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Abstract: We present the theory of the Dirichlet problem for nonlocal operators
which are the generators of general pure-jump symmetric Lévy processes whose Lévy

measures need not be absolutely continuous. We establish basic facts about the

Sobolev spaces for such operators, in particular we prove the existence and unique-
ness of weak solutions. We present strong and weak variants of maximum principle,

and L∞ bounds for solutions. We also discuss the related extension problem in

C1,1 domains.
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Introduction

We present results on existence, uniqueness, and regularity of solu-
tions to both weak and strong versions of the Dirichlet problem for nonlo-
cal Lévy-type operators. Let ν be a nonzero, nonnegative Borel measure
on Rn, satisfying

(0.1) ν({0}) = 0, ν(−A) = ν(A), and

∫
Rn

(1 ∧ |y|2) dν(y) <∞,

for every Borel set A ⊆ Rn. ν is called the Lévy measure. For the opera-
tor of the form

(0.2) Lu(x) = PV

∫
Rn

(u(x)− u(x+ y)) dν(y)

:= lim
ε→0+

∫
Rn\B(0,ε)

(u(x)− u(x+ y)) dν(y)
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we consider the weak version of the following “boundary” value problem:

(0.3)

{
Lu = f in Ω,

u = g in Rn\Ω,

where Ω ⊆ Rn is nonempty, open, and bounded, and f , g are given real
functions.

There are important reasons to study operators of the form (0.2). One
of them is the Courrège theorem, which characterizes the operators sat-
isfying the maximum principle, see [5], [21]; (0.2) forms a representative
subclass of such operators. Another reason is in the modeling of the real
world phenomena, see [19] and the references therein.

The purpose of this article is to analyse the Dirichlet problem in de-
tail, for the operators of the form (0.2), without assuming the absolute
continuity of the measure ν. The case of Lévy measures with densities
(and possible x-dependence) was investigated in the article by Felsinger,
Kassmann, and Voigt [11]. The choice of topics which are included in
our work is partly inspired by the survey paper of Ros-Oton [19]. We
cover the technical details omitted in that paper, and extend the re-
sults to arbitrary symmetric Lévy measures. We also discuss the related
extension problem for Sobolev spaces.

We proceed as follows. In Section 1 we give the basic facts about
the operator L. Section 2 shows how the problem (0.3) can be used to
study Lévy processes. In Section 3 we introduce the quadratic form of
the operator L. Domains of such forms, generalized Sobolev spaces, will
serve as the framework for the notion of weak solutions. The definition
of these spaces V Ω

ν (Rn) follows [11]. In Section 4 we present the results
on weak solutions: existence, uniqueness, stability, and connection with
strong solutions. All of these facts are proved for general symmetric
Lévy measures. In the process of proving the existence and uniqueness
result (Theorem 4.2), we establish the Poincaré inequality for arbitrary
symmetric Lévy measures (Theorem 4.7). The reader may find its proof
interesting. We first show that the quadratic forms can be represented
by the means of forms with discrete Lévy measures (Lemma 4.4). Then
we show that the inequality holds for the atomic Lévy measures, they let
us effectively grasp the notion of jumping out of the set (Lemma 4.6).
In Section 5 we prove the strong and weak versions of the maximum
principle and obtain L∞ bounds for solutions using barriers. In Section 6
we use an elementary geometric method to define the extension operator
for isotropic, absolutely continuous Lévy measures with a mild scaling
condition in C1,1 domains. This operator turns out to be continuous
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between appropriate function spaces, as we argue in Theorem 6.10. So
far, this topic has been studied for the classical fractional Sobolev spaces,
see [14] and [23], and fractional Sobolev spaces with relaxed exterior
conditions [9]. See also the article by Valdinoci et al. [8]. The extension
problem is strictly linked to the solvability of the Dirichlet problem, in
accordance with the exterior condition g, cf. Corollary 6.11.

Irregular Lévy measures caught some interest lately in the context of
PDEs, see e.g. [7]. In the area of stochastic processes, operators with
singular Lévy measures can be used to investigate the processes whose
jump intensity fails to have a density, e.g. processes with independent
coordinates.

1. Preliminaries

We will use the following notation:

• Y ∗, dual space of a Banach space Y ,

• (f, g) :=
∫
Ω

f(x)g(x) dx, the scalar product in L2(Ω),

• (f, g)D :=
∫
D

f(x)g(x) dx, the scalar product in L2(D) for other

open sets D,

• 〈f, g〉ν , see (3.1),

• x ∧ y = min{x, y},
• x ∨ y = max{x, y},
• C0(X), continuous functions on a locally compact topological

space X, vanishing at infinity (in the sequel X will be an open
subset of Rn with the Euclidean topology),

• Cn(X), n times continuously differentiable functions,

• Cnb (X), functions from Cn(X), with bounded derivatives of order
up to n,

• C∞(X), infinitely many times continuously differentiable func-
tions,

• C∞c (X), functions from C∞(X) with compact support,

• L0(X), Borel measurable functions on X,

• Lp(X), equivalence classes (w.r.t. being equal a.e.) of functions
with finite Lp-norm,

• L∞(X), equivalence classes of functions with finite essential supre-
mum norm,

• V Dν (Rn), see Definition 3.1,
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• HD
ν (Rn), see Definition 3.1,

• Hν(Rn), see Definition 3.1,

• D(L, x), the set of functions u, for which Lu(x) exists, D(L,A) =
∩x∈AD(L, x),

• νx, the shift of measure ν by x: νx(A) = ν(A− x).

For every function space above we only consider real functions. When
we write a.e. (almost everywhere) we mean the Lebesgue measure, unless
stated otherwise. We would like to emphasize, that Ω is always a fixed
nonempty, bounded, open set. Arbitrary open sets are usually denoted
by the letter D.

The results of this section are mostly well-known, however we present
them for the sake of completeness of the presentation.

By (0.1), ν is σ-finite. The symmetry yields∫
Rn

u(x) dν(x) =

∫
Rn

u(−x) dν(x),

which we will often use without mention. The nonlocality of the op-
erator (0.2) means that in order to compute Lu at x ∈ Ω, we use the
values of u in the support of νx, i.e. possibly far from x, while the local
operators (e.g., ∇ or ∆) only require the values from an arbitrarily small
neighborhood of x. In what follows, we stipulate that f ∈ L2(Ω) and
refrain from making further assumptions on f and g until we reformulate
the problem (0.3) in the framework of Hilbert spaces in Sections 3 and 4.

By changing variables in (0.2), we obtain the following alternative
form of the operator:

Lu(x) = PV

∫
Rn

(u(x)− u(y)) dνx(y).

Note that for every u ∈ Cb(Rn) and ε > 0, we have

(1.1)

∫
B(0,ε)c

|u(x)− u(x+ y)| dν(y) ≤ 2ν(B(0, ε)c)‖u‖∞ <∞.

Our formula for the operator L is pointwise, and it may depend on the
value of the function in a single point. This is because the measure ν is
not necessarily absolutely continuous. Therefore, the formula (0.2) may
yield different results for functions that are equal almost everywhere.
This problem can be managed by considering L in the global sense, as
an operator on a function space.
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Proposition 1.1. If the functions u, v are measurable, u = v a.e. in Rn,
and Lu, Lv are well defined a.e. in Ω, then ‖Lu− Lv‖L2(Ω) = 0, hence
Lu = Lv a.e. in Ω.

Proof: Since Lu, Lv are well-defined and finite a.e., we have
(1.2)∫
Ω

(Lu(x)−Lv(x))2 dx=

∫
Ω

lim
ε→0+

 ∫
B(0,ε)c

(u−v)(x)−(u−v)(x+y) dν(y)


2

dx.

Using the Cauchy–Schwarz inequality, the monotone convergence theo-
rem, and Fubini’s theorem, we can estimate (1.2) as follows

∫
Ω

lim
ε→0+

 ∫
B(0,ε)c

(u− v)(x)− (u− v)(x+ y) dν(y)


2

dx

≤
∫
Ω

lim
ε→0+

ν(B(0, ε)c)

∫
B(0,ε)c

((u− v)(x)− (u− v)(x+ y))2 dν(y) dx

= lim
ε→0+

∫
Ω

ν(B(0, ε)c)

∫
B(0,ε)c

((u− v)(x)− (u− v)(x+ y))2 dν(y) dx

= lim
ε→0+

∫
B(0,ε)c

ν(B(0, ε)c)

∫
Ω

((u− v)(x)− (u− v)(x+ y))2 dx dν(y).

Since the inner integral is equal to 0 for every y ∈ Rn, the proposition
is proved.

The next result gives an insight into the domain of L.

Proposition 1.2. If u ∈ C2
b (Rn), then Lu(x) is well defined for x ∈ Rn

and Lu ∈ L2(Ω).

Proof: Let u ∈ C2
b (Rn). Substituting −y for y in (0.2) and adding side

by side gives

(1.3) Lu(x) =
1

2
lim
ε→0+

∫
Rn\B(0,ε)

(2u(x)− u(x+ y)− u(x− y)) dν(y).
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By Taylor’s expansion, for x, y ∈ Rn:

2u(x)−u(x+y)−u(x−y)=2u(x)−

u(x)+y◦∇u(x)+

n∑
i,j=1

∂2u(ξ)

∂xi∂xj
yiyj



−

u(x)−y◦∇u(x)+

n∑
i,j=1

∂2u(ξ)

∂xi∂xj
yiyj


=−2

n∑
i,j=1

∂2u(ξ)

∂xi∂xj
yiyj ,

where ξ ∈ B(x, |y|). Since u ∈ C2
b (Rn), we obtain

(1.4) |2u(x)− u(x+ y)− u(x− y)| ≤ C(1 ∧ |y|2),

for a number C > 0 independent of x, i.e. a constant. As a conse-
quence,

∫
Rn

(2u(x)− u(x+ y)− u(x− y)) dν(y) converges absolutely. By

the dominated convergence theorem,

Lu(x) = lim
ε→0+

∫
Rn\B(0,ε)

(u(x)− u(x+ y)) dν(y)

=
1

2

∫
Rn

(2u(x)− u(x+ y)− u(x− y)) dν(y).

(1.5)

Furthermore,∫
Ω

Lu(x)2 dx =

∫
Ω

1

2

∫
Rn

(2u(x)− u(x+ y)− u(x− y)) dν(y)

2

dx

≤

 ∫
Rn

(1 ∧ |y|2) dν(y)

2 ∫
Ω

C2

4
dx.

Since Ω is bounded, Lu ∈ L2(Ω).

Remark. Note that the estimate (1.4) also shows that Lu ∈ L∞(Ω).

2. Connection with Lévy processes

In this section we will provide a probabilistic motivation for study-
ing the Dirichlet problem (0.3) and an explanation for the assumptions
in (0.1). For further details we refer to Chapters 1, 6, 8 of [20] and
Chapters I–V of [10].



The Dirichlet Problem for Nonlocal Lévy-type Operators 219

Definition 2.1. We call an Rn-valued stochastic process (Xt)t≥0 a Lévy
process, if it is stochastically continuous and has stationary independent
increments.

For an Rn-valued Lévy process we have the family of transition prob-
abilities: pt(x,A) = Px(Xt ∈ A) = P(Xt ∈ A | X0 = x). They yield
a strongly continuous semigroup of contractions on C0(Rn): ptf(x) =∫
Rn
f(y)pt(x, dy). Recall that the generator G of a strongly continuous

semigroup of contractions (pt)t≥0 on a Banach space is

Gu(x) = lim
t→0

ptu(x)− u(x)

t
,

with the limit, if it exists, taken in the norm of the Banach space. If the
contraction semigroup is associated to a Lévy process, then we also say
that G is the generator of the process. The following result is well-known:

Theorem 2.2. Let G be the generator of a Lévy process. Then, for
every u ∈ C2

0 (Rn),

Gu(x)=

n∑
i=1

biuxi(x) +
1

2

n∑
i,j=1

aijuxixj (x)

+

∫
Rn

(u(x+ y)− u(x)− y ◦ ∇u(x) · 1|y|<1) dν(y),

where A = [aij ] is a symmetric nonnegative-definite matrix, [bi] ∈ Rn,
and the (Lévy) measure ν satisfies

∫
Rn

(1 ∧ |y|2) dν(y) <∞.

The Lévy measure can be understood as the intensity of jumps of the
process Xt.

We want to discuss only pure jump processes, therefore we drop the
drift (first derivatives) and diffusion (second derivatives), ending up with

(2.1) Gu(x) =

∫
Rn

(u(x+ y)− u(x)− y ◦ ∇u(x) · 1|y|<1) dν(y).

If ν is symmetric, we obtain an operator of the form (1.5). Namely, we
have

(2.2) −Gu(x) =
1

2

∫
Rn

(2u(x)− u(x+ y)− u(x− y)) dν(y).

Thus, L = −G, cf. (1.5). We note that L = −G is positive definite.
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Example 2.3. The Dirichlet problem arises when studying exit times
for Lévy processes. Let s(x) = ExτΩ, where τΩ = inf{t ≥ 0 : Xt /∈ Ω} is
the first exit time from a nonempty bounded open Ω ⊂ Rn for the Lévy
process (Xt) with the generator G. Then s satisfies

(2.3)

{
−Gs = 1 in Ω,

s = 0 in ΩC .

While the second equality is trivial, the first one requires auxiliary no-
tions and results from probabilistic potential theory, therefore we skip the
details of this connection. We will, however, make related calculations in

Example 5.10. More generally, h(x) = Exg(XτΩ)− Ex
τΩ∫
0

f(Xt) dt solves

(0.3). For an elegant derivation of this fact, see Chapter V in Dynkin’s
book [10].

Definition 2.4. For α ∈ (0, 2) we define C =
2αΓ(n+α

2 )

π
n
2 |Γ(−α2 )|

and

(−∆)
α
2 u(x) = C · PV

∫
Rn

u(x)− u(x+ y)

|y|n+α
dy.

The generator of the isotropic α-stable process (α ∈ (0, 2)) is the
fractional Laplacian −(−∆)

α
2 . Here the Lévy measure is absolutely

continuous w.r.t. Lebesgue measure with the density function (kernel)
K(y) = C−1 1

|y|n+α . Stable processes, with their generators, are a nat-

ural nonlocal extension of the Brownian motion and its generator, the
classical Laplacian. That is why these objects draw a great deal of at-
tention of the researchers from fields of analysis, PDEs, and stochastic
processes. For more information about stable processes we refer to [2].

In the probabilistic context it is sometimes stressed that the Lévy
measure should span the whole Rn space, i.e. its support should not be
contained in a proper subspace of Rn. Otherwise, there would be little
reason to consider the given process as a process in Rn.

3. Function spaces

The methods of Hilbert spaces, in particular the quadratic forms,
provide us with a convenient framework for solving the weak variant
of (0.3). Before we define the appropriate function spaces, we need to
conduct calculations similar to those from Proposition 1.1. Let D be
a nonempty open set and let the functions u1, u2 be equal a.e. in Rn.
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Assume that∫
D

∫
Rn

(ui(x)− ui(x+ y))2 dν(y) dx <∞, i = 1, 2.

By Fubini–Tonelli theorem we have∫
D

∫
Rn

((u1 − u2)(x)− (u1 − u2)(x+ y))2 dν(y) dx

=

∫
Rn

∫
D

((u1 − u2)(x)− (u1 − u2)(x+ y))2 dx dν(y),

which is equal to 0 since u1 = u2 a.e. This fact lets us operate on equiv-
alence classes of functions, even when ν is singular. The next definition
follows [11].

Definition 3.1. For a nonempty open (not necessarily bounded) D ⊆
Rn, we define the function spaces

V Dν (Rn) = {u ∈ L0(Rn) : ‖u‖V Dν (Rn) <∞},
HD
ν (Rn) = {u ∈ V Dν (Rn) : u ≡ 0 a.e. in Rn\D},

where

‖u‖V Dν (Rn) =

√√√√‖u‖2L2(D) +
1

2

∫
D

∫
Rn

(u(x)− u(y))2 dνy(x) dy.

Furthermore, we let
Hν(Rn) := V Rn

ν (Rn).

In particular, ‖u‖Hν(Rn) = ‖u‖V Rn
ν (Rn). These spaces are called the (gen-

eralized) Sobolev spaces. For u, v ∈ Hν(Rn), we write

〈u, v〉ν =
1

2

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y)) dνy(x) dy

=
1

2

∫
Rn

∫
Rn

(u(y)− u(x+ y))(v(y)− v(x+ y)) dν(x) dy,

(3.1)

so that the norm on Hν(Rn) can be rewritten as

‖u‖Hν(Rn) =
√
‖u‖2L2(Rn) + 〈u, u〉ν .

In literature, the expression ‖u‖L2(Ω) + 〈u, u〉ν is sometimes referred
to as E1(u, u). 〈u, u〉ν is called the quadratic form of the operator L. It
was well studied in the context of nonlinear equations in [6].
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Note that HD
ν (Rn) ⊆ L2(Rn) and Hν(Rn) ⊆ V Dν (Rn) for every D.

The following identity will be used frequently.

Lemma 3.2. For every u ∈ L0(Rn),∫
Rn

∫
D

(u(x)− u(y))2 dνy(x) dy =

∫
D

∫
Rn

(u(x)− u(y))2 dνy(x) dy.

Proof: By Fubini–Tonelli theorem, translation invariance of Lebesgue
measure, and the symmetry of ν, we get∫
Rn

∫
D

(u(x)− u(y))2 dνy(x) dy=

∫
Rn

∫
Rn

(u(x+y)− u(y))21D(x+ y) dν(x) dy

=

∫
Rn

∫
Rn

(u(x+y)− u(y))21D(x+y) dy dν(x)

=

∫
Rn

∫
Rn

(u(y)− u(y − x))21D(y) dy dν(x)

=

∫
Rn

∫
Rn

(u(y)− u(y + x))21D(y) dy dν(x)

=

∫
D

∫
Rn

(u(x+ y)− u(y))2 dν(x) dy

=

∫
D

∫
Rn

(u(x)− u(y))2 dνy(x) dy.

For u ∈ V Dν (Rn) we can easily conclude that the corresponding inte-
grals over D×Dc and Dc×D are also equal. Reader interested in more
general results of this type may consult [7, Lemma 6.4.].

Corollary 3.3. For every u∈HD
ν (Rn), we have ‖u‖V Dν (Rn)≤‖u‖Hν(Rn)≤

2‖u‖V Dν (Rn), i.e. the norms are equivalent on HD
ν (Rn). In particular,

HD
ν (Rn) ⊆ Hν(Rn).

Proof: The corresponding L2 norms are identical, because supp(u) = D,
so we will only focus on the remaining parts of the norms.

The first inequality is trivial. For the second inequality, we note that
for u ∈ HD

ν (Rn), we have
∫
Dc

∫
Dc

(u(x) − u(y))2 dνy(x) dy = 0, hence by
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Lemma 3.2∫
Rn

∫
Rn

(u(x)− u(y))2 dνy(x) dy

=

∫
D

∫
D

+

∫
D

∫
Dc

+

∫
Dc

∫
D

+

∫
Dc

∫
Dc

 (u(x)− u(y))2 dνy(x) dy

=

∫
D

∫
D

+

∫
D

∫
Dc

+

∫
Dc

∫
D

 (u(x)− u(y))2 dνy(x) dy

=

∫
D

∫
Rn

+

∫
Dc

∫
D

 (u(x)− u(y))2 dνy(x) dy

≤ 2

∫
D

∫
Rn

(u(x)− u(y))2 dνy(x) dy.

The proof of the following result is almost identical to the analogue
in [11]. Nonetheless, we present it for the convenience of the reader.

Lemma 3.4. Hν(Rn) and HD
ν (Rn) are Hilbert spaces with the inner

product (u, v)Rn + 〈u, v〉ν .

Proof: It is enough to prove the proposition for Hν(Rn), because once
we establish that, it suffices to note that HD

ν (Rn) = {u ∈ Hν(Rn) :
u|Dc ≡ 0} is a closed subspace of Hν(Rn).
Hν(Rn) is obviously closed upon multiplication by scalars. The closed-

ness under addition goes as follows. Let u, v ∈ Hν(Rn). Since (·, ·)
and 〈·, ·〉ν both admit the Cauchy–Schwarz inequality, we have ‖u +
v‖Hν(Rn) ≤ ‖u‖Hν(Rn) + ‖v‖Hν(Rn), hence u+ v ∈ Hν(Rn).

We know that (·, ·) is an inner product and 〈·, ·〉ν is bilinear, sym-
metric, and nonnegative definite, therefore their sum is an inner product
too.

To prove the completeness, let (un) be a Cauchy sequence in Hν(Rn).
This implies that (un) is a Cauchy sequence in L2(Rn), so it converges
in L2(Rn) to some u. Let us choose a subsequence (unk) that converges
to u a.e. From Fatou’s lemma and the fact that (un) is Cauchy, hence
bounded in Hν(Rn), we conclude that∫
Rn

∫
Rn

(u(x)− u(y))2 dνy(x) dy ≤ lim inf
k→∞

∫
Rn

∫
Rn

(unk(x)− unk(y))2 dνy(x) dy

≤ sup
n∈N
‖un‖2Hν(Rn) <∞.
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Therefore u ∈ Hν(Rn). Now we will prove that unk
k→∞−−−−→ u in Hν(Rn).

By Fatou’s lemma:∫
Rn

∫
Rn

(unk(x)− unk(y)− (u(x)− u(y)))2 dνy(x) dy

≤ lim inf
l→∞

∫
Rn

∫
Rn

(unk(x)− unk(y)− (unl(x)− unl(y))2 dνy(x) dy.

The right hand side is less than ε for k large enough since (un) is Cauchy

in Hν(Rn). Thus, unk converges to u in Hν(Rn) and so un
n→∞−−−−→ u in

Hν(Rn). That finishes the proof of completeness of Hν(Rn).

Example 3.5. If dν(x) = C 1
|x|n+α dx, for some α ∈ (0, 2), i.e. if L is

the fractional Laplacian, then V Ω
ν (Rn), HΩ

ν (Rn), Hν(Rn) are called the
fractional Sobolev spaces.

Remark. Our approach to the bilinear forms (3.1) is straightforward in
the sense that we do not use any deep results from the functional analysis.
The book of Ma and Röckner [16] presents the relationship between the
operator and its quadratic form in a more abstract sense, in the context
of semigroups and resolvents theory.

The definition of Sobolev spaces yields the following monotonicity
properties.

Lemma 3.6. If ν1 ≤ ν2, then HΩ
ν2

(Rn) ⊆ HΩ
ν1

(Rn), V Ω
ν2

(Rn) ⊆ V Ω
ν1

(Rn),
and Hν1

(Rn) ⊆ Hν2
(Rn).

If Ω1 ⊆ Ω2, then HΩ2
ν (Rn) ⊆ HΩ1

ν (Rn) and V Ω2
ν (Rn) ⊆ V Ω1

ν (Rn).

In the following section, we show that if a nice function u is a solution
to the equation (0.3), then it satisfies the following weak version of the
equation: 〈u, φ〉ν = (f, φ), for every function φ ∈ HΩ

ν (Rn), under the
condition u = g outside Ω.

4. Weak/variational solutions

We define the strong solutions to (0.3) as the functions which satisfy
its equations almost everywhere. However, our main target of consider-
ation are the weak solutions.

Definition 4.1. Let f ∈ L2(Ω). We say that u ∈ V Ω
ν (Rn) is a weak

solution to (0.3), u = g a.e. outside Ω, and for every φ ∈ HΩ
ν (Rn)

(4.1)
1

2

∫
Rn

∫
Rn

(u(x)− u(y))(φ(x)− φ(y)) dνy(x) dy =

∫
Ω

f(x)φ(x) dx.
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In short, u = g a.e. in Ωc and

(4.2) 〈u, φ〉ν = (f, φ).

The definition implies, that a necessary condition for the existence
of weak solution is that g can be extended to a V Ω

ν (Rn) function. This
also turns out to be a sufficient condition. In order to provide a more
constructive assumption on g, one needs to consider the extension prob-
lem, which we discuss in Section 6. In there we also formulate a fully
constructive set of assumptions under which the Dirichlet problem has
a weak solution, see Corollary 6.11. Recall that Ω is bounded and let us
present the main result of this section.

Theorem 4.2. Let ν be a symmetric Lévy measure. If f ∈ L2(Ω) and
there exists h ∈ V Ω

ν (Rn), such that g = h �Ωc , then the equation of the
form (4.1) has a unique solution u ∈ V Ω

ν (Rn).

To prove this theorem, we note that the quadratic form 〈u, u〉ν can
be represented in terms of forms 〈u, u〉δy , where δy is the Dirac delta
at point y. Then we establish the Poincaré inequality for atomic mea-
sures and use the aforementioned representation of ν, to prove that the
Poincaré inequality holds for every symmetric Lévy measure in Theo-
rem 4.7. After doing that, we use the Lax–Milgram theorem to finish
the proof for the homogeneous case (g = 0), from which we pass to the
non-homogeneous case.

Theorem 4.3 (Lax–Milgram theorem, [15, §6, Th. 6]). Let H be a
Hilbert space over K = C or R and let a : H × H → K be a bilinear
functional that satisfies

(1) (∃C > 0)(∀x, y ∈ H) |a(x, y)| ≤ C‖x‖ · ‖y‖,
(2) (∃β > 0)(∀x ∈ H) |a(x, x)| ≥ β‖x‖2 (coercivity).

Then for every l ∈ H∗ the equation

a(u, v) = l(v), for every v ∈ H,

has a unique solution u.

Lemma 4.4. For every Lévy measure ν and u ∈ HΩ
ν (Rn) we have

(4.3) 〈u, u〉ν =

∫
Rn

〈u, u〉δy dν(y).
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Proof: Let u ∈ HΩ
ν (Rn). By Tonelli’s theorem, we have

〈u, u〉ν =
1

2

∫
Rn

∫
Rn

(u(x)− u(x+ y))2 dν(y) dx

=
1

2

∫
Rn

∫
Rn

(u(x)− u(x+ y))2 dx dν(y).

Again, by Tonelli’s theorem, we can iterate the integration to get

〈u, u〉δy =
1

2

∫
Rn

∫
Rn

(u(x)− u(x+ z))2 dδy(z) dx

=
1

2

∫
Rn

(u(x)− u(x+ y))2 dx,

(4.4)

which ends the proof.

A similar formula holds with u, v∈HΩ
ν (Rn) and 〈u, v〉 instead of 〈u, u〉.

Let us note the following fact which is a consequence of the formula
2a2 + 2b2 ≥ (a+ b)2.

Lemma 4.5. Let B be a Borel set in Rn, x0 ∈ Rn\{0}. For every u for
which the right hand side makes sense,

∫
B

(u(x)− u(x+ x0))2 dx ≥ 1

2

∫
B

u(x)2 dx−
∫

B+x0

u(x)2 dx.

Lemma 4.6 (Poincaré inequality for measures with atoms). Let ν be
a Lévy measure with an atom in x0 ∈ Rn\{0}. Then the quadratic
form 〈·, ·〉ν satisfies the Poincaré inequality

(4.5) C〈u, u〉ν ≥ ‖u‖2L2(Rn), for every u ∈ HΩ
ν (Rn),

with C independent of u. Furthermore, if we fix Ω and ε > 0, then for
|x0| > ε the constant is uniformly bounded.
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Proof: It suffices to consider measures of the form ν(A) = δx0
(A) for an

arbitrary x0 ∈ Rn. Let us write the quadratic form for such a measure

2〈u, u〉ν =

∫
Rn

∫
Rn

(u(x)−u(x+y))2 dν(y) dx=

∫
Rn

(u(x)−u(x+x0))2 dx(4.6)

=

∫
Ωc−x0

u(x)2 dx+

∫
Ω−x0

(u(x)− u(x+ x0))2 dx

=

∫
(Ωc−x0)∩Ω

u(x)2 dx+

∫
Ω−x0

(u(x)− u(x+ x0))2 dx.(4.7)

By (4.6) and (4.7) we see that it is enough to show that C̃〈u, u〉ν ≥∫
(Ω−x0)∩Ω

u(x)2 dx with C̃ independent of u.

Using Lemma 4.5, we get

2〈u, u〉ν ≥
∫

(Ω−x0)∩Ω

(u(x)− u(x+ x0))2 dx

≥ 1

2

∫
(Ω−x0)∩Ω

u(x)2 dx−
∫

Ω∩(Ω+x0)

u(x)2 dx.

(4.8)

Again, by Lemma 4.5 and the fact that u is supported in Ω:

4〈u, u〉ν ≥ 2

∫
Ω∩(Ω+x0)

(u(x)− u(x+ x0))2 dx

≥
∫

Ω∩(Ω+x0)

u(x)2 dx− 2

∫
Ω∩(Ω+x0)∩(Ω+2x0)

u(x)2 dx.

(4.9)

Adding (4.8) and (4.9) side by side yields

(4.10) 6〈u, u〉ν ≥
1

2

∫
(Ω−x0)∩Ω

u(x)2 dx− 2

∫
Ω∩(Ω+x0)∩(Ω+2x0)

u(x)2 dx.

In the next step we use Lemma 4.5 with

8〈u, u〉ν ≥ 4

∫
Ω∩(Ω+x0)∩(Ω+2x0)

(u(x)− u(x+ x0))2 dx.
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At every step we obtain an inequality of the form:

(4.11) Ck〈u, u〉ν ≥
1

2

∫
(Ω−x0)∩Ω

u(x)2 dx−ck
∫

Ω∩(Ω+x0)∩···∩(Ω+kx0)

u(x)2 dx.

However, since Ω is bounded, for some n ∈ N, we will get Ω∩ (Ω +x0)∩
(Ω + 2x0) ∩ · · · ∩ (Ω + nx0) = ∅. Then the subtracted integral in (4.11)
is equal to 0 and we get the desired result.

The uniform boundedness of C follows directly from the proof: notice
how the ratio of diam(Ω) to |x0| affects the required number of steps in
our reasoning.

Theorem 4.7 (Poincaré inequality for symmetric Lévy measures). Let
Ω be a nonempty bounded open set and let ν be a symmetric Lévy mea-
sure. Then,

(4.12) ‖u‖2L2(Ω) ≤ C(ν,Ω)〈u, u〉ν for every u ∈ HΩ
ν (Rn).

Proof: Let a > b > 0 and let Rba = {x ∈ Rn : a ≤ |x| ≤ b}. Note that
for every Lévy measure ν there exist ε2 > ε1 > 0 such that ν(Rε2ε1) > 0.
By Lemma 4.6, there exists C > 0, such that for every y ∈ Rε2ε1 and

u ∈ HΩ
ν (Rn)

〈u, u〉δy ≥ C−1‖u‖2L2(Ω).

Hence,

〈u, u〉ν =
1

2

∫
Rn

∫
Rn

(u(x)− u(x+ y))2 dx dν(y)

≥
∫
R
ε2
ε1

1

2

∫
Rn

(u(x)− u(x+ y))2 dx dν(y)

=

∫
R
ε2
ε1

〈u, u〉δy dν(y) ≥ C−1ν(Rε2ε1)‖u‖2L2(Ω).

(4.13)

Proof of Theorem 4.2: First we take care of the homogeneous equation,
i.e. g = 0 a.e. outside Ω. Let us use the Lax–Milgram theorem with H =
HΩ
ν (Rn) with the norm ‖ · ‖V Ω

ν (Rn), a(u, v) = 〈u, v〉ν , and l(v) = (f, v).

For u, v ∈ HΩ
ν (Rn) we have

|〈u, v〉ν |2 ≤ 〈u, u〉ν〈v, v〉ν ≤ (‖u‖22 + 〈u, u〉ν)(‖v‖22 + 〈v, v〉ν)

≤ 2‖u‖2V Ω
ν (Rn)2‖v‖

2
V Ω
ν (Rn),

hence a is bounded.
In our setting the coercivity is equivalent to

〈u, u〉ν ≥ β(‖u‖2L2(Ω) + 〈u, u〉ν) for every u ∈ HΩ
ν (Rn).
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As we see, β must be a number from the interval (0, 1). Thus, the
coercivity is granted by Theorem 4.7.

For every φ ∈ HΩ
ν (Rn),

|(f, φ)| ≤ ‖f‖L2(Ω)‖φ‖L2(Ω) ≤ ‖f‖L2(Ω)‖φ‖V Ω
ν (Rn),

hence l ∈ H∗.
By the Lax–Milgram theorem we conclude that the equation

〈u, φ〉ν = (f, φ), for every φ ∈ HΩ
ν (Rn),

has a unique solution u ∈ HΩ
ν (Rn).

The case of g 6≡ 0 can now be resolved quite easily.
Consider an arbitrary (fixed) extension of g to a function in V Ω

ν (Rn)
(which we also call g). Note that the conditions “u ∈ V Ω

ν (Rn), u = g
a.e. in Ωc” are equivalent to “u = ũ + g for some ũ ∈ HΩ

ν (Rn)”. Let
u = ũ+ g be such a function. Then∫

Rn

∫
Rn

(u(x)− u(y))(φ(x)− φ(y)) dνy(x) dy

=

∫
Rn

∫
Rn

(ũ(x) + g(x)− ũ(y)− g(y))(φ(x)− φ(y)) dνy(x) dy

=

∫
Rn

∫
Rn

(ũ(x)− ũ(y))(φ(x)− φ(y)) dνy(x) dy

+

∫
Rn

∫
Rn

(g(x)− g(y))(φ(x)− φ(y)) dνy(x) dy.

Since ũ ∈ HΩ
ν (Rn), the existence of the solution of the equation (4.1) is

equivalent to the existence of the solution ũ of the homogeneous equation

(4.14) 〈ũ, φ〉ν = (f, φ)− 〈g, φ〉ν for every φ ∈ HΩ
ν (Rn).

By the Cauchy–Schwarz inequality and the fact that g∈V Ω
ν (Rn), we have

〈g, φ〉2ν ≤ 〈g, g〉ν〈φ, φ〉ν ≤ 2〈g, g〉ν‖φ‖2V Ω
ν (Rn) for every φ ∈ HΩ

ν (Rn),

hence l(·) = (f, ·)− 〈g, ·〉ν is a continuous linear functional on HΩ
ν (Rn).

Thus we conclude that the equation (4.14) has a unique solution ũ.
Therefore u = ũ + g solves (4.1). We claim that u does not depend on
the choice of the extension of g. Let g1, g2 ∈ V Ω

ν (Rn) be extensions of g
and let ũ, u be solutions of (4.14) with g = g1, g = g2, respectively. For
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every φ ∈ HΩ
ν (Rn) we have

〈ũ, φ〉ν = (f, φ)− 〈g1, φ〉ν ,
〈u, φ〉ν = (f, φ)− 〈g2, φ〉ν .

Therefore

〈ũ+ g1 − (u+ g2), φ〉ν = 0 for every φ ∈ HΩ
ν (Rn).

In particular,

〈ũ+ g1 − (u+ g2), ũ+ g1 − (u+ g2)〉ν = 0.

By the coercivity of 〈·, ·〉ν on HΩ
ν (Rn), we get ũ+g1 = u+g2 a.e. on Rn,

as claimed. That proves the uniqueness of the solution.

Remark. The Poincaré inequality is well-known for the transient Lévy
processes, see e.g. [12, (1.18)] or [13, Theorem 2.4.2] with dµ = 1Ω dx.
Note that not every process with generator given by (0.2) is transient,
see e.g. Example 35.7 in [20].

In the sequel we shall explain why the definition of weak solutions is
appropriate.

Let us recall the proof of the fact that being a weak solution is equiv-
alent to being a variational solution i.e., minimizing a certain energy
functional.

Lemma 4.8. A function u ∈ V Ω
ν (Rn) is a solution to (4.1) if and only

if u = g a.e. in Ωc and u minimizes the energy functional

(4.15) E(u) =
1

4

∫∫
R2n\ΩC×ΩC

(u(x)− u(y))2 dνx(y) dx−
∫
Ω

fu

among the functions equal almost everywhere to g on Ωc.

Proof: Let u ∈ Vg = V Ω
ν (Rn)∩{h : h = g a.e. in Ωc} minimize E among

the functions from Vg. Then, for every φ ∈ HΩ
ν (Rn) and every λ ∈ R,

we have u+ λφ ∈ Vg, hence

0 ≤ E(u+ λφ)− E(u) = λ

〈u, φ〉ν − ∫
Ω

fφ

+
1

2
λ2〈φ, φ〉ν .

For λ > 0, dividing both sides by λ and taking the limit λ→ 0+ gives

(4.16) 〈u, φ〉ν −
∫
Ω

fφ ≥ 0.
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The same procedure for λ < 0 yields

(4.17) 〈u, φ〉ν −
∫
Ω

fφ ≤ 0.

By (4.16) and (4.17), u is a weak solution.
Now, assume that u is a weak solution. Note that Vg = u+HΩ

ν (Rn),
thus it suffices to check that E(u+φ)−E(u) ≥ 0 for every φ ∈ HΩ

ν (Rn).
In fact, since u is a weak solution,

E(u+ φ)− E(u) = 〈u, φ〉ν −
∫
Ω

fφ+
1

2
〈φ, φ〉ν =

1

2
〈φ, φ〉ν ≥ 0.

We will show that if a function u satisfying (0.3) is sufficiently regular,
then it is a weak solution.

Lemma 4.9. If u is locally Lipschitz (i.e. Lipschitz on every bounded
subset of Rn) and bounded, then u ∈ V Ω

ν (Rn).

Proof: Note that there exists C > 0 such that for every x ∈ Ω we have
(u(x) − u(x + y))2 ≤ C(1 ∧ |y|2). Indeed, when |y| ≤ 1 the inequality
follows from the Lipschitz condition and the boundedness of Ω, while
for |y| > 1 we use the boundedness of u. Therefore∫

Ω

∫
Rn

(u(x)− u(x+ y))2 dν(y) dx ≤ C
∫
Ω

∫
Rn

(1 ∧ |y|2) dν(y) dx

= C|Ω|
∫
Rn

(1 ∧ |y|2) dν(y) <∞.

Theorem 4.10. If u ∈ C2
b (Rn) is a solution to (0.3), then it is also a

weak solution.

Proof: Assume that u ∈ C2
b (Rn) and let ε > 0. By Proposition 1.2,

Lu(x) = 1
2

∫
Rn

(2u(x) − u(x + y) − u(x − y)) dν(y) converges absolutely

and f := Lu ∈ L2(Ω). If φ ∈ HΩ
ν (Rn), then by Tonelli’s theorem∫

Ω×Rn

1

2
|φ(x)(2u(x)− u(x+ y)− u(x− y))| dν(y) dx

≤ C
∫

Ω×Rn

|φ(x)|(1 ∧ |y|2) dν(y) dx

= C

∫
Ω

|φ(x)|
∫
Rn

(1 ∧ |y|2) dν(y) dx <∞.
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By this and the dominated convergence theorem, for every φ ∈ HΩ
ν (Rn)

we have∫
Ω

fφ =

∫
Ω

Lu(x)φ(x) dx

=

∫
Ω

∫
Rn

1

2
φ(x)(2u(x)− u(x+ y)− u(x− y)) dν(y) dx

= lim
ε→0+

∫
Ω

φ(x)

∫
B(0,ε)c

1

2
(2u(x)− u(x+ y)− u(x− y)) dν(y) dx(4.18)

= lim
ε→0+

∫
Ω

φ(x)

∫
B(0,ε)c

(u(x)− u(x+ y)) dν(y) dx(4.19)

= lim
ε→0+

∫
Rn

φ(x)

∫
B(0,ε)c

(u(x)− u(x+ y)) dν(y) dx.

Splitting the integral in (4.18) is legitimate, since the integral over B0(ε)c

in (4.19) is bounded as a function of x. This was shown in the proof
of Proposition 1.2. By the symmetry of ν and B(0, ε) and translation
invariance of Lebesgue measure, we have∫

Rn

φ(x)

∫
B(0,ε)c

(u(x)− u(x+ y)) dν(y) dx

=

∫
B(0,ε)c

∫
Rn

φ(x)(u(x)− u(x+ y)) dx dν(y)

=

∫
B(0,ε)c

∫
Rn

φ(x− y)(u(x− y)− u(x)) dx dν(y)

=

∫
B(0,ε)c

∫
Rn

φ(x+ y)(u(x+ y)− u(x)) dx dν(y)

= −
∫
Rn

∫
B(0,ε)c

φ(x+ y)(u(x)− u(x+ y)) dν(y) dx.
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Therefore

lim
ε→0+

∫
Rn

φ(x)

∫
B(0,ε)c

(u(x)− u(x+ y)) dν(y) dx

=
1

2
lim
ε→0+

∫
Rn

∫
B(0,ε)c

(u(x)− u(x+ y))(φ(x)− φ(x+ y)) dν(y) dx

=
1

2

∫
Rn

∫
Rn

(u(x)− u(x+ y))(φ(x)− φ(x+ y)) dν(y) dx.

The last equality follows from Lemma 4.9, which yields the absolute
convergence of the last integral, and from the dominated convergence
theorem.

In the strong case, it is obvious that the solutions are stable under
taking subspaces, i.e. if Lu = f in Ω, then Lu = f in Ω′ ⊆ Ω. A similar
fact is true for weak solutions.

Proposition 4.11. Let Ω′⊆Ω, f ∈L2(Ω), u∈V Ω
ν (Rn), and let 〈u, φ〉ν =

(f, φ)Ω for every φ ∈ HΩ
ν (Rn). Then 〈u, ψ〉ν = (f, ψ)Ω′ for every ψ ∈

HΩ′

ν (Rn).

Proof: Note that u ∈ V Ω′

ν (Rn) and HΩ′

ν (Rn) ⊆ HΩ
ν (Rn). Therefore, for

every ψ ∈ HΩ′

ν (Rn) we have

〈u, ψ〉ν = (u, ψ)Ω = (u, ψ)Ω′ ,

i.e. u is a weak solution in Ω′.

5. Maximum principle and its applications

5.1. Comparison principle. We present the so-called maximum and
comparison principle for the nonlocal operator L. Analogous results were
given for the fractional Laplacian in [22], see also the discussion in [19].

Theorem 5.1 (Weak maximum principle). Let u be a weak solution
to (0.3) with f ≥ 0, g ≥ 0 a.e. Then u ≥ 0 a.e.

Proof: We want to use u− = −(u ∧ 0) as the test function φ in (4.1).
We claim that it is in HΩ

ν (Rn). Indeed, we have g ≥ 0, hence u− = 0
outside Ω. Of course u− ∈ L2(Rn). The integrability condition from
Definition 3.1 follows from (u−(x) − u−(y))2 ≤ (u(x) − u(y))2. This
verifies the claim.
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Since u is a weak solution, by Lemma 4.4 and the fact that for any
function u, (u+(x)− u+(y))(u−(x)− u−(y)) ≤ 0, we get

0 ≤
∫
Ω

f(x)u−(x) dx = 〈u, u−〉ν = 〈u+, u−〉ν − 〈u−, u−〉ν ≤ −〈u−, u−〉ν .

Since we also have 〈u−, u−〉ν ≥ 0, we see that 〈u−, u−〉ν = 0. By the
Poincaré inequality (4.13) (which we can use, because u− ∈ HΩ

ν (Rn))
we conclude that u− = 0 a.e. in Ω.

Corollary 5.2 (Weak comparison principle). If u, v solve (4.1) with
f = fu, g = gu, f = fv, and g = gv respectively, and if fu ≥ fv,
gu ≥ gv, then u ≥ v.

Proof: Take u− v in the theorem above.

Let us reformulate Theorem 5.1 for the (strong) solutions of (0.3),
to justify calling it maximum (or rather minimum) principle. In the
following theorems we do not make any assumptions on ν apart from
those in (0.1). Recall that D(L,Ω) contains functions u, for which Lu(x)
exists for every x ∈ Ω.

Theorem 5.3. If u ∈ D(L,Ω)∩C(Rn) satisfies Lu ≥ 0 in Ω and u ≥ 0
outside Ω, then u ≥ 0 a.e. in Ω.

Proof: Assume by contradiction that u(y) < 0 for some y ∈ Ω. Then,
by continuity we conclude that u has a global minimum at some x ∈ Ω.
Since u(x) is the global minimum of u, we have u(x) − u(x + y) ≤ 0
for every y ∈ Rn. Therefore, by the monotone convergence theorem,
we can drop the PV in (0.2) getting Lu(x) =

∫
Rn

(u(x) − u(y)) dνx(y) =∫
Rn

(u(x) − u(x + y)) dν(y) ≤ 0. If
∫
Rn

(u(x) − u(y)) dνx(y) < 0, then

we get the desired contradiction. Otherwise, let A ⊂ Rn be such that
ν(A) > 0, dist(0, A) > 0. In addition, we want A + x to dominate
x = (x1, . . . , xn) on at least one coordinate, i.e. for some k ∈ {1, . . . , n}
and every y ∈ A + x we have yk − xk ≥ d > 0. Since

∫
Rn

(u(x) −

u(y)) dνx(y) ≤
∫

A+x

(u(x)−u(y)) dνx(y) = 0, we get that u(y) = u(x) < 0

νx-a.e. on A + x. Let x1 ∈ A + x be such that u(x1) = u(x). We have
(x1)k ≥ xk+d. Once again, if Lu(x1) < 0, then we have a contradiction,
and if Lu(x1) = 0 we repeat the procedure obtaining x2, and so on. Since
A dominates 0 and Ω is bounded, we will eventually get that for some m
either Lu(xm) < 0 or xm ∈ Ωc and u(xm) = u(x) < 0 which contradicts
u(y) > 0 for y ∈ Ωc.
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The first iteration of the argument above gives the proof of the neg-
ative minimum (equivalently, positive maximum) principle.

Proposition 5.4. If u ∈ C(Rn) satisfying u ≥ 0 outside Ω has a nega-
tive global minimum at x ∈ Ω and u ∈ D(L,Ω), then Lu(x) ≤ 0. If the
minimum is strict, then Lu(x) < 0.

Example 5.5. Without the assumption that the maximum at x is
strict, Lu(x) is not necessarily strictly negative. Consider the Lévy
measure δ1 + δ−1 on R, let Ω = (−2, 2) and let u ∈ C∞c (R) satisfy
0 ≥ u ≥ −1, u(x) = 0 for |x| > 2, u(x) = −1 for |x| < 3/2. Clearly
Lu(0) = 0.

By looking at the last iteration in the proof of Theorem 5.3, we can
refine Proposition 5.4.

Proposition 5.6. If u ∈ C(Rn) satisfying u ≥ 0 outside Ω has a nega-
tive global minimum at x ∈ Ω and u ∈ D(L,Ω), then there exists x′ ∈ Ω
such that u(x′) = u(x) and Lu(x′) < 0.

5.2. Barriers. Let us construct barriers, i.e. compactly supported func-
tions, smooth in Ω, satisfying

Lw ≥ 1 in Ω,

w ≥ 0,

w ≤ C in Ω,

with C depending on ν and Ω.
Taking our cue from the work of Ros-Oton [19], we use different ap-

proaches depending on whether ν is compactly supported or not.

5.2.1. Barrier for compactly supported ν. Consider a sufficiently
large r1 so that ν(Bcr1)=0, and let r2 =sup{|x| : x∈Ω}. ForR=r1+r2+1

and x ∈ Rn, we set η(x) = ((1− |x|
2

R2 )∨0). By the smoothness of η in BR
and the choice of R, Lη(x) is well defined and Lη ∈ L∞(Ω):∫

Rn

(2η(x)− η(x+ y)− η(x− y)) dν(y) ≤ C ′
∫
Rn

(1 ∧ |y|2) dν(y) < C ′′.

Let 0 < ε < r1 satisfy ν(Br1 \ Bε) > 0. Inside BR, η is smooth and

strictly concave. Thus, there exists C̃ > 0 such that for every x ∈ Ω and

ε < |y| < r1, we have 2η(x) − η(x + y) − η(x − y) ≥ C̃. Therefore, for
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every x ∈ Ω we have

Lη(x) =

∫
Rn

(2η(x)− η(x+ y)− η(x− y)) dν(y)

≥
∫

Br1\Bε

(2η(x)− η(x+ y)− η(x− y)) dν(y) ≥ C̃ν(Br1\Bε).

Thus, the function w(x) = 1

C̃ν(Br1\Bε)
η(x) is our desired barrier. Note

that w ∈ V Ω
ν (Rn). Indeed, w is Lipschitz in BR−1, hence we have∫

Ω

∫
Rn

(w(x)− w(x+ y))2 dν(y) dx ≤ C
∫
Ω

∫
Rn

(1 ∧ |y|2) dν(y) dx <∞.

Furthermore, all calculations from the proof of Lemma 4.10 are correct if
we put w instead of u. Hence w is a weak solution with fw :=Lw∈L2(Ω).

5.2.2. Barrier for ν with unbounded support. Let ε > 0 and Ωε =
{x ∈ Ω : dist(x,Ω) < ε}. Let us consider ηε ∈ C∞c (Ωε) such that
0 ≤ ηε ≤ 1 and ηε = 1 in Ω. For x ∈ Ω we have

Lηε(x) =

∫
Rn

(ηε(x)− ηε(y)) dνx(y) ≥
∫
Ωcε

dνx(y) = ν(Ωcε − x) =: κΩε(x).

In particular, for every x ∈ Ω, we get Lηε(x) ≥ inf
x∈Ω

κΩε(x) =: C−1
ε . Note

that C−1
ε > 0, because ν has unbounded support and Ω is bounded.

Furthermore, Cε decreases when ε does. Function wε(x) = Cεηε(x)
satisfies the desired conditions.

By Proposition 1.2 and Theorem 4.10, we know that the above barrier
is also a weak solution with fwε := Lwε ∈ L2(Ω).

Note that the function ηε from the unbounded case could fail when
supp(ν) ⊆ BR: if x ∈ Ω, d(x,Ωc) > R, then Lηε(x) = 0 because ηε ≡ 1
in Ω. However, it is interesting due to the form of the constant Cε
(cf. Corollary 5.8).

Now we will use the barriers to obtain L∞ bounds for solutions.

Lemma 5.7. Let u be a solution to (4.1). Then there exists a constant c
independent of f and g, such that

(5.1) ‖u‖L∞(Ω) ≤ c‖f‖L∞(Ω) + ‖g‖L∞(Rn\Ω).

Proof: We may assume that f and g are bounded. Define v(x) =
‖f‖L∞(Ω) ·w(x) + ‖g‖L∞(Rn\Ω), where w is the appropriate barrier. Ob-
viously, v ≥ u outside Ω. We have Lv(x) = ‖f‖L∞(Ω) · Lw(x) =: fv(x)
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for x ∈ Ω. Since w is a weak solution, we get that 〈v, φ〉ν = (fv, φ)
for every φ ∈ HΩ

ν (Rn). Since Lw ≥ 1, we have fv ≥ f . Therefore, by
Corollary 5.2, v ≥ u. Since w ≤ C in Rn, we see that

u ≤ C‖f‖L∞(Ω) + ‖g‖L∞(Rn\Ω).

A similar argument using −v shows that

u ≥ −(C‖f‖L∞(Ω) + ‖g‖L∞(Rn\Ω)).

This completes the proof.

The construction of the barrier in the unbounded case immediately
yields the following estimate for the constant.

Corollary 5.8. If u is a solution of (4.1) with ν having unbounded
support, then

u ≤ C‖f‖L∞(Ω) + ‖g‖L∞(Rn\Ω)

and C−1 = lim
ε→0+

inf
x∈Ω

ν(Ωε − x) = lim
ε→0+

inf
x∈Ω

κΩε(x).

In [4], Bogdan and Jakubowski give a slightly better estimate

(5.2) C−1 = inf
x∈Ω

κΩ(x)

under different assumptions. The following example shows that the ex-
pression above is not always equal to our estimate.

Example 5.9. Let n = 1 and ν =
∑

k∈Z\{0}
δk

1
k2 , where δx is the Dirac

delta at x. If Ω = (0, 1), then Ωε = (−ε, 1 + ε) for ε > 0. We have

inf
x∈Ω

ν(Ωc−x) = π2

3 , however inf
x∈Ω

ν(Ωcε−x) = π2

3 −1, for every ε > 0, since

we can take x close to 0 so that 1 ∈ Ωε − x. Thus lim
ε→0+

inf
x∈Ω

ν(Ωcε − x) <

inf
x∈Ω

ν(Ωc − x). One may easily check that in this setting, the solution

to (5.3) is s(x) = 3
π2 1(0,1)(x) hence the estimate (5.2) holds.

The method of barriers works just as well for the strong solutions, as
long as they enjoy the comparison principle (cf. Theorem 5.3).

Example 5.10. We will use the barrier to estimate the solution to the
equation (2.3). We have

(5.3)

{
Ls = 1 in Ω,

s = 0 in Ωc.

By Lemma 5.7, for some C > 0 and all x ∈ Ω, we get s(x) ≤ C. In
particular the mean first exit time from a nonempty bounded open set
for a jump Lévy process is finite if the intensity of jumps is positive. See
[18], [3], and [4] for the probabilistic approach.
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6. The extension operator

6.1. Reflection in C1,1 domains. The construction of the extension
consists of two main issues: choosing the method of the extension and
setting appropriate assumptions on the initial function. One may be
tempted to extend the function simply by setting u = 0 in Ω. The
following example shows that a regular function, after being extended
by 0, may lose its good properties.

Example 6.1. Consider a one-dimensional Lévy measure dν(x) = 1
x2 dx

and a function u = 1
x defined on (−1, 1)c. By the symmetry, we only

need to perform the calculations on the positive half-line. We have

∞∫
1

∞∫
1

(
1

x
− 1

y

)2
1

(x− y)2
dx dy =

∞∫
1

∞∫
1

(x− y)2

(xy)2

1

(x− y)2
dx dy

=

∞∫
1

∞∫
1

1

(xy)2
dx dy <∞.

If ũ is the function u extended by 0 to the whole of R, then

∞∫
0

∞∫
0

(ũ(x)− ũ(y))2 1

(x− y)2
dx dy =

∞∫
1

∞∫
1

(
1

x
− 1

y

)2
1

(x− y)2
dx dy

+ 2

1∫
0

∞∫
1

1

y2

1

(x− y)2
dy dx.

Unfortunately, the second summand is infinite:

∞∫
1

1

y2

1∫
0

1

(x− y)2
dx dy =

∞∫
1

1

y2

(
1

y − 1
− 1

y

)
dy =

∞∫
1

1

y3(y − 1)
dy =∞.

This case shows, that the extension should be constructed in a more
subtle way. Our method, the reflection, can be used to obtain the ex-
tensions on C1,1 domains, which are defined as follows

Definition 6.2. An open, bounded, and connected Ω ⊆ Rn is a C1,1 do-
main at scale r > 0, if and only if it satisfies the interior and exterior
ball conditions at some scale r > 0, i.e. for every x̃ ∈ ∂Ω there exist
x′ ∈ Ωc and x ∈ Ω, such that B(x, r) ⊆ Ω, B(x′, r) ∩ Ω = ∅, and

B(x, r) ∩B(x′, r) = {x̃}.
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In [1], Aikawa et al. show that C1,1 domains can be characterized
as domains with the boundary that locally resembles the graph of a
C1,1 function. To be precise, let Sx̃∂Ω be the plane tangent to Ω at x̃ ∈
∂Ω and let ~nx̃ be the normal vector at x̃ (of whichever orientation).

Theorem 6.3. A domain Ω ⊆ Rn is C1,1 at some scale r > 0, if
and only if there exist δ > 0 and λ ≥ 0 such that, for every x̃ ∈ ∂Ω,
Sx̃∂Ω exists and there is a function Φ = Φx̃ : Sx̃∂Ω → Rn, given by the
formula Φ(x) = x + φ(x) ~nx̃, such that φ : Sx̃∂Ω → R is a C1 function,
and

• |∇φ(x)−∇φ(y)| ≤ λ|x− y| for every x, y ∈ Sx̃∂Ω,

• Φ[B(x̃, δ) ∩ Sx̃∂Ω] ⊆ ∂Ω,

• B(x̃, δ) ∩ ∂Ω ⊆ Φ[B(x̃, δ) ∩ Sx̃∂Ω].

Note that in this setting φ(x̃) = 0 and ∇φ(x̃) = 0.
Later on, we will use x (x′) to denote the center of an arbitrary interior

(exterior) ball tangent to ∂Ω at x̃. According to Definition 6.2, consider
a C1,1 domain at scale 2r > 0. It is obvious that if 0 < s < 2r, then
Ω is also a C1,1 domain at scale s. Note, that by taking exterior and
interior balls of radius smaller than 2r, we avoid the situation when
one interior (or exterior) ball touches the boundary in more than one
point. We also know that the center of the tangent ball lies on the line
normal to Ω at x̃. Thus, for every fixed s ∈ (0, 2r), we obtain a bijective
correspondence between the center of the interior ball of radius s and
the point on the boundary that this ball is tangent to. We call that
mapping ψs : ∂Ω → Ω. We also get a similar bijection for the center of
the exterior ball: χs : ∂Ω → Ωc. The composition of these mappings is
our desired reflection.

Definition 6.4. Let Ω be a C1,1 domain, with constants λ, δ as in
Theorem 6.3, and r according to Definition 6.2. Let V = {x ∈ Rn :
dist(x, ∂Ω) < ε = r∧ 1

6λ∧
δ
3}. We define the reflection operator T : V →V

by the formulae Tx = χd(x) ◦ ψ−1
d(x)(x), for x ∈ Ω ∩ V , where d(x) =

dist(x,Ωc), Tx′ = ψd(x) ◦ χ−1
d(x)(x

′) for x′ ∈ Int(Ωc) ∩ V , and T x̃= x̃ for

x̃∈∂Ω.

From the construction we immediately get T = T−1. The reasons for
the choice of ε will be explained in the proof of Lemma 6.5. This trans-
formation, in general, does not preserve the distances between points,
however we will prove that |x−y| ≈ |Tx−Ty| in V . In Figure 1, x′ = Tx,
y′ = Ty.
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x̃

ỹ

x′

x

y′

y

Ωc

∂Ω

Ω

Figure 1.

Lemma 6.5. There exists a constant C ≥ 1, such that |x−y| ≤ C|Tx−
Ty| holds for every x, y ∈ V . As a consequence 1

C |x− y| ≤ |Tx− Ty| ≤
C|TTx− TTy| = C|x− y|.

Proof: By writing AB we mean the line segment with endpoints A
and B, ∆ABC is the triangle with vertices A, B, C. We will also use
the same notations as before: x ∈ Ω, x′ = Tx ∈ Ωc, and x̃ ∈ ∂Ω is the
midpoint of x′x. Let Ux = Φ[Sx̃∂Ω ∩ B(x̃, δ)]. It is enough to consider
three cases: first, when both points are from Ω, second, when one of
them is in Ω and the other is in Ωc, and third, when one of the points is
on the boundary.

Case 1. x, y ∈ Ω.

Case 1.1. ỹ ∈ Ux. We will assume that dist(y′,Ω) ≤ dist(x′,Ω).
Let z and z′ be the orthogonal projections of respectively y and y′,

on the unique line parallel to xx̃ that goes through ỹ. Furthermore, let
B′ be the projection of x̃ onto zz′ and B, the projection of ỹ onto xx′,
hence both ∆x̃Bỹ and ∆x̃B′ỹ are right triangles. See the illustration
in Figure 2. Note that the segment y′y does not necessarily belong to
the plane generated by the segments xx̃ and zỹ. Our primary goal is
to show that |xy| ≈ |x′y′|. In order to do that we will first prove that

|xz| ≈ |x′z′|. By the Lagrange’s mean value theorem |B′ỹ|
|B′x̃| = |φ′(ξ)| for
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some ξ ∈ x̃B′. By the Lipschitz condition for the derivative, we get

(6.1)
|Bx̃|
|Bỹ|

=
|B′ỹ|
|B′x̃|

= |φ′(ξ)| ≤ λ|B′x̃|,

hence |Bx̃| ≤ λ|Bỹ|2.

B′

B

x′

x̃

x

ỹ

z′

z

y′

y

Figure 2. Projection of y′ and y. ∠(x̃Bỹ)=∠(x̃B′ỹ)= π
2 .

Assume, without loss of generality, that |x′z′| ≥ |xz|.

x′ A x̃ B x

z′ ỹ z

Figure 3. Projection of Figure 2 on the plane. Here
Az′ and Bỹ are the heights of the trapezoid.
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The shape of the trapezoid may depend on positions of x̃ and ỹ,
however the following arguments (especially, the formula for |xz|) are
independent of this shape. Let c = |x′x|− |z′z|, h = |Bỹ|, and t = |x′A|.
Now |xz|2

|x′z′|2 can be represented as a function of t:

(6.2)
|xz|2

|x′z′|2
=

(t− c)2 + h2

t2 + h2
= 1− c(2t− c)

t2 + h2
.

Note that |t− c
2 | = |Bx̃|. The assumption |xz| ≤ |x′z′| yields 2t− c ≥ 0.

Hence, from (6.1), we get 2t− c ≤ 2λh2. Therefore,

(6.3)
|xz|2

|x′z′|2
≥ 1− 2cλh2

t2 + h2
≥ 1− 2cλ ≥ 1

2
.

Here we used that c ≤ |xx′| and ε ≤ 1
6λ . Thus we have obtained that for

some D > 0, |xz| ≤ D|x′z′|.
Now we proceed to estimate |xy|:

(6.4) |xy| ≤ |xz|+ |zy| ≤ D|x′z′|+ |zy| ≤ D|x′y′|+D|y′z′|+ |zy|
= D|x′y′|+ (D + 1)|z′y′|.

We claim that |z′y′| ≤ a|x′y′| for some a > 0 which does not depend
on x, y. By the Lipschitz condition for φ′, we get

(6.5)
|z′y′|
|z′ỹ|

= tan(∠y′ỹz′) = |φ′(x̃)− φ′(B′)| ≤ λ|B′x̃| ≤ λ|x′z′|.

Therefore

(6.6) |z′y′| ≤ λ|x′z′||z′ỹ| ≤ λ|x′z′| d(y,Ω) ≤ λε|x′z′|.
Note that the we have made the assumption ε ≤ 1

2λ in the definition
of V . Hence

(6.7) |z′y′| ≤ 1

2
|x′z′|.

By (6.7), the triangle inequality, and (6.6) we get the claim

(6.8) |x′y′| ≥ |x′z′| − |z′y′| ≥ |x′z′| − 1

2
|x′z′| = 1

2
|x′z′| ≥ |z′y′|.

By applying (6.8) to (6.4) we obtain

|xy| ≤ D|x′y′|+ (D + 1)|x′y′| = (2D + 1)|x′y′|.
Thanks to |xz| ≈ |x′z′|, the reverse estimate is obtained similarly, by
interchanging |xy| and |x′y′| in (6.4). Thus, Case 1.1 is proved.

Case 1.2. ỹ /∈ Ux. In that situation |ỹx̃| ≥ δ. By the definition of V ,
we have ε < δ

3 and as a consequence |xx′|, |yy′| ≤ δ
3 . Hence, |x′y′| ≥
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|x̃ỹ|−|x̃x′|−|ỹy′| ≥ δ− δ
3−

δ
3 = δ

3 . Analogously |xy| ≥ δ
3 . Since |xy| and

|x′y′| are also bounded from above, we get |xy| ≈ |x′y′|. In the remaining
cases we will not discuss the situation when x̃ and ỹ are far from each
other, they can be resolved in exactly the same way.

Case 2. x ∈ Ω, y′ ∈ Ωc. Once again we first project the situation on a
plane with assumption that |zz′| ≤ |xx′| and |x′z| ≥ |xz′|.

x′ A x̃ B x

z′ ỹ z

Figure 4. Illustration of the second case.

We claim that |x′z| ≤ C|xz′| for some C > 0 independent of x, z.
Let t, h, c be the same as before and let a = |z′z|, b = |x′x|. Then,
|x′z|2 = (t + a)2 + h2 and |xz′|2 = (b − t)2 + h2. Note that here we
have the same condition on t as in the previous case: 2t − c < 2λh2.
Therefore,

|x′z|2 − |xz′|2 = 2(a+ b)t+ a2 − b2 = (a+ b)(2t− (b− a))

= (a+ b)(2t− c) ≤ (a+ b)2λh2 ≤ 8ελh2 ≤ 8ελ|xz′|2.

Thus we have obtained

(6.9) |x′z|2 ≤ |xz′|2(1 + 8ελ).

The claim is proved. Note that in the last inequality of (6.5), we can
change |x′z′| to |x′z|. Therefore, to prove that |x′y| ≈ |xy′| we can use
the same approach as in Case 1.1.

Case 3. x ∈ Ω, ỹ ∈ ∂Ω. In Case 1.1, while proving that |xz| = |x′z′|
we could as well assume that |yy′| = 0. Therefore this situation can be
handled in the same way.

Corollary 6.6. T is a Lipschitz homeomorphism of V . In particular,
T maps Borel sets to Borel sets.
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Lemma 6.7. Let m be the Lebesgue measure on Rn. Then, there ex-
ists C ′ ≥ 1, such that for every Borel K ⊆ V , we have 1

C′m(K) ≤
m(T [K]) ≤ C ′m(K).

For the proof of this lemma, see [17, Theorem 3.1]. Knowing that,
we can deduce how the integrals behave under Lipschitz mappings.

Corollary 6.8. The following “change of variable” formula holds for
W ⊆ V :

(6.10)

∫
W

g(Tx) dx ≈
∫
TW

g(x) dx,

with the proportion being independent of g and W .

Proof: By setting Tx = y, we have∫
W

g(Tx) dx =

∫
TW

g(y) d(m ◦ T )(y).

From Lemma 6.7, we conclude that m◦T is absolutely continuous w.r.t.
Lebesgue measure thus, by Radon–Nikodym theorem, there exists h ∈
L1(V, dx), such that d(m ◦ T )(x) = h(x) dx. Moreover, we have 0 < h ≤
C ′ a.e. on V . Hence,∫
W

g(Tx) dx =

∫
TW

g(y) d(m ◦ T )(y) =

∫
TW

g(y)h(y) dy ≤ C ′
∫
TW

g(y) dy

= C ′
∫
W

g(Tx) d(m ◦ T )(x) ≤ (C ′)2

∫
W

g(Tx) dx.

6.2. The extension operator. For a function u : D → R, we define
the seminorm

‖u‖Hν(D) =

√√√√∫
D

∫
D

(u(x)− u(y))2 dνx(y) dx.

Let

(6.11) Hν(D) = {u ∈ L2(D) : ‖u‖Hν(D) <∞}.

Hν(D) is a normed space with the norm ‖u‖Hν(D)=
√
‖u‖2L2(D)+‖u‖

2
Hν(D).

Note that for D = Rn, these definitions coincide with the ones from
Section 3.

From now on we will assume that Ω is a bounded C1,1 domain. For a
fixed Ω we define W = V ∩ Ω with V being the same as in Lemma 6.5.
Let T be the reflection operator introduced in the previous section.
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Definition 6.9. Let φ ∈ C∞(Rn) satisfy 0 ≤ φ ≤ 1, φ ≡ 1 in Ωc,
and φ ≡ 0 in Ω\W . We define the extension operator A : Hν(Ωc) →
A[Hν(Ωc)] by the formula A(g) = g̃, where

g̃(x) =


g(x) for x ∈ Ωc,

g(Tx)φ(x) for x ∈W,
0 for x ∈ Ω\W.

Remark. In the work of Valdinoci et al. [8], the domain was assumed to
be only C0,1, i.e. Lipschitz. By assuming the ball condition we obtain a
more transparent method of reflecting the function. In [23], Zhou char-
acterizes the domains in which the extension is possible in the context
of fractional Sobolev spaces.

Theorem 6.10. Let α ≥ 1 be the Lipschitz constant for the reflection
operator T (α depends only on Ω). Assume that ν has an isotropic
density v(x) = V (|x|), for which there exists Cα such that for every
β ∈ [α−1 ∧ 1

3 , α], we have V (βx) ≤ CαV (x). Then A is a continuous
operator from Hν(Ωc) to Hν(Rn).

The extension problem for the fractional Laplacian is quite well-
studied for Hν(Rn) spaces [14], [23]. Recently, Dyda and Kassmann [9]
resolved the issue for spaces of type V Ω

ν (Rn) for ν corresponding to
the fractional Laplacian. In our work, the extension belongs to the
space Hν(Rn). It is more restrictive due to the fact that we require
the function to be “smooth” outside Ω. However it allows us to use
more general Lévy measures.

Proof: By assumptions, dν(x) = v(x) dx, where v(x) = V (|x|) for some
function V : R+ → [0,∞). We have g ∈ Hν(Ωc) i.e., g ∈ L2(Ωc) and∫
Ωc

∫
Ωc

(g(x) − g(y))2 dνx(y) dx < ∞. In order to show that g̃ ∈ Hν(Rn),

we need to show that g̃ ∈ L2(Rn) and
∫
Rn

∫
Rn

(g̃(x)− g̃(y))2 dνx(y) dx <∞.

For the first part, we have∫
Rn

g̃(x)2 dx=

∫
Ωc

g(x)2 dx+

∫
W

g̃(x)2 dx=

∫
Ωc

g(x)2 dx+

∫
W

g(Tx)2φ(x)2 dx

≤
∫
Ωc

g(x)2 dx+

∫
W

g(Tx)2 dx≤
∫
Ωc

g(x)2 + C

∫
TW

g(x)2 dx

≤(C + 1)

∫
Ωc

g(x)2 dx,

(6.12)
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where in (6.12) we have used Corollary 6.8. Thus,

‖g̃‖2L2(Rn) ≤ C‖g‖
2
L2(Ωc) ≤ C‖g‖

2
Hν(Rn).

We split the seminorm part into four integrals:∫
Rn

∫
Rn

(g̃(x)− g̃(y))2 dνx(y) dx =

∫
Ωc

∫
Ωc

(g(x)− g(y))2 dνx(y) dx(6.13)

+

∫
Ωc

∫
Ω

(g̃(x)− g̃(y))2 dνx(y) dx(A′)

+

∫
Ω

∫
Ωc

(g̃(x)− g̃(y))2 dνx(y) dx(A)

+

∫
Ω

∫
Ω

(g̃(x)− g̃(y))2 dνx(y) dx.(B)

There is nothing to do in (6.13). Note that (A) = (A′) (cf. Lemma 3.2).
We will focus on (A):∫

Ω

∫
Ωc

(g̃(x)− g̃(y))2 dνx(y) dx

=

∫
W

∫
Ωc

(g̃(x)− g(y))2 dνx(y) dx(A.1)

+

∫
Ω\W

∫
Ωc

g(y)2 dνx(y) dx.(A.2)

We have

|g(Tx)φ(x)− g(y)| ≤ |g(Tx)φ(x)− g(y)φ(x)|+ |g(y)φ(x)− g(y)|,

hence (A.1) is less than or equal to∫
W

∫
Ωc

(|g(Tx)− g(y)|φ(x) + |g(y)− g(y)φ(x)|)2 dνx(y) dx

≤ 2

∫
W

∫
Ωc

g(y)2(1− φ(x))2 dνx(y) dx(A.1.1)

+ 2

∫
W

∫
Ωc

(g(Tx)− g(y))2φ(x)2 dνx(y) dx.(A.1.2)
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Note that smoothness of φ guarantees that there exists C > 0, such that
for every y ∈ W , we have 1 − φ(y) ≤ C dist(y,Ωc). Therefore we can
estimate (A.1.1) as follows:∫
W

∫
Ωc

g(y)2(1−φ(x))2v(x−y) dy dx=

∫
Ωc

g(y)2

∫
W

(1− φ(x))2v(x− y) dx dy

≤C
∫
Ωc

g(y)2

∫
W

dist(x,Ωc)2v(x−y) dx dy.

Note that if D = ε ∨ 1, then we have dist(x,Ωc) ≤ D(1 ∧ |x − y|) for
every y ∈ Ωc. Since ν is a Lévy measure, we get∫

Ωc

g(y)2

∫
W

dist(x,Ωc)2v(x− y) dx dy

≤ D2

∫
Ωc

g(y)2

∫
W

(1 ∧ |x− y|2)v(x− y) dx dy

≤ D2

∫
Rn

(1 ∧ |x|2)v(x) dx

∫
Ωc

g(y)2 dy.

From this we conclude that (A.1.1) ≤ C‖g‖2L2(Ωc). Substituting for Tx

in (A.1.2) yields:

(6.14)

∫
W

∫
Ωc

(g(Tx)− g(y))2φ(x)2v(x− y) dy dx

≈
∫
TW

∫
Ωc

(g(x)− g(y))2φ(Tx)2v(Tx− y) dy dx.

We have |x−y| ≤ |x−Tx|+ |Tx−y| and |Tx−y| ≥ d(Tx,Ωc) = |x−Tx|
2 ,

hence |x− y| ≤ 3|Tx− y|. By the assumptions on v, we get v(Tx− y) =
V (|Tx−y|) ≤ V ( 1

3 |x−y|) ≤ CαV (|x−y|). Therefore, the RHS of (6.14)
is less than or equal to

Cα

∫
TW

∫
Ωc

(g(x)− g(y))2φ(Tx)2v(x− y) dy dx ≤ Cα‖g‖2Hν(Ωc).

Estimation of (A.2) is pretty straightforward. For this case, note that
for every y ∈ Ωc, dist(y,Ω\W ) > ε. Hence,∫
Ωc

g(y)2

∫
Ω\W

v(x−y) dx dy=

∫
Ωc

g(x)2ν((Ω\W )−x) dx≤ν(B(0, ε)c)

∫
Ωc

g(x)2 dx.
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(B) can be split as follows∫
Ω

∫
Ω

(g̃(x)− g̃(y))2 dνx(y) dx

=

∫
W

∫
W

(g(Tx)φ(x)− g(Ty)φ(y))2 dνx(y) dx(B.1)

+ 2

∫
W

∫
Ω\W

g(Tx)2φ(x)2v(x− y) dy dx.(B.2)

(B.1) can be bounded from above by

2

∫
W

∫
W

g(Tx)2(φ(x)− φ(y))2 dνx(y) dx(B.1.1)

+ 2

∫
W

∫
W

(g(Tx)− g(Ty))2φ(y) dνx(y) dx.(B.1.2)

In (B.1.1) we have∫
W

g(Tx)2

∫
W

(φ(x)− φ(y))2 dνx(y) dx ≤ C
∫
W

g(Tx)2

∫
W

|x− y|2 dνx(y) dx

≤ C ′
∫
Rn

(1 ∧ |y|2) dν(y)

∫
W

g(Tx)2 dx ≈ C ′
∫
Rn

(1 ∧ |y|2) dν(y)

∫
TW

g(x)2 dx

≤ D‖g‖2L2(Ωc).

We know that α|x− y| ≥ |Tx− Ty| ≥ α−1|x− y| holds for all x, y ∈W .
Using the properties of ν we can estimate (B.1.2), which is less than or
equal to ∫

TW

∫
TW

(g(x)− g(y))2v(Tx− Ty) dy dx

≤ Cα
∫
TW

∫
TW

(g(x)− g(y))2v(x− y) dy dx

≤ Cα‖g‖2Hν(Ωc).
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In order to estimate (B.2), note that for every y ∈ Ω\W , we have φ(x)2 .
|x− y|2, thus (B.2) is dominated by∫
W

g(Tx)2

∫
Ω\W

|x− y|2 dνx(y) dx .
∫
Rn

(1 ∧ |y|2) dν(y)

∫
W

g(Tx)2 dx

≈
∫
TW

g(x)2 dx ≤ ‖g‖2L2(Ωc).

Summing up all the cases finishes the proof.

Remark. Extension, if it exists, is not determined uniquely. We can
add any function from HΩ

ν (Rn) to it, which will not change the values
outside Ω.

Corollary 6.11. Let ν and Ω satisfy the assumptions of Theorem 6.10.
If g ∈ Hν(Ωc), then the Dirichlet problem (0.3) has a unique weak solu-
tion.
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