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OMEGA THEOREMS FOR A CLASS OF L-FUNCTIONS
(A note on the Rankin-Selberg zeta-function)

AYYADURAI SANKARANARAYANAN & JYOTHI SENGUPTA

Abstract: In this paper we study the Omega theorems for a class of general L-functions satis-
fying certain conditions and as an important application, we obtain the Omega theorems for the
Rankin-Selberg zeta-functions Z(sg) attached to holomorphic cusp forms of fixed weight for the
full modular group when % Lop<1.
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1. Introduction

Omega theorems for the Riemann zeta-function and L-functions of degree 2 have
been extensively studied for which we refer to [1], [2], [5], [6] and [13]. Some of
these results can collectively be seen in [4] and [14].

The aim of this note is to prove () theorems for a class of L-functions
satisfying certain conditions and as an application, we obtain ) theorems for the
Rankin-Selberg zeta-functions which are of degree 4. We follow the arguments of
Ramachandra and Sankaranarayanan (see [6]).

Let € be the class of general L-functions F(s) satisfying the following con-

ditions.
(i). F(s) is absolutely convergent in the half-plane ¢ > 1 and continuable ana-
lytically to the region ¢ > 0 as a meromorphic function possibly with a sim-
ple pole at s = 1 having the residue k; and there F(s) is of finite order (i.e
|(s = 1)F(s)| < (|t| +2)? in ¢ > 0). It has an Euler-product representation and
a functional equation of the Riemann zeta type. Thus all the non-trivial complex
zeros of F'(s) lie in the vertical strip 0 < o < 1.

(ii). log F'(s) can be written in the form

log F(s) =Y bﬁ:) (1.1)

p m>1
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with the series in (1.1) being absolutely convergent in o > 1 (where the sum runs
over all primes p) and the coefficients b(n)’s satisfy the estimates:

b(n) < nc, (1.2)

b(p)’s are real and the asymptotic relation

3 b(p) = "””1021: +0 ((logxx)2> , (1.3)

p<zT

holds where & is any positive constant. We also assume that

Z ’b (p2)| < u(logu). (1.4)

(iii). Let
Np(p,T)=#{p=B+iv: F(p)=0, B=p>0, 7| <T}. (1.5)

We make the following zero-density hypothesis.

Hypothesis. For fixed p satisfying 1 > p > % and for T > Ty (with Ty suffi-
ciently large), there exists a § > 0 such that Np(u,T) < T'~% where the implied
constant depends on p and 0.

Throughout the paper, we assume that > xg and T > Ty (where z and
Ty are sufficiently large), and the parameter « satisfies the inequality 0 < a <
ﬁ loglog x. The alphabets A, B,C --- (with or without suffixes denote positive
constants) and €, § denote small positive constants. Now, We prove

Theorem. Let F(s) € € and thus the conditions (i), (ii) and (iii) hold for F(s) by
our assumption. Let % <m <op<1l, 0<6<2m, ¢>0. Let y be the positive
solution of the equation e¥ = 2y + 1. Let | be an integer > 6, C3 = @;ﬁ,
0 < Cy < Cy. Then, for T > Ty, we have

R (e7log F (00 +itg)) = & (1 —ap)” ' CoCi (logte)'~"° (loglog tg) "

1—0’0
for at least one ty satisfying T < tg < T where Cy = cos (27”) (&) . Here

d =1 if we assume Riemann hypothesis for F(s). Otherwise, 6 = 6 (j1).
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2. Some Lemmas

Lemma 2.1. Let 04, --,0;; be distinct positive real numbers and suppose that
l > 6 is an integer. For any given positive integer R, then there exist at least R
integers rj, such that 1 <rj, < J = MR and [|77.0m ]| < % for1<m< M.

Proof. See for example [6]. [ |

Lemma 2.2. For % < o9 < 1, we have
S= 30 bl (20— flos (3)])
toa(E)]<20

- (e

+0((k+1)(1+0a®) z'7(logz)~?). (2.2.1)

Proof. Let 3; be a positive solution of the exponential equation
eV =2y+1.

Ultimately, we are going to choose « such that (5 = 2a(1 — 0¢) (a fixed positive
constant). We note that 1 < 31 < 2. Keeping this in mind, we prove this Lemma
in the following. We have

S = Z cee Z o+ O (o xm0te)

e 2z pse T<pLe?rw

=51+ 5+ 0 (az™7") . (say) (2.2.2)

We note that (from the condition (1.3) on F(s))

K(u) =) bp)=r oga + 0] <(logu)2> , (2.2.3)

pSu

Now,

S = /m ] u=% (Qa — log (%)) dK (u)

Y o x du
—f /xefza u (2a ~log (E)) log u
+0((k+1) (1+a+a?) z'"7(logz)~?)

170'0 ulfo'o 2
— k(20 —1
i (20— logz) { (1 —o09)logu + (1 —09)?(logu)? }”_2‘1}
170'0

+ K ﬁ {1 — 372“(1"’0)}

+0((k+1) (1+a+a®+a*) 277 (logz)?). (2.2.4)
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Similarly, we obtain

s ] 1-o0 ul=oo e
=k (2
> =k (2a + log x) (1 —09)logu + (1—00)2 (IOgu)2|l

1—o0
1K L {1 _ 6204(1*0'0)}
(]. — 0())

+0((k+1)(1+a+a’+a®) 277 (logz)?). (2.2.5)

We note that =5 y) =1+y+0(y?) and (1+y)
small. Hence from (2.2.4) and (2.2.5), we get

—y+0 (yQ) for y sufficiently

170’0

g - (1 KX )21 {e2a(1700) +672a(1760) _ 2}
— 0g ogx

+0((k+1) (1+a+a®+a®) 2177 (logz)?)
_ (2sinh (a(1— 00))>2 xl=oo
(1—09) log =

+0 ((/i +1) (1+a+a®+a%) &g;;) . (2.2.6)

This proves the lemma. [ ]

Lemma 2.3. Let 0 < 0 < 2w, o« > 0 and p < 0¢9 < 1 be constants and let
s =0 +it, so = oo+ itg. Then for all x with 10 < z < (logtp) (loglogty), we
have

1 14400 ) es _ p—as 2
I = — (6720 log F(s + 30)) <) (2 +a%e? 4 27° 719) ds

211 1—ico S

Z p~%°b(p) (2a — ‘log (g) D +0((1+a) (logx)Q) . (2.3.1)

tos(£)] <20

Proof. For (s + sg) > 1, we have

b(p™)
log F'(s + so) :Z QHU + Z p7n1(8+80)

=: 53 + Sa. (2.3.2)

We observe that if @ > 0, x > 0 and ¢ > 0, then we have

1 petice foas _ g—as\ 2 s 2a— |logz| if |logz| < 2a,
i (s> z'ds = {0 if |log x| > 2a. (2:33)

c—i00
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Therefore, we have

1 1+io0 L s _ p—as 2 o
I =: i e (6 053) <s) (x e 9) ds
T a2 s
(2 <20
1+ic0 as _ ,—as\ 2 )
13| = %/ (e753) (686) (2427 ?) ds
1—i00

<2 > pob(p) 2a—flogpl)|+| D pb(p) (2a — [log (p)))

[log p|<2a [log(pz)| <2

<a| Y 1] <€ < (logx)’. (2.3.5)

p<€2”

Similarly, we estimate

1 1+4+i00 ) e _ g—as 2 . .
/ (6_1954) (s) (2 +z%e? + m_se_le) ds
1

Iy = |—
=55 i
= |85 + S + S7| say, (2.3.6)
where 4
Sy =27 N7 b(™)p " (2a — [log (™)),
[log(p™)| <20
m>=2
_ T —maog pm
o 2w (5]
s ()| <20
mz=2
and

Sy =: e 20 S b(E™)p " (2a — [log (p™x)]).-
\log(p";ﬂcgl@a

Using the condition (1.2) (and since 0 < o < 735 loglogz and oo > %), we obtain

Sy < a €2 Z p~ a0

m>2, pr e’

1
2a
€ae Y L
S P = 1)
< o e 2
< 65(1

< (logz)? (2.3.7)
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and similarly
S; < e’ < (logx)?%. (2.3.8)

Let us write

=Y [p(*)] <ulogu (by (1.4)).

p<u

From the Riemann-Steiltjes integration and using the average estimate condition
(1.4), we note that

Sy = Z b (v?)]

2
p2<e2ag=1y p=°

g2 1

[ dww)
1/2
V2 7wy

-2 y

< |u”?7 w(u)|, —1-200/2 et du

< yi " logy + (logy)?
< (logy)?
< (a+log )% (2.3.9)

We also notice that (with €2z =: y)

s= 3 Lo

moo
p" <y, p
m2>=3
< Z 2(0’0 e) crofe _ 1)
p<y1/3
<1 (2.3.10)

and hence from (2.3.9) and (2.3.10), we get
Se < a (a+logz)? < a (logx)?. (2.3.11)
This proves the lemma. [ |

We note (see for example page 56, Lemma « of [14]) if f(s) is regular and

f(s) M
‘f (s0) <et (M>1)
in the circle |s — sg| < 7, then
1'(s) 1 AM r
o) —ijs_p <= (Is=sol <) (2.1)

where p runs through the zeros of f(s) such that |[p — s < 5.
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Therefore, we get
F’ 1
7 (5) = > (s—p) ' +0(logt). (2.2)
[t—yI<1

Here p = (3 + iy runs over the non-trivial zeros of F(s). Integrating (2.2) from s
to 2+ it and assuming that ¢ is not the ordinate of any zero of F(s), we obtain

log F(s) — log F'(2 + it) Z {log(s — p) — log(2 + it — p)} + O(logt). (2.3)

[t—v|<1
Proceeding as in Theorem 9.6 B of [14] we get

log F(s) = Z log(s — p) + O(log ). (2.4)

[t—vI<1

Let to be sufficiently large and 7 = (logto)>. If the region {0 > 0,|o| < 27} is
zero-free for F (s + sg) for |t| < 27 — o, then in 0 < o < 1, we have the estimate,

log F (s + 50) = O <(logt0) <1og <i>>> . (2.5)

This can be seen easily as follows. From (2.4), we already have,

log F (s + s9) = Z log (s 4+ so — p) + O (logto) - (2.6)
lt+to—vI<1

We only need to estimate the first sum appearing in the right hand side of (2.6).
Since, |Slog (s + so)| < 7, we have

[log (s + s0 — p)| < [log|s +so — pl| + . (2.7)

We observe if 1 < |s+ sg — p| < 2, then each term in the sum in (2.6) is in
absolute value < log2 and the number of terms in the sum is O (logty).
When 0 < |s+ so — p| < 1, we observe that

s+ 50— p* = (0 + 00— B)° + (t+to—7)*, (2.8)

and the rectangle {0 < o < 1,|t| < 27 — o} is zero-free for F (s + s¢). If p lies on
the left border of this region, i.e on the line Rs (=: 3) = oy, then |s + s — p|° >
02 and in this case, we have |logo| = |log (é) | As before, the number of terms
in the sum (2.6) is O (logtp) and we are through.

If p lies inside the rectangular region, then again we obtain the same estimate
since |s + sg — p| = |t + to — y| = 0. Thus we arrive at the estimate (2.5).
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Lemma 2.4. Let 0, a,09 and ty be as in lemma 2.3. The contribution of the
tail portion |t| > (logty)® to the integral in lemma 2.3 is O ((log z)?) . Also the
contribution from the integrals over [iT,1+ i7] and [—ir,1 — it] are O ((logz)?).

Proof. The proof follows from the estimate

log F' (s 4 s0) < (log o) <10g <Z>) : [

Lemma 2.5. With 7 = (logty)®, we have

as

1 T . —as\ 2 . .
15 — R {2m/ (877'9 logF(s —+ SQ)) <686> (2 4 1,5619 + 93756720) ds}

= Z b(p)p~° cos (to log p) <2a - ’10g (g) D +0 ((1+ ) (logz)?).

Proof. Note that the coefficients b(p)’s are real numbers (by our assumption).
Now, the proof follows from the above lemmas. [ |

ds)
+

)
> Z b(p)p~7° cos (to log p) (2a - ‘log (g) D + 0 ((1

toa(£)] <20

Lemma 2.6. We have

Q1 =: < max (?Re*w IOgF(SJFSO))) X

|t|<T,0=0

2
1 eXs _ p—as ) L
3 _ (2—|—1‘Se’0 +ax %W
i s
[t|<T, 0=0

) (logz)?).

Proof. It follows from lemma 2.5. [ ]
Lemma 2.7. For 7 = (logto)” and 2 < |log x|, we have
1 s _ g—as 2 ) ) 1
— / () (2 +z%e? + m_se_w) ds =4a+ O () .
211 S T

lt1<T, 0=0

Proof. This is lemma 3.11 of [6]. |

Lemma 2.8. Let C be a positive constant to be chosen later. Let p be the set of
primes satisfying

Ce 2%(log Ploglog P) < p < Ce**(log T'loglog T),

where we refer to lemma 2.1 and put T = I RP. Here M will be greater than
or equal to the number of primes satisfying the inequalities just stated. we put
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M = [(C’eQ"‘ +e) logT] where € > 0 is an arbitrary but fixed constant. Let

x = C (logto) (loglogty) where C is a small positive constant and to = 2wl (k =
1,2,-+-,R) for any k. Then, for all primes p satisfying |10g (£)| < 2a, we have

= Y b cos(rolox) (20 g (2))

ros(2)] <20
. 2 1—0

> K cos QI =0 2sinh a (1 — o) (logto) : .
! 1 -0 (loglogtg)?°

Proof. The proof follows from the Lemma 2.2. [ |

3. Proof of the Theorem

Consider the rectangles {00 o<1t -t < 2(logt0)2} (j = 1,2,---,R).
These rectangles are disjoint and the number of such rectangles is R. If R >
DT'=% + 2 where D is the constant coming from the hypothesis, then at least
two of these rectangles are zero-free. We select the rectangle for which o +7 < T
(T to be defined) and fix P = T, R = T'7%t% where €1, e, are small positive
constants. Then we put, M = [(062”‘ + e) log T] and IMRP = T. If we choose
C = ologl a5y for a small positive constant ez, then from the last three
lemmas 2.6, 2.7 and 2.8, we get

Qs =1 max (Re “logF (s+sg))

|t]|<7,0=0

l1—0o : 2 l1—0o
F oo 27 (log )~ (-0) gt—oo 2sinh a (1 — o) (logto) UO
4o T e2a(1-00) 1—o09 (loglog to)°

R e N
2 (logl)t (1—UO)< VB > ((loglogto)”0 ’ (3.1)

WV

where (1 = 2a(1 — 09).

By choosing 31 > 0 such that e 1

N

sion in the right hand side of (3.1) becomes

is maximum, we see that the expres-

K cos(2E)§1—o0 (Cl (log to) "7
) )

(logl)t=20 (1 —a¢) \ (loglogty)”®

where (1 is a positive constant independent of 4,1, and o9 and Cy = (2y +1 > > (4

with y is the positive solution of the equation e¥ = 2y-+1. This proves the theorem



128  Ayyadurai Sankaranarayanan & Jyothi Sengupta

4. Some interesting examples

Example 1. The Riemann zeta-function ((s):
In this case, in the Theorem, we can take p; = % Here § = 1 if we assume
the Riemann hypothesis namely “ all the non-trivial complex zeros of ((s) are on

the critical line Rs = % ”. Otherwise we have to assume % < 0g < 1 and then we

3(170’0)

Too) (due to Ingham’s zero-density estimate, see [14]).

can take § =1 —

Example 2. The Dedekind zeta-function (x(s) of an algebraic number field K:
Let K be an algebraic number field. The Dedekind zeta-function of K is
defined for Rs > 1 by

(k(s) =Y (N~ (4.1)
A£0

where N2A denotes the norm of the ideal 2 and the sum is extended over all
non-zero integral ideals of the ring of integers of the field K. If we write,

log (k(s) = Z enxn”° (for o> 2), (4.2)
n=1

then, we notice that e,, > 0 for all n. Also from the prime ideal theorem, it is

well-known that "
Zeanepx Z xlogx' (4.3)

n<a p<z NP<a

If K is an algebraic number field abelian over K’. Let the degrees of K and K’
be n and k respectively. Then,

Cx(s) = Li(s)--- L;(s) (4.4)

where j = n/k and L;(s) are abelian L-functions of K. Therefore we can take
any p>1— ﬁ in our zero-density hypothesis of the condition (iii).
Let p/ be the smallest real number for which

T
/ IL; (i + it)|” dt < T+, (4.5)
0

Then, p/ = % happens when K’ = Q or Q(v/d). Then for oy > %, we can
take p > 5. If p/ > %, by standard arguments, we can take any p > p’ in the
zero-density hypothesis of the condition (iii). For a detailed discussion of the above
cases, we refer to section 5 of [6].

For instance, if the degree n of K exceeds 3, then we observe (see [3])

N (0,T) < T+90-7) (1og 7)C (4.6)
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uniformly for 3 < o < 1. Then, we can take § = 1 — (n 4 €)(1 — 09) in the

zero-density hypothesis of the condition (iii) and p; = 1 — = in the Theorem.

Example 3. Rankin-Selberg zeta-functions:

Let f be a holomorphic cusp form of fixed even integral weight k for the
full modular group SL (2,Z) which is a normalised eigenfunction of all the Hecke
operators. We denote by Zy ¢(s) the L-function of the Rankin-Selberg convolution
of F' with itself. We recall here that

Z(s) =: Z; () = ((2s) (Z A?(n)n—8> (4.7)

where f has the Fourier series expansion f(z) = 3> As(n)n"T €2 Here z € §
and ( is the Riemann zeta-function. It has meromorphic continuation to the whole
complex plane with a simple pole at s = 1 and it satisfies the functional equation,

T(s+k—1I(s)Z(s) = (2m)* 2T (k — s)T'(1 — 5)Z(1 — s). (4.8)

These L- functions are of degree 4. From the Shimura’s split (see [12] or lemma
3.1 of [9] and see also the related references [7] and [8]), we observe that the
Rankin-Selberg zeta-function splits into two factors as

Z(s) = ((s) D(s), (4.9)

where D(s) is the normalised symmetric square L-function attached to the Hecke
eigenform f. For ®s > 1, Z(s) has the Euler product,

oI T ) ) ()

p

where Af(p) = ap + @, € R, ap @, = 1 and |a,| = 1. In [10], the first author
established certain zero density theorems for these symmetric square L-functions.
Therefore, for example from theorem 1.1 of [10], we infer that (for 2 < p < 1)

5(1—p) A
Np(p,T) < T®=20 (logT)
and in turn, this implies that
5(1—p)
Nz(p,T) < TG (log T)*

where A is an absolute positive constant. Hence, the zero-density hypothesis in
condition (iii) holds when 2 <y < 1.

By the prime number theorem (related to the weighted coefficients )\?(p),
see for example [11]), we have

Z)\fc(p) logp=u+0 (ue_cvbg“> , (4.11)
psu

We also notice that (for m > 2)

a}?}m _"_aprm +2

b(p™) = - < 1. (4.12)
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Therefore, we deduce from the Theorem,

Corollary. Let % <op<1, 0<0<2m, ¢>0. Let y be the positive solution of
the equation e¥ = 2y + 1. Let | be an integer > 6, Cy = @;ﬁ, 0<Cy <Oy,
Then, for T > Ty, we have

R4 (671‘0 IOgZ (0’0 + ito)) = (1 — 0'0)_1 C’OC'1 (logto)l_oo (log lOgto)_ao

1—(7'0
for at least one tg satisfying T¢ < tg <1 where Cy = cos (27”) (10%) . Here

d = 1 if we assume Riemann hypothesis for Z(s), otherwise we have to assume

% < 09 < 1 and then we can take 6 =1 — ?é:ggg .

Acknowledgement. The authors are thankful to the anonymous referee for some
fruitful suggestions and comments which resulted to this more general version.
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