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THE MINIMAL NUMBER OF MONOCHROMATIC SCHUR
TUPLES IN A CYCLIC GROUP

Katarzyna Taczała

Abstract: We discuss a question of Datskovsky [1] about the minimal number of solutions to
Schur-type equation x1 + . . .+ x2n−1 = x2n in a cyclic group ZN . We provide lower and upper
bounds for this quantity.

Keywords: Schur k-tuples, Ramsey theory on integers.

1. Introduction

We call a Schur triple any solution (x, y, z) of the equation

x+ y = z. (1.1)

In 1916 Schur [6] proved that for any 2-coloring {1, . . . , N} = R ∪ B there ex-
ists a monochromatic solution to (1.1) provided that N is large enough. This
leads to a question about the minimal number of monochromatic Schur triples for
2-colorings of {1, . . . , N}, which was first asked by Graham, Rödl and Ruciński
in [2]. The answer was found to be 1

11N
2 +O(N) by Robertson and Zeilberger [4]

and independently by Schoen [5]. Another proof of this fact was given later by
Datskovsky [1], who also studied monochromatic Schur triples in a cyclic group
ZN . He showed that their number for any 2-coloring ZN = R ∪ B depends only
on the sizes of the color sets and their minimum number is equal to

1

N

(⌈
N − 1

2

⌉3
+

⌊
N + 1

2

⌋3)
.

He also remarked that we can obtain a similar result for the following generalization
of Schur equation

x1 + . . .+ xk−1 = xk, (1.2)
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when k is an odd number. Then, any 2-coloring ZN = R ∪B contains

1

N
(|R|k + |B|k) (1.3)

monochromatic Schur k-tuples. Datskovsky asked what can be said about the
number of these k-tuples if k is even.

Let k = 2n be a positive integer and let ZN = R ∪ B be a partition. We will
denote the number of monochromatic solutions to (1.2) modulo N by S2n(R,B)
and its minimum by µ2n, i.e.

S2n(R,B) = |(x1, x2, . . . , x2n) ∈ R2n∪B2n : x1+x2+ . . .+x2n−1 ≡ x2n (mod N)|

and
µ2n = min

ZN=R∪B
S2n(R,B).

The aim of this paper is to give some estimates for µ2n. We first show that this
number can be in fact smaller than

(
N
2

)2n−1, which is what we can expect from
a random 2-coloring or estimates (1.3) for odd k.

Theorem 1.1. Let k = 2n, where n > 2. Then the minimal number of monochro-
matic solutions to (1.2) can be bounded from above as follows

µ2n 6

(
N

2

)2n−1
(
1− 2

(
2

π

)2n

− 3

(2n− 1)

(
2

3π

)2n
)

+ o(N2n−1).

We prove this theorem in Section 2 by giving some examples of appropriate
colorings which depend on the parity of both N and n. In Section 3 we show that
this result is in fact close to optimal if N is prime.

Theorem 1.2. Let N be a prime number and k = 2n, where n > 2. Then

µ2n >

(
N

2

)2n−1
(
1−

(
2

π

)2n−2
)

+ o(N2n−1).

Remark. It could be also interesting to study the minimal number of monochro-
matic solutions to (1.2) for 2-colorings of {1, . . . , N} if k > 3, for which so far
there are no estimates known.

2. Examples of colorings with small number of solutions

For a given set A ⊆ ZN we will denote by A(x) the characteristic function of this
set. Then the Fourier coefficients of this function are defined as follows

Â(r) =

N−1∑
x=0

A(x)e
(rx
N

)
,
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where r ∈ ZN and e(x) = e2πix. We can use Fourier coefficients to find the number
of the monochromatic solutions of (1.2) for a given partition ZN = R ∪B.

S2n(R,B) =
1

N

∑
r∈ZN

(R̂(r)2n−1R̂(−r) + B̂(r)2n−1B̂(−r))

=
1

N
(R̂(0)2n + B̂(0)2n) +

1

N

∑
r 6=0

(R̂(r)2n−2|R̂(r)|2 + B̂(r)2n−2|B̂(r)|2).

However, R̂(0) = |R|, B̂(0) = |B| and, clearly, for r 6= 0 R̂(r) = −B̂(r). Therefore,

S2n(R,B) =
1

N
(|R|2n + |B|2n) + 2

N

∑
r 6=0

R̂(r)2n−2|R̂(r)|2. (2.1)

2.1. N even

We will assume for now that both N and n are even numbers. We will consider
the following 2-coloring of ZN
• red color set R = {0, 1, . . . , N2 },
• blue color set B = ZN \R.

We will show that this coloring has small number of solutions S2n(R,B).
We begin with calculating the value of Fourier coefficients R̂(r) for r 6= 0.

R̂(r) =

N−1∑
x=0

R(x)e
(rx
N

)
=

N
2∑

x=0

e
(rx
N

)
=
e
(
r
N (N2 + 1)

)
− 1

e
(
r
N

)
− 1

=
eπire

2πir
N − 1

e
2πir
N − 1

.

For even r 6= 0 this number is equal to 1, while for odd r we have

R̂(r) = −
cos
(
2πr
N

)
+ i sin

(
2πr
N

)
+ 1

cos
(
2πr
N

)
+ i sin

(
2πr
N

)
− 1

= −
(
cos
(
2πr
N

)
+ i sin

(
2πr
N

)
+ 1
) (

cos
(
2πr
N

)
− 1− i sin

(
2πr
N

))(
cos
(
2πr
N

)
+ i sin

(
2πr
N

)
− 1
) (

cos
(
2πr
N

)
− 1− i sin

(
2πr
N

))
= −

cos2
(
2πr
N

)
− 1 + sin2

(
2πr
N

)
− 2i sin

(
2πr
N

)
cos2

(
2πr
N

)
− 2 cos

(
2πr
N

)
+ 1 + sin2

(
2πr
N

) =
2i sin

(
2πr
N

)
2− 2 cos

(
2πr
N

)
= i

2 sin
(
πr
N

)
cos
(
πr
N

)
2 sin2

(
πr
N

) = i cot
(πr
N

)
.

We would like to find an upper bound for the sum∑
r 6=0

R̂(r)2n−2|R̂(r)|2, (2.2)
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which we can split into two parts depending on the parity of r. We have

∑
r even,r 6=0

R̂(r)2n−2|R̂(r)|2 =
N

2
− 1

and ∑
r odd

R̂(r)2n−2|R̂(r)|2 =
∑
r odd

(
i cot

(πr
N

))2n−2
cot2

(πr
N

)
= (−1)n−1

∑
r odd

cot2n
(πr
N

)
.

(2.3)

Since n is even, the above sum is negative. So we need to estimate the value of
cotangent function from below. Let us first note that it is sufficient to consider
only r 6 N

2 as

cot
(πr
N

)
= − cot

(
π(N − r)

N

)
. (2.4)

Therefore, ∑
r odd

cot2n
(πr
N

)
= 2

∑
r odd,r6N

2

cot2n
(πr
N

)
.

In fact, we will mostly be interested in coefficients r 6 N
4 since for r > N

4 we have
0 6 | cot(πrN )| 6 1, so it makes small contribution to the sum (2.3). For r 6 N

4 we
have ∣∣∣cot(πr

N

)∣∣∣ > N

πr
− 4− 2

√
2

π

because in this range | sin(πrN )| 6 πr
N and | cos(πrN )| > 1 − (4−2

√
2)r

N , which is due
to concativity of this function. It follows that

∑
r odd,r6N

2

cot2n
(πr
N

)
>

∑
r odd,r6N

4

(
N

πr
− 4− 2

√
2

π

)2n

+
∑

r odd,N4 <r6
N
2

cot2n
(πr
N

)

>
∑

r odd,r6N
4

(
N

πr

)2n

+O(N2n−1)

=

(
N

π

)2n ∑
r odd,r6N

4

1

r2n
+O(N2n−1). (2.5)

We can estimate the value of the sum over coefficients r using integral in the
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following way

∑
r odd,r6N

4

1

r2n
> 1 +

bN8 c−1∑
k=1

1

(2k + 1)2n
> 1 +

∫ bN8 c
1

1

(2k + 1)2n
dk

= 1 +
1

2

1

(2n− 1)

1

32n−1
− 1

2

1

(2n− 1)

1

(2bN8 c+ 1)2n−1
. (2.6)

Finally,

µ2n 6 S2n(R,B) =
1

N

(
|R|2n + |B|2n

)
+

2

N

 ∑
r 6=0,r even

R̂(r)2n−2|R̂(r)|2 +
∑
r odd

R̂(r)2n−2|R̂(r)|2


=
1

N

((
N

2
+ 1

)2n

+

(
N

2
− 1

)2n
)

+
2

N

N
2
− 1 + 2(−1)n−1

∑
r odd,r6N

2

cot2n
(πr
N

)
6

2

N

(
N

2

)2n

− 4

N

(
N

π

)2n
(
1 +

1

2

1

(2n− 1)

1

32n−1

− 1

2

1

(2n− 1)

1

(2bN8 c+ 1)2n−1

)
+O(N2n−2)

6

(
N

2

)2n−1
(
1− 2

(
2

π

)2n

− 3

(2n− 1)

(
2

3π

)2n
)

+O(N2n−2).

We will now consider the case of odd n. It requires a slight modification of the
previous coloring. We define

• red color set R1 = {y, y + 1, . . . , y + N
2 },

• blue color set B1 = ZN \R1,

where y = b N
4n−4c. Then, for any r 6= 0 we have

R̂1(r) =

N
2∑

x=0

e

(
r(y + x)

N

)
= e

2πiry
N

N
2∑

x=0

e
(rx
N

)
= e

2πiry
N R̂(r).

This allows us to follow our previous approach with some minor changes described
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below. Once again we will estimate the sum

1

N

|R1|2n +
∑
r 6=0

R̂1(r)
2n−2|R̂1(r)|2


=

1

N

|R|2n +
∑
r 6=0

e
(4n−4)πiry

N R̂(r)2n−2|R̂(r)|2
 . (2.7)

We know that this sum expresses the number of red solutions of the equation (1.2)
and so the imaginary parts must cancel out. In consequence, we can only study
the real part of (2.7). We will also split it into two parts for even and odd r,
respectively. We have

Re

 ∑
r even,r 6=0

e
(4n−4)πiry

N R̂(r)2n−2|R̂(r)|2
 6

∑
r even,r 6=0

∣∣∣e (4n−4)πiry
N

∣∣∣ = N

2
− 1

and

Re

(∑
r odd

e
(4n−4)πiry

N R̂(r)2n−2|R̂(r)|2
)

= Re

(∑
r odd

e
(4n−4)πiry

N

(
i cot

(πr
N

))2n−2
cot2

(πr
N

))

=
∑
r odd

cos

(
(4n− 4)πry

N

)
cot2n

(πr
N

)
. (2.8)

Let us note that

cos

(
(4n− 4)π(N − r)y

N

)
= cos

(
(4n− 4)πy − (4n− 4)πry

N

)
= cos

(
− (4n− 4)πry

N

)
= cos

(
(4n− 4)πry

N

)
, (2.9)

which combined with (2.4) allows us to only consider the sum over coefficients up
to N

2 . We will split it further into two parts.
We assume first that N

logN < r 6 N
2 . Using the inequality

∣∣∣cot(πr
N

)∣∣∣ = ∣∣∣∣∣cos
(
πr
N

)
sin
(
πr
N

) ∣∣∣∣∣ 6 1
2
π
πr
N

=
N

2r
,
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we get∣∣∣∣∣∣∣
∑

r odd, N
logN<r6

N
2

e
(4n−4)πiry

N cot2n
(πr
N

)∣∣∣∣∣∣∣ 6
(
N

π

)2n ∑
r odd, N

logN<r6
N
2

1

r2n

6

(
N

π

)2n ∫ N
2

N
logN−2

1

r2n
dr

= O(N log2n−1N).

Let now r 6 N
logN and c = N

(4n−4) − y. Then

cos

(
(4n− 4)πry

N

)
= cos

(
(4n− 4)πr N

(4n−4)

N
− (4n− 4)cπr

N

)

= cos (πr) cos

(
(4n− 4)cπr

N

)
+ sin (πr) sin

(
(4n− 4)cπr

N

)
= − cos

(
(4n− 4)cπr

N

)
. (2.10)

Observe that the function − cos
(

(4n−4)cπr
N

)
is increasing in r in the given range

provided N is large enough with respect to n. Hence, by Taylor expansion of
cosine function we have

− cos

(
(4n− 4)cπr

N

)
6 − cos

(
(4n− 4)cπ N

logN

N

)
6 −1 + 1

2

(
(4n− 4)cπ

logN

)2

.

(2.11)
Therefore,

∑
r odd,r6 N

logN

cos

(
(4n− 4)πry

N

)
cot2n

(πr
N

)

6

(
−1 + 1

2

(
(4n− 4)cπ

logN

)2
) ∑
r odd,r6 N

logN

cot2n
(πr
N

)
.

Let us remark that the choice of N
logN as a boundary value for r here is arbitrary.

In fact, we could use any function that tends to infinity when N →∞ and is o(N).
Finally, in view of the above estimates

µ2n 6 S2n(R1, B1) 6

(
N

2

)2n−1
(
1− 2

(
2

π

)2n

− 3

(2n− 1)

(
2

3π

)2n
)
+o(N2n−1).
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2.2. N odd

We will assume now that N is an odd number, while n is even. We will consider
the following 2-coloring of ZN
• red color set R = {0, 1, . . . , N−12 },
• blue color set B = ZN \R.

We will show that this coloring has small number of solutions S2n(R,B). We will
follow the approach from the previous subsection with some small changes due
to the fact that Fourier coefficients R̂(r) for r 6= 0 here will have a slightly more
complicated form.

R̂(r) =

N−1∑
x=0

R(x)e
(rx
N

)
=

N−1
2∑

x=0

e
(rx
N

)
=
e
(
r
N
N+1
2

)
− 1

e
(
r
N

)
− 1

=
eπire

πir
N − 1

e
2πir
N − 1

=
(−1)reπirN − 1(

e
πir
N − 1

)(
e
πir
N + 1

) .

So, we have for even r 6= 0

R̂(r) =
1

e
πir
N + 1

=
1

2
− i

2

sin(πrN )

1 + cos(πrN )
,

while for odd r

R̂(r) = − 1

e
πir
N − 1

=
1

2
+
i

2

sin(πrN )

1− cos(πrN )
.

Once again we want to estimate the sum (2.2), which we will split into two sums
over even and odd r, respectively. Furthermore, we will only consider real parts
of these sums since the imaginary parts must cancel out. Then for even r 6= 0 we
have

Re

 ∑
r even,r 6=0

(
1

2
− i

2

sin(πrN )

1 + cos(πrN )

)2n−2 ∣∣∣∣12 − i

2

sin(πrN )

1 + cos(πrN )

∣∣∣∣2


=
∑

r even,r 6=0

n−1∑
j=0

(
2n− 2

2j

)
(−1)j

(
sin(πrN )

1 + cos(πrN )

)2j
1

22n−2
1

2
(
1 + cos(πrN )

) (2.12)

=
∑

r even,r 6=0

(−1)n−1
(

sin(πrN )

1 + cos(πrN )

)2n−2
1

22n−2
1

2
(
1 + cos(πrN )

)
+O

( (
sin(πrN )

)2n−4(
1 + cos(πrN )

)2n−3
)
.
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Similarly, for odd r we have

Re

(∑
r odd

(
1

2
+
i

2

sin(πrN )

1− cos(πrN )

)2n−2 ∣∣∣∣12 +
i

2

sin(πrN )

1− cos(πrN )

∣∣∣∣2
)

(2.13)

=
∑
r odd

(−1)n−1
(

sin(πrN )

1− cos(πrN )

)2n−2
1

22n−2
1

2(1− cos(πrN ))

+O

( (
sin(πrN )

)2n−4(
1− cos(πrN )

)2n−3
)
.

Let us first note that both (sin(πrN ))
2n−4

(1+cos(πrN ))
2n−3 and (sin(πrN ))

2n−4

(1−cos(πrN ))
2n−3 can have order at

most N2n−2. Furthermore, because n is even, the main terms of the sums (2.12)
and (2.13) are negative. Observe also that

∑
r even,r 6=0

(−1)n−1
(

sin(πrN )

1 + cos(πrN )

)2n−2
1

22n−2
1

2(1 + cos(πrN ))

=
∑
r odd

(−1)n−1
(

sin(π(N−r)N )

1 + cos(π(N−r)N )

)2n−2
1

22n−2
1

2(1 + cos(π(N−r)N ))
(2.14)

=
∑
r odd

(−1)n−1
(

sin(πrN )

1− cos(πrN )

)2n−2
1

22n−2
1

2(1− cos(πrN ))
,

which implies that these main terms are equal and so we can focus on odd coef-
ficients. In fact, we will mostly be interested in odd coefficients r 6 N

4 since for
r > N

4 the monotonicity of the cosine function gives

0 6

∣∣∣∣ sin(πrN )

1− cos(πrN )

∣∣∣∣ 6 1

1− 0.5
√
2
.

For r 6 N
4 by Taylor expansions of sine and cosine functions we have

sin
(πr
N

)
>
πr

N
− 1

6

(πr
N

)3
and

1− cos
(πr
N

)
6

1

2

(πr
N

)2
.
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As a result,

∑
r odd

(
sin(πrN )

1− cos(πrN )

)2n−2
1

22n−2
1

2(1− cos(πrN ))

>
1

22n−1

∑
r odd,r6N

4

(
πr
N −

1
6

(
πr
N

)3)2n−2(
1
2 (
πr
N )2

)2n−1 =
∑

r odd,r6N
4

(
N

πr
− 1

6

πr

N

)2n−2(
N

πr

)2

=

(
N

π

)2n ∑
r odd,r6N

4

1

r2n
+O(N2n−2).

To conclude, we can use (2.6) to obtain

µ2n 6
1

N

(
|R|2n + |B|2n

)
+

2

N

 ∑
r 6=0,r even

R̂(r)2n−2|R̂(r)|2 +
∑
r odd

R̂(r)2n−2|R̂(r)|2


6
1

N

((
N + 1

2

)2n

+

(
N − 1

2

)2n
)

− 2
2

N

(∑
r odd

(
sin(πrN )

1− cos(πrN )

)2n−2
1

22n−2
1

2(1− cos(πrN ))
+O

(
N2n−2))

6
2

N

(
N

2

)2n

− 4

N

(
N

2

)2n(
2

π

)2n
(
1 +

1

2

1

(2n− 1)

1

32n−1
− 1

2

1

(2n− 1)

1

(2bN8 c+ 1)2n−1

)
+O(N2n−2)

6

(
N

2

)2n−1
(
1− 2

(
2

π

)2n

− 3

(2n− 1)

(
2

3π

)2n
)

+O(N2n−2).

We will now discuss the case of odd n. So, as in the previous subsection, we
define

• red color set R1 = {y, y + 1, . . . , y + N−1
2 },

• blue color set B1 = ZN \R1,

where y = b N
4n−4c. Then, for any r 6= 0 we have

R̂1(r) =

N−1
2∑

x=0

e

(
r(y + x)

N

)
= e

2πiry
N

N−1
2∑

x=0

e
(rx
N

)
= e

2πiry
N R̂(r).
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We now have to estimate the real part of the sum (2.7). Let us first consider the
sum over even r.

Re

 ∑
r even,r 6=0

(
e

2πiry
N

)2n−2(1

2
− i

2

sin(πrN )

1 + cos(πrN )

)2n−2 ∣∣∣∣12 − i

2

sin(πrN )

1 + cos(πrN )

∣∣∣∣2


=
∑

r even,r 6=0

[ n−1∑
j=0

cos

(
(4n− 4)πry

N

)(
2n− 2

2j

)
(−1)j

(
sin(πrN )

1 + cos(πrN )

)2j

× 1

22n−2
1

2(1 + cos(πrN ))
+

n−2∑
j=0

sin

(
(4n− 4)πry

N

)(
2n− 2

2j + 1

)
(−1)j+1

×
(
−

sin(πrN )

1 + cos(πrN )

)2j+1
1

22n−2
1

2(1 + cos(πrN ))

]
=

∑
r even,r 6=0

cos

(
(4n− 4)πry

N

)(
sin(πrN )

1 + cos(πrN )

)2n−2
1

22n−2
1

2(1 + cos(πrN ))

+O

(
sin

(
(4n− 4)πry

N

) (
sin(πrN )

)2n−3(
1 + cos(πrN )

)2n−2
)
.

Similarly, for odd r we have

Re

(∑
r odd

(
e

2πiry
N

)2n−2(1

2
+
i

2

sin(πrN )

1− cos(πrN )

)2n−2 ∣∣∣∣12 +
i

2

sin(πrN )

1− cos(πrN )

∣∣∣∣2
)

=
∑
r odd

cos

(
(4n− 4)πry

N

)(
sin(πrN )

1− cos(πrN )

)2n−2
1

22n−2
1

2(1− cos(πrN ))

+O

(
sin

(
(4n− 4)πry

N

) (
sin(πrN )

)2n−3(
1− cos(πrN )

)2n−2
)
.

Let us note that both

sin

(
(4n− 4)πry

N

) (
sin(πrN )

)2n−3(
1 + cos(πrN )

)2n−2
and

sin

(
(4n− 4)πry

N

) (
sin(πrN )

)2n−3(
1− cos(πrN )

)2n−2
can have order at most N2n−1. By (2.9) and (2.14) the main terms of the sums
over even r and odd r are actually equal, which allows us to focus on the latter
sum. We will split it into two parts.
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We assume first that r > N
logN . Then∣∣∣∣∣∣∣

∑
r odd,r> N

logN

cos

(
(4n− 4)πry

N

)(
sin(πrN )

1− cos(πrN )

)2n−2
1

22n−2
1

2(1− cos(πrN ))

∣∣∣∣∣∣∣
6

(
N

π

)2n ∫ N

N
logN−2

1

r2n
dr = O(N log2n−1N).

In the case r 6 N
logN by (2.10) and (2.11) we get

∑
r odd,r6 N

logN

cos

(
(4n− 4)πry

N

)(
sin(πrN )

1− cos(πrN )

)2n−2
1

22n−2
1

2(1− cos(πrN ))

6 −
(
N

π

)2n(
1 +

1

2

1

(2n− 1)

1

32n−1

)
+ o(N2n).

Therefore,

µ2n 6 S2n(R1, B1) 6

(
N

2

)2n−1
(
1− 2

(
2

π

)2n

− 3

(2n− 1)

(
2

3π

)2n
)
+o(N2n−1).

3. Lower estimate for prime N

In this section we will prove Theorem 1.2. We assume that N is a prime number.
Let ZN = R∪B be any coloring. Recall that we can find the number of solutions
to (1.2) using (2.1). Therefore, we need to estimate the sum (2.2) from below. We
can assume that |R| 6 |B|.

Our approach is based on a special case of Lemma 26 from [3], which can be
formulated in the following way

Lemma 3.1. Let N be a prime number and let 0 < k < N be an integer. For any
k-element set R ⊆ ZN

max
r 6=0
|R̂(r)| 6

∣∣∣∣∣ sin(πkN )

sin( πN )

∣∣∣∣∣ . (3.1)

Using this lemma and Parseval’s identity, we deduce that

S2n(R,B) >
1

N

(
|R|2n + |B|2n

)
− 2

N

(
max
r 6=0
|R̂(r)|

)2n−2∑
r 6=0

|R̂(r)|2

>
1

N

(
|R|2n + |B|2n

)
− 2

N

∣∣∣∣∣ sin(
π|R|
N )

sin( πN )

∣∣∣∣∣
2n−2 (

N |R| − |R|2
)

=
1

N

(
|R|2n + |B|2n

)
− 2

∣∣∣∣∣ sin(
π|R|
N )

sin( πN )

∣∣∣∣∣
2n−2

|R|
(
1− |R|

N

)
.
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Therefore,

µ2n = min
ZN=R∪B

S2n(R,B) > min
ZN=R∪B,|R|6|B|

1

N

(
|R|2n + (N − |R|)2n

)
− 2 max

ZN=R∪B,|R|6|B|

∣∣∣∣∣ sin(
π|R|
N )

sin( πN )

∣∣∣∣∣
2n−2

|R|
(
1− |R|

N

)
.

Clearly, in the range |R| ∈ [0, N2 ] the function
1
N (|R|2n+(N−|R|)2n) is decreasing,

while
∣∣∣∣ sin(π|R|N )

sin( πN )

∣∣∣∣2n−2 |R|(1− |R|N ) is increasing. Consequently, we will use the

above estimate with |R| = N−1
2 . We have∣∣∣∣∣∣

sin
(
π|R|
N

)
sin( πN )

∣∣∣∣∣∣ =
∣∣∣∣∣∣
sin
(
πN−1

2

N

)
sin( πN )

∣∣∣∣∣∣ 6 N

π
(1 + o(1)) =

2

π
|R|(1 + o(1)).

Therefore,

µ2n >
1

N

((
N − 1

2

)2n

+

(
N + 1

2

)2n
)

− 2

(
N

π
(1 + o(1))

)2n−2
N − 1

2

(
1− N − 1

2N

)
=

(
N

2

)2n−1
(
1−

(
2

π

)2n−2
)

+ o(N2n−1).
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