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Abstract: In previous papers the authors established a method how to decide on the algebraic
independence of a set {y1,...,yn} when these numbers are connected with a set {z1,...,zn}
of algebraic independent parameters by a system f;(z1,...,Zn,y1,...,yn) =0 (1 =1,2,...,n)
of rational functions. Constructing algebraic independent parameters by Nesterenko’s theorem,
the authors successfully applied their method to reciprocal sums of Fibonacci numbers and
determined all the algebraic relations between three g-series belonging to one of the sixteen
families of g-series introduced by Ramanujan.

In this paper we first give a short proof of Nesterenko’s theorem on the algebraic independence
of m, e™? and a product of Gamma-values I'(m/n) at rational points m/n. Then we apply the
method mentioned above to various sets of numbers. Our algebraic independence results include
among others the coefficients of the series expansion of the Heuman-Lambda function, the values
P(q"),Q(q"), and R(q") of the Ramanujan functions P,Q, and R, for ¢ € Q with 0 < |¢| < 1
and r = 1,2,3,5,7,10, and the values given by reciprocal sums of polynomials.

Keywords: algebraic independence, Ramanujan functions, Nesterenko’s theorem, complete el-
liptic integrals, Gamma function.

1. Introduction

In 1916, Ramanujan [19] defined the series

o .
n2j+1xn

S2j+1(I) = %C(72]71)+ (j :071727"')7

1—an
n=1

where ((s) is the Riemann zeta function, and studied especially the first three
P(x) = —245;(x), Q(z) = 24053(x), R(x) = —504S55(x)

of them. In 1996 Nesterenko [15] proved the following.

2010 Mathematics Subject Classification: primary: 11J85; secondary: 11J89, 11J91,
11F03



122 Carsten Elsner, Shun Shimomura, Iekata Shiokawa

Theorem 1.1 (Nesterenko’s Theorem). For every x € C with 0 < |z] < 1,
the set

{z,P(z),Q(x), R(x)}

contains at least three numbers that are algebraically independent over Q.

Many important corollaries of the theorem are stated in [15], [16] and [17],
among others we refer the algebraic independence of 7, e™, I'(1/4) (see Lemma 2.2
in Section 2). In this paper we deduce algebraic independence results from Nesteren-
ko’s theorem for various sets of numbers applying the following criterion.

Theorem 1.2 (Algebraic independence criterion [13]). Let z1,...,z, € C
be algebraically independent over Q and let vy1,...,y, € C satisfy the system of
equations

fj(x17"'axnay17""yn):0 (1<]<n)a (11)
where fi(t1, ..., th 01, ..., un) € Qt1,... tn,ur,...,up] (1 < j < n). Assume
that 5

det<8{]:(391,...,xn,yl,...,yn)) £ 0. (1.2)
Then the numbers y1,...,Yyn are algebraically independent over Q.

Corollary 1.1. Let x1,...,x, € C be algebraically independent over Q and let
y; = gj(x1,...,x,), where g;(t1,...,tn) € Qlt1,...,tn] (j = 1,...,n). Assume

that o
det (8!2 (xl,...,xn)> # 0.
Then the numbers y, ..., yn are algebraically independent over Q.

As far as we know, this criterion first appeared in [13, Lemma 3] (see also
[11, Lemma 6], [12, Lemma 3]) and was used together with Nesterenko’s theorem
to prove the following: Let Fy =0, Fy =1, Fj,42 = Fj,41 + F,, (n > 0) denote the
Fibonacci numbers. Then, for any distinct positive integers si, so, s3, the numbers

— 1 — 1 — 1

are algebraically independent over Q if and only if at least one of s; is even (see
[10] and [13]). The criterion was applied secondly to the Ramanujan functions
Saj+1(x), or the g-series

St n2j+1q2n

Azjyi(q) = T (j=0,1,2,...)

n=1

(using the notation in [24]). Ramanujan [19] recorded the identity

Az(q) = As(q) + 120A3(q)*.



Algebraic independence of certain numbers related to modular functions 123

Applying the criterion, the authors [11] proved that, for any ¢ € Q with 0 < |¢| < 1,
the numbers A;(q), A2i+1(q), A2j+1(¢) with 1 < i < j and (i,j) # (1,3) are
algebraically independent over Q. Furthermore, the authors [12] determined all
the algebraic relations among three g-series belonging to one of the sixteen families
of ¢-series studied by Ramanujan [20, Chap. 17] (cf [7]).

This paper is organized as follows. In Section 2, we state two lemmas de-
rived from Nesterenko’s theorem, which are used in the proofs of our theorems.
In Section 3 we examine algebraic independence properties concerning the coeffi-
cients of the series expansion of the Heuman-Lambda function. In Section 4 we
prove the algebraic independence of values at algebraic arguments of two classes of
series introduced by Ramanujan [21] in connection with Dedekind’s eta-function
and its third power. The values P(q"),Q(q"), R(q") with ¢ € Q, 0 < |g| < 1 for
r=1,2,3,5,7,10 are discussed in Section 5. In Section 6, we show algebraic in-
dependence results for reciprocal sums of polynomials and for other miscellaneous
numbers. Finally, in Section 7, we give a method how to check (1.2) when the
implicit system (1.1) cannot be solved for yi,...,yn.

All the results obtained in this paper are deduced from Nesterenko’s theo-
rem except that in Theorem 6.2 which is proved using Lindemann’s theorem.
Throughout this paper, we cite for brevity the algebraic independence criterion or
its corollary stated above as the AIC.

2. Preliminaries

Let K and E be the complete elliptic integrals of the first and second kind defined
by

! dt L1 — k22
K = K (k) .:/O N E = E(k) .:/O q/ﬁdt

with k2 € C\ ({0} U[1,00)), where the branch of each integrand is chosen so that
it tends to 1 as t — 0. Furthermore, let

K' = K'(k) = K(K), E* 4+ (K')? = 1.

For each ¢ € C with 0 < |¢| < 1, we can choose k such that
K‘/
=%

q=e€ y C

Ramanujan [19] gave the expressions

P(¢®) = <2f)2 <3}f -2+ k2) :

o= (B ).

™

6
R(¢?) = (2[() %(1 +R2)(1— 2K2)(2 — k).

™
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Nesterenko’s theorem combined with them implies the following:

Lemma 2.1. If = "¢ withc= K'/K and 0 < |q| < 1, the set

(o K.2)

™

contains at least three numbers that are algebraically independent over Q.
Using Lemma 2.1, we deduce

Lemma 2.2. (cf [16, p.6]) Let —m be the discriminant of an imaginary quadratic
field. Then the numbers

m—1
, emvm, H F(n/m)(_m/n)

n=1
are algebraically independent over Q, where (—m/n) is the Kronecker symbol.

In Section 6 we apply the special case of Lemma 2.2 that, for any d € N, the
numbers 7 and ™V are algebraically independent over Q.

Proof. Let ¢ = K'/K = y/m in (2.1). Then ¢ = e~™V™. Selberg and Chowla [22]

proved that
w/4h

K = AT (:i:[llf(n/m)(m/ ”)> :

where \. is some algebraic number, h is the class number of the field Q(y/—m),
and w is the number of roots of unity in the field. Since ¢? € Q, k becomes an
algebraic number by a theorem of Abel (cf [23, p. 525]) and F takes the form
E = 7/(4cK) + B.K with 8. € Q (see [19] and [24, p. 195]). Thus we have from
Lemma 2.1 with k£ € Q that

m—1 m—1
—m/n —m/n K E
tr.d.QQ(q,w, H F(n/m)( / )> :tr.d.QQ(q,ﬂ', H F(n/m)( / ), 7r’7r>
n=1

= 3. ]

n=1

For example, each of the following sets
{m, ™, D(1/4)}, {m,e™V3,T(1/3)},
V3 /3
{me™2 T(1/6)},  {e™?,1(1/3),T(1/6)}
is algebraically independent over Q. For the last two sets, we refer the formula
2%/3712(1/6) = 3T*(1/3)

(cf [2, Table 3, (iv)]). As a result, the three numbers I'(1/2),T°(1/3),T'(1/6) are
algebraically dependent over QQ, and any two of them are algebraically independent
over Q.
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3. Heuman-Lambda function

We first state an algebraic independence result for the Weierstrass elliptic function
p(2) = p(z, g2, g3) with invariants gs, g3. The function admits the series expansion

p(z) =272+ Z b2
j=1

around z = 0. It is known that b; € Q[g2, g3, for example,

92 93 9 39293
— 50’ b2 — 50 3 = ) b4 - )

20 28 1200 6160
with b2 = 3bs. Applying the AIC (without Nesterenko’s theorem), the authors
and Tachiya [12] proved the following theorem: If go and g3 are algebraically
independent over Q, then, for every (i,j) # (1,3), i < j, the coefficients b; =
bi(g2,93) and b; = b;(g2,g3) are algebraically independent over Q.

In this section we consider the Heuman-Lambda function Ag(p, k) defined by

by

Rolip.K) = 2 (B()F (o, K) + K(B) Bl K) ~ K(R)F(sp,K)),

where

4 dv
F(%k):/ TR
0 1—k2sin” 9
@
E@xM:i/ V1 — k2sin® 9 do.
0

Let (t2m(9)) >0 and (a2m(k)),, o be defined by

2m —1 sin?™ ™ pcos
= = - >
() =6 (o) = o Lo ()~ (m>1),
1
ao(k) =B,  ax(k) = 52K — E)”,

(2m — 3)!
- 22m=2ml(m — 2)!

Then we have the series expansion (see [6, formula 904.00 |)

agm (k) (2mK — (2m - )E)K*™  (m>2).

Koo, ) = = (ao(R)to(s) - i azn(K)ten(9))  (0<p <. K <1),

_ - T 2
Ao(sp, k) —7;)b2m(k)t2m(90) (0<p<Z k2 <1),
where
£ o =
T
—2a9m (k)/m if m > 0.
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Theorem 3.1. Let q = e mK'/K ¢ Q with 0 < |q| < 1. Then, for any integers 0 <
my1 < mg < mg, the three numbers bay,, (k), bam, (k), and bay, (k) are algebraically
independent over Q.

Furthermore, any four numbers bam, (k), bam, (k), bam, (k), and bay,, (k) are al-
gebraically dependent over Q.

Example. Putting ba,, = by, (k) for brevity, we have
baba — 8bob3 + 2b3bs — 3b3b3 + 6bobabybs = 0.

Proof of Theorem 3.1. We divide into two cases my > 1 and m; = 0.
Case 1: 1 < my < msy < mg. We define the polynomials

(2m1—3)' 2m.;
(b1, ta, t3) = Imgty — (2m; — 1)tg) 2™
filt1,t2,t3) 22m,;_1mi!(mi_2)!( mity — (2m; — 1)ts )ty

B; (2mits — (2m; — 1)t3) 3™ i=1,2,3),
1

where 81 =1 if m; =1, and

(2mi — 3)' .
P = f om; > 2.
6 22mi_1mi!(mi — 2)' ! m

Applying the determinant rules, we get

dfi
det ( / )

atj 1<4,5<3

Qﬁlml (2m1t2 — (2m1 — ].)tg)t%ml_l 251m1t%m1 —51(2m1 — ].)t%ml
= 2ﬁ2m2 (2m2t2 — (2m2 — 1)t3)t§m2_1 252m2t%m2 —52(2m2 — 1)t%m2

2537’)13 (2m3t2 — (2m3 — 1)t3)t§m3_1 253m3t%m3 —63(2m3 — 1)t§m3

mq (2m1t2 — (2m1 — l)tg) miq 1
= 4ﬂ16263t§(m1+m2+m3)71 | Mo (2m2t2 - (2m2 - l)tg) mo 1
ms (2m3t2 - (2m3 — l)tg) ms 1

= 861 Bo Bt 2™ M) (1) ) (mg — ma ) (ms — ma)(ts — ta).
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Case 2: 0 = my < mo < mg3. Let fl(t17t2,t3) = 2t3 and let fg(t17t27t3),
f3(t1,ta,t3) be defined as in Case 1. Then, we obtain

ofi
det ( J: )
0t/ cijs
0 0 2
_ 2mo—1 2mo 2mo
= 2527’)’12 (2m2t2 — (2m2 — ].)tg)tl Qﬂgmgt 762(27%2 — 1)t
2ﬂ3m3 (2m3t2 — (2m3 — 1)t3)t?m3_1 QBgm t2m3 —53(2m3 — 1)t2m3
262m2 (2m2t2 — (2m2 — 1)t3)t%m271 262m2t2m2
2637’)@3 (2m3t2 — (2m3 — 1)t3)t%m371 263m3t2m3
2m2t2 — (2m2 — 1)t3 1
= 85253m2m3t2(m2+m3) .

2m3t2 — (2m3 — ].)t3 1
— 1682 B5mamst ;"> ™ (mg — my) (ts — ta).
For t1 = K, to = K/m, and t3 = E/m the determinant in both cases does
not vanish by Lemma2.1. Applying the AIC, we may prove the first state-

ment in Theorem 3.1. The second statement follows from the fact that by, €
Q[K, K/m, E/x]. [ ]

4. Two series introduced by Ramanujan in his lost notebook

Ramanujan [21, pp. 188, 369] introduced the two classes of series

Top, := Tor(q) := 1+ Z { —1)2kgnn=1/2 4 (6 1)2kqn(3n+l)/2}’

Fop := For(g Z 1)2k+1qn(n71)/2 (lg] < 1),

and expressed the functions

T2(q) For(q)
(€ 0) for, (QEq)io =: Uz

with
oo
= [la-a

as polynomials over Q in terms of the Ramanujan functions P, @, and R. We refer
Ramanujan’s Lost Notebook [1, Chap. 14| for the proofs of Ramanujan’s claims
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which will be used in this section. For example,
fo =P, fi=3P? —20Q, fe = 15P3 — 30PQ + 16R,
fs = 105P* — 420P%Q + 448PR — 132Q°, . . .;

Uy = Uy, =P, U4:%(5P2—2Q),

Us = = (35P% — 42PQ + 16R), (4.1)

1,
1
3
1 4 2 2

Us = (35P —84P%Q — 12Q° 4+ 64PR), .. ..

We note that the formulas fo = P and Uy = 1 are proved in [1] by using,
respectively, the pentagonal number theorem

=1+ Z (71)n{qn(3n71)/2 i qn(3n+1)/2}

and Jacobi’s identity

]' - n n(n
(G0% =75 D, (~D"@n+1)g "2

In this section we prove the following theorems:

Theorem 4.1. Let ¢ € Q with 0 < |q| < 1. Then for three distinct positive
integers i, j, and k, the numbers T3;(0)/(¢; @) o> T25(0) /(@ @) oo and T21(a) /(43 ) o
are algebraically independent over Q.

Theorem 4.2. Let ¢ € Q with 0 < |q| < 1. Then for three distinct positive integers

ivj} and k; the numbers FQZ(Q)/(qv ) FZ]( )/( q)i@; and FZk(Q)/(qu)io are
algebraically independent over Q.

We first prove Theorem 4.2. The proof of Theorem 4.1 is similar and much eas-
ier. The key to Ramanujan’s work on Us(q) is the differential-recurrence relation

dUss(q
Uassa(0) = P@)U0) + 802D (52 0) (4.2
with Uy = 1. From this he deduced the expressions
Use= Y KaopoP'Q'R° (s>1), (4.3)
a,b,c0
a+2b+3c=s
where K, € Q, using his differential equations
dP P?2-Q d) PQ-R dR PR-Q?
i B el e (4.4)
dq 12 dq 3 dq 2

For the proof of Theorem 4.2 we need the explicit values of the coefficients K g,
K10, and K1, which can be deduced from the following:
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Lemma 4.1. The coefficients K0, Ks 1,0, and K01 satisfy the recurrence for-
mulas

25+ 3
Koi100= TKS,O,O (s >1), (4.5)
2s+ 7 2s
Ks 110= 3 Ks 210— ng,o,o (s =2 2), (4.6)
2549 8
Ky 201 = 3 Ks_301— 38210 (s =2 3), (4.7)
where the initial values are given by
2 16
Ki00=1, Koa0=—73, Koo1=—. (4.8)
3 9
Proof. By (4.3), Uss is written as
Uss = K5 0,0P° + Ks—210P* ?Q + Ks_301P* R + ua,, (4.9)

where ugs € Q[P,Q, R] with degp ugs < s — 4. Substituting this into (4.2) and
using (4.4), we get

pP?—
Uzsyz = Koo 0P + Ko 210P° 7 'Q+ Ky 501P" ?R+ 8Ks,o,osP871TQ
. P%— PO —-R
+ 8KS_27170<(S — 2)P373TQQ + P872QT)
P?— PR — Q? s
+ 8K, 501 ((s = 3) P %ry PHTQ) + 8q—Z; . (4.10)

We may regard P, (@, and R as independent variables, since they are algebraically
independent over Q by Nesterenko’s theorem with ¢ € Q. So we can equate the
coefficients of P5*! P*=1Q, and P*~2R on the right-hand sides of (4.9) (with 2s
replaced by 2s+2) and (4.10). Thus we obtain (4.5), (4.6), and (4.7), respectively.
The initial values (4.8) follow from (4.1). |

The following values of K, o0, Ks,1,0, and K, o1 can be obtained from (4.5-4.8)
by using the formulas I'(z + 1) = 2I'(z) and

1 1-3-5...(2s—1
T(s+=-])= (25 )\/% (s=0,1,2,...).
2 28
Lemma 4.2. We have
29 3 (2s+1)!
Koo =22~ (s+5) =220 > 1),
0,0 3 /r 8+2 655! (s=1)
8 (s+1)(s+2)2° 7
PSR R LER AR, o),
T 35/ °ty (s20)

128 (s+1)(s+2)(s+3)2° 9
= = > M
Ke01= 5535 35/ P(S + ) (s>0)
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Proof of Theorem 4.2. We apply the AIC by showing that

8ng aUzl 8U22
oP 0Q OR

3U2j 8U2j 8U2j
oP  9Q OR

A= AGi,j, k) =

8U2]€ 8U2k 8U2k
oP o0Q OR

Using (4.9), we see by a straightforward computation that
iKi0o0P™!  Ki210P72 K 301P"73

A=| jKjooP'™' Kj 910P77% Kj_301P773 |+6§
kKiooP"* 1 Kip_910P" 2 Kj_30:P"3
K00 Ki—21,0 Ki—zo1

- i+ j+k—6
=| jKjo0 Kj-210 Kj301 |PT7TF 045§

kEKkoo Kr—210 Kr-301
— CPi+j+k—6 + 6’
where & = 8(i, j, k) € Q[P,Q, R] with degp 6 <i+j+k—7and C = C(i, j, k) € Q.

Note that A is a polynomial over Q in independent variables P, @, and R. By
Lemma4.2, we have

3

“gm(s) IR (o )r(e5) <o m

Proof of Theorem 4.1. The function f5 satisfies the differential equation

d
farsala) = P@)for(0) + 244 T2
with f2(q) = P(q), from which it follows that
for = (2k — 1)!!(P’“ - Lk; D przg 4 Sk = Dk =2) *i;(k “Hprsp gzk),

where (2k — D! =1-3---(2k — 1) and gor, € Q[P,Q, R] with degp gop < k — 4
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(see [1, Chap. 14]). Hence we have

Ofai  Ofa  Ofa

oP  9Q R

. Ofp;  Ofy; Of
A=algk) = a% a% aféj
ank aka ank

0P  9Q R

= (20 — 1)11(25 — D)!N(2k — 1)

131

i) Sii—1)(i—2)
3 45
x| j _JG =1 8 =1DU=2) | pitjths np
3 45
k=1 k(- 1)(k-2)
3 45

i(21' — D25 — D2k — D)Nijk(j — k)(j — i)(k — i) PTHI R0 1§,

~ 135
where § = 6(i,4,k) € Q[P,Q, R] with degpé < i+ j+ k — 7. Therefore A # 0,
and the theorem follows from the AIC. [ |

5. Algebraic independence of P(q"), Q(q"), and R(q")

In this section we turn our attention again to the Ramanujan functions P, (), and
R. We already proved in [12, Corollary 2] that for ¢ € Q with |¢| < 1 the numbers
in each of the sets

{P().P(®}, {Q@.Q»},  {R().R(*)}

are algebraically independent over Q. Application of the AIC leads to more general
results.

Theorem 5.1. Let ¢ € Q with 0 < |q| < 1. Then, any three numbers in the set
{P(q), P(¢°), P(¢°), P(¢"")}

are algebraically independent over Q and the four numbers are not. More precisely,
putting P; = P(q¢%) (i = 1,2,5,10), we have

P} + 4P% 4 25P2 + 100P7, — 6P, P,
+ 6P, Ps — 2P, Pig — 2Py Ps + 24P, Py — 150P5 Pyg = 0.
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Theorem 5.2. Let ¢ € Q with 0 < |g| < 1. Then, in the set
{Q(a),Q(*), Q(¢°),Q(¢"")}

any two numbers are algebraically independent over Q and any three are not.

Theorem 5.3. Let ¢ € Q with 0 < |q| < 1. Then, in the set
{R(9), R(¢®), R(¢"), R(¢"")}

any two numbers are algebraically independent over Q and any three are not.

Theorem 5.4. Let ¢ € Q with 0 < |q| < 1. Let X(¢™) and Y (¢") (m,n € {1,3})
be two different numbers in the set {Q(q), Q(¢*), R(q), R(¢®)}. Then, each of the
sets

{P(q),P(¢*), X(a™)},  {P@),X(¢™),Y (@)},  {P(d*),X(¢™),Y(d")}
is algebraically independent over Q.

Theorem 5.5. Let ¢ € Q with 0 < |q| < 1. Let X(¢™) and Y (¢") (m,n € {1,7})
be two different numbers in the set {Q(q), Q(q"), R(q), R(¢")}. Then, each of the
sets

{P(a), P(¢"), X (™)},  {P(a),X(¢™),Y (¢},  {P(¢"), X(¢™),Y(d")}
is algebraically independent over Q.

We give a detailed proof only for the algebraic independence of Py, P, and Ps in
Theorem 5.1. The remaining cases concerning the set { P(q), P(q?), P(¢°), P(¢*°)}
in Theorem 5.1 can be treated similarly. For the proofs of Theorems 5.2-5.5 we
shall refer to suitable parameter expressions for the Ramanujan functions P, @, R.
The details of computations for the nonvanishing of the determinant applying the
AIC are left to the reader.

Proof of the algebraic independence of P, P5, P5 in Theorem 5.1.
Using the Rogers - Ramanujan continued fraction

rr (L= (1 —¢¥ )
r=r(q) =q"° H 5,—3 55-2)°

i (=g 72) (1 =g772)
we define k, z, and y by

dz

k=kq)=r@)r(¢®), z=2(q)= qd% logh,  y=ylg)=_. (1)

From [9, Theorems 5.3, 5.5, and 5.6], we have the following expressions:

414k)z  (1+k)z 41 +k2)z
Pr=Pla) = - 2
5(1+k%)z  2(1+k?)z (1+k2)z
_ i .
21—-k%)  1+k—k? 2(1—4k—k2)+3 Y (5.3)

Py =
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A0+ Rz | (LK) 41+ k%2 6

Py = 2k 4
ST TBAR) T1v kR B _4k-#2) 5V (5.4)
(1+k?)z 2(1+ k)2 (1+k%)z 3
Py = 2 .
0= 0A k) T B0 k—k) 20— dk— k) T 5" (5:5)
Q1 =Q(q)
| 22(k'2 — 236k 4 1434k10 — 740K — 1905k° + 3144K7 + 1196k° — 3144K°)
(1—k2)*(1+k — k2)*(1 — 4k — k2)*
22(—1905k* + T40k® + 1434k + 236k + 1) 5.6)
(1—k2)* A+ k—k2)*(1 — 4k — k2)*> '
Ry = R(q) = ZBh(k)P1,2(k)P1,5(/‘J)P1(k)a (5.7)
where
1 2
h(k) = +F

(1 -k +k — k21 — 4k — k2)*
p1o(k) = k* — 22k — 6K% + 22k + 1,
prs(k) == k* — 4k® 4+ 6k* + 4k + 1,
pi(k) = k% + 536k7 — 268k — 1192k° + 470k* 4 1192k® — 268k? — 536k + 1.

From (5.2), (5.6), and (5.7) it follows that Py, @1, and R, are expressible as rational
functions in the three variables k,vy,z. For ¢ € Q with 0 < |¢| < 1, the numbers
P;,Q1, and R; are algebraically independent over Q by Nesterenko’s theorem,
and so are the variables k,y, z. The algebraic relation among P, P», P5, and P,
given in Theorem 5.1, can be computed from (5.2), (5.3), (5.4), and (5.5) by using
resultants.

Next, we define the following polynomials:

flzfl(zﬂk7y7a17a27a5)
=1 =k +k—EH( - 4k — k?)
41+K)z  (1+k)z 41+ k)z
X(al_ 1 k2 _1+k7k2+174k7k2_6ky)’
f2:f2(zak,y7alaa23a5)
=21 = k)1 +k — k) (1 — 4k — k?)
51+ %)z 2(1+k?)z 14+ k%)z
X( L ( 2) ( )2_ ( ) i _3ky)7
20 —k2) " 14+k—k2 21 —4k—k2?)
fs = f5(2,k,y, a1, a2, a5)
=51 — k) (1+k —k*)(1 — 4k — k%)

41+ k)2 (14+EkH)z 41+ k%2 ka)

X(%* 51— k2) 1+k—k2 5(1—4k—k?) 5
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By definition they vanish if (a1, e, a5) = (P1, Pa, Ps). Then,

ofh 0fi O
o= ok 0
Ao | Oh on of
' 0z 0k 0
0z 0k 0Oy

= 6k(k* — 1)(k* — k — 1)(k* + 4k — 1) (1680k"z + 96k® > — 234k P,
+ 462k P, — 48K% Py — 978k Py — 96k° 2 + 128Kk° Py + 9P; + 2064k* P,
+ 24k Py + 96kz — 24P; + 4570k5 Ps — 208k Py — 448k> Py + 224k3 P, + 15P5
+ 400k P5 + 1360k>P5 — 2870k P5 — 3990k* P5 — 72z + 192k P,
+ 768k z 4+ 768k5 2 — 1664k° Py + 3200k° P; — 96k" 2 — 72k 2 — 1970k™ P
— 585k8P5 + 30k Ps + 416" Py + T2k Py — 48k Py + 186k™ Py
+ 81k Py + 18K°Py).

Substituting the rational expressions (5.2-5.4) into this polynomial, we find

A = —144kz(k* + 1)(k* — k — 1) (3k"* + 16k"" — 22k'° — 144k° — 3K®
— 160k" + 44k° + 160k> — 3k* + 144k — 22k* — 16k + 3) # 0,

which implies the algebraic independence of P, P>, and Ps. |

For the proofs of Theorems 5.2 and 5.3 we use the same algebraically indepen-
dent parameters k,y, z in (5.1) as in the proof of Theorem 5.1, and we express the
Ramanujan functions at points ¢" under consideration using additional identities
given by [9, Theorems 5.5 and 5.6].

The parameters applied in the proof of Theorem 5.5 are

= (1—q7)* = (1—¢)" dz
P | U N, § S .

4 i 0 - .
i (1—q7) e 1—q7 dx

By [8, (3.5),(3.7),(3.10)] we express P3(q) and P3(q") as rational functions in
Q(z,y, z), whereas we use [8, (3.5), Theorem 3.4] for Q3(q), Q*(¢"), R(q), R(¢") €
Q[z,2]. For ¢ € Q with 0 < |g| < 1 the parameters z,y,z are algebraically
independent over Q by Nesterenko’s theorem and the above identities involving
P3(q),Q%(q), and R(q). Then, applying the AIC on three of the above mentioned
identities corresponding to three numbers occasionally chosen in Theorem 5.5, we
complete the proof of the theorem.

For the proof of Theorem 5.4 we refer to [4, ch. 33, §4] on the Eisenstein series
P,Q, and R, which in [4] are denoted by L, M, and N, respectively. We introduce

the parameters

2K d
l':k27 Z=— y:i
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where K is the complete elliptic integral of the first kind already mentioned in Sec-
tion 2. The algebraic independence of these parameters follows from [4, Lemma 4.1,
Theorems 4.2-3]. Then we deduce Theorem 5.4 using the expressions [4, (13.17),
Lemma 4.1, Theorems 4.2-5] and the AIC.

6. Reciprocal sums of quadratic polynomials and some other numbers

In this section we give algebraic independence results for the numbers stated in
the title.

Theorem 6.1. Let a and b be positive integers with a®> — 4b < 0. Then, any two

of the numbers
o0

1
- - —1,2,3,...
Z n? 4 acn + bc? (e )

n=0

are algebraically independent over Q and any three of them are not.

Example. Let a =b=1. Then z. = >.°2 , (n®> + cn + 62)71 (¢ =1,2,3) satisfy

n=0

730% —4x1 + 6x9 + Txg + 21(z123 + 22223 — 22122) + 1 = 0.

Proof of Theorem 6.1. Let ¢ =T"/I". It is known that

o0

1 1
S = Z W Lantb = m(d}(a) _1/’(5))7

n=0

where o := (a +iVd)/2, 8 := (a —iV/d)/2, and —d = a*> — 4b < 0. Using the
functional equation

1 1 1
¢(Z+n)=;+z+l+"'+m+w(2) (zeC, neNU{0})

with = (1 — a) + (a — 1), we have

1 1 1
Y(a) —y(B) = w(a)—(l_a 2_a+"'+m+¢(1—a)>
a—1
= —mcot(ma) — !
Pt k—a
Here,
; wd _
—tan (Z—\/@ :—i! ifa=1 (mod 2),
_ 2 677\/3 —+ 1
cot(ma) = . oV 41
cot (5@) = —1 m ifa=0 (mod 2)7
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and
~ 1 1“21 2% —a @“Z‘l 1 _@“i 1
—k—a 24k ak—i—b 2 kzlkz—ak—kb_ 2 k:1k2—ak+b'

Thus we obtain

Wf a a—1

T € + 1 1

S = _ = 6.1
Vd eV — -1)* 2;k27ak+b (6.1)

We note that the two numbers z; = 7/v/d and z, = e™4 are algebraically in-
dependent over Q by Lemma2.2. Now let ¢y, co be distinct positive integers. We
put

o'} ac;—1
1 1 1
SiZ: 5 7 959 i = = — 5 :1,2
ng() n? + ac;in + be? " 2 ; k? — ac;k + bc? (@ )

We divide into three cases: Case 1. acica =1 (mod 2), Case 2. ac; =0 (mod 2)
and acz =1 (mod 2), Case3. a =0 (mod 2).
Case 1. acica =1 (mod 2). Using (6.1) for odd a we have

zy(zy — 1) (23 — 1)

— So=——=—= —7r9. 6.2
Cl(msl + 1) 1, 2 T2 ( )

S, =
' co(wy’ +1)

We define two polynomials

fl(t17t27u17u2) = (

'+ Dur — 415" — 1) + eara (83" + 1),
f2(t17t27u17u2) =cC (;

+1
+ ].) Ug — tl(tgz — ].) + CQTQ(t;z + 1),
which satisfy

fi(x1,22,y1,92) = 0, yi =S (i=1,2).

To apply the AIC we introduce the determinant

o/, L—t50 gy — et t§ T+ Aty !
A = det ( Z> =
1<4,5<2

Ot 1—t5? At g — eot 2T 4 Brats2 !

Computing A and substituting (¢1,ta, u1, us) = (21,2, y1,y2) with y; = S; given
by (6.2), we obtain

c C: c1+2c co+2c
2z (125 — coxs® — st TP 4 cox T

xo(xg +1)(z2 + 1)

A:

b

which does not vanish, since x; and x5 are algebraically independent over Q.
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Case 2. Let ac; =0 (mod 2) and acy =1 (mod 2). We use (6.1) for S; and
So, respectively. The polynomials f; and f> in this case are given by
fl(tl,ﬁg,ul,UQ) = Cl(tgl — 1)u1 — 1 (t;l + 1) + clrl(tgl — 1),
fg(tl,tg,ul,UQ) = Cg(t§2 + ].)UQ — tl(t? — 1) + CQTQ(t;Q + 1)

The corresponding determinant A with (¢1,to, u1,u2) = (1,22, y1,y2) as above is

A 211 (—c125 — cox? + 25 T2 4 cpu 2 TR) .
zo(zst — 1) (252 + 1) :

Case 3. Let a =0 (mod 2). The values of S; and S; are again given by (6.1).
Defining

f1(t1,t2,u1,u2) = Cl(fgl — 1)U1 — tl (t;l + 1) + clrl(tgl — 1),
fg(tl,tQ,ul,UQ) = Cg(t? — ].)UQ — tl(tgz —+ ].) —+ CQTQ(tgz — 1),

we get
A= 21‘1(_813751 + CQI§2 + Clx;1+262 _ 021‘;2+251) ?é .
= xg(xgl _ 1)(1.32 _ 1) .

In any case we find A # 0, which implies by the AIC that the two numbers y; = Sy
and y, = Sy are algebraically independent over Q. The second statement of the
theorem follows from (6.1). |

In the following we state some algebraic independence results without proofs.

e Gun, Murty, and Rath [14, Theorem 4.1(1)] deduced the transcendence of
each of the sums

Zm (beN, aeQ\{0}) (6.3)
n=1

from Lemma 2.2 by showing the expression
o0

3 11 o= (1+e2mﬁ)
n2+ba2  2ba? 204/ \1 — e27avh/’

Using the AIC, we can prove that, for a fixed b € N, any two sums in (6.3)
with distinct oy, as € Q\ {0} are algebraically independent over Q.
e Ramanujan [18] (see also [3, p.231, Corollary (i),(ii)]) proved that for any

neN
b 2n \3 I'3(n 4 1) sinh(7n/3)
E(H(nﬂc) ): r(;n+1)7m\/§ ’
O n 3 3(n cosh(m(n V3
(1+ (271:]{:1) )= = +1)r(32(+(2): )
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Then in the set

3

{ﬁ(H(””LQT’C) ) ﬁ(1+(27;f;)3)mn123}

k=1

any two numbers are algebraically independent over Q and any three of them
are not.
e Any two numbers in the set

{macoth(ra)|a € Q\ {0}}

are algebraically independent over Q and any three of them are not. In
particular, any two of the following continued fractions given by Ramanujan
([4, p- 59, Entry 34|)

2

n ™ ™
1 _m th(—) ~1,2,3...
+1+ 2+ 19) 5 €O 5 (n 3...)
3+ 22(n2+22)
322 + 32
5_|_(n7+3)
7T+

are algebraically independent over Q. 1979 Bundschuh in [5] remarked that

the number
o0

1 7T T

is transcendental if 7 and e™ are algebraically independent over Q.
In the AIC, the ring Q[t1,...,tn,U1,--.,u,] may be replaced by Q[ty,...,t,,
Ui,...,Up]. As an example we have the following result, which relies on
[14, Theorem 4.2(1)] and Lindemann’s theorem.

Theorem 6.2. Forr > 2, let Pi(z),..., P.(z),Q(z) be polynomials with algebraic

coefficients satisfying r = deg Q). Suppose that deg P; <r—1 for j=1,...,r and

that Q has simple zeros o2, ...,a2 such that ai,...,q, are linearly independent

over Q. Moreover, we assume that
det (P- a? ) 0.
i () il #

Then the r numbers
L > Pj(7r2n2) -
Yj = E:l: Q(T{'QTLQ) (] - 17 s 77.)

are algebraically independent over Q.

Gun, Murty, and Rath [14, Theorem 4.2(1)] proved the transcendence of y;.
(Note that we have removed some unnecessary conditions from [14, Theorem 4.2(1)]
and that we have corrected misprints.)



Algebraic independence of certain numbers related to modular functions 139

Corollary 6.1. Suppose that o, ...,a, € Q with r > 2 are linearly independent
over Q. Then the r numbers

o) 1
(7r2n2)J .
= =1,...
vi ngl (m2n2 —a?)...(72n? — a2) Y eeeT)

are algebraically independent over Q.

7. Remarks on the application of the AIC

In this paper, we applied the Corollary of the AIC with some modifications in
the proofs of Theorems 5.1 - 5.5, which are necessarily because the expressions of
the parameters are rational functions, but not polynomials. It may happen that
the system of equations (1.1) is not solvable for yi,...,y,. How shall we then
check the nonvanishing of the determinant (1.2)? To overcome this point we use
resultants. We start with the equations (1.1) and set

5fj)
Oti /1<ij<n

Far1(t1, .o tn,ur, .o uy,) = det ( € Qlt1,y .-y tn, Uty ..o, Uy

We may assume that f,11 is a nonzero polynomial, since otherwise we cannot
apply the AIC. We compute recursively the following n(n + 1)/2 resultants:

fio = fi (i=1,...,n+1),

fi,j = Resuj (flyjfl,fiJrl’j,l) fOI‘j = ]., N and 7 = ]., N +1 —j .
(7.1)

It is clear that fi, € Q[t1,...,t,]. The AIC works successfully if f;, turns
out to be a nonzero polynomial. Indeed, if f,+1(z1,...,Zn,¥1,---,Yn) = 0, then
fin(z1,...,2n) = 0 by the definition of the iterated resultants (Note that f,+1 =
fn+1,0). But this contradicts the algebraic independence over Q of z1, ..., z,, and
therefore that of y1,...,y, follows.

Example. Let z1,22,23 € C be algebraically independent over Q and let
Y1, Y2, y3 € C be any solution of the system f;(x1,x2, 23,y1,%2,y3) =0 (j = 1,2,3),
where

Ji0 = fi(te, ta, t3,ur, ug, uz) = tyuy + toup + tauz — 1,
fo,0 = fa(ti, ta, t3,u1, ug, us3) = (tiu D)2+ (taua)® + (tzus)® — 2,
fao = fs(ti,to, ts,ur, uz, uz) = (tug)* + (bau) + (tzus)* — 3.
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We put

Ul U2 us

ofi
ot

f4’0 = f4(t17t2,t3,u1,u2,u3) = det( > = 2t1u% 2t2u§ 2t3u§
1<,5<3

dt3ut Atul  At3ul
= SU1UQU3(t1ul — t2u2)(t1u1 — t3U3)(t3U3 — t2u2)(t1u1 + thg + thg).

We then compute recursively the resultants (7.1) for j = 1,2,3andi =1,...,4—7,
namely,

fia =Resu, (f1,0, f2,0), faq =Resu, (f1,0, f3.0), f31 =Resu, (f1,0, f1,0),
fi2 =Resu, (f1,1, f21), f2,2 =Resu, (f1,1, f31),
fi,3 = Resy, (fi2, fo2) = 2% - 518 4388¢)14450 = 0,

which imply the algebraic independence of 1, ys,y3 over Q.
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