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HYPOTHESIS H AND THE PRIME NUMBER THEOREM
FOR AUTOMORPHIC REPRESENTATIONS
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Abstract: For any unitary cuspidal representations 7, of GLn(Qp), n = 2,3,4, respectively,
consider two automorphic representations II and I’ of GLg(Qp), where II, = A2my, for
p # 2,3 and map not supercuspidal (74, denotes the local component of m4), and II' =
o W73 . First, Hypothesis H for IT and II’ is proved. Then contributions from prime powers are
removed from the prime number theorem for cuspidal representations m and 7’ of GLy, (Qa) and
GL,, (Qya), respectively. The resulting prime number theorem is unconditional when m, m’ < 4
and is under Hypothesis H otherwise.
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1. Introduction

Recent developments in functoriality by the Langlands-Shahidi method have many
profound applications in prime distribution. To name a few, we recall a recent proof
of Hypothesis H for any cuspidal representation of GL4(Q4) and for Sym®*(x) by
Kim [2], where 7 is an automorphic cuspidal representation of GL2(Q,). Here
Hypothesis H predicts the convergence of a certain Dirichlet series associated with
(L'/L) (s,m x 7) taken over prime powers.

More precisely, let m = ®,m, be a unitary automorphic cuspidal representa-
tion of GL,(Qa). Or more generally, let m be an automorphic representation irre-
ducibly induced from unitary cuspidal representations, i.e., 7 =Ind 01 ® - - - ® 0,
where o is a cuspidal representation of G L, (Qa), with my+---+mj, = m. The
local component m, with p < co can be parameterized by the Satake parameters
diaglar(p,1),...,az(p,m)]. For v > 1 define

ax(p¥) = Zaw(pd')”- (L1)
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Let 7 be the contragredient representation of 7, and L(s, 7 x7) the Rankin-Selberg
L-function. Then for Res > 1, we have (see [10], RS 1)

(%)l(s,w X 7) = i (log”)A(nZ”a”(")'Q. (1.2)

n=1
Here A(n) =logp if n = p” and A(n) = 0 otherwise, so that the series in (1.2) is
taken over primes and prime powers.

Hypothesis H. (Rudnick and Sarnak [10]) For any fixed v > 2,

2

log p)?|ax (p”
Z( gp)*|ax(p”)|

pl/

< 0.
P

Hypothesis H is trivial for m = 1. For m = 2,3, Hypothesis H follows from
the Rankin-Selberg theory 10]. The GL,4 case was proved by Kim [2] based on his
proof of the (weak) functoriality of the exterior square A% from a cuspidal repre-
sentation m of GL4(Q4) (see [1]). Beyond GLy4, the only known special case for
Hypothesis H is the symmetric fourth power Sym4(7r) of a cuspidal representation
m of GL3(Qa), which is an automorphic representation of GL5(Qy).

The first goal of the present paper is to prove Hypothesis H for two types of
automorphic representations of GLg(Qa).

Theorem 1. Let m be a cuspidal representation of GL4(Qa). Denote by T the
set of places consisting of p = 2,3 and those p at which m, is supercuspidal. Let
II be the automorphic representation of GLg(Qy) such that II, 2 A?m, if p& T,
according to [1]. Then Hypothesis H holds for II.

Theorem 2. Let m (resp. m2) be a cuspidal representation of GLy(Qp) (resp.
GL3(Qa)). Let I’ be the automorphic representation of GLg(Qa) equal to w1 Ko
according to [3]. Then Hypothesis H holds for TI'.

As an application, one can use Hypothesis H to deduce the following Mertens’
theorem for automorphic representations, or the so-called Selberg orthogonality
conjecture, from unconditional results on similar sums taken over primes and prime
powers:

a 2
Z% = loglogz + O(1); (1.3)
Z a/ﬂ'(p);’ﬂ" (p) _ 0(1), (14)

when 7 2 7’. Here (1.3) was proved by Rudnick and Sarnak [10], while (1.4) was
proved by Liu, Wang and Ye ([6], [4]). Results in (1.3) and (1.4) played crucial
roles in the n-level correlation of nontrivial zeros of automorphic L-functions and
random matrix theory ([10], [5], [7]).
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Another application of Hypothesis H is on the prime number theorem for au-
tomorphic representations. For any self-dual cuspidal representation m of GL,,,(Qa),
Liu, Wang and Ye [4] showed that there is a constant ¢ > 0 such that

ZA(n)|aw(n)\2 =2+ O(ze V"), (1.5)
n<z
More generally, Liu and Ye [8] proved that
> A(n)ax(n)an (n)

nr

IlJriTo
1 + iT()
O(we—cVier) if 7 27®|det|” forany 1 €R,

+ O(ze~cV8®) if 7/ 27 ® |det|"™ for some 7y € R; (1.6)

where m and 7’ are cuspidal representations of GL,,(Qa) and GL,, (Q4), respec-
tively, such that at least one of them is self-dual.

The second goal of the present paper is to use Hypothesis H to remove terms
on prime powers from the left side of (1.6) and deduce a prime number theorem
over primes.

Theorem 3. Let m and ' be as above. (i) If m,m’ < 4, then
Z(log p)aﬂ' (p)aﬂ'/ (p)

P<T
1.1+7;7'0

_ 141419

+ O(ze™ Vv 10“) if 7 ~7®|det|™ for some Ty € R, (1.7)

O(zecVios®) if 7 %7®|det|'™ foranyT€R.
(i) If max(m, m’) > 5, asymptotic relation (1.7) is true under Hypothesis
H with error terms replaced by O(z/logz).

We remark that (i) is an unconditional result.

2. Proof of Theorems 1 and 2

Lemma 2.1. Let w be a unitary cuspidal representation for GL,,(Qa), or an
automorphic representation irreducibly induced from unitary cuspidal representa-
tions. Then for any vy > (m? +1)/2+ 1, € > 0, and integer ¢ > 0,

2
> (logp)lax(p”)|” < x>/ DT 100 g, (2.1)

v2vo, PYST

> (logp)*lax(p)|?

JRE" < 00. (2.2)

P
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Proof. From (1.1) and the bound toward the Ramanujan conjecture ([10])

lax(p, )] < Y2V (=1, m), (2.3)
we know that
lax(p¥)[2 < m2p{t-2/(m*+ 1}y,
Then
ST Gogplax@)P<m® > Y (logp)pttmH/ I
v2vo, pYST vo<r<2logx pLal/v

<m $1—2/(m2+1)+1/yo log .

Inequality (2.2) follows from the fact that the ¢th-derivation of log L(s,7m x 7)
converges absolutely for es > 1. [ ]

Lemma 2.2. Let «’ (resp. ©”) be a unitary cuspidal representation, or an auto-
morphic representation irreducibly induced from unitary cuspidal representations,
for GLy, (Qa) (resp. GLy(Qp)). Let v > 2 be an integer and P a set of prime
numbers. If there are fixed constants &' € (0,1] and 8" € (0, 1] such that

|a7r’ (py)|2 <v |a7r” (p)‘Qp(li(;/)(Vil) _|_p(1/275”)u (24)
for all p € P, then for any € > 0 we have
> (logp)law ()P <pe 20 (2.5)

pY <z, pEP
with 6 := min{d’ /(24 6") — e, §"}.

Proof. By (2.4) and the Rankin-Selberg theory, for any 7 > 0 we can write

Z (10gp)|aw/(py)|2 <, Z (logp)|a,ru(p)|2p(1_5/)("_1) _;'_1,1/2-&-1/1/—5//

p'<w p’<z

pEP pEP
(log p)lax(p)|* (logp)laxr(P)* | 1_s
<y 2t Z REEICY +z Z RERICY) t
p¥ <Lz z"<p”<z
pEP pEP
By (2.2) with 7 = 7" and ¢ =1, it follows that
log p)|ax (p)|?
Z (log p)lax(p)| <1

146’ (v—1)
e P
peEP
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and

5 (ogplar ) ! y  (ogpllar s
oo p1+6 (v—1) (1'77/”)5 (v—1)—¢ 5 p1+s
peP pEP
< g w-D=<l/v,

Inserting these two estimates into the preceeding inequality, we find

Z (logp)\aﬂ,(pu)P Ly " +x1,,7[5/(y71)75]/u —|—x1*5”.
p'sw
pEP

Taking n=v/{(1+ ¢ )v — '} + €, we obtain

S (omp)lan (") e ¥/ (08140 4 1m0

pY <z, pEP , , .
<o P10/ (248 4e | g 16
Ly o170,
In the second inequality, we have used the fact that v > 2. [ |

Remark. In proving Hypothesis H, an inequality of the form of (2.4) plays a
crucial role. Lemma 2.2 has more flexibility as 7’ is allowed to be different from 7’

Lemma 2.3. Let II"” be either II or I’ as in Theorems 1 and 2. Then for any
e > 0, we have

3 (logp)lams (p") > <. ot/ (2.6)

v>2, pr<a

Proof. In view of (2.1) with the choice of m = 6 and vy = [37 x 38/39] + 1, it
suffices to show that for any fixed € > 0 and v > 2 we have

> (logp)|an(p”)]® <y &'/, (2.7)
pY<z

> (logp)lar (p*)? <y ! /3. (2.8)
pY<z

First let us consider the case of 1I. Let m = ®m, be a cuspidal automorphic
representation for GL4(Ag). Recall that II is irreducibly induced from unitary
cuspidal representations. Let Sy be the set of places where 1I,, is tempered. Then

Z (log p)?|an(p”)|* < oo. (2.9)

PESo

Inequality (2.9) is also true if we replace So by T, which is given in Theorem 1,
because at most two terms for p = 2,3 will then be added to (2.9).
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If p¢ SoUT, we want to determine the Satake parameters of m,. Recall
that the general non-tempered representation m, can be described as a Langlands
quotient based on a standard parabolic subgroup P of type (mq,...,m,) = (4),
(3,1), (2,2), or (2,1,1):

mp = J(G, P;oi[t1), ..., on[tr]).
Here o is a tempered representation of GL(m;), t; € C, and o/[t;] = o;®|det ['7,

with {o;[t;]} = {Gx[—tx]}. Consequently, the Satake parameters of m, are in one
of the following forms in view of (2.3):

S1 : diag [ulp“, ugp®, urp” Y, uzp*“], where 0 <a < % — %7,
Sy : diag[ulpa, U, U3, ulp_a], where 0 < a < % — ﬁ, (2.10)
S diag[ulpal, upp®®, urp” 4, qu_azL where 0 <ag <a; < % - 11*77

where w1, us,u3 are complex numbers of absolute value 1 and we have suppressed
their dependence on p for the simplicity of notation. As in [1], the corresponding
Satake parameters of I, ~ /\27rp are as follows:

. 2a 2 2 —2a
Sy = diag[ugugp®®, urug, ui, u3, urug, urugsp 2%

)

.1 a a 2 —a —a
Sy : diag[uyugp®, urusp®, uf, ugus, uyusp™®, uyusp” ],

a1—az)

ai1+ta ai—a —
1 2 1 2 2 , U UP

(¢11+a2)]

BET 2 2 _
Sy : diag[uyuap ; ULULP s ud, ud, ugugp

Since II is a automorphic representation for GLg(Ag) which is irreducibly induced
from unitary cuspidal, (2.3) gives

0<2a<3— 5 if pesy,
0<a<j3—+ if pes,, (2.11)

O<a2<a1§%—1—17 and a1+a2<%—% if peSs.

If p € Sy, then

Jan(p")] = (unus)” (0% + 2 +2) + 03" + 3’| <P 45,
lan(p)| = |wruz (P + p~>* +2) +ui + u3| > p**.

From these and (2.3) with m = 6, we deduce that

lan(p”)? < (Jan(p)|” + 5)?
<y lan(p)* +1
<, |an(p)|2p(1—2/37)(1/—1) 4 1,

where the implied constants are all independent of p.
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Similarly if p € Sy, then

|lan(p”)| = [uf (ub +uf)(p™ +p~ %) + ui” + (ugus)”| < 2p™ + 4,
lax(p)| = |ur(p® + ™) + uz + ug| = p* — 2.

These and (2.3) with m = 4 imply

lan(p")|? < {2(Jax(p)| +2)" + 4}
<y lax(p)” + 1 (2.12)
<, |aﬂ(p)|2p(172/17)(”71) +1.

Finally if p € S3, then
jan(")] < 20 14 an(p)] >0 -1,
from which we deduce, as before,

lan(p”)” < {2(lan(p)| + 1) + 4}?
<, lan(p)” + 1 (2.13)
<, lan(p)Pp0 /400D 41,

Now we apply Lemma 2.2 with the choice of parameters

) if P=S50rSs

1
(7‘(‘/ s 5//) _ 2
o (L Z,3) if P=S5,

to write
gl -1/38 e if j=1,3
> (logp)lan(p”)® < (2.14)

1-1/194¢ 3¢ 4+ _
pv <z, pES; =Y if j =2,

Now the required estimate (2.7) for II follows from (2.11) and (2.14).

Next let us turn to the case of II'. Let m1 = ®,m1, (resp. ma = Qpma,) be a
cuspidal representation of GL2(Qp) (resp. GL3(Q4)). We may just consider those
p such that at least one of 7, and 75 ,, is not tempered. By the same construction
as before (2.10), the Satake parameters of 7, and my, are as follows:

mp ¢ diag[uip®, uip™®],  where 0<a < &

<&
<

<a
. b —b 11
Top dlag[qu , Uz, UaD ], where 0 <b< 35— 15,

where wuy, us uz are complex numbers of absolute value 1. Here we used the
parabolic subgroups of type (2) for m ,, and of type (3) or (2,1) for ma,. Thus
the Satake parameters of H;, =, Xm, are:

(b—a) ~(at0)],

: a+b b—a a —a —
diag [uugp™™’, uruop®™?, urusp®, uruzp™®, urugp , UrUnp
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If I’ is cuspidal, following the bound (2.3) proved in [10], we get
0<a+b<j— 3. (2.15)

If I’ is not cuspidal, then it is irreducibly induced from unitary cuspidal repre-
sentations of smaller GL,,’s, and (2.15) holds with an even smaller bound. Then

|arr (p")]
(u1u2)u<p(a+b)u +p(a—b)v +p(b—a)u +p—(a+b)l/) + (ulug)”(pa” _’_p—au)’. (2.16)
From (2.16) we can see that

Jar (p)] < 6p“ P, aw (p)] = p*0 — . (217)
Thus in view of (2.15), (2.17) and the fact that a < g5, we can deduce
jare (p)* < (lar (p)| +p*)* (2.18)

<, |aH’ <p)|2u _|_p2au
<, |anl(p)|2p(1—2/37)(u—1) +p(1/2—9/32)y-

Applying Lemma 2.2 with 7’ = 7" =1I', ¢’ = 5= and ¢" = 32, we now conclude
that

> (logp)lam (p)|* < x'~1/38+=,

pv<z
This completes the proof. [ |

The proof of Theorems 1 and 2. Let ITI” be either IT or II'. We can write

> (log p)? Ian" -y > (log p)?|ar (p*)[?

pr>z,rv>2 j202ix<prL2itie, v>2 pY
log(29+ta
<D S (g ()
j=0 2ip<pv<L2itliz, v>2

Using Lemma 2.3, we have

Z (10gp)2|anu (PV)|2 < Z 108(27“35) (2j+1x)1—1/38+6
7
P >o, 32 p N

log(27+1z)
<<Z (27 1y 1/38 c

< x71/38+26.

This implies the required result. [ |

(*) Note that instead of using the bound 0 < a < 7/64, it suffices to use a bound with
7/64 being replaced by 1/4 — § for any § > 0.
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3. Proof of Theorem 3

Theorem 3 follows immediately from (1.6) and the following lemma.

Lemma 3.1. Let 7 be a unitary automorphic cuspidal representation for G Ly, (Qy).
(i) For each m € {1,...,4}, there is a constant d§,, > 0 such that

> (logp)lax(p”)? < 2!~

pY <z, v=22

(ii) If m > 5, under Hypothesis H we have

Z (logp)la(p")|* < z/logz.

pYST, V22

Proof. In view of (2.1) of Lemma 2.1 with a suitable choice of vy, it suffices to
show, for fixed v > 2, that (i)

> (logp)lax(p")]* <, &=, (3.1)
pYsz

if m <4, and (ii)
Z (logp)|ar(p")|* <, x/logx (3.2)
pY<z

if m > 5 under Hypothesis H.
First we prove (3.2):

> (ogp)las(p)P = Y (ogp)la(p"))*+ . (ogp)las(p”)?
pPYsT pv <zl/2 z1/2<pr <
< zl/? Z (log p)?lax(p")[?

p1/<x1/2 pV
2z Z (logp)?|ax(p”)|?
v b
log x i <a P

which is < 2/log 2 under Hypothesis H.

Next we prove (3.1) for m = 4, since other cases are easier. As before it
suffices to consider the sum on the left side of (3.1) taken over p # 2,3 with
mp being not tempered. Then for such a p, I, = /\27rp. There are then three
possibilities.

If p € S asin (2.10), using II, we get 0 < 2a < 3 — = as in (2.11). Then

Jax (p")1* = |(uf +ug)(p™ +p~*)|?
g 16p(1/271/37)1/.
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From this, we deduce that

Z (log p)|ax(p")* < Z (log p)p(t/2~1/3D¥

pY<z,pES: p¥ <z, pES: (3.3)

< 1‘1_1/37.
If pe Sy, we have
lax(p”)| = [uf (p™ +p™ ") +uy +ug| < p™ +3,
laz(p)| = lur (p* +p™%) + uz + us| > p* —2
with 0 < a < 1/2—1/17. Then
lax(p")|* < {(Jax(p)| +2)" + 3}*

<y lax(p)[? +1 (3.4)
<, |aﬂ_(p)|2p(1—2/17)(y—1) +1.

Similarly if p € Ss, then

Jan ()] = [ (p™ +p™27) + g (p72 + =) < 297 42,
|ax(p)] = |ur (p™ + ™) + ua (p™ +p~2)| = p™ — 2p™.

From this, (2.3) with m =4 and the last inequality of (2.11), we deduce that
lax () * < {2(lax (p)| + 2p7)" + 2}

< lax(p)* +p***" (3.5)
<, |aﬂ(p)|2p(1—2/17)(l’—1) +p(1/2_1/37)y.

As before, we can apply Lemma 2.2 with the choice of parameters

(7'('/,71'//,(;/,5/,) — {(

T, T, 9 3%7) lf P = SS
to write
> (logp)las(p)? <, 2! VT (j=2,3). (3.6)
pY <z, pES;
Now the required result follows from (3.3) and (3.6). [ |
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