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Abstract: In this paper, we find the number of representations of the quadratic form x2
1+x1x2+

x2
2 + x2

3 + x3x4 + x2
4 + . . . + x2

2k−1 + x2k−1x2k + x2
2k, for k = 7, 9, 11, 12, 14 using the theory

of modular forms. By comparing our formulas with the formulas obtained by G.A. Lomadze,
we obtain the Fourier coefficients of certain newforms of level 3 and weights 7, 9, 11 in terms of
certain finite sums involving the solutions of similar quadratic forms of lower variables. In the
case of 24 variables, comparison of these formulas gives rise to a new formula for the Ramanujan
tau function.
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1. Introduction

For a positive integer k, let Fk denote the quadratic form in 2k variables defined
by

Fk(x1, x2, . . . , x2k) =

k∑
j=1

x22j−1 + x2j−1x2j + x22j , (1)

and we denote by

s2k(n) = card
{

(x1, x2, · · · , x2k) ∈ Z2k : Fk(x1, x2, · · · , x2k) = n
}
, (2)

the number of representations of a positive integer n by the quadratic form Fk.
Finding explicit formulas for s2k(n) is a classical problem. For k = 2, 4, 6, 8, 10, 12
formulas for s2k are known due to the works of J. Liouville [6], J.G. Huard et. al.
[3], O.X.M. Yao and E.X.W. Xia [14] and the first two authors [9, 10]. Most of
these works make use of the convolution sums of the divisor functions to evaluate
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the formulas. In [7], G.A. Lomadze gave formulas for s2k(n) for 2 6 k 6 17. These
formulas were given in terms of divisor functions and certain finite sums involving
polynomials in x1 (Fl(x1, x2, . . . , x2l) = n) with integer coefficients (including n)
for certain values of l < k. However, the other formulas mentioned above are
in terms of the divisor functions and Fourier coefficients of certain cusp forms.
So, it is natural to compare these formulas with the formulas given by Lomadze
and this gives rise to certain interesting formulas for the Fourier coefficients of
certain cuspidal newforms of integral weight. See for example [14, Theorem 1.3],
[9, Theorem 2.3], [10, Corollary 2.5].

The purpose of this paper is to consider the cases k = 7, 9, 11, 12, 14 and find
the formulas for s2k(n) in these cases (Theorem 2.1, Theorem 2.3). We make
use of the theory of modular forms directly instead of using the convolution sums
method. When comparing our formulas with the formulas given by Lomadze, we
conclude that the finite sums appearing in the formulas (VI), (VIII) and (X) of
Lomadze [7, p.19] correspond to the n-th Fourier coefficients (up to some constant)
of the newforms of weights 7, 9, 11 with level 3 and character χ−3 =

(−3
·
)
.

In an earlier work of the first two authors [10], the case of 24 variables was
treated and as a consequence they obtained a formula involving the Ramanujan
function τ(n) and the Fourier coefficients of the newform of weight 12 on Γ0(3).
In the present work, we make use of a different basis for the modular forms space
of weight 12 on Γ0(3) which results in a different formula for s24(n) (see (9)).
The advantage of considering this basis is that while comparing the new formula
of s24(n) with Lomadze’s formula, we get a new identity for τ(n) in terms of
finite sums that appear in Lomadze’s formulas (Corollary 2.4). In the case of 28
variables, comparison of the formula for s28(n) obtained in (10) with Lomadze’s
formula leads to a relation between these finite sums (coming from Lomadze’s
formulas) and certain convolution sums of the divisor functions (Corollary 2.5).
In principle, one can adopt our method to get formulas for s2k(n) for other higher
values of k and get similar identities between the Fourier coefficients of newforms of
the corresponding integral weight and the sums appearing in Lomadze’s formulas.
Our aim in this paper is to fill up the incomplete cases (corresponding to the odd
weight) and also to get a new expression for the Ramanujan tau function.

2. Preliminaries and statement of the results

As mentioned in the introduction, we shall be using the theory of modular forms
to prove our results and so we first fix our notations and present some of the basic
facts on modular forms. For positive integers k,N > 1 and a Dirichlet character
χ modulo N with χ(−1) = (−1)k, let Mk(N,χ) denote the C- vector space of
holomorphic modular forms of weight k for the congruence subgroup Γ0(N), with
character χ. Let us denote by Sk(N,χ), the subspace of cusp forms in Mk(N,χ).
When χ is the principal character modulo N , then we drop the symbol χ in the
notation and write onlyMk(N) or Sk(N). The modular forms space is decomposed
into the space of Eisenstein series (denoted by Ek(N,χ)) and the space of cusp
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forms Sk(N,χ) and one has

Mk(N,χ) = Ek(N,χ)⊕ Sk(N,χ).

One can get an explicit basis of the space Ek(N,χ) using the following construc-
tion. For details we refer to [8, 13]. Suppose that χ and ψ are primitive Dirichlet
characters with conductors N and M , respectively. For a positive integer k > 2,
let

Ek,χ,ψ(z) := c0 +
∑
n>1

∑
d|n

ψ(d) · χ(n/d)dk−1

 qn, (3)

where q = e2iπz (z ∈ H),

c0 =

{
0 if N > 1,

−Bk,ψ2k if N = 1,

and Bk,ψ denotes generalized Bernoulli number with respect to the character ψ.
Then, the Eisenstein series Ek,χ,ψ(z) belongs to the spaceMk(NM,χ/ψ), provided
χ(−1)ψ(−1) = (−1)k and NM 6= 1. We give a notation to the inner sum in (3):

σk−1;χ,ψ(n) :=
∑
d|n

ψ(d) · χ(n/d)dk−1. (4)

When χ = ψ = 1 (i.e., when N = M = 1) and k > 4, we have Ek,χ,ψ(z) =
−Bk2k Ek(z), where Ek(z) is the normalized Eisenstein series of weight k in the
space Mk(1), defined by

Ek(z) = 1− 2k

Bk

∑
n>1

σk−1(n)qn.

In the above σr(n) is the sum of the r-th powers of the positive divisors of n and

Bk is the k-th Bernoulli number defined by
x

ex − 1
=

∞∑
m=0

Bm
m!

xm. We also need

the Eisenstein series of weight 2, which is a quasimodular form of weight 2, depth
1 on SL2(Z) and is given by

E2(z) = 1− 24
∑
n>1

σ(n)qn.

(Here σ(n) = σ1(n).) Let ∆(z) =
∑
n>1 τ(n)qn be the well-known unique normal-

ized cusp form of weight 12, level 1, studied by Ramanujan [11]. It is known that
∆(z) = η24(z), where η(z) is the Dedekind eta function given by

η(z) = q1/24
∏
n>1

(1− qn).
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In the case of the space of cusp forms Sk(N,χ) we use a basis consisting of newforms
of level N and oldforms generated by the newforms of lower level d, d|N , χ modulo
d, d 6= N . However, in the case of k = 12, we use a different basis for the space
S12(3) (see §3.2). For basic theory of newforms we refer to [1, 5] and for details
on modular forms and quasimodular forms, we refer to [2, 4, 8, 13].

We now state the main results of this paper.
Let s2k(n) be as defined in (2). Then we have the following formulas for s2k(n)

for k = 7, 9, 11.

Theorem 2.1. For a positive integer n, we have

s14(n) =
3

7
ρ∗6(n) +

216

7
τ7,3,χ−3(n), (5)

s18(n) =
27

809
ρ∗8(n) +

24× 1728

809

(
27τ9,3,χ−3;1(n) + τ9,3,χ−3;2(n)

)
, (6)

s22(n) =
3

1847
ρ∗10(n) +

81× 748

9235

(
τ11,3,χ−3;1(n) + 9τ11,3,χ−3;2(n)

)
, (7)

where ρ∗` (n) (for positive even integers `) is defined by

ρ∗` (n) = 3`/2
∑
d|n

((
n/d

3

)
+ (−1)`/2

(
d

3

))
d`,

τ7,3,χ−3
(n) is the n-th Fourier coefficient of the normalized newform of weight 7,

level 3 with character χ−3 and for k = 9, 11, τk,3,χ−3;j(n) (j = 1, 2) are the n-th
Fourier coefficients of basis elements of the space Sk(3, χ−3). (These are defined
explicitly in §3.1.)

As mentioned in the introduction, by comparing the corresponding formulas
obtained by Lomadze [7] with our formulas of the above theorem, as a direct
consequence, we get the following corollary.

Corollary 2.2. The Fourier coefficients of the newforms of weights 7, 9, 11
(of level 3 with character χ−3) are given by the following sums, which involve the
first coordinate (x1) of the solutions to the quadratic forms Fj(x1, x2, · · · , x2j) = n,
j = 3, 5, 7 respectively. More precisely, we have

τ7,3,χ−3
(n) =

1

30

∑
F3(x1,··· ,x6)=n

(15x41 − 12nx21 + n2),

(27τ9,3,χ−3;1(n) + τ9,3,χ−3;2(n)) =
1

168

∑
F5(x1,··· ,x10)=n

(63x41 − 36nx21 + 2n2),

(τ11,3,χ−3;1(n) + 9τ11,3,χ−3;2(n)) =
5

81

∑
F7(x1,··· ,x14)=n

(54x41 − 24nx21 + n2).

(8)
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For the cases k = 12, 14, we have the following theorem giving formulas for
s24(n) and s28(n). As mentioned earlier, a different formula for s24(n) was given
in [10, Theorem 2.4].

Theorem 2.3. For a positive integer n, we have

s24(n) =
6552

73× 691
σ∗11(n) +

29824

691
τ(n) +

240× 1186848

50443

∑
a,b∈N0
a+b=n

σ3(a)τ8,3(b)

− 504× 261344

50443

∑
a,b∈N0
a+b=n

σ5(a)τ6,3(b),

(9)

s28(n) =
12

1093
σ∗13(n) +

107264

1093
τ(n)

+
107264× 12

1093

 ∑
a,b∈N
a+b=n

σ(a)τ(b)− 3
∑
a,b∈N

3a+b=n

σ(a)τ(b)


+

12448× 504

1093

∑
a,b∈N0
a+b=n

σ5(a)τ8,3(b)− 3016× 480

1093

∑
a,b∈N0
a+b=n

σ7(a)τ6,3(b),

(10)

where σ∗` (n) = σ`(n) + (−3)(`+1)/2σ`(n/3), N0 = N ∪ {0}, σ3(0) = 1/240,
σ5(0) = −1/504, σ7(0) = 1/480 and τ6,3(0) = 0 = τ8,3(0). Also, τ(n) is the
Ramanujan tau function as defined before, and for k = 6, 8, τk,3(n) is the n-th
Fourier coefficient of ∆k,3(z), the normalized newform of weight k, level 3 with
trivial character.

Note: All the cusp forms mentioned in Theorem 2.1 and Theorem 2.3 are defined
in sections 3.1 and 3.2 respectively.

As a consequence to our formula for s24(n) given by (9), we have the following
formula for the Ramanujan tau function:

Corollary 2.4. For an integer n > 1, we have

τ(n) =
1

73× 3728

[36387

35
L12;8(n) + 108L12;6(n) +

1

3
L4(n)− 32668

12
L6;2(n)

− 329680
∑
a,b∈N
a+b=n

σ3(a)L8;4(b) + 1372056
∑
a,b∈N
a+b=n

σ5(a)L6;2(b)
]
,

(11)
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where

L12;8(n) =
∑
x1∈Z

F8(x1,...,x16)=n

135x41 − 54nx21 + 2n2, (12)

L12;6(n) =
∑
x1∈Z

F6(x1,...,x12)=n

162x61 − 162nx41 + 36n2x21 − n3, (13)

L8;4(n) =
∑
x1∈Z

F4(x1,...,x8)=n

45x41 − 30nx21 + 2n2, (14)

L6;2(n) =
∑
x1∈Z

F2(x1,...,x4)=n

9x41 − 9nx21 + n2, (15)

L4(n) =
∑
x1∈Z

F4(x1,...,x8)=n

(
164025x81 − 306180nx61 + 45(3780n2 − 4121)x41 (16)

− 30(945n2 − 4121)nx21 + 675n4 − 8242n2
)
.

Proof. In [7, formula (XI), p.12], Lomadze gave the following formula for s24(n):

s24(n) =
1

73× 691

(
6552σ∗11(n) +

291096

35
L12;8(n) + 864L12;6(n) + 360L12;4(n)

)
,

(17)
where L12;8(n) and L12;6(n) are given by (12) and (13) respectively, and L12;4(n)
is given by

L12;4(n) =
∑
x1∈Z

F4(x1,...,x8)=n

1215x81 − 2268nx61 + 1260n2x41 − 210n3x21 + 5n4. (18)

Comparing this with (9), we get the following relation (after cancelling the factor
50443 in the denominators).

29824× 73τ(n) + 1186848τ8,3(n) + 261344τ6,3(n)

+ 1186848× 240
∑
a,b∈N
a+b=n

σ3(a)τ8,3(b)− 261344× 504
∑
a,b∈N
a+b=n

σ5(a)τ6,3(b)

=
291096

35
L12;8(n) + 864L12;6(n) + 360L12;4(n).

(19)

Now, in [14, Theorem 1.3], Yao and Xia showed that

τ6,3(n) =
1

12
L6;2(n) (20)

and in [9, Theorem 2.3] the first two authors obtained the following expression for
the newform Fourier coefficients τ8,3(n):

τ8,3(n) =
1

108
L8;4(n). (21)
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Substituting (20) and (21) in (19), we get the required formula. Note that both
the sums L8;4(n) and L12;4(n) involve the solutions of the quadratic form F4, and
so these are combined to get the expression L4(n). �

In the following corollary, we shall obtain a relation between certain convolution
sums in terms of some of the finite sums appearing in Lomadze’s formulas as a
consequence to our formula for s28(n).

Corollary 2.5. For an integer n > 1, we have the following identity.

73760
∑
a,b∈N
a+b=n

σ7(a)L6;2(b)− 194432

3

∑
a,b∈N
a+b=n

σ5(a)L8;4(b) + 60336
∑
a,b∈N
a+b=n

σ3(a)L10;6(b)

=
461

3
L6;2(n)− 3472

27
L8;4(n)− 1257

5
L10;6(n) (22)

+
94477

735
L14;10(n) +

864

245
L14;8(n) +

144

175
L14;6(n).

Proof. The following is the formula for s28(n) obtained by Lomadze [7, formula
(XIII), p13]:

s28(n) =
12

1093
σ∗13(n)+

188954

803355
L14;10(n)+

1728

267785
L14;8(n)+

288

191275
L14;6(n), (23)

where

L14;10(n) =
∑
x1∈Z

F10(x1,...,x20)=n

(99x41 − 33nx21 + n2), (24)

L14;8(n) =
∑
x1∈Z

F8(x1,...,x16)=n

(594x61 − 495nx41 + 90n2x21 − 2n3), (25)

L14;6(n) =
∑
x1∈Z

F6(x1,...,x12)=n

(8019x81 − 12474nx61 + 5670n2x41 − 756n3x21 + 14n4). (26)

Comparing this with (10), we get the following.

107264

[
τ(n) + 12

∑
a,b∈N,a+b=n

σ(a)τ(b)− 36
∑

a,b∈N,3a+b=n
σ(a)τ(b)

]
− 12448τ8,3(n)− 3016τ6,3(n) + 6273792

∑
a,b∈N,a+b=n

σ5(a)τ8,3(b)

− 1447680
∑

a,b∈N,a+b=n
σ7(a)τ6,3(b)

=
188954

735
L14;10(n) +

1728

245
L14;8(n) +

288

175
L14;6(n).

(27)
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The following is a well-known convolution sum of σ(n) with τ(n) due to Ramanujan
[11, Eq.(99)]: ∑

a,b∈N,a+b=n
σ(a)τ(b) =

1

24
(1− n)τ(n). (28)

Considering the quasimodular form E2(3z)∆(z), we obtain the following convolu-
tion sum:

∑
a,b∈N,3a+b=n

σ(a)τ(b) =
(3− n)

72
τ(n)− 1

576
τ6,3(n)− 1

96
τ8,3(n)

− 1

64
τ10,3;2(n)− 5

6

∑
a,b∈N
a+b=n

σ7(a)τ6,3(b)

+
21

4

∑
a,b∈N
a+b=n

σ5(a)τ8,3(b)− 15

4

∑
a,b∈N
a+b=n

σ3(a)τ10,3;2(b).

(29)

In [10, Corollary 2.5], the first two authors obtained an expression for the Fourier
coefficients of the newform ∆10,3;2(z), which is given below.

τ10,3;2(n) =
1

120

∑
x1∈Z

F6(x1,...,x12)=n

(42x41 − 21nx21 + n2) =:
1

120
L10;6(n). (30)

Substituting the expressions (28), (29) in (27), we get

1844τ6,3(n) + 13888τ8,3(n) + 30168τ10,3;2(n) + 885120
∑

a,b∈N,a+b=n
σ7(a)τ6,3(b)

− 1999552
∑

a,b∈N,a+b=n
σ5(a)τ8,3(b) + 7240320

∑
a,b∈N,a+b=n

σ3(a)τ10,3;2(b)

=
94477

735
L14;10(n) +

864

245
L14;8(n) +

144

175
L14;6(n). (31)

Now using the expressions (20), (21) and (30) in the above and simplifying, we
get the required formula. �

Remark 2.1. We note that as done in Corollary 2.4, one can combine the sums
L10;6(n) and L14;6(n) in the identity (22). We also note that the sum that appears
in (30) is the correct one. In Lomadze’s formula [7, formula (IX), p. 12], the
coefficient of nx21 is wrongly mentioned as 27 instead of 21. The same mistake also
appears in [10, Corollary 2.5].
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3. Proofs of theorems

3.1. Proof of Theorem 2.1

We denote the theta series associated to the quadratic form F1 : x21 + x1x2 + x22
by

F1(z) =
∑

x1,x2∈Z
qx

2
1+x1x2+x

2
2 . (32)

By [12, Theorem 4], it follows that F1(z) is a modular form in M1(Γ0(3), χ−3).
Note that the modular form Fk associated to the quadratic form Fk is nothing
but Fk1 . Therefore, by the definition of s2k(n) (Eq.(2)), we have

Fk(z) = Fk1 (z) =
∑
n>0

s2k(n)qn.

So, in order to get the required formulas s2k(n), k = 7, 9, 11, we need to find
explicit bases for the vector spaces Mk(Γ0(3), χ−3) for k = 7, 9, 11.

Case (i): k = 7. A basis for the 3-dimensional vector space M7(Γ0(3), χ−3) is
given by E7,1,χ−3

(z), E7,χ−3,1(z) and the unique normalized newform ∆7,3,χ−3
(z)

is given by

∆7,3,χ−3
(z) =

∑
n>1

τ7,3,χ−3
(n)qn =

(
E4(z)− E4(3z)

)
η9(z)η−3(3z).

By comparing the first few Fourier coefficients (using the Sturm bound), it follows
that

F7(z) =
81

7
E7,1,χ−3

(z)− 3

7
E7,χ−3,1(z) +

216

7
∆7,3,χ−3

(z),

from which we get the formula for s14(n) given below.

s14(n) =
3

7
ρ∗6(n) +

216

7
τ7,3,χ−3(n).

Case (ii): k = 9. In this case, the dimension of the corresponding modular
forms space is 4. A basis for the 4-dimensional vector space M9(Γ0(3), χ−3) is
given by E9,1,χ−3

(z), E9,χ−3,1(z), ∆9,3,χ−3;j(z), j = 1, 2, where

∆9,3,χ−3;1(z) :=
∑
n>1

τ9,3,χ−3;1(n)qn = η3(z)η15(3z),

∆9,3,χ−3;2(z) :=
∑
n>1

τ9,3,χ−3;2(n)qn = η15(z)η3(3z).

As in the previous case, by comparing the first few Fourier coefficients, it follows
that

F9(z) =
2187

809
E9,1,χ−3(z) +

27

809
E9,χ−3,1(z)

+
1119744

809
∆9,3,χ−3;1(z) +

41472

809
∆9,3,χ−3;2(z)

from which we get the required formula for s18(n).
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Case (iii): k = 11. In this case the dimension of the corresponding modular
forms space is 4. A basis for the 4-dimensional vector space M11(Γ0(3), χ−3) is
given by E11,1,χ−3

(z), E11,χ−3,1(z), ∆11,3,χ−3;j(z), j = 1, 2, where

∆11,3,χ−3;1(z) :=
∑
n>1

τ11,3,χ−3;1(n)qn = E4(z)∆7,3,χ−3
(z),

∆11,3,χ−3;2(z) :=
∑
n>1

τ11,3,χ−3;2(n)qn = E4(3z)∆7,3,χ−3
(z).

As before, by comparing the first few Fourier coefficients, it follows that

F11(z) =
729

1847
E11,1,χ−3(z)− 3

1847
E11,χ−3,1(z)

+
60588

9235
∆11,3,χ−3;1(z) +

545292

9235
∆11,3,χ−3;2(z)

from which we get the required formula for s22(n). This completes the proof.

3.2. Proof of Theorem 2.3

We consider the two cases k = 12 and k = 14 separately.
The case k = 12. In this case, we have

F12(z) =
∑
n>1

s24(n)qn,

and the function F12(z) belongs to M12(3), which has dimension 5. The following
modular forms constitute a basis of M12(3):

{E12(z), E12(3z),∆(z), E4(z)∆8,3(z), E6(z)∆6,3(z)} , (33)

where

∆8,3(z) =
∑
n>1

τ8,3(n)qn

= η12(z)η4(3z) + 81η6(z)η4(3z)η6(9z) + 18η9(z)η4(3z)η3(9z), (34)

∆6,3(z) =
∑
n>1

τ6,3(n)qn = η6(z)η6(3z). (35)

Using the above basis, we have

F12(z) =
1

730
E12(z) +

729

730
E12(3z) +

29824

691
∆(z)

+
1186848

50443
E4(z)∆8,3(z) +

261344

50443
E6(z)∆6,3(z).

(36)

Comparing the n-th Fourier coefficients both the sides, and simplifying, we get the
required formula (9).
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The case k = 14. To get the required expression for s28(n), we need to consider
the function F14(z) which is a modular form of weight 14 for the group Γ0(3). The
vector space M14(3) is 5-dimensional and we consider the following basis.{

E14(z), E14(3z), E8(z)∆6,3(z), E6(z)∆8,3(z),
1

2

(
3E2(3z)− E2(z)

)
∆(z)

}
,

where the forms ∆8,3(z) and ∆6,3(z) are as defined in the previous case. Now,
expressing the modular form F14(z) in terms of the basis elements, we get

F14(z) = − 1

2186
E14(z) +

2187

2186
E14(3z)− 3016

1093
E8(z)∆6,3(z)

− 12448

1093
E6(z)∆8,3(z) +

53632

1093

(
3E2(3z)− E2(z)

)
∆(z).

The n-th Fourier coefficient of the LHS is s28(n) and therefore, by comparing the
n-th Fourier coefficients both the sides, we get the required formula (10).
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