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ON COMPACTNESS OF TOEPLITZ OPERATORS
IN BERGMAN SPACES

Jari Taskinen, Jani Virtanen

To the memory of Paweł Domański

Abstract: In this paper we consider Toepliz operators with (locally) integrable symbols acting
on Bergman spaces Ap (1 < p < ∞) of the open unit disc of the complex plane. We give
a characterization of compact Toeplitz operators with symbols in L1 under a mild additional
condition. Our result is new even in the Hilbert space setting of A2, where it extends the well-
known characterization of compact Toeplitz operators with bounded symbols by Stroethoff and
Zheng.
Keywords: Toeplitz operator, Bergman space, compact operator.

1. Introduction and notation.

Consider the Banach space Lp := (Lp(D, dA), ‖ · ‖p), where 1 < p < ∞ and dA
is the normalized area measure on the unit disc D of the complex plane, and
the Bergman space Ap, which is the closed subspace of Lp consisting of analytic
functions. The Bergman projection P is the orthogonal projection of L2 onto A2,
and it has the integral representation

Pf(z) =

∫
D

f(ζ)

(1− zζ̄)2
dA(ζ).

It is also known to be a bounded projection of Lp onto Ap for every 1 < p < ∞.
For an integrable function a : D→ C and, say, bounded analytic functions f , the
Toeplitz operator Ta with symbol a is defined by

Taf = P (af) =

∫
D

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ). (1.1)
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In [8] and [9], we have given a generalized definition of Toeplitz operators,
which we denote here by Ta. In particular, we extended the definition to locally
integrable symbols and showed that the generalized Toeplitz operator is bounded
under a weak “averaging” condition (see (1.3) below). Since the generalized defi-
nition coincides with (1.1), whenever the latter makes sense, our condition is the
weakest known sufficient condition for the boundedness of a Toeplitz operator. We
recall this result in Theorem 1.1. The question of whether this condition is also
necessary for boundedness remains open.

Our main interest here is on compactness of Toeplitz operators. Unlike in Hardy
spaces, nontrivial Toeplitz operators may well be compact when acting on Bergman
spaces even with unbounded symbols. For a ∈ C(D), Ta is compact if and only if
a(z) = 0 for all z ∈ ∂D; see [4, 10]. For more general symbols, characterizations
are often given in terms of the Berezin transform: For any compact operator T
on Ap, the Berezin transform of T vanishes on ∂D. This is also sufficient for
compactness of operators in the Toeplitz algebra generated by bounded symbols.
However, there are compact Toeplitz operators with unbounded symbols whose
Berezin transforms do not vanish. For further details on compactness and the
Berezin transform, see [1, 5] for operators on Ap(D), and [2, 3] and the references
therein for more general Bergman spaces. A different type of characterization,
involving the Möbius functions, was found by Stroethoff and Zheng [6, 7]. Their
approach was based on the use the reproducing kernel functions and other Hilbert
space techniques.

In Section 3 we shall apply our methods to generalize the results of Stroethoff
and Zheng [7], which concern the characterization of compact Toeplitz operators
with only bounded symbols: we shall relax the boundedness assumption on the
symbol and extend their result from the Hilbert-space case to all Bergman spaces
Ap with 1 < p <∞.

The following notation will be used throughout the paper. For all z, λ ∈ D we
write

ϕλ(z) =
λ− z
1− λ̄z

, W (z) = 1− |z|2, Kλ(z) =
1

(1− λ̄z)2
,

kλ(z) = W (λ)Kλ(z) =
1− |λ|2

(1− λ̄z)2
.

(1.2)

Given z ∈ D and S > 0, we write B(z, S) for the Euclidean disc with center z and
radius S and Dh(z, S) for the hyperbolic disc with center z and radius S; the latter
is the same as the hyperbolic disc D(z, S) in [11], Proposition 4.4. By C,C ′, c etc.
we denote positive constants, the exact value of which may vary from place to
place but not in the same chain of inequalities. If the constant depends on some
parameter or function, say, n or g, this is denoted by Cn or Cg etc. All function
spaces consist of functions on the disc D, unless otherwise stated. In particular, the
space of bounded analytic functions on the disc is denoted by H∞ and the space
of locally integrable functions on D is denoted by L1

loc. For clarity, we write C
k(D)
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for the space of k times continuously differentiable functions in D. For 0 < ρ < 1
we set Dρ := {z ∈ D : |z| 6 ρ}. Given a ∈ L1

loc we denote by aρ the function,
which coincides with a on Dρ and equals 0 elsewhere.

Given a continuously differentiable function f of a variable z = x + iy =
reiθ ∈ D, we denote ∂1 = ∂/∂x, ∂2 = ∂/∂y, ∂r = ∂/∂r and ∂θ = ∂/∂θ.

We let D be a family of the sets D := D(r, θ) ⊂ D , where

D = {ρeiφ|r 6 ρ 6 1− 1

2
(1− r), θ 6 φ 6 θ + π(1− r)}

for all 0 < r < 1, θ ∈ [0, 2π]. We denote |D| :=
∫
D
dA and, for ζ = ρeiφ ∈ D(r, θ),

âD(ζ) :=
1

|D|

ρ∫
r

φ∫
θ

a(%eiϕ)%dϕd%.

In the sequel we will consider functions a ∈ L1 (or even a ∈ L1
loc) such that

there exists a constant C > 0 such that

|âD(ζ)| 6 C (1.3)

for all D ∈ D and all ζ ∈ D. The following result is contained in Theorem 2.1
of [9].

Theorem 1.1. Let 1 < p < ∞. If a symbol a ∈ L1 satisfies the condition (1.3),
then the limit

Taf = lim
ρ→1

Taρf, where Taρf(z) =

∫
Dρ

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ), f ∈ Ap, (1.4)

converges in the strong operator topology and defines a bounded operator
Ta : Ap → Ap for all 1 < p <∞.

Moreover, the transposed operator T∗a : Aq → Aq can be written as

T∗af(z) = lim
ρ→1

∫
Dρ

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ) (1.5)

for f ∈ Aq and this limit also converges in the strong operator topology.

The theorem actually holds as such for symbols a ∈ L1
loc. Notice that for a fixed

0 < ρ < 1 the restriction of any f ∈ Ap to Dρ is a bounded function and the oper-
ator Taρ is bounded in Ap. Formula (1.4) allows us to define the Toeplitz operator
even in many cases, where the defining integral of the conventional formula (1.1)
does not converge, and it is used throughout this paper. This generalization of
the definition of Toeplitz operators is a most natural one, it coincides with the
conventional definition whenever the integral formula (1.1) makes sense, and it is
considered from many points of view in [9].
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2. Preliminary results.

Theorem 1.1 is based on the following lemma, the proof of which is included in
the calculations (3.6)–(3.13) of the citation [8].

Lemma 2.1. Assume that the symbol a ∈ L1 satisfies the condition (1.3), let
1 < p <∞ and let f ∈ Ap. Then, there exists a constant Cp > 0 such that∣∣∣ lim

ρ→1

∫
Dρ

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)

∣∣∣ 6 Cp ∫
D

|f(ζ)|+ |f ′(ζ)|W (ζ) + |f ′′(ζ)|W (ζ)2

|1− zζ̄|2
dA(ζ).

Notice that the limit on the left-hand side converges for every z ∈ D as a con-
sequence of Theorem 1.1.

The lemma and the following proposition hold even for a ∈ L1
loc. Instead of

going into the details of the proof Lemma 2.1 we prove a technical generalization
of it, which is essential for the subsequent considerations. For the formulation of
this result we fix 1 < p < ∞ and let g ∈ L∞(D) ∩ C2(D) be a function such that
given S > 0, there exists a constant CS > 0 such that for every z ∈ D,

|(∂jr∂kθ g)(z)| 6 CS inf
ζ∈Dh(z,S)

|(∂jr∂kθ g)(ζ)|, j, k = 0, 1, (2.1)

and such that for some Cg > 0

‖g‖∞ + max
j=1,2

‖W∂jg‖∞ + max
j,k=1,2

‖W 2∂j∂kg‖∞ 6 Cg <∞. (2.2)

Moreover, let h ∈ C2(D), h(D) ⊂ D, be a function, which also satisfies (2.2) and
in addition, for some Ch > 0,

|1− zh(ζ)| > Ch|1− zζ̄| (2.3)

for every z, ζ ∈ D. For example, h could be a Möbius transform.

Proposition 2.2. Let p, a and f be as in Lemma 2.1, and let the functions g and
h be as in (2.1)–(2.3). Then, the limit

lim
ρ→1

∫
Dρ

a(ζ)f(ζ)g(ζ)

(1− zh(ζ))2
dA(ζ) (2.4)

converges in Ap and there exists a constant Cp,g,h > 0 such that

∣∣∣ lim
ρ→1

∫
Dρ

a(ζ)f(ζ)g(ζ)

(1− zh(ζ))2
dA(ζ)

∣∣∣
6 Cp,g,h

∫
D

|f(ζ)|+ |f ′(ζ)|W (ζ) + |f ′′(ζ)|W (ζ)2

|1− zζ̄|2
dA(ζ). (2.5)
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Proof. The result follows from the proof of Theorem 2.1. of [9], but some changes
are needed. We present them as briefly as we can; for more details the reader is
asked to see the citation. Following the notation of the citation, we define the count-
ably many sets D

(
1− 2−m+1, 2π(µ− 1)2−m

)
∈ D, where m ∈ N, µ = 1, . . . , 2−m,

which form a decomposition of the disc D. These are indexed in some order into
a family (Dn)∞n=1, so that every Dn is of the form

Dn = {z = reiθ | rn < r 6 r′n, θn < θ 6 θ′n}

where, for some m and µ,

rn = 1− 2−m+1, r′n := 1− 2−m, θn = π(µ− 1)2−m+1, θ′n := πµ2−m+1.

Given f ∈ Ap and n = n(m,µ) we write

Fnf(z) =

∫
Dn

a(ζ)f(ζ)g(ζ)

(1− zh(ζ))2
dA(ζ) ∀ z ∈ D.

For all n ∈ N we define Dn = {Dν : ν ∈ N, Dν ∩Dn 6= ∅}. There exist constants
N ,M ∈ N such that any set Dn contains at most N elements Dν and on the other
hand, any set Dν belongs to at most M sets Dn. By the choice of the sets Dn, for
all givenDn and w ∈ Dn the subdomain ∪D∈DnD always contains a Euclidean disc
B(w,R(n)) such that |B(w,R(n))| > C|Dn|. Now, let f̃ : D → C be an analytic
analytic function and let g be as in the assumption. We claim that for each n ∈ N,
j, k = 0, 1, and w ∈ Dn,

|f̃(w)∂jr∂
k
θ g(w)| 6 C

|Dn|
∑
D∈Dn

∫
D

|f̃(ζ)∂jr∂
k
θ g(ζ)|dA(ζ). (2.6)

To see this let B(w,R(n)) ⊂ ∪D∈DnD be as above. Then, f̃ has the subharmonicity
property

|f̃(w)| 6 C

|B(w,R(n))|

∫
B(w,R(n))

|f̃(ζ)|dA(ζ).

Moreover, by the choice of the family Dn, there exists S > 0, which can be chosen
independently of n, such that for every w ∈ Dn, B(w,R(n)) is contained in the
hyperbolic disc Dh(w, S). Then, by (2.1)

|f̃(w)∂jr∂
k
θ g(w)| 6 C

|B(w,R)|

∫
D(w,R)

|f̃(ζ)∂jr∂
k
θ g(ζ)|dA(ζ)

6
C ′

|Dn|
∑
D∈Dn

∫
D

|f̃(ζ)∂jr∂
k
θ g(ζ)|dA(ζ).
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For every n, a double integration by parts in polar coordinates yields

∫
Dn

a(ζ)f(ζ)g(ζ)

(1− zζ̄)2
dA(ζ) =

( r′n∫
rn

θ′n∫
θn

a(%eiϕ)%dϕd%
)f(r′ne

iθ′n)g(r′ne
iθ′n)

(1− zh(r′ne
iθ′n))2

−
r′n∫
rn

( r∫
rn

θ′n∫
θn

a(%eiϕ)%dϕd%
)
∂r
f(reiθ

′
n)g(reiθ

′
n)

(1− zh(reiθ
′
n))2

dr

−
θ′n∫
θn

( r′n∫
rn

θ∫
θn

a(%eiϕ)%dϕd%
)
∂θ
f(r′ne

iθ)g(r′ne
iθ)

(1− zh(r′ne
iθ))2

dθ

+

r′n∫
rn

θ′n∫
θn

( r∫
rn

θ∫
θn

a(%eiϕ)%dϕd%
)
∂r∂θ

f(reiθ)g(reiθ)

(1− zh(reiθ))2
dθdr

=: F1,n(z) + F2,n(z) + F3,n(z) + F4,n(z) = Fn(z).

We consider F2,n(z). By (2.3) and (4.8) of [11],

|1− zh(reiθ
′
n)| > Ch|1− zre−iθ

′
n | > C ′h|1− zζ̄| (2.7)

for all z ∈ D, ζ ∈ D, all D ∈ Dn. Performing the differentiation, using (2.6) for f
and its derivative in the place of f̃ , and then using (2.1), (2.2), (2.7) we thus get

∣∣∣∂r f(reiθ
′
n)g(reiθ

′
n)

(1− zh(reiθ
′
n))2

∣∣∣
6

C

|Dn|
∑
D∈Dn

∫
D

( |f(ζ)||g(ζ)|
|1− zh(reiθ

′
n)|3

+
|f(ζ)||∂rg(ζ)|
|1− zh(reiθ

′
n)|2

+
|f ′(ζ)||g(ζ)|
|1− zh(reiθ

′
n)|2

)
dA(ζ)

6
Ch
|Dn|

∑
D∈Dn

∫
D

( |f(ζ)| ‖g‖∞
|1− zζ̄|3

+
|f(ζ)|W (ζ)−1‖W∂rg‖∞

|1− zζ̄|2
+
|f ′(ζ)| ‖g‖∞
|1− zζ̄|2

)
dA(ζ)

6
Cg,h
|Dn|

∑
D∈Dn

∫
D

( |f(ζ)|
|1− zζ̄|3

+
|f(ζ)|

W (ζ)|1− zζ̄|2
+
|f ′(ζ)|
|1− zζ̄|2

)
dA(ζ)
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Thus, F2,n can be estimated by

|F2,n(z)| 6
r′n∫
rn

∣∣∣ r∫
rn

θ′n∫
θn

a(%eiϕ)%dϕd%
∣∣∣∣∣∣∂r f(reiθ

′
n)g(reiθ

′
n)

(1− zh(reiθ
′
n))2

∣∣∣dr
6 Cg,h

r′n∫
rn

∣∣∣ r∫
rn

θ′n∫
θn

a(%eiϕ)%dϕd%
∣∣∣

× 1

|Dn|
∑
D∈Dn

∫
D

( |f(ζ)|
|1− zζ̄|3

+
|f(ζ)|

W (ζ)|1− zζ̄|2
+
|f ′(ζ)|
|1− zζ̄|2

)
dA(ζ)dr

6 C ′g,h
∑
D∈Dn

r′n∫
rn

∫
D

( |f(ζ)|
|1− zζ̄|3

+
|f(ζ)|

W (ζ)|1− zζ̄|2
+
|f ′(ζ)|
|1− zζ̄|2

)
dA(ζ)dr

6 C ′′g,h
∑
D∈Dn

∫
D

( |f(ζ)|
|1− zζ̄|2

+
|f ′(ζ)|W (ζ)

|1− zζ̄|2
)
dA(ζ). (2.8)

where the bound for the integral of a follows from (1.3) and we use |rn − r′n| 6
CW (ζ) to cancel the factors |1−zζ̄|−1 andW (ζ)−1. The terms F1,n, F3,n and F4,n

can be estimated with similar calculations, and we obtain for Fn the estimate (2.7)
of [9]. From here on, the proof goes by a word-to-word repetition of the citation,
except that the symbol g has a different meaning in [9]. �

Corollary 2.3. Let p, a and f be as in Lemma 2.1, and let λ ∈ D (considered as
a fixed parameter). Then, the limit

lim
ρ→1

∫
ϕλ(Dρ)

a ◦ ϕλ(ζ)f(ζ)

(1− zζ̄)2
dA(ζ) (2.9)

converges in Ap and there exists a constant C = C(p, λ) > 0 such that

∣∣∣ lim
ρ→1

∫
ϕλ(Dρ)

a ◦ ϕλ(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)

∣∣∣
6 C

∫
D

|f(ζ)|+ |f ′(ζ)|W (ζ) + |f ′′(ζ)|W (ζ)2

|1− zζ̄|2
dA(ζ), (2.10)

Proof. We perform a change of variable ([11], Proposition 4.2) to obtain∫
ϕλ(Dρ)

a ◦ ϕλ(ζ)f(ζ)

(1− zζ̄)2
dA(ζ) =

∫
Dρ

a(ζ)f ◦ ϕλ(ζ)

(1− zϕλ(ζ))2
|kλ(ζ)|2dA(ζ).
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The result follows from the previous proposition by setting g = |kλ|2 and
h = ϕλ: it is well-known or a routine matter to show that these functions satisfy the
assumptions (2.1)–(2.3), since λ is fixed. Of course, we also have f ◦ ϕλ ∈ Ap. �

Corollary 2.3 implies the following observation.

Corollary 2.4. If a ∈ L1 satisfies (1.3) and λ ∈ D, then P (a◦ϕλ) ∈ Ap for every
1 < p <∞.

Indeed, if f ≡ 1 in Corollary 2.3, then f belongs to Ap for every 1 < p < ∞,
and the limit (2.9) converges in any Ap to P (a ◦ ϕλ).

Remark 2.5. We actually get the result of Corollary 2.4 for every a ∈ L1
loc

satisfying condition (1.3), if we generalize the expression P (a ◦ ϕλ) as

P(a ◦ ϕλ)(z) := lim
ρ→1

∫
Dρ

a ◦ ϕλ(ζ)

(1− zζ̄)2
dA(ζ), z ∈ D. (2.11)

3. Characterization of compact Toeplitz operators.

In this section we generalize the compactness characterization result [7], Theo-
rem 6, for unbounded symbols and Ap-spaces with arbitrary p ∈ (1,∞). In the
following theorem, the operator Ta is the generalized Toeplitz-operator of (1.4),
but as explained below Theorem 1.1 and in [9], it coincides with the usual defini-
tion, if af ∈ L1 for every f ∈ Ap. Also, we use Corollary 2.4 to assure that the
Lq-norm of P (a ◦ ϕλ) is finite for every q ∈ (1,∞). The theorem would hold true
by merely assuming a ∈ L1

loc instead of a ∈ L1 and using Remark 2.5.

Theorem 3.1. Assume that the symbol a : D→ C belongs to L1 and satisfies the
condition (1.3), and let 1 < p < ∞. Then, the following conditions (i)–(iii) are
equivalent:

(i) Ta : Ap → Ap is compact,
(ii) ‖P (a ◦ ϕλ)‖q → 0 as λ→ ∂D for some q ∈ [1,∞),
(iii) ‖P (a ◦ ϕλ)‖q → 0 as λ→ ∂D for every q ∈ [1,∞).

Before proceeding to the proof we need to generalize known facts to our setting.
The next lemma would hold even in the case of locally integrable symbols, but the
proof is less simple, see Remark 3.4.

Lemma 3.2. Let 1 < p <∞ and let a ∈ L1 satisfy (1.3). Then, for every λ ∈ D,

TaKλ = TaKλ = KλP (a ◦ ϕλ) ◦ ϕλ (3.1)

Proof. First, notice that the function Kλ is bounded, hence the function aKλ

belongs to L1, and indeed TaKλ coincides with the conventional definition.



On compactness of Toeplitz operators in Bergman spaces 313

The identity (3.1) is known to be true, if a ∈ L∞, see for example Proposition 1
of [7]. Hence, defining for every R > 0

a(R)(z) =

{
a(z), if |a(z)| 6 R,
a(z)|a(z)|−1, if |a(z)| > R,

we have

Ta(R)
Kλ = KλP (a(R) ◦ ϕλ) ◦ ϕλ. (3.2)

By the dominated convergence theorem, the left hand side converges pointwise
to TaKλ, as R → ∞. For the same reason we have on the right P (a(R) ◦ ϕλ) →
P (a ◦ ϕλ) pointwise. Thus also

KλP (a(R) ◦ ϕλ) ◦ ϕλ → KλP (a ◦ ϕλ) ◦ ϕλ

pointwise as R→∞, and the claim follows from (3.2). �

Lemma 3.3. Let 1 < p < ∞ and let a ∈ L1 satisfy (1.3). Given ε > 0, we have
for every z ∈ D,∫

D

|P (a ◦ ϕλ)(ϕλ(z))| |Kλ(z)| 1

W (λ)ε
dA(λ) 6

C(a, ε)

W (z)ε
(3.3)

Proof. By Lemmas 3.2 and 2.1 we have

|P (a ◦ ϕλ)(ϕλ(z))| |Kλ(z)| =
∣∣∣ ∫
D

a(ζ)

(1− zζ̄)2
Kλ(ζ)dA(ζ)

∣∣∣
6 C

∫
D

|Kλ(ζ)|+ |K ′λ(ζ)|W (ζ) + |K ′′λ(ζ)|W (ζ)2

|1− zζ̄|2
dA(ζ)

6 C ′
∫
D

1

|1− λζ̄|2|1− zζ̄|2
dA(ζ),

where we also used at the end the evident estimates |K ′λ(ζ)|W (ζ) 6 C|Kλ(ζ)| and
|K ′′λ(ζ)|W 2(ζ) 6 C|Kλ(ζ)| for some constant C > 0, for all ζ and λ. Thus∫
D

|P (a ◦ ϕλ)(ϕλ(z))|
|1− zλ̄|2(1− |λ|2)ε

dA(λ) 6 C
∫
D

1

|1− zζ̄|2

∫
D

1

|1− λζ̄|2(1− |λ|2)ε
dA(λ)dA(ζ).

The bound (3.3) follows by applying twice the Forelli-Rudin estimate, see [11],
Lemma 3.10. �
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To prove that (iii) ⇒ (i) in Theorem 3.1, we denote by p′ the dual exponent
of p, and for every 0 < ρ < 1 we define the operator Sρ : Ap

′ → Lp
′
,

Sρg(λ) = χρ(λ)

∫
D

g(ζ)P (a ◦ ϕλ)(ϕλ(ζ))Kλ(ζ)dA(ζ) (3.4)

where χρ is the characteristic function of Dρ. We observe by Corollary 2.4 that
P (a ◦ϕλ) ∈ Lr for every r ∈ (1,∞) (in particular r = p) and every λ ∈ D, and for
some constants C,Cr > 0,

sup
λ∈Dρ

sup
ζ∈D
|Kλ(ζ)| 6 C and sup

λ∈Dρ
‖P (a ◦ ϕλ)‖r 6 Cr. (3.5)

This implies that the integral in (3.4) converges, since g ∈ Ap
′
is assumed. We

show that the operator Sρ : Ap
′ → Lp

′
is compact. To this end we fix r < p′ and

estimate, for all g ∈ Ar,

‖Sρg‖p′ 6 ‖χρ‖p′ sup
λ∈Dρ

∣∣∣ ∫
D

g(ζ)P (a ◦ ϕλ)(ϕλ(ζ))Kλ(ζ)dA(ζ)
∣∣∣

6 sup
λ∈Dρ

‖g‖r
(∫

Dρ

∣∣∣P (a ◦ ϕλ)(ϕλ(ζ))Kλ(ζ)
∣∣∣r′dA(ζ)

)1/r′

(3.6)

where r′ ∈ (1,∞) is the dual exponent of r and the Hölder inequality was used.
Using (3.5) we can bound (3.6) by

C‖g‖r sup
λ∈Dρ

‖P (a ◦ ϕλ)‖r′ 6 C ′‖g‖r

and together with (3.6) this shows that the operator Sρ is bounded Ar → Lp
′
.

Since r < p′, the embedding Ap
′
↪→ Ar is compact (see Chapter 4, Exercise 2

in [11]), and thus Sρ : Ap
′ → Lp

′
is compact.

The rest of the proof goes as in [7], with straightforward changes. For the
convenience of the reader we expose the details. By our assumptions on a,
Ta : Ap → Ap is bounded and thus so is T ∗a : Ap

′ → Ap
′
. The proof is com-

pleted by showing that Sρ → T ∗a in the operator norm Ap
′ → Ap

′
as ρ → 1,

because then T ∗a and Ta are compact. The definition of an adjoint and a change
of variables yield

T ∗a g(λ)− Sρg(λ) = 〈T ∗a g,Kλ〉 − Sρg(λ)

=

∫
D

Xρ(λ)g(ζ)P (a ◦ ϕλ)(ϕλ(ζ))Kλ(ζ)dA(ζ)

=:

∫
D

Rρ(λ, ζ)g(ζ)dA(ζ),
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where Xρ = 1− χρ. We will find a function h : D→ R+ such that∫
D

Rρ(λ, ζ)h(λ)pdA(λ) 6 C1(a)h(ζ)p,

∫
D

Rρ(λ, ζ)h(λ)p
′
dA(λ) 6 Cρh(ζ)p

′
(3.7)

where C1(a) is independent of ρ and Cρ → 0 as ρ → 1. Then, the operator norm
of T ∗a − Sρ : Ap

′ → Lp
′
tends to 0, by the Schur test, [11], Theorem 3.6, and the

proof is complete.
We define the test function

h(λ) = W (λ)−1/(1+p′).

Lemma 3.3 with ε = p/(1 + p′) yields for all 0 < ρ < 1∫
D

Rρ(λ, ζ)h(λ)pdA(λ) 6
∫
D

∣∣P (a ◦ ϕλ)(ϕλ(ζ))
∣∣ |Kλ(ζ)|W (λ)−p/(1+p′)dA(λ)

6 C1(a)W (ζ)−p/(1+p′) = C1(a)h(ζ)p, (3.8)

where obviously the constant C1(a) can be chosen independently of ρ.
Moreover, using the change of variables ζ = ϕλ(z) and the identities

W (ζ) = W (ϕλ(z)) = W (λ)W (z)|Kλ(z)|

|Kλ(ζ)| = |Kλ(ϕλ(z)| = 1

W (λ)2 |Kλ(z)|
,

where the first one follows from Proposition 4.1 of [11] and the second one is an
immediate consequence, and denoting δ = p′/(1 + p′) ∈ ( 1

2 , 1), we can estimate∫
D

Rρ(λ, ζ)h(ζ)p
′
dA(ζ)

6
∫
D

Xρ(λ)
∣∣P (a ◦ ϕλ)(ϕλ(ζ))

∣∣ |Kλ(ζ)|W (ζ)−δdA(ζ)

= W (λ)−δXρ(λ)

∫
D

∣∣P (a ◦ ϕλ)(z)
∣∣ |kλ(z)|2

W (λ)2 |Kλ(z)|
|Kλ(z)|−δW (z)−δdA(z)

= W (λ)−δXρ(λ)

∫
D

∣∣P (a ◦ ϕλ)(z)
∣∣ |Kλ(z)|1−δW (z)−δdA(z). (3.9)

We finally choose e.g. r = 1 + (1− δ)/10 and recall δ > 1/2 so that

rδ = δ + (1− δ) δ
10

< 1, 2r(1− δ) = 2 +
2(1− δ)

10
− 2rδ 6 2− 1

4
− rδ,
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and we thus can use the Forelli-Rudin-estimates [11], Lemma 3.10., to see that the
integral ∫

D

|Kλ(z)|r(1−δ)W (z)−rδdA(z) =

∫
D

(1− |z|2)−rδ

|1− λ̄z|2− 1
4−rδ

dA(z)

converges and has a bound independent of λ ∈ D. Denote the dual exponent of r
by r̃. Then, (3.9) can be estimated using the Hölder inequality by

W (λ)−δ
(∫

D

|Kλ(z)|r(1−δ)W (z)−rδdA(z)
)1/r

Xρ(λ)‖P (a ◦ ϕλ)‖r̃

6 Ch(λ)p
′
Xρ(λ)‖P (a ◦ ϕλ)‖r̃. (3.10)

By the assumption (iii), Xρ(λ)‖P (a ◦ ϕλ)‖r̃ → 0 as ρ → 1. Thus, (3.8), (3.10)
imply (3.7).

The proof for the implication (ii)⇒ (iii) is well-known (see [7], proof of Theo-
rems 6 and 7): if (ii) is true for some q̃ ∈ [1,∞), we trivially have (ii) for all q 6 q̃.
For q > q̃ one uses the Hölder inequality,

‖P (a ◦ ϕλ)‖qq 6 ‖P (a ◦ ϕλ)‖1/2q̃ ‖P (a ◦ ϕλ)‖q−1/2
s

with s = q̃(2q−1)/(2q̃−1), and observes that the last factor is uniformly bounded
with respect to λ, by the boundedness of the Bergman projection. Hence, (iii)
holds true.

We finally consider the implication (i) ⇒ (ii). We first assume that (i) holds
and 1 < p 6 2 and denote kλ,p = W (λ)2−2/pKλ so that ‖kλ,p‖p ∼= 1. Thus,

〈g, kλ,p〉 = W (λ)2−2/p〈g,Kλ〉 = W (λ)2−2/pg(λ)

for every g ∈ H∞, which implies that kλ,p → 0 weakly, due to the normalization
of kλ,p, since every f ∈ Ap can be approximated by functions g ∈ H∞. Hence,
‖Takλ,p‖pp → 0 as λ→ 1. On the other hand,

‖Takλ,p‖pp =

∫
D

∣∣P (a ◦ ϕλ) ◦ ϕλ
∣∣p|Kλ|pW 2p−2dA

=

∫
D

∣∣P (a ◦ ϕλ) ◦ ϕλ(ζ)
∣∣p( 1− |λ|2

|1− λ̄ζ|

)2p

W (ζ)−2dA

> Cp

∫
D

∣∣P (a ◦ ϕλ) ◦ ϕλ(ζ)
∣∣p( 1− |λ|2

|1− λ̄ζ|

)4

W (ζ)−2dA

> Cp

∫
D

∣∣P (a ◦ ϕλ) ◦ ϕλ
∣∣p|kλ|2dA = Cp‖P (a ◦ ϕλ)‖pp

where we used p 6 2, (1− |λ|2)/|1− λ̄ζ| 6 2 and (3.1). Hence, (ii) follows.



On compactness of Toeplitz operators in Bergman spaces 317

If 2 < p < ∞, the operator T∗a : Ap
′ → Ap

′
is compact, by Schauder’s the-

orem; here again p′ ∈ (1, 2) is the dual exponent of p. By our Theorem 1.1, or
Theorem 2.1 of [9], T∗a = Tā, and we get the condition (ii) for ā. This again
implies the compactness of Tā : A2 → A2, by what we have already proven. Then,
Ta : A2 → A2 is compact by Schauder’s theorem. By the above proof, we obtain
(ii) for a. �

Remark 3.4. If the symbol a is only in the space L1
loc, the proof of Lemma 3.2

needs to be modified, since TaKλ may not be defined directly by the integral
formula and thus the use of the dominated convergence theorem cannot be justified.
However, for every 0 < ρ < 1, the symbol aρ belongs to L1, the expression TaρKλ

is defined by the conventional formula, and the identity (3.1),

TaρKλ = KλP (aρ ◦ ϕλ) ◦ ϕλ. (3.11)

holds by the existing proof of Lemma 3.2. By (1.4), the left hand side converges
in Lp to TaKλ, as ρ→ 1. On the right we have

P (aρ ◦ ϕλ)(z) =

∫
Dρ

a ◦ ϕλ(ζ)

(1− zζ̄)2
dA(ζ)

so that by Corollary 2.3, P (aρ ◦ ϕλ)→ P (a ◦ ϕλ) in Lp. Thus also

KλP (aρ ◦ ϕλ) ◦ ϕλ → KλP (a ◦ ϕλ) ◦ ϕλ

in Lp. The formula (3.1) follows from (3.11).
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