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ON VAN DER CORPUT’S METHOD FOR EXPONENTIAL SUMS

Hong-Quan Liu

Abstract: We give the best known error term of the B-process of van der Corput’s method and
we extend the class of exponential sums that can be estimated by using exponent pairs coming
from the iteration of the A and B processes.
Keywords: analytic number theory, exponential sums, exponent pairs.

1. Introduction

Based on ideas of Weyl and others, van der Corput’s method for estimating expo-
nential sums was one of the distinguished advances in the theory of numbers that
appeared in the 20th century. There are two themes in this paper. The first is to
sharpen the error term of the B-process of the van der Corput method. We have

Theorem 1. Let f(x) be a real function such that f (4)(x) is a continuous function
for x ∈ [a, b] and let Ck (1 6 k 6 4) be certain positive constants,

C1R
−1 6 |f ′′(x)| 6 C2R

−1, |βk(x)| 6 CkU2−k for 3 6 k 6 4,

where R > 0, U > 1, and βk(x) = f (k)(x)/f ′′(x). Then (here e(ξ) = exp(2πiξ))∑
a6m6b

e(f(m)) = λ
∑

α<v<β

|f ′′(xv)|−1/2e(f(xv)− νxv + 1/8) + E,

E = E1 + E2 +O(log(2 + (b− a)R−1)) +O((b− a+R)U−1)

+O

(
min

(
R1/2,max

(
1

〈α〉
,

1

〈β〉

)))
,

where xν is defined by f ′(xv) = v, λ = 1 or −i according as f ′′ > 0 or f ′′ < 0,

E1 = λbα|f ′′(xα)|−1/2e(f(xα)− αxα + 1/8),

E2 = λbβ |f ′′(xβ)|−1/2e(f(xβ)− βxβ + 1/8),
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bα = 1/2 if α is an integer, otherwise bα = 0, bβ is defined similarly, and

〈ξ〉 =

{
β − α, if ξ is an integer ,
‖ξ‖ = minn∈Z |n− ξ|, otherwise.

In [6], Theorem 1, this result was derived having the additional condition
|3β4(x) − 5β2

3(x)| � U−2 (requiring also the continuous of the fifth-order deriva-
tive). By a comparison, Lemma 6 of [3], Lemma 3.6 of [2], and Theorem 10 of
Chapter 3 of [7] all have the larger error term O(

√
R). Theorem 1.2 of [10] may

be similar to our Theorem 1. However, its proof may be lengthy. Theorem 1 of
[5] not only requires the additional conditions 1 � R � U but also its proof
has gaps(otherwise his result is better than ours, for in case f ′(a) or f ′(b) is an
integer, his error term does not contain 1/|β − α|); in fact on p.178 for the case
‖f ′(a)‖ = 0 or ‖f ′(b)‖ = 0, Karatsuba did not write down the details for treating
the contribution of the right side of (9), which, taking into account the last two
formulas of p.174 in showing Lemma 2, should give O-terms such as

O

(
min

(√
R,

1

|f ′(b)− f ′(a)|

))
.

Moreover when ‖f ′(a)‖ 6= 0 and ‖f ′(b)‖ 6= 0 for the contribution of f ′(a)− 1/2 6
n 6 [f ′(a)] to the right side of (9) of [5], obviously the integration by parts step
was not correct, for we do not know how to estimate the expression (see p.177
of [5]) ∫ b

a

f ′′(x)

(f ′(x)− n)2
e(f(x)− nx)dx,

as those O-terms given by the right side of our Theorem 1. Instead we should use
Lemma 4.3 of [9] (which is obtained by using the second mean value theorem, but
not simply by using the partial summation) to estimate∫ b

a

e(f(x)− nx)dx,

which then yields the error term

O

(
min

(√
R,

1

‖f ′(a)‖

))
.

Thus, the final error term would involve

O

(
min

(
R1/2,max

(
1

〈α〉
,

1

〈β〉

)))
,

which is the same as ours.
Our second theme is, roughly speaking, to show that for any given exponent

pair (p, q) that comes from a suitable iteration of the A and B processes, apart
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from several special values of α > 1, one can also use the exponent pair to estimate
exponential sums of the form

Sf (N,M) =
∑

N6n6M

e(f(n)), e(ξ) = exp(2πiξ),

where 1 6 N < M 6 2N , f(x) has continuous derivatives up to order J , and

f (j)(x) = λ(α)jx
α−j(1 + cj(x)), λ 6= 0, α > 1, (1)

where 1 6 j 6 J, (α)j = α(α− 1) · · · (α− j + 1), |cj(x)| 6 Cj < 1/2, and J and Cj
depend on the exponent pair (p, q). Here we note that, by the definition using (p, q),
one can only estimate Sf (N,M) for which (1) holds with any (0 6=)α < 1. However,
there are counterexamples such that (p, q) cannot be used to estimate Sf (N,M)
in the case that α > 1. A counterexample is f(x) = Cx3/2, C = 2(27)−1/2, and
M = 2N . By the B-process we have

|Sf (N,M)| =

∣∣∣∣∣∣C1

∑
u6r6v

r1/2e(−r3) +O(N1/4)

∣∣∣∣∣∣� N3/4,

where u ≈ N1/2, v ≈ N1/2. If the exponent pair

(2/7, 4/7) = BA2B(0, 1)

can be used, then

|Sf (N, 2N)| < (N1/2)2/7N4/7 = N5/7 = o(N3/4),

which is a contradiction (thus the theory of §2.3 of Ivic[4] has gaps). This reveals
that in general we cannot use an exponent pair to estimate an exponential sum
having as its exponent the function of (1) for an arbitrary α > 1. Here we note
that originally the accurate theory of exponent pairs can only be founded for the
situation (0 6=)α < 1 (see [1, 8]). Can we find the condition of α such that a given
exponent pair can be used? We shall resolve this problem in our Theorem 2. But
the statement of Theorem 2 is lengthy. Thus, it will be given in §3.

To emphasize the importance of our results, we note that they are not merely
of the theoretical significance. For example, the version of Theorem 1 has been
used several times in our own works on estimating exponential sums of three or
four variables.

2. Proof of Theorem 1

Assuming first that f ′′(x) < 0 for x ∈ [a, b], then λ = −i. We use notations from
the proof of Theorem 1 of [6]. It suffices to show that, for each v ∈ [α, β].∫ d

0

e(u)F (u)du = O(RU−1). (2)
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Similarly to the formulas between (6) and (7) of [6], for any

t ∈ (0, c], c = min(b− n, εU),

by making the Taylor expansions we have (n = nv is defined by f ′(nv) = v)

−u = A(t) =
1

2
f ′′(n)t2(1 + 1

2β3t+O(t2U−2)),

A′(t) = f ′(n+ t)− f ′(n) = f ′′(n)t(1 + 1
2β3t+O(t2U−2)),

A′′(t) = f ′′(n+ t) = f ′′(n)(1 + β3t+O(t2U−2)).

Thus, for 0 < u = −A(t) 6 d = −A(c) we get with Y = (− f
′′(n)
2 )−1/2

F (u) = − 1

A′(t)
− 1

2
Y u−1/2 = − 1

f ′′(n)t
(1 +O(tU−1))

− 1

2

(
−1

2
f ′′(n)

)−1/2(
−1

2
f ′′(n)t2

)−1/2
(1 +O(tU−1)) = O(RU−1).

(3)

From

−A∗(t)(A′(t))−3 = −(f ′′(n))−2t−3(1 + β3t+O(t2U−2))

×
(

1 +
1

2
β3t+O(t2U−2)

)−3
= −(f ′′(n))−2t−3

(
1− 1

2
β3t+O(t2U−2)

)
,

we have

F ′(u) = − A′′(t)

(A′(t))3
+

1

4
Y u−3/2 = O(R2t−1U−2) = O(R3/2u−1/2U−2). (4)

Here we note that ε (depending on the constants Ck) is sufficiently small, so
that the above arguments are valid(such as the expansion for (A′(t))−3). Now let
δ = min(1, d). From (3) we get∫ δ

0

e(u)F (u)du = O

(∫ δ

0

|F (u)|du

)
= O(RU−1). (5)

Integrating by parts we also get from (3) and (4) that∫ d

δ

e(u)F (u)du =
1

2πi
(e(d)F (d)− e(δ)F (δ)−

∫ d

δ

F ′(u)e(u)du)

= O(RU−1) +O

(∫ d

δ

R3/2u−1/2U−2du

)
= O(RU−1) +O(R3/2d1/2U−2) = O(RU−1).

(6)

Thus (2) follows from (5) and (6). The case for f ′′(x) > 0 can be treated similarly.
The proof is finished.
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3. The statement of Theorem 2 and the resolution
of the counterexample

Theorem 2. Let (n(0), . . . , n(k)) be a set of non-negative integers satisfying
n(0) > 0, n(k) > 0 and n(i) > 1 if 0 6 i 6 k−1 and k > 1. Let f(x) be a real func-
tion defined on [N,M ] whose derivative functions of orders 1 to 2+n(0)+. . .+n(k)
are continuous on [N,M ], and satisfy

f (j)(x) = λ(α)ix
α−j(1 +O(∆)), 1 6 j 6 2 + n(0) + . . .+ n(k), (7)

where 1 6 N 6 M 6 2N , λ 6= 0, α > 1, (α)j = α(α − 1) · · · (α − j + 1) for j > 1,
and for ∆→ 0 for N →∞. Let the exponent pair (p, q) be defined by

(p, q) = An(k)B · · ·An(1)BAn(0)B(0, 1), (8)

Suppose that

α(k) = α 6= 1, 2, · · · , n(k) + 1,

α(k − 1) =
α(k)− n(k)

α(k)− n(k)− 1
6= 2, · · · , n(k − 1) + 1,

...

α(j) =
α(j + 1)− n(j + 1)

α(j + 1)− n(j + 1)− 1
6= 2, · · · , n(j) + 1,

...

α(0) =
α(1)− n(1)

α(1)− n(1)− 1
6= 2, · · · , n(0) + 1.

(9)

Then, for F = |λ|Nα we have that

Sf (N,M) =
∑

N6n6M

e(f(n))� (FN−1)pNq +NF−1. (10)

In particular, for k = 0 the conditions (7) and (9) for which the estimate (10)
holds can be relaxed to

|f (j)(x)| ≈ FN−j , 1 6 j 6 n(0) + 2, x ∈ [N,M ]. (11)

Taking more care, the term O(∆) in the condition (7) can be replaced by any
number cj that satisfies |cj | < 1/2 where |cj | is sufficiently small such that the
following proof steps of Theorem 1 can be carried out.

Using Theorem 2, we find immediately that we can use the exponent pair

(2/7, 4/7) = BA2B(0, 1)

to estimate the exponential sum of (10) with f(x) satisfying (7) for all α > 1, α 6=
2, 3/2, which explains the counterexample of Ivic’s book given in our §1.
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4. Lemmas

We need several lemmas.

Lemma 1. Let f(x) be a real function on [a, b], 1 6 a < b 6 2a, such that f ′′(x)
is continuous on [a, b] and

0 < λ 6 |f ′(x)| < λ1, |f ′′(x)| ≈ λN−1,

where λ1 = O(λ), a ≈ N . Then

(i) For λ1 < 1 we have

Sf (a, b) =
∑

a6n6b

e(f(n)) = O(λ−1).

(ii) There always holds

Sf (a, b) = O(λ1/2N1/2) +O(λ−1).

Proof. It is easy to observe that f ′′(x) keeps a constant sign on [a, b]. We can
assume that f ′′(x) < 0 on [a, b] (otherwise we consider −f ′′(x)). Thus f ′(x) is
strictly decreasing on [a, b] and we find that (i) follows from Lemmas 4.2 and 4.8
of [9]. By Theorem 5.9 of [9] we get

Sf (a, b) = O(λ1/2N1/2) +O(N1/2λ−1/2). (12)

If λ1 < 1 then (ii) follows from (i), and if λ1 > 1, then (ii) follows from (12), for
we now have N1/2λ−1/2 < λ1/2N1/2. �

Lemma 2. Let f(x) be a real function such that f (4)(x) is continuous on the
interval [a, b] and

|f ′′(x)| ≈ R−1, βk(x) = f (k)(x)/f ′′(x) = O(U2−k),

where R > 0, U > 1, 3 6 k 6 4, 1 6 a < b 6 2a. Then∑
a6n6b

ef(n) = λ
∑

α<v<β

|f ′′(xv)|−1/2e(f(xv)− vxv + 1/8)

+O(R1/2) +O(log(2 + aR−1) + (a+R)U−1).

Proof. It follows from Theorem 1. �

The next lemma prepares the inductive steps.

Lemma 3. Let (p, σ) be a pair of numbers with 0 < p 6 1/2 6 σ < 1 such that
if a real function f(x) has continuous derivatives up to order K on an interval
[a, b] ⊆ [N, 2N ], and satisfies

|f (r)(x)| ≈ ξN1−r, 1 6 r 6 K, ξ > 0,
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then
Sf (a, b) = O(ξpNσ) +O(ξ−1).

Then (k, λ) = A(p, σ) = ( p
2(p+1) ,

1
2 + σ

2(1+p) ) is a pair of numbers such that if
g(x) is a real function defined on an interval [c, d] ⊆ [M, 2M ] having continuous
derivatives up to order K + 1, and satisfying

|g(r)(x)| ≈ ηM1−r, 1 6 r 6 K + 1, η > 0,

then we have the estimate

Sg(c, d) = O(ηkMλ) +O(η−1). (13)

Here t ≈ T means that C1 6 t/T 6 C2 for two suitable absolute constants C1 > 0,
C2 > 0 (M and N may not be those stated in Theorem 2).

Proof. IfM < 100 then (13) is obvious. LetM > 100 and assume that g(x) fulfill
the asserted properties. By Weyl’s inequality(see for instance Lemma 1 of [3]), for
any Q ∈ [10,M/5] we have

|Sg(c, d)|2 = O

M2Q−1 +MQ−1
∑

16|w|6Q

∣∣∣∣∣∑
n∈I

e(G(n,w))

∣∣∣∣∣
 ,

where I = [c, d]
⋂

[c−w, d−w], G(n,w) = g(n+w)− g(n). Suppose that |I| > 10.
Here |I| denotes the length of I. Then obviously the function G(x,w)(x ∈ I) has
continuous derivative function of order K. Additionally for 1 6 r 6 K,

G(r)(x,w) = g(r)(x+ w)− g(r)(x) = wg(r+1)(x+ θw), 0 < θ < 1.

Consequently, by the hypothesis about g(x) we have

|G(r)(x,w)| ≈ η|w|M−r, 1 6 r 6 K.

Thus, by the hypothesis for the pair of numbers (p, σ) we have∣∣∣∣∣∑
n∈I

e(G(n,w))

∣∣∣∣∣� (|w|ηM−1)pMσ + |w|−1η−1M.

For |I| 6 10, this estimate is trivial. Consequently

|Sg(c, d)|2 �M2Q−1 +M1−p+σηp +M2η−1Q−1 log(2M). (14)

If η 6 log(2M) then from Lemma 1(ii) we get the estimate (13), for we have
λ > 1/2. If η > log(2M), then the third term on the right of (14) can be neglected,
for it is smaller than M2Q−1. Let

Q = min
(
M/5, (M1+p−ση−p)1/(1+p)

)
. (15)
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It is easy to observe that (14) holds for all Q ∈ [0,M/5]. Thus we can put the
choice (15) in (14), arriving at the estimate

|Sg(c, d)|2 � η2kM2λ +M, (16)

where
(k, λ) = A(p, σ) =

(
p

2(p+ 1)
,

1

2
+

σ

2(p+ 1)

)
.

As λ > 1/2 we now have η > log(2M). It follows from (16) that

|Sg(c, d)|2 � η2kM2λ,

which show that the estimate (13) holds also in case η > log(2M). �

5. Proof of Theorem 2

We use mathematical induction on k. When k = 0, if n(0) = 0 then (10) follows
from Lemma 1(ii), for we have B(0, 1) = (1/2, 1/2). If n(0) > 1 by the condition
(11), we can repeatedly apply Lemma 3, starting from Lemma 1(ii), and we know
that the estimate (10) holds for

(p, q) = An(0)B(0, 1) = An(0)(1/2, 1/2).

Assume that Theorem 2 is true for k − 1, k > 1. Then we need to show that
Theorem 2 holds also for k. Let

An(k−1)B · · ·BAn(0)B(0, 1) = (ω, τ),

B(ω, τ) = (τ − 1/2, ω + 1/2) = (a, b), n(k) = n.
(17)

Obviously (ω, τ) 6= (0, 1), Thus (a, b) 6= (1/2, 1/2), 0 < a < 1/2 < b < 1. Let

(p, q) = (pk, qk) = An(k)(a, b).

Our purpose is to deduce the estimate (10) from (7), (9) and the inductive hy-
pothesis for k − 1. If N 6 F p, then we trivially get

Sf (N,M) = O(N) = O(F p)

and (10) follows. Assume that N > F p. It suffices for us to consider the diffi-
cult case with n = n(k) > 1. We can suppose that N(logN)−1 > 100. Let Qi
(1 6 i 6 n) be parameters satisfying

10 6 Qi 6 N max(∆, (logN)−1). (18)

Utilizing repeatedly Weyl’s inequality for 1 6 r 6 n we obtain

|Sr−1|2 � N2Q−1r +NQ−1r
∑

16|qr|6Qr

|Sr|, (19)
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where
S0 = Sf (N,M), Sr =

∑
x∈Ir

e(fr(x, q1, · · · , qr)),

the functions fr(0 6 r 6 n) are defined by f0(x) = f(x) and

fr(x, q1, · · · , qr) = fr−1(x+ qr, q1, · · · , qr−1)− fr−1(x, q1, · · · , qr−1),

and the intervals Ir(1 6 r 6 n) are defined by

I1 = {x|N 6 x, x+ q1 6M}, Ir+1 = {x|x ∈ Ir, (x+ qr+1) ∈ Ir}.

For a set of fixed integers q1, · · · , qn, assume that |Ir| > 10. Let

fr(x, q1, · · · , qr) = fr(x), g(x) = fn(x).

Suppose that
1 6 j 6 n(0) + · · ·+ n(k − 1) + 2. (20)

For all real numbers xr ∈ Ir(1 6 r 6 n), by the definition and the mean-value
theorem of calculus we have

f (j)r (xr) = f
(j)
r−1(xr + qr)− f (j)r−1(xr) = qrf

(j+1)
r−1 (yr),

yrx
−1
r = 1 +O(QrN

−1), yr ∈ Ir−1
(21)

where I0 = [N,M ]. Thus, from (7), (18) and (21) we get

g(j)(x) = f (j)n (x) = λ(α)n+jq1 · · · qnxα−n−j(1 +O(∆̃)), (22)

where ∆̃ = ∆ + (logN)−1. If n(0) = 1, k = 1, then

An(1)BAB(0, 1) = An(1)+1B(0, 1).

Thus, (10) follows from the proof for the case k = 0 given at the beginning of our
proof. Let n(0) > 2 or n(0) = 1 and k > 2. Then

n(0) + n(1) + · · · = n(k − 1) + 2 > 4. (23)

From (9), we get (α)n+2 6= 0. Let N be large enough such that (21) and (22) yield

1/2 < g(j)(x)
(
λ(α)n+jq1 · · · qnxα−n−j

)−1
< 3/2 (24)

for 1 6 j 6 2 and let x ∈ In = [N1, N2]. From (24) we know that g′(x) keeps
its sign on In. Suppose g′(x) > 0 on In (otherwise we consider −g(x)). By (20),
(22)–(24), and Lemma 2, we get (here g′(xv) = v)

Sn =
∑

N16x6N2

e(g(x)) = λ
∑

V16v6V2

|g′′(xv)|−1/2e(g(xv)− vxv + 1/8)

+O(R1/2) +O(log(2 +NR−1)) +O(RN−1),

(25)
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where for V1 6 v 6 V2, xv is determined by g′(xv) = v,R = N2F−1n , Fn =
FN−n|q1 · · · qn|,

V1 = min(g′(N1), g′(N2)), V2 = max(g′(N1), g′(N2)),

and λ = 1 or −i according as g′′(x) > 0 or g′′(x) < 0 on In. Since g′′(x) > 0 on
In, from (24) we find that

λ(α)n+1q1 · · · qn > 0,

and g′′(x) > 0 or g′′(x) < 0 on In follow from α > n+ 1 or α < n+ 1 respectively.
We suppose without loss of generality that α > n + 1. Then g′′(x) > 0 holds on
In, and consequently λ = 1, V1 = g′(N1), V2 = g′(N2). Let

K(v) = (g′′(xv))
−1/2, v1 6 v 6 v2,

where v is a real variable. From g′(xv) = v we get

(xv)
′ = (g′′(xv))

−1. (26)

From (22) and (26) we get

Kv = O(R1/2), K ′(v) = O((g′′(xv))
−5/2|g(3)(xv)|) = O(R1/2V −1), (27)

where V = FnN
−1. We have Vi ≈ V, i = 1, 2. Thus, if V 6 100, from K(V ) =

O(R1/2) we get ∑
V16v6V2

|g′′(xv)|−1/2e(g(xv)− vxv + 1/8) = O(R1/2). (28)

Assuming that V > 100. From (27) and a partial summation we obtain∑
v16v6v2

|g′′(xv)|−1/2e(g(xv)− vxv + 1/8) = O(R1/2|SG(u1, u2)|) +O(R1/2), (29)

where G(v) = g(xv)−vxv, [u1, u2] is a suitable closed interval contained in [V1, V2],
and

SG(u1, u2) =
∑

u16v6u2

e(G(v)).

Let F (x) be a real function defined on the interval In = [N1, N2], which has
continuous derivatives from orders 1 to 2 + n(0) + n(1) + · · · + n(k − 1), and
F ′′(x) > 0. Thus F ′(x) is strictly increasing. For each real variable v with

F ′(N1) = V1 6 v 6 V2 = F ′(N2),

let xv ∈ In be defined by
F ′(xv) = v (30)
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and let W (v) = F (xv)− vxv. From (30) it is easy to verify that

W ′(v) = −xv, W ′′(v) = −(xv)
′ = −(F ′′(xv))

−1. (31)

Thus, by taking derivatives consecutively, we obtain

W (r+2)(v) = (Σ1pr(c1, · · · , cr)F (c1)(xv) · · ·F (cr)(xv))(F
′′(xv))

−1−2r, (32)

where Σ1 means a summation for lattice points (c1, · · · , cr) satisfying

r + 2 > c1 > c2 > · · · > cr > 2, c1 + · · ·+ cr = 3r,

and 1 6 r 6 n(0) + · · · + n(k − 1), pr(c1, · · · , cr) is an integer. To explain (32)
more carefully, we should use mathematical induction for r and both (30) and (31).
Choosing in (32) respectively

F (x) = g(x), W (v) = G(v) = g(xv)− vxv

and

F (x) = g̃(x) = Φxα−n, Φ = λ(α)nq1 · · · qn, W (v) = G̃(v) = g̃(xv)− vyv,

for any real variable v, v1 6 v 6 v2, we get respectively

G(r+2)(v) =
(

Σ1pr(c1, · · · , cr)g(c1)(xv) · · · g(cr)(xv)
)

(g′′(xv))
−1−2r (33)

and

G̃(r+2)(v) =
(

Σ1pr(c1, · · · , cr)g̃(c1)(xv) · · · g̃(cr)(xv)
)

(g̃′′(xv))
−1−2r, (34)

where xv ∈ [N1, N2] and yv ≈ N are determined by g′(xv) = v and g̃′(yv) = v,
respectively (note that g′(xv) > 0 implies that (α− n)Φ > 0). Thus,

yv = (v(Φ(α− n))−1)1/(α−n−1) (35)

and from (22) we get

xv = (v(Φ(α− n))−1)1/(α−n−1)(1 +O(∆̃)) = yv(1 +O(∆̃)). (36)

Let 1 6 c 6 2 + n(0) + · · ·+ n(k − 1). From (20), (22), (35) and (36) we get

g(c)(xv) = g̃(c)(yv)(1 +O(∆̃)). (37)

From (9) and (35) we obtain

G̃(v) = Φyα−nv − vyv = σvα(k−1), σ = −(α(k − 1))−1(Φ(α− n))1−α(k−1).

Thus for 1 6 r 6 n(0) + · · ·+ n(k − 1) we get

G̃(r+2)(v) = σ(α(k − 1))r+2v
α(k−1)−r−2. (38)
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From (34) and (38) we get

σ(α(k−1))r+2v
α(k−1)−r−2 = (Σ1pr(c1, · · · , cr)g̃(c1)(yv) · · · g̃(cr)(yv))(g̃′′(yv))−1−2r.

(39)
For an integer c, 2 6 c 6 r + 2, we have

g(c)(xv) = O(FnN
−c), g̃(c)(yv) = O(FnN

−c), g̃′′(yv)� FnN
−2.

Thus, for a lattice point (c1, · · · , cr) counted in Σ1, from (37) we get

g(c1)(xv) · · · g(cr)(xv) = g̃(c1)(xv) · · · g̃(cr)(xv) +O(∆̃F rnN
−3r).

Consequently, from (33) and (39) we get

G(r+2)(v) =

(
Σ1pr(c1, · · · , cr)g̃(c1)(xv) · · · g̃(cr)(xv) +O(∆̃F rnN

−3r)
)

(g̃′′(yv))1+2r
(1 +O(∆̃))

= σ(α(k − 1))r+2v
α(k−1)−r−2

(
1 +O(∆̃)

)
.

Thus we have
G(j)(v) = σ(α(k − 1))jv

α(k−1)−j(1 +O(∆̃)) (40)

for 3 6 j 6 2 + n(0) + n(1) + · · ·+ n(k− 1). It is easy to verify (40) for j = 1, 2 in
view of (22), (36), and

G′(v) = −xv, G′′(v) = −(g′′(xv))
−1.

From N > F p (cf. the arguments between (17) and (18)), we have

Np−1−1 > FN−1 > FnN
−1 = V.

Thus, ∆̃→ 0 as V →∞. Evidently, we can assume that 1 6 u1 < u2 6 2u1. From

|σvα(k−1)| ≈ Fn,

we get by (40), (9), and the inductive hypothesis for k − 1 the estimate

|SG(u1, u2)| � (FnV
−1)ωV τ + V F−1n , (41)

where (ω, τ) is given by (17). From (25), (28), (29), and (41), we get

Sn = O
(
N b(FnN

−1)a +NF−1/2n + L+NF−1n

)
, (42)

where L = logN and (a, b) = (τ−1/2, ω+1/2). If Fn 6 δN , then δ is a sufficiently
small positive constant such that

FnN
−1 � g′(x) 6 1/2
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for x ∈ In = [N1, N2]. Then by Lemma 1(i), we get

Sn = O(NF−1n ).

If Fn > δN, then from (42) we obtain that

Sn = O(N b−aF an ),

since b > 1/2. Thus, we always have

Sn = O(N b−aF an +NF−1n ). (43)

From (19) and (43) we have

|Sn−1|2 � N2Q−1n +N b−2a+1F an−1Q
a
n +N3F−1n−1Q

−1
n L, (44)

where Fn−1 = FnN |qn|−1. For 1 6 r 6 n, let

(a(r), b(r)) = Ar(a, b).

By (7), (18) and (21) we have

f
(j)
n−1(x) = λ(α)n−1+jq1 · · · qn−1xα−n+1−j(1+O(∆̃)), x ∈ In−1, 1 6 j 6 2. (45)

If Fn−1 6 1 or 1 < Fn−1 6 NL from b(1)− a(1) > 1/2, by Lemma 1(ii) and (45)
we get

|Sn−1| � F
1/2
n−1 +NF−1n−1 � (NL)1/2 +NF−1n−1

� (Fn−1N
−1)a(1)N b(1) +NF−1n−1.

(46)

If Fn−1 > NL, by (44) we get

|Sn−1|2 � N2Q−1n +N b−2a+1F an−1Q
a
n. (47)

Note that (47) holds obviously for Qn ∈ [0, 10]. Thus, we can choose

Qn = N min
(

max
(
∆, (logN)−1

)
,
(
Na−bF−an−1

)1/(a+1)
)

in (47). This value of Qn satisfies (18), so we obtain from (47) that

|Sn−1|2 � NL+ (F an−1N
b+1)1/(a+1) � (Fn−1N

−1)2a(1)N2b(1).

Thus (46) is always true. By repeating similar arguments based on (7), (19), (21),
(46), and Lemma 1(ii), we can deduce for r > 2 that

|Sn−r| � (Fn−rN
−1)a(r)N b(r) +NF−1n−r, (48)

where F0 = F and for n > r + 1

Fn−r = F |q1 · · · qn−r|Nr−n.
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Especially, from S0 = Sf (N,M) and

(a(n), b(n)) = An(a, b) = An(k)BAn(k−1)B · · ·An(0)B(0, 1),

the required estimate (10) follows from (48) by taking r = n. This completes the
mathematical induction. The proof of Theorem 2 is finished.

Remark. Here we remark that the arguments leading to (40) are essentially the
same as in the proof of Lemma 7 of [1], and we give a detailed proof of (40) here,
for it represents a key step in van der Corput’s theory of exponent pairs; Lemma 7
of [1] is just Lemma 4 of [8], which was not proved in [8], and such a result was
also neglected in [4] which caused the erroneous theory of exponent pairs of §2.3
of [4] as that counterexample shows in the Introduction of our paper.
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