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CORRIGENDUM TO “REFINEMENTS OF GOLDBACH’S
CONJECTURE, AND THE GENERALIZED RIEMANN
HYPOTHESIS”

ANDREW GRANVILLE

Abstract: Karin Halupczok [4] pointed out that we have stated an estimate in [3] that does not
follow as easily as claimed. Although we are unable to obtain the claimed estimate, we prove a
good enough estimate to (mostly) recover the theorems claimed in [3].
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An explicit version of the prime number theorem states that if x is an integer
and 1 < T < x then
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where the sum is over zeros p of {(p) = 0 with Re(p) > 0. Let B = sup{Re p: {(p) =
0} (note that 1 > B > 1/2). We claimed [3, (5.1)] that by partial summation with
T = x it is not hard to show that
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however we have not been able to repeat the argument and Karen Halupczok [4]
pointed out the references [1,2] where this issue has been investigated in some
detail for B = %, and nothing so strong has been proved. Here we sketch a simple
argument to prove that
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Note that 2B < # < 1+ B as B < 1, so our error term is not quite as good
as was claimed in [3], but it is comfortably strong enough to recover Theorem
1A of [3]. Using a zero-density estimate one can improve the error term to <
228 (log x)o(l), as claimed, when B > %, and to an exponent between 2B and
# when % <B< %.

This mistake is repeated in all four parts of Theorem 1 in [3], so corrections
are needed throughout: Replacing 2B by # on the fourth line of page 171
allows us to recover Theorem 1B. Similarly replacing 2B by % in (1.3) allows
us to recover Theorem 1D. There is a mistake in the proof of Theorem 1C, two
lines above (5.5), where complex variables p and o are treated as if they are real
variables. If a similar correction is made there we do not quite recover Theorem
1C. Instead we can prove that if (1.2) holds then the Riemann Hypothesis for
Dirichlet L-functions mod ¢ holds; and if the Riemann Hypothesis for Dirichlet
L-functions mod ¢ holds then we obtain (1.2) with error term O(z3 (log z)?).

Sketch of proof of (2). What does follow from (1) by partial summation (and
noting that >>r_1.o1<, [ /(1 + p)| < 2?log T/T), is
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Stirling’s formula implies that |e’T'(p)| =< [pr~1/2| = |p|Re() =3¢~ araP)Im(p) g

that if p = 34 iy with 8 € (0,1) and |y| > 1 then [e?T(p)| = |y|?~2e~ %1, since
arg(p) = £(§ + O(g5;)) when Im(p) = £|y|. Let p' = 3’ + iy with |y > |7'].
Therefore if v and " have the same sign then
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If v and ~" have opposite signs then
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since [y[PHF t3eml <« (1 4+ |y + /)P +2. We have (|7/]/]7])? < 1 which
implies that |y/|? =2 /|y *! < 1/|y|2|y|. Hence the final sum in the last dis-
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played equation is < 2*P 37, o <0 1/[V[2 1] <<4 a?P 3 <r(log )/ Inlz <
22BT/2(log T)?; and (2) follows by selecting T' = x5(1~5),

Improvement using a zero-density estimate. In the bound above the con-

tribution is majorized by those terms with 3,3 > 3 and 7,7 > 0 (using the
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symmetries of the zeros). By using Carlson’s zero-density estimate #{p : ((p) =
0and 8 > o, |y < T} < T*1=9)(logT)°M), we can improve our bound
(we will select T < 21/(8B=%) helow, which simplifies several steps, since then
B< 1+ log xy): throughout we sum over the zeros arranged by height, in dyadic
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intervals, and obtain that the final sum in the displayed equation is
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where £ = (logz)°W. If B > 3 then this is < L2?F; selecting T = z1/(85-4)
we get an error term < 225 (logz)?™), which is as good as can be hoped for. If

B < % then the above error term is < Ea:QBTsB(l_B)_%; to minimize we select
T = 2*(1=B)/(6BO=B)=1) ywhich leads to an error term of z>3— 95 (log 2)°M
where 8 — 16(1—B)(1—2B)?

B 3(16B(1—B)—1) °
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