;, k) has a geodesic face ¢ if and only if
¢ lies in a rectangular face of N(v;), which is congruent to ¢o3 or ¢13, since only
for such a face the Farey constant is less than 2/4/38. But, the centers of all such
faces lie in S14. Hence, if the height of an extremal geodesic L is less than 1/4/38,
then g(L) C Sy4 for some translation g € Bsr. Indeed, an extremal geodesic L,
which cuts N (v, k), must enter through one of its geodesic faces and exit through
another. Since the limit points of the sequence of v-cells cut by L are the endpoints
of L and they lie in S14, L itself lies in S4.

Lemma 5.1. If the height of an extremal geodesic L in H? is less than 1/+/38,
then L C ¢S, g € Go. Thus,

M(Bs7) N [V38/2,V46/2] = Mg N [vV38/2,1/46/2].

5.2. A group with signature (0;2,4,6)

Let 514 = S(b14,R14) and p = ( ORI4 [;14
1/4/38 in the complex plane C. Then Gg = Stab(C4, Bsr) and Cy = p(C'), where
C is the unit circle |z| = 1. The group I' = p~'Gg p is a discrete cocompact
subgroup of the group of isometries G¢ of D?. It is generated by reflections

[ iV 54w S ~2iv/6 9 —w | 01
5-w —iv6 |’ 7l 94w 2iv6 |7 Tl-1 0

across the sides of the triangle with vertices a = iv6/5, b = —2iv/6/9, and s =
—(V/38 4-i1/6) /14, which are the fixed points of A = o100, B = 010 and S = 00y
respectively. One has S? = A® = B* = id. Denote o}, = 09A¥, k = 1,...,5. For
g €T, denote ¢’ = 01g01. Let ¢ = 035 and ¢ = o’S.

) . Let Cy be the circle |z — by4| =
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Lemma 5.2. For the fized points f, f1 of ¢, and ¢1 respectively, we have

(fvgw) = (vaSw) = —(f,O'o’LU) = _(f7 Sw) = _(f’ U’LU) =1,
(f17alw) = (fl,O’ow) = —(fl,O"lU) = _(flvsw) = _(flvBQw) =1

5.3. Uniqueness

Denote by Dy the disc |z| < 4.2 and D}, = {z € Dy : Rez < 0}. Since I'y, = (01),
we can assume that z € D7..

If P(o) and P(og) hold, then z € Dr, a fundamental domain of I'. If N(o)
and N (o) hold, then |z| > | — 57/38 + 13i1/6]/84 > 4.2.

If N(S') holds, then |z| > |i7v/6/3| = 5.7. Hence P(S’) holds. If N(¢’) holds,
then |z| > | — 15v/38 — 139i1/6]/84 > 4.2. Hence P(¢”') holds. If N (o) and P(og)
hold, then z = f; = —(\/@—1— 32\/(3)/4

Assume that N(og) holds. If P(S) holds, then |z| > | —27/38 + 127i1/6|/84 >
4.2. Hence N(S) holds. If N(o3) hold, then z ¢ D/.. Hence P(o3) holds. If P(o)
hold, then z = f = —/38/2 +i5//6.

Lemma 5.3. Let z € Dl Then z = f = —/38/2+1i5//6, or z = f1 = —(v/38 +
3iv6)/4, or |z| > 4.2.

Thus, by (3.1) and Lemma 5.3, the first two points of M(Bs7) are v(f) =
V/46/2 and v(f;) = v/41/2. We have proved the following.

Theorem 5.2. M(B57) N (3.1735,00) = {\/ZH/Q, \/4%/2}
If v(L) = v/46/2 for a geodesic L in H®, then L = g(Ls 14) for some g € Bsy.
If v(L) = /41/2 for a geodesic L in H®, then L = g(L3 14) for some g € Bsy.

As mentioned above, M(Bs7) coincides with the Markov spectrum of the field
Q(v/—57), which, as follows from Theorem 5.2, equals to Ls7 in the interval
(3.1735,00) (see e.g. [31], p. 41).
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