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Abstract: We prove a long time existence of special regular solutions to the Navier—Stokes
equations in an axially symmetric domain in R3, with boundary slip conditions and with inflow
and outflow. We assume that an initial angular component of velocity and an angular component
of the external force and angular derivatives of the cylindrical components of initial velocity and
of the external force are sufficiently small in corresponding norms. We assume also that inflow
and outflow is sufficiently close to homogeneous. Then there exists a solution such that velocity
belongs to W;’;(QT) and gradient of pressure to L5/2(QT), and we do not have restrictions
onT.

Keywords: Navier—Stokes equations, axially symmetric domain, global regular solutions, slip
boundary conditions.

1. Introduction

In this paper we examine the motion of an incompressible viscous fluid with a fixed
flux through a non straight pipe. The case with a straight pipe but in general
not axially symmetric was considered in [27]. In that case we were looking for
solutions close to two-dimensional (2d) solutions. The existence of global regular
2d solutions was proved in [8] but with non slip boundary conditions. In [27]
we have the slip boundary conditions with inflow and outflow. But to prove the
existence of global regular solutions in [27] we do not need the existence of 2d
solutions. We need only to show an appropriate global estimate. To obtain such
estimate a smallness of derivatives of initial velocity and the external force with
respect to the variable along the axis of the considered pipe is assumed in some
norms. This means that the solution from [27] is close to 2d solutions.

In this paper we are looking for solutions close to the axially symmetric solu-
tions so the pipe must be axially symmetric too. Therefore our solution is such
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that the angular derivatives (in the cylindrical coordinates) of velocity and pres-
sure and the angular component of velocity are small in some norms. The existence
of global regular axially symmetric solutions with vanishing angular component of
velocity was proved in [9, 17]. The existence of such solutions with nonvanishing
angular component of velocity is still an open problem. Since we are looking for
solutions close to the axially symmetric solutions we have to formulate all prob-
lems in this paper in the cylindrical coordinates. Therefore we need solvability to
some boundary or initial-boundary value problems for an elliptic system, the heat
equation and the Stokes system in weighted Sobolev spaces (see [5, 6, 19, 32-34]).
We examine the following problem

ve+v-Vo—divT(v,pg) = f in Q7 =Qx(0,7),
dive =0 in QF,
v-n=0 on ST =8 x(0,T),
n-D@) 7o +7v-Ta =0 on ST, a=1,2, (1.1)
v-n=d on S7 =S5, x(0,7T),
D) To =0 on ST, a=1,2

vlt:O = U(O) in Q?

where Q C R? is a bounded axially symmetric domain with the boundary S =
S U Ss.

By v = (v1,v2,v3) € R? we denote the velocity of the fluid, py € R the pressure,
f = (f1, f2, f3) € R3 the external force, fi is the unit outward vector normal to S,
Ta, @ = 1,2, are tangent to .S, v > 0 is the constant slip coefficient. Moreover, the
dot denotes the scalar product in R3.

By T(v,p) we denote the stress tensor of the form

T(v,p) = vD(v) — pl, (1.2)
where v is the constant viscosity coefficient, D(v) the dilatation tensor of the form
D(v) = {viz; + 0j2: }ij=1,23, (1.3)

and [ is the unit matrix.

Let (x1,x2,x3) be a local Cartesian system such that the x3 axis is the axis of
symmetry of Q. Let (r, g, z) be the cylindrical coordinates such that x; = r cos ¢,
To =rsing, 3 = 2.

Let e, = (cosg,sing,0), &, = (—sinp,cosp,0), €, = (0,0,1) be vectors
connected with cylindrical coordinates r, ¢, z, respectively. Let u be any vector.
Then cylindrical coordinates of u are denoted by u, = u-€,, u, = u-€,, u; = u-€..

Let R > 0, a > 0 be given numbers. We assume that ) is axially symmetric
and is located in the rectangle r € [0,R], z € [—a,al], S; is described by the
relation ¢(r,z) = 0 and is located in a positive distance from the x3 axis. S
is perpendicular to x5 and Sa(—a), Sa(a) meet the x5 axis at points —a and a,
respectively.
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To describe an inflow and an outflow we define
dy = —U-ﬁ‘SZ(,a), ds :v~ﬁ|52(a), (1.4)

sod; >0,7=1,2, and by (1.1)3 3 and (1.4) we have the compatibility condition

P = / dydSs = / d2dSs, (1.5)

52 (—a) SQ (a)

where @ is flux.

The aim of this paper is to prove the long time existence of regular solutions
to problem (1.1) without restrictions on magnitudes of the external force f, ini-
tial data v(0), inflow d; and outflow dz. We show the existence of solutions by
regularizing weak solutions.

In general we follow the ideas from [27]. However, the considered geometry
of Q is different from that in [18]. Let L(b) = S2(b) N S1, where b € {—a,a}.
Then we assume that the angle between S3(b) and S at = € L(b) is equal to 7.
The assumption simplifies considerations because otherwise we have to show the
existence of considered elliptic problems and the Stokes system in weighted Sobolev
spaces appropriate for problems in domains with edges. Omitting this assumption
makes the proof of the main result of this paper much less complicated however
the main physical features of problem (1.1) remain the same.

We assume that radius of L(b) is R(b), b € {—a,a}.

To make boundary condition (1.1), homogeneous we introduce new functions
(6,0) such that

6 —vdivD(§) + Vo =0 in QF,
divi=0 in QF,
Onlsr(—a) = —d1, Onlsz) =d2, Onlsy =0
vi D) Ta+70-Tu =0 on ST, a=1,2,
vi-D(§) -7 =0 on S1, a=1,2,
5|t:0 = 5(0)7

(1.6)

where 6, =6 -7, 6, =0 -Tq, a =1,2.
The compatibility condition for (1.6)2 3 is satisfied in view of (1.5). Moreover,
we have to assume that

- 0(0)[sy(—a)y = —dilt=0, 7+ 6(0)]s,(a) = dat=0- (L.7)
Therefore, we introduce the new functions

w=v-—79, p=1po— 0, (1.8)
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which are solutions to the problem
witw - Vw+w-Vi+0-Vw—divT(w,p)
=f—0,—0-Vo+vdivD() =F(5,f) in QF,

divw =0 in QF,
w-n=0 on ST, (1.9)
viv-D(w) - To +yw - Ta =0 on ST, a=1,2,
viv-D(w) - Tq =0 on S7, a=1,2,

wli=o = v(0) — §(0) = w(0) in Q,

V.,
242’

_ P,z - 5 = — 5 7 — : i
ag = Wt Tils, = ér, T2|s, = €y, Ti|s, = €, and S is generated by rotation

where Ti|s, = €,, T2|s, = @26, — a1€;, N|s, = a16, + aze;, a3 =

around the zs-axis of the curve described by ¥ (r, z) = 0.
Now we formulate the main result of this paper. Let

g =Frper +Fpply + Fzplz,

h = wrpr + wp,pp + w: e

Let

Xi(T) = 9llo0.7:L6)52) F 19l 2o _1hery 1) + 1 FollLo, 1)
1RO @ + o)l @)

€ (0,1), e € (0,1) and €, can be chosen arbitrary small. The above and below
introduced spaces are defined in Section 2.
Let FF=rotF, F' = F,e, + F.e,, a = rotw, o' = o€, + €.,

Xo(T) = [|1F'|| Ly0.15265(2)) + 1 Frll Lac0.7:L6 5 () F 1 Lo, 07
+ 10/ 0)llzo() + llar(0)llz, @) + 1o (O llwy, ()
Yi(T) = 1FpllLa0.75L6)5, 1) + [ae (0L, 0,

do(T) = (1+ T)(|f | aco.r:La)) + 10O o)) = (1 +T)dh,
Yo(T) = ||fHL5/2(QT) + ||v(0)||W§//25(Q)’

)

e
W, (S1)

2v

where k is the curvature of the curve S; N P, where P is the plane passing through
the axis of symmetry of €.

Theorem 1.1 (existence). Let X;(T) < o0, i = 1,2, Y1(T) < o0, dao(T) < o0,
K < oo. Let

A =20[p3(X))Y2 4+ a1 K(K 4+ 1)(d2 + X?)] + cYa,
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where 0 > 2, @9 s an increasing positive function and ¢y is the constant from

(8.66). Let X3 be so small that

1
203 (T, X1, A) X3 < (1 - )A7 X3 =X, + Xo,

g

where p1 is an increasing positive function. Then there exists a solution to problem

(1.1) such that v € W;;(QTL Vpo € L 2(QF) and

||U||w;‘/;(m) + |Vpols/2.0r < A,

Theorem 1.1 states a long time existence of solutions to problem (1.1) where
the time T is reciprocically proportional to quantity X3 which measures a distance
between the solution and the axially symmetric solutions.

Moreover, to prove Theorem 1.1 we used the existence and estimates for the
weak solution. The restriction on X3 is connected with the main open problem
for the Navier—Stokes equations: the regularity of weak solutions.

The existence of global weak solutions was proved long time ago: Leray [10]
proved the existence for the Cauchy problem but Hopf [3] for initial boundary
value problem with non-slip conditions. Since the regularity of weak solutions has
not been proved yet many mathematicians looked for special regular solutions to
the Navier—Stokes equations. In [7, 8, 9, 11, 17] the existence of two-dimensional,
axially symmetric and helically symetric solutions was proved, respectively. In [14,
15] the existence of global regular solutions in thin domains was shown. In the
next step the long time existence of regular of solutions to problem (1.1) close to
the axially symmetric solution was proved in [20, 22, 24, 25, 28, 18, 31]|. In this
case weighted Sobolev spaces must be used. Moreover, the existence of axially
symmetric solutions is possible in axially symmetric domains so this implies a
restriction on the considered domain. The existence of long time solutions which
remain close to the two-dimensional solutions is examined in [4, 16, 23, 26, 27, 29].
In this case €2 is a cylindrical domain but in general not axially-symmetric.

In [13] global existence was proved by prolongation the long time solutions
from [16] step by step in time.

Finally, the existence of solutions to problem (1.1) which are close to a linear
combination of axially symmetric and two-dimensional solutons was proved in [30].
2. Notation and auxiliary results

By ¢ we denote the generic constant. By ¢(o), ¢(o) we denote the generic functions
which are always positive and nondecreasing.
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To simplify considerations we introduce
|U|p7Q = ||uHLp(Q)7 Q € {Qa Sa QTvsT}a p S [la 00]7

lulls.¢ = llullas@): @€ {28}, s € Ry U{0],
lulls.o = lullgsorzig), @€ {27,857}, s € Ry U{0},

and  |[ullo,q = |ul2,q,
T q/p71/q
lulyq.0r = {/dt(/|u(m,t)|pdm) ] , p,yq € [1,00],
0 Q

r 1/q
Iulp,q,u,QT = (/dtnu(t)n%p,“(g)) , pyg€[l,o0], peR.
0

Let us introduce the energy norm

¢ 1/2
||U||V25(QT) = esssgg lv() Nl &=y + (/ |Vv(t)||?{s(9)dt> , 0<seNuU{0}.
t< J
Now we introduce weighted spaces

1/p
||u||Lp,H(Q) = </ |uprpHdQ> ) p € [1700]’ 1% € Rv Q € {QaSa QT7ST}7
Q

where d@ is the measure connected with the set @), with the notation

|u|p,u,Q = ||uHLp.,;L(Q)'

Let us define H;(Q) for Q € {Q, S}, s € Z, U{0}, p € R by

1/2
||u||HfL(Q) = ( Z /|Dgu2T2(U_S+a|)dQ> < 0,

|0‘\<SQ

where Ly ,(Q) = H(2) and HZ’S/Q(Q) for Q € {QT, ST}, s € Z, U{0}, u € R by

1/2
IIuIIH;,s/z(Q)=< > |D§8§u|2r2(“_s+|a+2”dQ> < .
o] +2i<s ¢

To simplify notation we introduce

lulls,ee = llullmg @ for @ € {&,5}

and
lillaso = lull s g for @ € 07,57},
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Similarly we introduce spaces V7 ,(Q) by

[l

1/p
veu@ = Y DSUI”T”(“‘5+'“)dQ> for Q € {Q, S}

lel<s g

and

1/p
iy = (X[ 1Dsoguprteo )
o] +2i<s
for @ € {Q7,8"}, p € [,o0], s € Z U{0}, p € R, [lu
for Q € {2, 5}, [ullsypnc = llully o2 g, for Q@ € {Q7, ST}
Finally, we define

215

5,P0,Q = ||U||V;,#(Q)

1/2
Wan(QT) = {u: lullyza @r) = (/(u?m +ud + u2)r2udxdt> < 00},

QT

and use the notation
||UHW22)’;(QT) = [[lulll2,2,u,07-

Moreover,

1/2
W) = (s iz, = ( [0+ a) < o0)
Q

and
lullw @) = llullla2 -

Now we recall inequalities and imbedding theorems used in this paper.
From [12] we have the imbedding

I ——

(Q) < CHUHVlfﬁ(Qﬁ QcC Rn’

ands—l—&—%—%go.
Let us consider the problem

uy—Au=f in QY u=g on ST, w|=p = uo.
From [21] we have:
Lemma 2.1. Let
feLou (@), geW ST, we Wi, (Q), we(0,1).
Then there exists a solution to problem (2.2) such that u € WQQi (QT) and

ulll22,u.0r < eI fl2u0r + lgllls/2,2,0,5m + lluolll12,0.0)-

(2.1)
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Similarly, let us consider the problem

0
ur—Au=f in T, a—z =g on ST, ult—o = up. (2.5)

From [21] we have:

Lemma 2.2. Let the assumptions (2.3) for f and ug hold, let g € WQI’{L?’IM(ST),

w € (0,1). Then there exists a solution to problem (2.5) such that u € W;; on)
and

lulll2,2,u,0m < c(flopar + 19l 22,057 + [luollli2,u0)- (2.6)

From Sect. 2 in [2] we have the Hardy inequality

_ 1 _
e Pulp . < mkﬂ Pl plp (2.7)
p
which in our case takes the form
1
ul2,u—1,0 < m U, |2,1,Q9 7 0. (2.8)

For solutions of (1.9) we have

Lemma 2.3. Letn =¢éy X Z, ég = (0,0,1), T = (x1,22,23), 1 = T, Q have the
azis of symmetry €y. Let w be a solution to (1.9) and let

‘/w(()) - ndx < 00. (2.9)
Q

< 00, ‘/f'ndasdt’
ot
Then
2
/w -ndx + 7y Z /w S Tal - TadS1 = /.7-'(5, f) - ndzdt’ + /w(O) -ndz. (2.10)
Q 04=1St Qt

Q

Lemma 2.4. Let

Fo(w) = /(wi,xj +wja,)2da (2.11)
Q

and let divw =0, w-7i|g =0, | [yw - ndz| < 00, Eg(w) < co.
Then

2
lwlZq < c(Emw) Y |s) (2.12)
a=1

Proof. Since Fo(w) = 2(|Vwl3 o — [4wiw;ni ., dS) we have

2
Vwlo < c(Baw)+ ) |w-Tal3s,) = 1.
a=1



Large time existence of solutions to the Navier-Stokes equations 217

By the Poincare inequality

w20 < (|Vw|29—|—2|w Flo.s,) < cI'/?, (2.13)

a=1

because it is assumed that tangent coordinates of w to Sy are given on S; and the
normal component of w to Sy vanishes on S;. The above inequalities imply (2.12).
This concludes the proof. |

Repeating the proof of Lemma 2.2 [27] implies

Lemma 2.5. Assume that di € Lg(0,T;L3(S2)), V& € Lo(0,T; L3(R)), F €
Ly(0,T; Lg5(82)), w(0) € La(R2). Then solutions to (1.9) satisfy

[wllvory < cexp(lds |3 6,55 T V3§13, o)l Flesseo +1w(0)20l =di(t), t<T.
(2.14)

Proof. Multiplying (1.9); by w, integrating over {2 and using the boundary con-
ditions we obtain

2dt\w|29+/w Vé - wda:+u/|]D) )|2dx

Q

—|—’yZ/|w Ta\ dS1 + = /5 nw?dSy = /.7-" wdz.

a=1g
From (2.12) and (1.6)3 we have
d
\w|2 Kelan v]w|l o <c(ldil3s, + ‘V5|3 Q)lwl3 o+ C|‘7:|6/5 o
where we used that

1 1 1
—5 /5 . ﬁw2d52 < 3 /d1w2d52 < §|d1
So S

|w\§752

< 51/3|Vw|§,9 + 05_5/3|d1|§,52\w|§’9, e€(0,1).

Integrating the above inequality with respect to time yields (2.14). This concludes
the proof. ]

To show the existence of a global regular solution to problem (1.1) we need the
following quantities (see [20])

h = wrpr + We,pCp + W20z ¢ =Dy,
a=T10tw, X=0Qp=Wr,—W,r, W=w,, F =rotF, (2.15)
g = fmpér + f¢’¢é¢ + fz#,éz.
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From Section 1.1 [20] we obtain the following problems for h, ¢, «, w.

Let w be given then (h,q) is a solution of the problem

hi—divT(h,q) = —w -Vh—h-Vw+g=G in QF,
divh=0 in QF,
h-n=0, (2.16)
vii - D(h) - T +Y0k1h-Ta =, on SE, k=1,2, a=1,2,
hli—o = h(0) in Q,

where 031 is the Kronecker delta.

For given w, h, ¢ we have

. 12 _
Wy 4wV + Lw - vAw+ v = —q+ 2 h, + F, in Q7
r r T r
_ _ ay T
vn -V = —yw + v—_—w on St (2.17)

Ogyw =0 on S7,

wl=o = w(0) in €,

where the boundary S; is described by the equation ¢(r, z) = 0 and a; = — Y
’ VELHYLT
Y.z

as = N The cylindrical components of vorticity assume the form

1

Qr = ;(Wz,cp —TWe,z),

Oy = Wrz —Wzr =X, (218)
1

Qz = ;[(T‘Us&)w - wr,s@]~

Now we shall obtain boundary conditions for a.

Applying the proofs of Lemmas 3.1, 3.2 from [20] to (1.9) yields

Lemma 2.6. Assume that Sy is described by the relation ¥ (r,z) = 0. Let ay =

\/ﬁ, as = \/wfiszi Then the following boundary conditions for w and o
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take place

v a1 T
Wy + Q2Wy, , + ~Wy = —w, on 57,
v r

20,1(12((4)7«’7« - wz,z) + (ag - a%)(wr,z + wz,r)

+l(a2wr —aw;) =0 on Sf,
v

w, =0, wp,=0, wey.=0 onsg,

a¢=2(k—27y)w-7'2 on SIT,

2a1 vy
T = ——w,+ ~w, on ST,
r v

(T_L . Oé/)m == ﬂlhap + 62}17“ + ﬂShz + 5411)774
+ Bsw,, + Bew on S,

o, =0, a, =0, a;.,=0 on ST,

(2.19)

where Ti|s, = €y, Tols, = A28, — a1€, N|s, = @18, + a2€, Tils, = €, Tals, = €y,
_ - ; — ’ ’_ _ 5
nng =€z T2 =A20y — G100, N O = Q10 + A20;, O = (araaz)y an =n: V:
Gi,i=1,...,6, depend on ay,as.

In view of Lemma 2.6 we see that o/ = (., @) is a solution to the problem

X
Qo t + w- Var - (arwr,r + azwr,z) - ;hr

2 , .
+ 2 (e = o) + 22 —vAG, = F, in QF,
r T

Q¢ +w- VOZZ - (arwz,r + azwz,z)

—Xhz —vAa, =F, in Q7
,

5 (2.20)
Fod =—"2uw+Lw on ST,
r v

(7~ a') = Brhe + Bohy + Bshs + Baw,r
+ Bsw,. + few on ST,
a, =0, a;,=0 on SQT,
a'li=o =a’(0) in Q,

where 7o = a2€, —a1€,, N = a18,+ase,, T2’ = asq, —ai1a,, -’ = aja, +asa,,
On=1n-V,p;,i=1,...,6, depend on ay,ay (see Lemma 3.2 from [20]).
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Next, x is a solution to the problem
X
Xt Tw VX + (W +wsz)x — VKT(*)
,r/.r

1 X
e rra(l) ] -2

x=0 on S7,
Xli=o = x(0) in €,

where k is the curvature of the curve S’ = {r,z : ¢(r,z) = 0} which generates S
by rotating it around the x5 axis.
Finally, w and p are calculated from the elliptic problems

rotw=a in §,
divw=0 1in Q, (2.22)
w-n=0 on S
and
Ap=—-Vw- -Vw+divF in Q,
op (2.23)

—=F-n+vin-Aw—n-w-Vw on S.
on

To obtain an estimate for y we need
Lemma 2.7. Assume that
Ai = Wy + QioWr s + QsWs e + QW 2, (2.24)
where a5 4,5 = 1,...,4, depend on a1,as. Assume that
det{—ai1as — a;3a1 + aaaz, —ai1a1 + izas + Qaa1, —Q2a1, Qi3azti=1,...4 # 0.
Assume that the function B depends on ay,as and their derivatives and depends
linearly on components of w 4, V’hT“", V' where V' = (0,,0.). Then
4
i Vxls, =Y bidsAi+B, 9,=7-V, (2.25)
i=1

where b;, i =1,...,4, depend on a1 and as.
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Proof. From the form of x we have

n- VX‘S = a1X,r + a2X,z = a1 (wr,rz - wz,rr) + a2(wr,zz - wz,rz)- (226)

We want to express - Vx|s in terms of 9;4;, 4 = 1,. .., 4. Performing calculations
in 0sA4;,i=1,...,4, we obtain the identities

8sailwr,r + 8sai2wr,z + asanz,r + asai4wz,z
+ Olil(azwr,rr - alwr,rz) + Q2 (a2wr,rz - alwr,zz) (2-27>

+ ai3(a2wz7r7‘ - alwz,rz) + ai4(a2wz,7‘z - alwz,zz) = 83Ai; 1= 17 ce 74-

Since 71 - Vx|s depends on four different second derivatives we have to eliminate
the remaining two derivatives. For this purpose we use the continuity equation

1
Wryp + W, = —;(h¢ +wy) (2.28)

Differentiating (2.28) with respect to r and z we get

h Wy
Wrypr + Werz = —(f + 77) =d,
T
1
R

(2.29)

Calculating wy. ., and w; ,, from (2.29) and inserting them to (2.27) we obtain

(—as102 — 301 + @ua2)w, rx + (— @101 + Q202 + Qa1 )Wy s
— Q201 Wy 2 + QG3A2Wy pr = 0sA4; — (asailwr,r + asaﬂwr,z (2 30)
+ 6sai3wz,r + asai4wz,z)

—Oéilagdl —l—ai4a1d2, 1= ].,...,4.

In view of the assumptions of the lemma we can calculate the second derivatives
of w from (2.30) and insert them to (2.26). In this way we obtain (2.25). This
concludes the proof. |

From [22] we recall

Lemma 2.8. Let g € Ly(0,T;Lg/5()), h(0) € La(Q), w € Ly(0,T; W3 (9)).
Then solutions to (2.16) satisfy

[hllvo o) < cexplcllw a3 2.00)[19l6/5.2.00 + [R(0)]2,0], (2.31)
fort <T.
Let 6 € (0,1) and let

Ms(Q") = Loo (0, T5 La,—5(2)) N Lo (0, T3 Wy _5(€2)) N La(0, T W3 (). (2:32)
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Lemma 2.9 (see [22]). Let 6 € (0,1), w € Ms(QT), g € L2(0,T; Lg5(2)) N
L2£7}1+e*)(QT), h(0) € Hl(Q)ﬁHi(H_e*)(Q), ex € (0,8). Then solutions of (2.16)
satisfy

All2,—(11e.),0t + gl Ly 0,60 (@) S o(lwllmsn))(Ngless,2,00 + [R(0)]2,0)

—(1+ex
+ C(|g|2,—(1+5*),9*

+[RO)[l1,—(14e.).0), t<T,
(2.33)

where @ is an increasing positive function.

3. Estimates

In this section we show a long time a priori estimate for solutions to problem (1.1).
First for given w and h we obtain an estimate for y.

Lemma 3.1. Assume that h € Ly(0,T; H2,(Q2)), w € Loo(0,T; H3(Q)), wy,,. €
L3(0,T; Ly, —3/4—<(R2)), € > 0 is a small number which will be chosen later, F, €
LQ(O,T;L6/57_1(Q)), Sl S 02. Let

1= gl
2v WL (S1)

Let {p;(z,t)} be a partition of unity near S, t < T. Then

X(B)B 1o+ / Hv@
0

dt" < cexp(c| h|§72,_179t) [K(K +1)

X Z / (|w,gg|2 + |w]? + ’ng)dxdt'

J Stnsupp ¢;

2
oo

t
+ (14 sup i o0) / I3, -1.0dt
0

t
2e

R
Srsuwlelfon [l st
0
+|Fp |<23/5,2,—1,Qt + ‘X(O”g,fl,ﬂ]a t< T,
(3.1)

+

where the constants ¢ do not depend on t.

Proof. First we introduce the set Q. = {z € Q: 0 < &, < r} and add the
artificial boundary condition
X|r=e. = 0. (3.2)
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Multiplying (2.21); by % and integrating over {2, we obtain

1d
2 dt

X3 1.0, + /[w VX + (wrr +wz,z)>d%dff

Q.

X 1 Y X
_ V/ |:<T(;>,r),r + ﬁX#P#P + X,zz + 2(;>’Ti| ﬁdx

Q.
1 1 X
_ —2y/ 72( —hgs + ;hz,@) Zde

Qs

1
- / f(w,zhr —w,h, + Ehz) X dw
T T T
Q.
1 X X
+2/;ww%zr—2dx+/F@T—2dx.
Q. Q.

The second term on the Lh.s. of (3.3) equals

1 2 . 2

= / w - 2 doq. +/ (wrr+woz + 22) Gz =1y,
r r/r

2
IO Q.

where the first term in I; equals

a

1 _x? 1 X2

Sy —a

dz =0,

r=e,

where S, ={z € S: 0<e, <r}and we used (1.1)3 and (3.2).
The second term in I; assumes the form

2
_/hj%dx
ror

which can be estimated by

xr 2 xr
= 1 h = .
51’7, 6.0, +c(1/e1)|hel5 10, T 2.

The last term on the Lh.s. of (3.3) takes the form

S [)) 2 (2),) B

Q.

223

(3.3)

+1//’%XW‘Qdaz—1//2(%)7r%drdzd<pzlg.
Q.

Q.
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Integrating by parts the first integral in 15 equals

a 27

2

y/’V’X‘ dx—u/ﬁ~Vxxd51+u//d<pdz(x) X ,

r T T/ r lr=e,

« S1 —a 0
where V' = (9,,9,).
Finally, the last integral in I reads
—1//8 drdzdap— —u/—dSl +I/// dzd<p.

The first term on the r.h.s. of (3.3) is estimated by

h ! h,1
w ( () -E (%) )dw < VX[ s ol/lh .
r r), T r) s
Q

*

where the last norm is estimated by Hh||§_1Q

By the Holder and Young inequalities we estimate the second term on the r.h.s.
of (3.3) by

2
=2,

e |X[ el
r 6,0
where the imbedding
|hl3,~2.0. < cllhll2,-1.0.

will be used.
We estimate the third term on the r.h.s. of (3.3) by

—e/, 0

X c
€4 ‘TQ*E’ allwllio,g* w23,

2,0,
where ¢ > 0 is a small number which will be chosen later.

The last three cases are more explicitly described in the proof of Lemma 4.1
from [20].

Finally, the last term on the r.h.s. of (3.3) is estimated by
2

X‘Q F,
€5 | = +c(1/e5) |—
5‘7‘6,9* (1/¢5)

r

6/5,0,

Emploing the above estimates in (3.3) and using that ¢; < /8, i = 1,3,5, €3,¢4
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are sufficiently small and (3.2) we obtain

X |2 X ho X°
. v ‘ < ] /—dS /77@
|X|2 1,Q, +V’ Er67Q*+C 2 1+e r 2
_ X
+2v [ n-V=xdS:
T
s
' , ) (3.4)
+e(1/e)|(1+ [l 0.0 1015 -1 0.
2¢’ )
+ ? s |4,73/476’,Q*
2
+ |FLP‘6/5,71,QJ7
where we used the Hardy inequality
2 2 , 2¢’
ERIIN (o et
rla—1ver0 |2 r le’|?
Q
In view of the Poincare inequality
X <cl= + C‘VK
rl2,0, 2,8 7 l2,0.
and for sufficiently small € we obtain from (3.4) the inequality
d o X||? 2 hy X _ X
%\X|2—1,Q* + VH;HLQ* <elxlz,—1,s, +c 7r—2da: +ev [ n- V;del
Q. S1
c|(1+ ||w|? 2
@+l o0.) 55)
RQE’ )
+ e , |4,—3/4—s/,Q*

+ |Fw‘<25/5,—1,9*]

From the boundary condition (2.21), the first term on the r.h.s. of (3.5) is esti-
mated by

- 2)-

Applying the Hélder and Young inequalities we estimate the second term on the
r.h.s. of (3.5) by

5 2
_ Y
. 7'2‘ <csup | |k— =—
2,5, Sy 2v

) wls, < Kl

[, e

6,
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Using the above estimates in (3.5) and assuming that e¢ is sufficiently small yields

X

310 X5 10, +0/77'V%Xd51

S1

d X |2 2, 12
%‘Xb,—l,ﬂ* + VH;Hl 0 < cK7|wly g, + clhy

n c[a w20 ) IAIE 0.

2¢’
M

2 2 2
10,0 We,211—3/a—cr 0. + F<P|6/5,—1,Q*:|'
Integrating the above inequality with respect to time, replacing €’ by € and passing

with e, to 0 we obtain

t

XD, 10+ y/ Hx(t’)

0

dt’ < cexp(c|h |§,2,—1,Qt)

x U/n.vifxd&dt’ + K2 w3 g

5
t
+(1+Sgp||w|\%,079)/”h(t/)H%—Lth/
0

RQE :
+ Tzsgpﬂwll%,o,ﬂ/|%,z(t')|z21,—3/4—s79dt/
0

+|F, |§/5,2,—1,Qt + |X(0)|§,—1,Q] , t<T.

(3.6)

To examine the first term on the r.h.s. of (3.6) we introduce a partition of unity
¢j(z,t) in a neighborhood of ST. Since >.;pj(z,t) =1 we have

I = Z/goj(x,t’)ﬁ : V%deldt’

N ’ / X2 ’_
:Z @j(x,t);n.vxxdsldt —Z apj(m,t)alﬁdSldt :IQ-‘,-Ig.
J Si J S{

In view of Lemma 2.4,

4
I = Z |:/<,Oj(l‘,t/)71n Z(biasAi + B) (k? - %)w - TodS1dt .

J S{
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Integrating by parts yields

Z/ZA@ [ bi(k = o )w- 72| dsiar

J St i=1
+Z/% kf —)w FpdSydt! = I, + I,
J St
where
L] < L 22 asyar
| 4| ~ Z gp]r 2 w@ 1
7 Strsupp ¢
+y / 3 0, <p@(k—l) lw.o| [w|dSdt’
Ty 2v ’
J StNsupp ¢; =
<Ky / W dSydt’ + Ky / |w | |lw|d Sy dt’,
J StNsupp ¢; J Sinsupp ¢;
and "
I < K'Y / ol (joe] + o] + [V 2] ) asiat
T strsupp p;
Finally,

Is] < K2 / |w|?dS, dt’.
ijﬁsuppapj

Summarizing, we obtain

b2
N| < cK(K +1 (w2 +w?+ |V )asuar'.
k@ DY, [ (R +]vE] s,
7 Stnsupp ¢;
Using this estimate in (3.6) we obtain (3.1). This concludes the proof. |
To obtain a long time estimate necessary for the proof of global existence we
have to estimate all norms from the r.h.s. of (3.1). First we shall examine the

second factor from the third term on the r.h.s. of (3.1). For this purpose we use
(2.18); in the form

1
Wp,z = —0p + ;hz. (3.7)
By (2.1) we have

lwe,2|a,—3/a—c,0 < |ar|a,—3/a—c.0 + |hla,—7/a—c00

(3.8)
<cllarlli,—1/2-c,0 + |Rll1,—3/2—¢,0)-

To estimate the first norm on the r.h.s. of (3.8) we need energy type estimates for
o = (o, ay).
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Lemma 3.2. Assume that w € Ly(QT) N L3(0,T;W4(2)) N Loo(0,T; H()),
2,1 2,1
he H ,(QF), w e H,(QF), F' € Ly ,(Q7), o/(0) € W3, (), « €
Loo(ovTv L2,17}L(Q))7 Qr € L2,—(1+,u)(QT); ai,az € 027 ﬁz € 017 1 = ]-7 76
Then solutions of problem (2.20) satisfy
e Ml2.20-p0r < p(lwlaqr [Vwlsan)ld 21— + el VU k2000t [ ll2,— 00
+ c(llhll2,— 00 )+ clonlz,— (14,00 (3.9)
+olF 2apor + el (0)l1zi-pe,  t<T,
where @ is an increasing positive function.
Proof. Applying [21] to problem (2.20) yields (see also Lemmas 2.1, 2.2)
|HO/|H2,2,17,LL,Qt g c(\w : va/|2,17}t,ﬂt + |047'w7',7' + O‘zw7'7z|2,17#,§2t
+larws r + azw; . + [ X
r 2,1—p, 02t
1 o
+ ‘ﬁ(hr,z ) ‘7
r 2,1—p, 0t 7 12,1—p,08 (310)
2a
P |- 2],
v 3/2,2,1—p,St

+ |||ﬁ1h<p + 62hr + ﬁ?}hz + ﬁ4wga7r + BSwtp,z
+ Bl o0 psy + 6 O)ll21-n0),

where b/ = (hy, h.).
Now we estimate the terms from the r.h.s. of (3.10). The first term is esti-
mated by

Vo |41 patlwlaor <erllla’|ll22,1- 00 +0(1/e1, [wlaoo)]a 210t

where ¢ is an increasing positive function.
The second and the third by

ca’ - Vwlo1_par < dd|61—pat|[Vwls o

< eallla’|[l2,2,1—p0r + 0(1/€2, [Vwlz )l [21- 0

where ¢ as above.
The fourth term by

1/2 ¢ 1/2
( / X2l Hﬂdt) < ( / x@@nhni_mdt’)
0

< A Vwlzo0t hlpy 0,602, 0)-

The fifth term by
C”hHLz(O,t;Hiu(Q))'
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The eighth by
CHwHZlﬂL,W'
Finally, the ninth by
c([[Pll2,— g0 + lwllza—p.00)-

To show the last estimate see the proof of Lemma 4.3 from [20].
From the above estimates we obtain (3.9). This ends the proof. |

Next we have

Lemma 3.3. Assume that h € H>{(QT), w € H{(QT), w € Ly(0, T; W4 (Q)) N
Loo(0,T5 HY(2)) N L2(0,T; Lo (), F' € L2(0,T; Lg5(2)), o/ (0) € La(2). Then
solutions to problem (2.20) satisfy the estimate

t
@ OBty [ 1@ adt + vlark}
0

< cexp(clw,z |§,2,Qt)
(3.11)
X [@(lW,L |2,oo,Qt7 IOJ Ioo,2,ﬂta |w,w |3,2,Q’5)
< (713,100 + w31 p00)

2 2
+ |F/ |6/5,2,Qt + |0¢(0)|2,Q}7 t<T,
where @ is an increasing positive function.

Proof. To show (3.11) we introduce functions & = (&, a,) as solutions of the
problem

Gt — VAR, = in Q7
Q.4 —vAa, =0 in O,
2
426y — 16, = — 2w+ Lu =g on ST,
r v
(aldr + a2&z),n = ﬁ1h4p + ﬁghr + ﬁghz (312)

+ Baw, + Bsw,. + few =g on S,

a, =0, Ay 2 = 0 on Sg,

drlt=0 =0, azlt=o =0 in Q.

Defining the functions

Qp = Op — Qp, OF = 0y — Qy, @ = (@mé‘z)v a = (6‘7"76‘2)7 (3'13)
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we see that they are solutions to the problem

_ _ _ _ X 2v
ar,t +w- var - (arwr,r + azwr,z) - ;hr + ﬁ(hr,z - hz,r)

Qp _ ~ - . o
—|—1/T—2 —vAa, = F, —w-Va, + (Gywyr,r + Gpwy ) — l/r— in Q7
dz,t +w- V@Z - (drwz,r + dzwz,z)

X, —vAG, = F, —w- V. + (@yws, + Gsws ) in QT
.

asty, —a10, =0 on SlT,

(a10y + a2@;) n =0 on Si‘r,

o, =0, a;,=0 on SQT,
a'|i=o = @' (0) in Q.

(3.14)

For solutions of (3.12) we have (for more details see the proof of Lemma 4.4 [20])

< c([|hll2,—1,0t + [[w]l2,1—p,0t)- (3.15)

Now we obtain an energy estimate for solutions to (3.14). Multiplying (3.14),
by @, (3.14)2 by @, integrating the results over Q and adding yields

1d
3B~ [ [aens +a,au(ons +on) + a2 Jdo

Q

1
_/X(h ar + h. ozz)dx+2y/72(hr,z — h)ada

+ ‘O‘T|2 _10—V [ (Aaa, + Aa.a;)dz

b\

(3.16)

/(F a, + F.a,)dx — /(w Va,a, +w-Va.a,)dx
Q

v / %drdaz + / {(drwr,r + Eawr2)

Q Q

(G + o) da
The term with laplacians equals (see the proof of Lemma 4.4 [20])
v|Va'l3 o
The second term on the Lh.s. of (3.16) is estimated by

ela’[§ o + c(1/e)|w .ol old'[3 o
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The third by
(|O‘r‘2—1§z+|az|29 +c(1/e) /% (h2 + h2)d
Q

The fourth by
elarf, 1.0 +c(1/)|All3 1 0-
The first term on the r.h.s. of (3.16) is bounded by

ela’f5 0 + c(1/2)|F'[5.0;

the second by

elVa/ 5.0 + e(1/e)|wl3 0ld 13 0
the third by

elarfs _1.0+c(/e)larls _1 0.

and finally the last by
eld’lo.0 + c(1/6)lw o3 old/ I3 o-

Summarizing the above results we obtain

S 18 B+ Ve B+ vlan3 g
6(\54z|6,n +la:3.0) +e(/e)|wal3old 30
+e(1/e) e telhl e G
+ C|Fl‘g/5,9 + C\W@O,Q\dl@n + c|o7,,|§771 Q
+e(l/e)lweliald 3o
In view of (4.25) from [20] we have
|z l2.0 < c(IVaz|z.0 + [lar]l1.0)- (3.18)

In virtue of (3.18) inequality (3.17) takes the form

d —/ /
dt| |29+V||04||1Q+V|04r|2—19 C|Wr|3Q|a|2Q

+ C|W,z|2,QHh||2,—1,Q + C||h||§,—1,ﬂ (3.19)
+ C|F/|§/5,Q + C|W\§O,Q|&/|§,ﬂ

+clarl3 10+ cdwel3

By the energy method we obtain for solutions to problem (3.12) the inequality
(see (4.32) [20])

). (3.20)

| |2Q+|VO‘ |29f‘|‘”|0/”|221 par < ¢
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By (4.35) [20] (see also (4.32) and (4.34) in [20]) we have

arllza—par < e([[wlla—par +[[Pll2,-1,00) = e, (3.21)

o)
a1, —p.ot <cl. (3.22)

Integrating (3.19) with respect to time and using (3.20) and (3.22) yields

t
@@ +y [ 10 @)IR adt + vlark o
0

< coplelosfon)||waBaalhld o
+(1+ leio,Q,Qi +|wa |§,2,Qt)
X (1Al -0 + 0l 20

+ | F Ig/5,2,ﬂt + |O‘/(O)|%,Q}-

3.23)

Using (3.15) and (3.22) in (3.23) we obtain (3.11). This concludes the proof. W

Finally, we have

Lemma 3.4. Assume that

w € Lo (0, T3 Wy (22)) N La(0, T3 W (2)) N Loo (0, T5 W, (2))
N La(0,T; W3 () N La(Q7) N L (0, T3 W3 () = 9y (Q7), p <3
Assume that h € H> (QF), w € HffH(QT), F' € Ly(0,T; Lg/5(Q2)), &'(0) €

Lo(2), 0,(0) € L (), Fy € L(0,T4 Loss, (@), F' € Lo n(@0), a'(0) €
Wi ,(Q), pe(0,1). Then

t
v [ Nar@)IR s < ol ry) 113, o + 0l
0

+F' 5200 T 1Fr 550, o (3.24)
+1o/ (0 o +lar () 0

B+ 0 OB 2amp]s

N
~

where @ is an increasing positive function.

Proof. In view of (3.20), (3.22) we have to find an estimate for ||, |1,— .0t
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Multiplying (3.14); by a,r~2* and integrating over  implies

%%k’yr §’7M’9+ /w -Va,a,r de — /(drwr,r + dzw,ﬂyz)@rr_g”das
Q Q
_ / Khrarr—Qﬂder 21// iz(hr,z — hw)aﬂ«—zudw
Q " Q "
+ V|O_ZT|§,_(1+“),Q - V/A&r&rr72“dx (3.25)
Q

= /Frécrrfz“dmf /w - Vaé,a,r de
Q Q
N N _ o _
+/(arwr’r+a2wr’z)arr 2“d:c—u/r—;arr 28 dy.
Q Q

Now we examine the particular terms in (3.25). The second term on the Lh.s.

equals
1 ~2 2 1 ~2 2 ~2 —2u—1
5[ Vagr~Hdr = 5[ w Viagr—")dz +p | azr~ " w - Vrdz,
Q Q Q

where the first term vanishes and the second is estimated by

elairl3 — 140 +c1/e)lwl3 alarl3 o
The third term on the Lh.s. of (3.25) is bounded by

2
P, — 1§

5|5‘T‘§,—H,Q + C(l/€)|w,w|;2ﬂ,9|6/

where % + ﬁ =2, p/ <3, p>2, the fourth by

elarl3, .0 + (/o) x5 olblo — 0
the fifth by
€|5‘7"|§,—(1+u),9 + 0(1/5)|h,x|§,—(1+u),9-

Integrating by parts the term with laplacian takes the form

=2 —2n : =~ = .—2u
V/CYTJT Hdx — V/le(Vararr M)dx
Q Q

- QMV/VdeTr_2“_1VrdJ: = 1/|V64T|§)_M)Q + 1 + Lo,
Q

where (see the proof of Lemma 4.5 [20])

L] < allle’llzzi-pma +c(l/e)lld 10
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and
20>

€ _ _
[l2] < v §|ar,x|§,—u,9 + 7|ar|§,—(1+u),ﬂ .

The first term on the r.h.s. of (3.25) is estimated by
E|O7T‘§,7;L,Q + C(l/E)|Fr‘§/5’7“’Q,

the second by
5|V54r|§,7u,9 + 0(1/5)\W\go,ﬂ|5ér|%,w,ﬂv

the third by
= 12 2 ~12 L1 5 /
5|a7"|6,7u,(2 + 0(1/5)|w’$|p’,9|a | ,— 1,820 5 + 17 = 67 p < 3a p> 27
and finally the last by

El@T|§,7(l+p),Q + C(l/E)|dr|§,7(1+u),Q-

In view of the above estimates and for sufficiently small & we obtain from (3.25)
the inequality

d,_ _ _ _
%|ar|§,—#,ﬂ + V||Oér||%,—#,fz < c|w|io,ﬂ‘a?”|g,—,u,ﬂ + C|w,x\;2;/,§z|a/|;20,—#,§z

+ C|W,r|§,sz Hh”g,ﬂt,n + c||h\|§,7ﬂ,9

+ellld@lB2ipa+et/e)l@fg  (326)
+ C|Fr|(23/5,7,$,9 + c|Vd,«|§’,u’Q
+ C|w,w|;2;’,ﬂld/|2,fp,ﬂ + Cldr|§,7(1+u),ﬂ7
Where%+;:%,p/<3,p>2.
Integrating (3.26) with respect to time yields
t
|6‘r|g,—#,9 + V/ ”drH%,—u,th/ < CeXP(Clwlio,Q,Qt) [lwm I;:QJ/,oo,Qt
0
< (|62 -por + 182 -00)
+w oo 10113 — 0 +11AIS 0
(3.27)

t
te / & ()1 Bas et + c(1/c1)
0

t
x / 16 ()2 ot + 1F s o
0

13—y + o (O3 un)
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Using (3.20)—(3.22) in (3.27) implies

t
‘O_é?”@,—,u,ﬁ + V/ HO‘T”%,—;L,th/ < w(lwloo,lﬂta |w,m |p',oo,Q”a Iw,z |27oo7Qt)
0

X |16 B o+ 13 1 e + 030

t
ter / & ()11t (3.28)
0

t
+e(1/e) / 1 )12 ot + 1R s s
0

+lor (03 0]

where ¢ is an increasing positive function.
Employing (3.23) in (3.28) gives

t
V/ HaT(tl)”%,f,u,th/ < QD(IW IOO,Q,Qf‘v |w,x |p',oo,Qta Iw,x |2,OO,Q*‘7 |W,m |3,2,Q")
0

S [ 7 PP )

: : : (3.29)
+1E 5.2, —por + 10/ (0) 5.0 + |ar(0))2 _ 0

t
e 18 @B 2ot
0

Exploiting (3.9) with (3.11) in (3.29) and assuming that ¢ is sufficiently small we
get (3.24). This concludes the proof. |

In virtue of (3.24) we obtain from (3.8) the inequality

t
oo Basa oo < ( AL G -~ ||h||§,—1,9t)
0

< (g 0)) {19113 -2 + 01131
+|F |§/5,2,Qt + | Fx |§/5,2,—M,Qt + /(030

+ar(0) o + 1F' 310 + I\Ia’(O)IHiz,l_u,g],

(3.30)

1
§+E<,LL7 :U’E(071)7
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where

wllov @ry = [wlso 2,07 +|wa |y 0007 H|wa 2ooor+|we 3207, P < 3. (3.31)

We need an estimate for ||w||21—,, 0. However, it must be shown in a different
way than in Lemma 5.1 from [20].

Lemma 3.5. Assume that h € LQ’,(HM)(QT), w E LQ,,(HM)(QT), q € Ly _,(Q7),
w € Loo(0,T5 La(Q)), Fyp € Lay—p,(QF), w(0) € HE_,(Q), p € (0,1), a1 € C*.
Then
w210t < Pl la,00,00) [W]2,1- .00 + c(|w]2,— (144,00
+ |hl2,—(14p),00 + ldl2,—p0r + [ Fol21-p,00 (3.32)
+ w1 1-pe),  t<T,

where @ is an increasing positive function.

Proof. Applying [21] (see also Lemmas 2.1, 2.2) to problem (2.18) yields

Wy
[wll2,1—p.0r < C(|w Vg1 por + ’ ; ‘2,1—u,9t + w2, (144),00
+1ql2,— w0t + [hl2,— (14,00 + [Fol21— 00 (3.33)

a1
el 2y + | 2 + [ (O)]1-0).

g
1/2,1—p,St
Let us examine the particular terms from the r.h.s. of (3.33). The first term is
estimated by

Sup lwl2p, 0l VL, 0,620, ) = 11,

r1—p
where 1/p+1/p’ = 1.
Using the interpolation inequality
IVwllLa0,752,, 1) < elwllzi-p0r +c(1/e)|wlz - 0r

which holds for p’ < 3, so we can choose p = p’ = 2. Hence we obtain

I <et|wlzi—por +e(l/er; |wlioo,0t) | W2,1—p08

where ¢ is an increasing positive function. The second term on the r.h.s. of (3.33)
is treated in the way

w w _
Wy — < sup |wrlop.al|— = I,
rl2,1—p,0t t T WL2(0,t5L5,0 4, (2))

where 1/p+1/p’ = 1.
Using the interpolation inequality

r

= [|wW .
Fa(O Ty 1. () 1wl L2071y _ . (2)

<elwllgi—por +c(l/e)|wla -y ar,
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which holds for p’ < 3, so we can choose p = p’ = 2. Hence

I < eallwllz,1— 00 + p(1/e2, |w i o0,0t) W21 000

The first boundary term on the r.h.s. of (3.33) is estimated by

lwllij21-p.st < esllwllai—p0r +c(1/es)wla1—p0r (3.34)

To estimate the second boundary term we introduce the set

Q(Sl,éo) = {{,E eN: diSt({L‘751) < (5()}, (335)

where §g is so small that

1/2,1—p,S¢

Q(Sl, 50) N {1‘3 — axis} = d) (336)

ay
—w
r 1,1—p,Q2(S1,90)

t 2 1/2
= c(/ w dt’)
0 1,17”,9(51,50)

L ay aq 2
+c( / dx// ’Tw(x=tl)_7w($7t/l)| r2(1_“)dt’dt’>

|t/ _ t”|2

c

N

a1

T

[N

l 1/2
<o [ 1) i) (3.7
0

[ w( ) —w(e, )P Yz
) - ) 2(1—
+C(/dm// |t/—t”|2 7‘( H)dt’dtﬁ)
Q 0 0

< clwllii—p0r,

where we used that a1 € C.
Applying an interpolation inequality yields

||1U 1,1—p,Qt g E4||1UH2$1,M’Qt + 6(1/64)|w|2’1,%gt. (338)

Employing the above estimates in (3.33) implies (3.32) for sufficiently small e1 —e4.
This concludes the proof. |

We need to estimate |w|y, _(14,),ot Which appears in (3.32).
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Lemma 3.6. Assume thatw € L3(0,T; Loo(f2)), w(0) € La,—,,(Q), ¢ € Lo, (2T),
‘7:50 € Ll(O’T; LQ(Q))¢ h e LQ,—(1+M)(QT)) IS (07 1)’ |a1| <e.
Then

|w(t)|%’7u’9 + V‘Vw‘g,—p.,ﬂt + V|w|§,—(1+u),ﬂt + 7|w‘§,—#,st
<cexp(lwli g0 +1) |lal3,— 0 (3.39)

10— + o + 0O ]

Proof. Multiplying (2.17); by wr—2#, integrating over €2, (see the proof of Lemma
3.1) and assuming the artificial boundary condition

w|r:s* =0 (340)
we obtain
1d
§£|w 2’7 /Awwr 2”d;v+1/|w|27 (1412),2.

Q.

1
- _ . Wr —2pu - —2p
= /(w Vw + " w)wr dw—i—/rqwr dx (3.41)

. Q.

1
+QV/—2hrwr_2"dx+/]:¢wr_2”dx.
T
Q. Q.

The second term on the Lh.s. of (3.41) equals

—1//6;1 2 *2“d51—|—1//dz/d<p P2kt —/ﬁ-war72“d52

S1 —a Sa

~¥—V/|Vw|2 Q“dz—l-’y/w r z“dsl—QMV/war =1y rde = I4.
S1

In view of (3.40) the second term in I; vanishes. By (2.17)5 the integral over Sy
in I; disappears. Using that |a1| < ¢ and the fact that S is located in a positive
distance from x3-axis the first term in I; is estimated by
2 1 2
e1lwelz, -0 +c(l/en)|wlz 0
Applying the Holder and Young inequalities we estimate the last term in I; by

2 2
|Vw|2 MQ+V |w‘2—(1+u)
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The first term on the r.h.s. of (3.41) takes the form

—/ (w -Vww + &w2>r_2“dx = —/ (%w SVuw? 4+ &w2>r_2“d:c
r T

* Q.
1
— /|:2w v( 2 —2;;)_"_(1_’_”) 2 —2” dx
Q.
-1 +u)/“’ wr~de = I,
r
Q.

(3.42)

where (1.9)2, the boundary conditions (1.9)3 and (3.40) were exploited.
Hence
I < eafwl3 (140, +c(1/e2)

The last three terms on the r.h.s. of (3.41) are estimated by

53‘w|§,_(1+u),9* +C(1/53)(‘Q|§,—H,Q* + |h|§,—(1+u),9* + |fw|§,1,9*)-

Using the above estimates in (3.41) and assuming that £; —e3 are sufficiently small
and g € (2u2,2), where p € (0,1), we obtain

d
%'wlg,—u,ﬂ* + Vlvw‘g,—u,ﬂ* + V‘w@,—(l-ﬁ-u),ﬂ* + 7‘w|§,—u,s*

c(|wl?eq. + Dlwl3_.q. (3.43)

+ C(|‘J|§,7M,Q* + ‘h|g,—(1+u),ﬂ* + |}—¢|g,1,§2*)~

Integrating (3.43) with respect to time and passing with e, to 0 we obtain (3.39).
This concludes the proof. |

From (3.32) and (3.39) we obtain

w2, 1—p,0 < @t |wla,00,0t |Wlso,2,00) 102, .0t
(3.44)
+ |hl2,— 4wy .0t T 1 Fpl21—par + [[wO0)][1,1-p0|-
Let
lwllo,ory = llwllnsry + 1Wlioo,0r + 1wl 2,07, (3.45)
where the first norm on the r.h.s. is defined by (2.32) and let
X1(T) = lgle/s,2,0r +19l2,—14e),0 + | Foloi—por (3.46)

+ [17(0) O)ll11-p0-

Then in view of (2.33) we obtain from (3.44) the inequality

ot Wl @) Xa(t), t<T. (3.47)
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Let
Xo(T) = | F'|s5.2,07 + 1 Frloys 2,—par + 1 F' 21— 07 (3.48)
+ 1/ (0)]2,0 + [r(0)]2,— .0 + [[[e’ (0)
and
NOT) =9 (Q7) Ny Q7). (3.49)
Using (3.47) in (3.30) yields
|Wgo,z |4,2,73/47€,Qt < (‘O(t, Hw||m(ﬂt))X3(t)7 (350)
where
X3(t) = X1 (t) + Xa(t). (3.51)
In view of (3.50), (2.33) we obtain from (3.1) the inequality
X
H ’ vogany S PEDVEE + 1)<Z ol 220,681 (55)) + Xl)
J (3.52)
+ ot [lllonan ) (1 +sup [lw]l10.0) X5 + (X1)11,
where S; = S Nsupp ¢;, {¢;} is the partition of unity and
Yi(t |F |6/5 2,1, +[X(0)|2,-1,0; (3.53)

and we used that 91 (QT) C N (QT), where My (QT) is defined in assumptions of
Lemma 3.4 and 9% (QT) by (3.31)

Now we have to find an estimate for sup, |w(t)||1,00. In view of 5.2.22 from
[23] and (5.15) from [20] we obtain

lw@®)]f 0.0 < cexplelw 3 2.0) [(1 + 1wl 0r) sup w(t)3 1.0+ w30

(3.54)
+ ‘qg,ﬂt + |h|§,—1,9t + |-7:w‘§,1,9t + e_tHw(O)Hioﬂ )
where
t
[w(t)]21,0 < [w(0)2,1,0 +C/ Dz + [h(t)2—1.0 + [Fo()21,0)dt’. (3.55)
0
Hence
lw(®)[l1,00 < @, [wllo, @) (X1 + [w]2,00)- (3.56)
Using (3.39) gives
wlz,00 < @(t, [|wllo, (r)) X1 (3.57)

Hence
[w®)l1,00 < @@ lwlln, @) X (3.58)
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Using (3.58) in (3.52) yields

1| < eCVEER + (S Iollnaonmis,) + X1)
TV 7 (3.59)
+ o(t, |wllnary, X1) X3 + @(X1)Y1.
From (3.11) we get
[ lvean < @t X1, [|wlin@) Xo. (3.60)

Hence, from problem (2.22) we have

lwli0,0t + [Vwlio/s,0t < @1(t, X1, [|wl|lo@r)) Xz + p2(X1)Y1
+ VEE D (Y llnaemsy + X1). G0
J
Finally, we obtain an a priori estimate for solutions to problem (1.1). First we
recall that
N =9 (7)) N N(QT)
= Loo(0, T3 W3 _5(2)) N La(0, T3 W (2)) N Lo (0, T3 W, (€2))
N Ls(0,T; W3 (),
where p’ € (2,3) and § € (0,1).

Lemma 3.7. Let T < 0o be given, let X1(T) < oo (see (3.46)), Xo(T) < oo (see
3.48)), Y1(T) < oo (see (3.53)). Let

|Fl5/2,07 + lw(0)[l6/5,5/2,0 < 0.

Let solutions of (1.9) satisfy estimates for the weak solutions (see (2.14)). Then
there exists the constant

A =20[05(X1)Y? + e (K 4+ 1)(d5 + X7) + c(|Fls 2,07 + lw(0)lls/5,5/2,0)]:

where o > 2, function @y appears in (3.61) and ¢y is the constant introduced in
(3.66), such that for X3 so small that (3.72) holds we have the estimate

[wll2,5/2,07 + [VPls /2,01 < A (3.62)
Proof. Let us consider problem (1.9). In view of (3.61) we have
|wll2,5/2.0m +[VPls/2.0r < Q1T X1, [|lwlla 5/2.07) X5 + ©3(X1)YY

+ KE+ D (Y1l 0mmsy + X)) (3.69)
J

+ c(|Fls 2,0 + lw(0)ll6/5,5/2,2);
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where we used that

[wllnrery < cllwllz,s/2,07-

(3.64)

To examine the third term on the r.h.s. of (3.63) we apply the interpolation

inequality
1/2) (1/2
[ulz,s < el VulyGlulyd + clula.o,
which after integration with respect to time takes the form

1/2 1/2

[u|g, g7 < C|Vu|27QT|u|2,QT + clulg o7

Using (3.65) we obtain

Wil zo(0,7582 (55)) = IlwllLa0,30255)) T IV@llLa(0,302(85)
< AVl 5r [Volyor + | Vel or
(] [
1/2 1/2
2,QJT 2,QJ.T

< cld§/2|v2w\

+ ¢|Vuw| |w] + c|w|2,QjT

1/2

2.0T + cld27
A2

where Qf = QT Nsupp ¢; and (2.15) was employed.
By the Holder inequality we have

|V2w|2,QjT < |Q]T|1/10|V2w|5/27ﬂf'
Utilizing (3.66) and (3.67) in (3.63) yields

lwll2,5/2,0m + IVD|5/2,07 < ©1 (T, X1, HW||2,5/2,QT)X32 + 05(X1)Y?
+ K (K +1) [sup [0 |10 920l 5 07 da
J

+ &3+ XE] + (| Flspz.ar + 10(0)o/5,5/2.0).

Assuming that

| =

1 sup |Q?|1/10K(K +1)ds <
J
we obtain from (3.68) the inequality

lwll2,5/2,0r + IVPl5/2,0r < 203 (T, X1, ||w||2,5/2,QT)X§ + 205(X1) Y7
+2c1 K (K +1)(d5 + X7)
+ 2¢(|Fl5 /2,07 + [[w(0)ll6/5,5/2,0)-

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)
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Let us introduce the quantity
A =20(p5(X1)Y] + a1 K (K +1)(d3 + X7) + c(|Fls /2,07 + lw(0)le/s,5/2,2)]

and let
[wll2,5/2,.07 + [VPls/2,0r < A (3.71)

Then inequality (3.70) implies
1
1o

which can be satisfied for sufficiently small X3. In view of (3.72) estimate (3.62)
holds. This concludes the proof. |

To obtain (3.62) we need that Xo(T) is sufficiently small. Hence we have to
show that || F”||,0,r;m1 () is sufficiently small. For this purpose we need

Lemma 3.8. Let

2
b= (ldirlasr +diglasr +1dil,sr) < o0,
zzl
b= 3 (Iillgrasrsgsp, + Wigllyzrasissp, + Wdillyzrasi gy ) < oo
zgl
s = (Wil 1y 0 w2 gsayy + il zagsz) + 1l o a2 sy
=1

Flldirll 0,220y T il Ly (spwsra0,my) + ”di||L2<sz;W§/4<o,T>>) < 0,

where O denotes the tangent derivative to Sy. There exists a constant a > 0 such
that

IE 0,751 () < el ot fllyyaar gry +1Te(ln, 12, 13)), (3.73)
where ¢(l1,12,13) is an increasing positive function of its arguments.

Proof. Since F =rotF and F = f -9, —6 -V + vAJ, where § is a solution to
problem (1.6) we have that

F =rot f — (rotd), — - Vrotd —rotd - Vo + vArotd.
We are looking for solutions to problem (1.6) in the form
6=V +n, (3.74)

where v is a solution to the problem
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Ay =0, !wm:o

(3.75)
@’| _ 4 fl@ﬂ _ 671/1| _
on'sa(-a) = T pplsaa) TP gpls T
and 7 satisfies
m —vAn+ Vo = -V, +vAVy in QF,
divp=0 in QF,
n-nls=0 on ST,
Vﬁ'D(n)'ix +’777'7Ta:_Vﬁ'D(V’(/O'?a_va'?a (376)

= Bia, a=1,2, on S?,

viv-D(n) - To = —vin - D(VY) - Ty
=By, a=1,2, on S7,
Nlt=o = 6(0) = Vy(0) =0 in Q,

where (3.76)g can be assumed in view of (1.7).

For solutions to problem (3.75) compatibility condition (1.5) holds. Then there
exists the Green function to problem (3.75) such that

bla,t) = / G — y)di (9, t)dy + / Gla—p)doly.)dy  (377)

Sz(—a) Sz(a)
Now we calculate the r.h.s. of (3.76)4 5. First

Bii(r, ¢, 2) = *21/7%‘5@;5@71/17'1]‘ =YY 2 Tri
=2 / Glr—r' o — ¢, 2)00,di(r', ¢, 1)dSs
Sa(—a)
—2v / Glr—r',p— ¢ 2)00,do(r', ¢, 1)dSs
Sa(a)

_’7< / G(T’—T/,QD—@/72)8¢/d1(7“17g0/7t)d52
Sa(—a)

+ / G(r—r’,(p—@’,z)acp/dg(r’,@’,t)d&) on Slv
Sa(a)
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where we used that S; and Sz meet under angle 5. Next

Bia(r, 0, 2) = —20n;04,05,0€35 — VY 24
0 / Op, G(r — 1’ 0 — ' 23) 00 dy (r, ', 1)d S

Sa(—a)
—2v / Ops G(r — 1" 0 — ¢ w3) 0 da (1, ', £)d S
Sa(a)
- / 05, Gd1dSy — 7y / 02, Gd2dS2  on Si.
Sa(—a) Sa(a)

Next
B21 = *21/”@5@6%1/”'13‘ = —2V626r'l/)
— _21/[ / 0.G(r—7r" ¢ — ¢ 2)0dy(r', ¢, t)dSa
Sa(—a)
+ / azG(T _TI?SD - @lvz)ar’dQ(T/a(P/7t>dS2 on SQ,
Sz(a)
and finally

Baga = —2un;0y, 05,072 = —2100,0,¢

= —2V|: / 0.G(r—r',o— ¢, 2)0pdi(r', ¢, 1)dSy
Sz(—a)

+ / 0,G(r—r', o — ¢, 2)0pda(r', ¢, 1)dS2| on Ss.
Sa(a)

Since F' depends on rot §, we have in view of (3.74) that rot 6 = rotn. Let 8 = rot 7.
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Then ( is a solution to the problem

By —AB=0 in QT

ﬁTZQ(k—;;j>77'T2+B12 on SlT,

_ 2a1 Y
B-Ty=—"—n,+-n,—Bi1 on 57,
T 14
ar (v 2a1
Brn = . <V T >77<mo

a a 1 aia
+ [(az,r — a1+ 2) <1 - Py) + - (a1a2,r -=—4 a2az,z>
r r v r r

+7'2'V<al>]77<p+ <a161 — a0 — Ty (11)7'2'V77<p
r voor

k _ a1 1 az
——n-To— —DBi1,+— (a2,’r —ay;+ )Bll
r vr v r
1
+ *77'2 . VBll on S?,
v

1 1 1
Br = _;B227 By = ;321’ Pa,> = ;(3227?" + Bz — Bai,p) on S5,

Bli=o = B(0) in Q.

(3.78)
We need
1 2o 0.1 @) < N llgy2072 gy
< ot Flyp gy + 18llgv2 un
+ ||6V6||W21*1/2(QT) + ||ﬁ ’ v(5”1/[121*1/2(9T) (3'79)

<l rOtfHW;J“(QT) + ||6||W233/2(QT)

+ clldllyyzarz gr) 1Bllyy2./2 ory

Now we shall estimate the r.h.s. of (3.79). Multiplying (3.76); by n, integrating
over Q7 using the expressions for B;j, 1,5 = 1,2, we obtain

2

Ilve@ry <Y (dirlosz + |digl, s +Ydilasp) = - (3.80)
=1
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For solutions to problem (3.78) we have

1Bllyy2.02 oy < ellnllyyanre gry +e(1/e)nllve@r)
2

+c Z(||di’THW§/2’5/4(S§) + ||di,<p||W25/2,5/4(Sg)
2 (3.81)

+ ’Y||di||W25/2.5/4(Sg))
= ellnllyyaarzqry + c(1/e)llnllvg@r) + 12

For solutions to problem (3.76) we have
7llyy 2472 gy < s (3.82)
Finally,

1| oo )y < €l 10t fllyp10r2 gy

(3.83)
+ [e(la +13) + c(1/e)h](1 + Iz + 13)).

Using that ¢(-) is an increasing function of its argument we obtain (3.73). This
ends the proof. |

4. Existence

We prove the existence of solutions to problem (1.9) by the Leray-Schauder fixed
point theorem. Therefore we consider the problem
wi —divT(w,p) = -A@(W) - VO(W) + @(W) - VS + 8- Vo(W)]+F in QF,
divw=0 in Q7,
w-n=0, 7 -T(w,p) Ta+ W Ta = B1a(), a=1,2, on ST,
w-n=0, vi-T(w,p)Ta = Bau(d), «=1,2, on ST,
wli=o =w(0) in Q,

(4.1)

where A € [0,1], w’ € N(QT) and @ € Mo(QT) = {w : |w|19,07+|Vw|ig/3,0r < oo}
In view of Section 3 we have the mapping

®; - NQT) — Mo(Q7)

SO
N 3w — &(W) =@ € My(QT).

For any A € [0,1] and & € My(QT) problem (4.1) generates the mapping

Dy M(Q7) 28 — o(@) = w € Wj,(Q7).
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Therefore we define the mapping

w=®W, N\ = Ps(P1 (W), N)
such that for any A € [0, 1] we have

o NQT) — W2L(QF) cn@T), (4.2)

where the last imbedding is compact.

Lemma 4.1. The mapping ® is compact, continuous on M(NT) x [0,1] and index
Dlr—o =1.

Proof. Compactness follows from imbedding (4.2). Continuity on 9(Q7T) x [0, 1]
can be proved in the same way as in Lemma 5.3 from [31]. For A = 0 there exists
a unique solution to problem (4.1) (see [1]). This ends the proof. |

In view of Lemma 4.1 and (3.62), where a fixed point of mapping ® is estimated
we can apply the Leray-Schauder fixed point theorem. Hence Theorem 1.1 from
Section 1 is proved.
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