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REAL SUBMANIFOLDS OF MAXIMUM COMPLEX
TANGENT SPACE AT A CR SINGULAR POINT, II

Xianghong Gong & Laurent Stolovitch∗

Abstract

We study germs of real analytic n-dimensional submanifold of
Cn that has a complex tangent space of maximal dimension at a
CR singularity. Under some assumptions, we first classify holo-
morphically the quadrics having this property. We then study
higher order perturbations of these quadrics and their transforma-
tions to a normal form under the action of local (possibly formal)
biholomorphisms at the singularity. We are led to study formal
Poincaré–Dulac normal forms (non-unique) of reversible biholo-
morphisms. We exhibit a reversible map of which the normal
forms are all divergent at the singularity. We then construct a
unique formal normal form of the submanifolds under a non de-
generacy condition.
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1. Introduction and main results

1.1. Introduction. We say that a point x0 in a real submanifold M in
Cn is a CR singularity, if the complex tangent spaces TxM ∩JxTxM do
not have a constant dimension in any neighborhood of x0. The study
of real submanifolds with CR singularities was initiated by E. Bishop
in his pioneering work [4], when the complex tangent space of M at a
CR singularity is minimal, that is exactly one-dimensional. The very
elementary models of this kind of manifolds are classified as the Bishop
quadrics in C2, given by

(1.1)
Q : z2 = |z1|2 + γ(z2

1 + z2
1), 0 ≤ γ <∞;

Q : z2 = z2
1 + z2

1, γ =∞,

with Bishop invariant γ. The origin is a complex tangent which is said
to be elliptic if 0 ≤ γ < 1/2, parabolic if γ = 1/2, or hyperbolic if
γ > 1/2.

In [19], Moser and Webster studied the normal form problem of a real
analytic surface M in C2 which is the higher order perturbation of Q.
They showed that when 0 < γ < 1/2, M is holomorphically equivalent
to a normal form which is an algebraic surface that depends only on γ
and two discrete invariants. They also constructed a formal normal form
of M when the origin is a non-exceptional hyperbolic complex tangent
point; although the normal form is still convergent, they showed that
the normalization is divergent in general for the hyperbolic case. In
fact, Moser–Webster dealt with an n-dimensional real submanifold M
in Cn, of which the complex tangent space has (minimum) dimension 1
at a CR singularity. When n > 2, they also found normal forms under
suitable non-degeneracy condition.

In this paper we continue our previous investigation on an n dimen-
sional real analytic submanifold M in Cn of which the complex tangent
space has the largest possible dimension at a given CR singularity [12].
The dimension must be p = n/2. Therefore, n = 2p is even. As shown
in [22] and [12], there is yet another basic quadratic model

(1.2)
Qγs ⊂ C4 : z3 = (z1 + 2γsz2)2,

z4 = (z2 + 2(1− γs)z1)2,

with γs an invariant satisfying Re γs ≤ 1/2, Im γs ≥ 0, and γs 6= 0.
The complex tangent at the origin is said of complex type. In [12], we
obtained convergence of normalization for abelian CR singularity. In
this paper, we study systematically the normal forms of the manifolds
M under the condition that M admit the maximum number of deck
transformations, condition D, introduced in [12].

In suitable holomorphic coordinates, a 2p-dimensional real analytic
submanifold in C2p that has a complex tangent space of maximum di-
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mension at the origin is given by

M : zp+j = Ej(z
′, z′), 1 ≤ j ≤ p,

Ej(z
′, z′) = hj(z

′, z′) + qj(z
′) +O(|(z′, z′)|3),

where z′ = (z1, . . . , zp), each hj(z
′, z′) is a homogeneous quadratic poly-

nomial in z′, z′ without holomorphic or anti-holomorphic terms, and
each qj(z

′) is a homogeneous quadratic polynomial in z′. We call M a
quadratic manifold in C2p if Ej are homogeneous quadratic polynomi-
als. If M is a product of Bishop quadrics (1.1) and quadrics of the form
(1.2), it is called a product quadric.

1.2. Basic invariants. We first describe some basic invariants of real
analytic submanifolds, which are essential to the normal forms. To
study M , we consider its complexification in C2p ×C2p defined by

M :

{
zp+i = Ei(z

′, w′), i = 1, . . . , p,

wp+i = Ēi(w
′, z′), i = 1, . . . , p.

It is a complex submanifold of complex dimension 2p with coordinates
(z′, w′) ∈ C2p. Let π1, π2 be the restrictions of the projections (z, w)→
z and (z, w) → w to M, respectively. Note that π2 = Cπ1ρ0, where
ρ0 is the restriction to M of the anti-holomorphic involution (z, w) →
(w, z) and C is the complex conjugate. It is proved in [12] that when
M satisfies condition B, i.e. q−1(0) = 0, the deck transformations of
π1 are involutions that commute pairwise, while the number of deck
transformations can be 2` for 1 ≤ ` ≤ p. Throughout the paper, we
assume that all manifolds M satisfy the following condition introduced
in [12]:

Condition D. M satisfies condition B, i.e. q−1(0) = 0, and π1

admits the maximum number, 2p, of deck transformations.

Then it is proved in [12] that the group of deck transformations of
π1 is generated uniquely by p involutions τ11, . . . , τ1p such that each τ1j

fixes a hypersurface in M. Furthermore,

τ1 := τ11 . . . τ1p

is the unique deck transformation of which the set of the fixed-points has
the smallest dimension p. We call {τ11, . . . , τ1p, ρ0} the set of Moser–
Webster involutions. Let τ2 = ρ0τ1ρ0 and

σ = τ1τ2.

Then σ is reversible by τj and ρ0, i.e. σ−1 = τjστ
−1
j and σ−1 = ρ0σρ0.

In this paper for classification purposes, we will impose the following
condition:

Condition E. M has distinct eigenvalues, i.e. σ has 2p distinct
eigenvalues.
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We now introduce our main results.
Our first step is to normalize {τ1, τ2, ρ0}. When p = 1, this normal-

ization is the main step in order to obtain the Moser–Webster normal
form; in fact, a simple further normalization allows Moser and Webster
to achieve a convergent normal form under a suitable non-resonance
condition even for the non-exceptional hyperbolic complex tangent.

When p > 1, we need a further normalization for {τ11, . . . , τ1p, ρ0};
this is our second step. Here the normalization has a large degree of
freedom as shown by our formal and convergence results.

1.3. A normal form of quadrics. In section 3, we study all quadrics
which admit the maximum number of deck transformations. For such
quadrics, all deck transformations are linear. Under condition E, we
will first normalize σ, τ1, τ2 and ρ0 into Ŝ, T̂1, T̂2 and ρ where

T̂1 : ξ′j = λ−1
j ηj , η′j = λjξj ,

T̂2 : ξ′j = λjηj , η′j = λ−1
j ξj ,

Ŝ : ξ′j = µjξj , η′j = µ−1
j ηj ,

with

λe > 1, |λh| = 1, |λs| > 1, λs+s∗ = λ
−1
s , µj = λ2

j .

Here 1 ≤ j ≤ p.
Notation on indices. Throughout the paper, the indices e, h, s

have the ranges: 1 ≤ e ≤ e∗, e∗ < h ≤ e∗ + h∗, e∗ + h∗ < s ≤
p − s∗. Thus, e∗ + h∗ + 2s∗ = p. We will call e∗, h∗, s∗ the numbers
of elliptic, hyperbolic and complex components of a product quadric,
respectively.

As in the Moser–Webster theory, at the complex tangent (the origin)
an elliptic component of a product quadric corresponds a hyperbolic com-
ponent of Ŝ, while a hyperbolic component of the quadric corresponds
an elliptic component of Ŝ. On the other hand, a complex component
of the quadric behaves like an elliptic component when the CR singu-
larity is abelian, and it also behaves like a hyperbolic components for
the existence of attached complex manifolds; see [12] for details.

For the above normal form of T̂1, T̂2 and Ŝ, we always normalize the
anti-holomorphic involution ρ0 as

ρ :


ξ′e = ηe, η′e = ξe,

ξ′h = ξh, η′h = ηh,

ξ′s = ξs+s∗ , η′s = ηs+s∗ ,

ξ′s+s∗ = ξs, η′s+s∗ = ηs.

(1.3)

With the above normal forms T̂1, T̂2, Ŝ, ρ with Ŝ = T̂1T̂2, we will then
normalize the τ11, . . . , τ1p under linear transformations that commute
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with T̂1, T̂2, and ρ, i.e. the linear transformations belonging to the
centralizer of T̂1, T̂2 and ρ. This is a subtle step. Instead of normal-
izing the involutions directly, we will use the pairwise commutativity
of τ11, . . . , τ1p to associate to these p involutions a non-singular p × p
matrix B. The normalization of {τ11, . . . , τ1p, ρ} is then identified with
the normalization of the matrices B under a suitable equivalence rela-
tion. The latter is easy to solve. Our normal form of {τ11, . . . , τ1p, ρ}
is then constructed from the normal forms of T1, T2, ρ, and the matrix
B. Following Moser–Webster [19], we will construct the normal form
of the quadrics from the normal form of involutions. Let us first state
a Bishop type holomorphic classification for quadratic real manifolds.

Theorem 1.1. Let M be a quadratic submanifold defined by

zp+j = hj(z
′, z′) + qj(z

′), 1 ≤ j ≤ p.
Suppose that M satisfies condition E, i.e. the branched covering of
π1 of complexification M has 2p deck transformations and 2p distinct
eigenvalues. Then M is holomorphically equivalent to

QB,γ : zp+j = L2
j (z
′, z′), 1 ≤ j ≤ p,

where (L1(z′, z′), . . . , Lp(z
′, z′))t = B(z′ + 2γz′), B ∈ GLp(C) and

γ :=


γe∗ 0 0 0
0 γh∗ 0 0
0 0 0 γs∗
0 0 Is∗ − γs∗ 0

 .

Here p = e∗ + h∗ + 2s∗, Is∗ denotes the s∗ × s∗ identity matrix, and

γe∗ = diag(γ1, . . . , γe∗), γh∗ = diag(γe∗+1, . . . , γe∗+h∗),

γs∗ = diag(γe∗+h∗+1, . . . , γp−s∗),

with γe, γh, and γs satisfying

0 < γe < 1/2, 1/2 < γh <∞, Re γs < 1/2, Im γs > 0.

Moreover, B is uniquely determined by an equivalence relation B ∼
CBR for suitable non-singular matrices C,R which have exactly p non-
zero entries.

When B is the identity matrix, we get a product quadric or its equiv-
alent form. See Theorem 3.7 for detail of the equivalence relation. The
scheme of finding quadratic normal forms turns out to be useful. It will
be applied to the study of normal forms of the general real submanifolds.

1.4. Formal submanifolds, formal involutions, and formal cen-
tralizers. The normal forms of σ turn out to be in the centralizer of
Ŝ, the normal form of the linear part of σ. The family is subject to a
second step of normalization under mappings which again turn out to
be in the centralizer of Ŝ. Thus, before we introduce normalization, we
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will first study various centralizers. We will discuss the centralizer of Ŝ
as well as the centralizer of {T̂1, T̂2} in section 4.

1.5. Normalization of σ. As mentioned earlier, we will divide the
normalization for the families of non-linear involutions into two steps.
This division will serve two purposes: first, it helps us to find the for-
mal normal forms of the family of involutions {τ11, . . . , τ1p, ρ}; second,
it helps us understand the convergence of normalization of the original
normal form problem for the real submanifolds. For purpose of normal-
ization, we will assume that M is non-resonant, i.e. σ is non-resonant,
that is that its eigenvalues µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p satisfy

(1.4) µQ 6= 1, ∀Q ∈ Zp, |Q| 6= 0.

Before stating next result, we introduce the following.

Condition L. µ = (µ1, . . . ,µp) is a formal map from Cp to Cp and
satisfies

µj(ζ) =

{
µj exp

(
ζj +O(|ζ|2)

)
, j = e;

µj exp
(√
−1ζj +O(|ζ|2)

)
, j 6= e.

In section 5, we obtain the normalization of σ by proving the follow-
ing.

Theorem 1.2. Let σ be a holomorphic map with linear part Ŝ. As-
sume that Ŝ has eigenvalues µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p satisfying the non-
resonant condition (1.4). Suppose that σ = τ1τ2 where τ1 is a holomor-
phic involution, ρ is an anti-holomorphic involution, and τ2 = ρτ1ρ.
Then there exists a formal map Ψ such that ρ := Ψ−1ρΨ is given by
(1.3), σ∗ = Ψ−1σΨ and τ∗i = Ψ−1τiΨ have the form

σ∗ : ξ′j = µj(ξη)ξj , η′j = µ−1
j (ξη)ηj , µj(0) = µj , 1 ≤ j ≤ p,(1.5)

τ∗i : ξ′j = Λij(ξη)ηj , η′j = Λ−1
ij (ξη)ξj , i = 1, 2; 1 ≤ j ≤ p.

Here, ξη = (ξ1η1, . . . , ξpηp), µj = Λ2
1j and Λ1j = Λ−1

2j . Assume further

that µ satisfies condition L. By a further holomorphic (resp. formal)
change of coordinates that preserves ρ, we can transform convergent
(resp. formal) σ∗ and τ∗i into

σ̂ : ξ′j = µ̂j(ξη)ξj , η′j = µ̂−1
j (ξη)ηj , 1 ≤ j ≤ p,(1.6)

τ̂i : ξ
′
j = Λ̂ij(ξη)ηj , η′j = Λ̂−1

ij (ξη)ξj ,

with Λ̂2j = Λ̂−1
1j and µ̂j = Λ̂2

1j, while

µ̂j(ζ) =

{
µj exp

(
ζj +Oj(|ζ|2)

)
, j = e;

µj exp
(√
−1ζj +Oj(|ζ|2)

)
, j 6= e.

(1.7)
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Here Oj(|ζ|2) indicates terms of order at least two and independent of

ζj, and µ̂ and, hence, τ̂i, τ̂ are uniquely determined with Λ̂1j(0) = λj
and µj = λ2

j .

Remark 1.3. Condition L has to be understood as a non-degeneracy
condition of the simplest form. To avoid confusion in this paper, the
µi, µ̂j in this paper replace Mi, M̂j in [12]. We, however, keep other
notation from [12].

We will conclude in section 5 with an example showing that although
σ, τ1, τ2 are linear, {τ11, . . . , τ1p, ρ} are not necessarily linearizable, pro-
vided p > 1.

Section 6 is devoted to the proof of the following divergence result.

Theorem 1.4. There exists a non-resonant real analytic submanifold
M with pure elliptic complex tangent in C6 such that if its associated σ
is transformed into a map σ∗ that commutes with the linear part of σ
at the origin, then σ∗ must diverge.

Note that the theorem says that all normal forms of σ (by defini-
tion, they belong to the centralizer of its linear part, i.e. they are in
the Poincaré–Dulac normal forms) are divergent. It implies that any
transformation for M that transforms σ into a Poincaré–Dulac normal
form must diverge. This is in contrast with the Moser–Webster theory:
For p = 1, a convergent normal form can always be achieved even if the
associated transformation is divergent (in the case of hyperbolic com-
plex tangent), and furthermore, in case of p = 1 and elliptic complex
tangent with a non-varnishing Bishop invariant, the normal form can be
achieved by a convergent transformation. A divergent Birkhoff normal
form for the classical Hamiltonian systems was obtained in [10]. See
Yin [24] for the existence of divergent Birkhoff normal forms for real
analytic area-preserving mappings.

We do not know if there exists a non-resonant real analytic subman-
ifold with pure elliptic eigenvalues in C4 of which all Poincaré-Dulac
normal forms are divergent.

1.6. A unique normalization for the family {τij , ρ}. In section 7,
we will follow the normalization scheme developed for the quadric nor-
mal forms in order to normalize {τ11, . . . , τ1p, ρ}. Let σ̂ be given by
(1.6). We define

τ̂1j : ξ′j = Λ̂1j(ξη)ηj , η′j = Λ̂−1
1j (ξη)ξj , ξ′k = ξk, η′k = ηk, k 6= j,

where Λ̂1j(0) = λj and µ̂j = Λ̂2
1j . We now state the main result of this

paper:

Theorem 1.5. Let M be a real analytic submanifold that is a third
order perturbation of a non-resonant product quadric. Suppose that its



128 X. GONG & L. STOLOVITCH

associated σ is formally equivalent to σ̂ given by (1.6). Suppose that µ̂

is given by (1.7). Then the formal normal form M̂ of the submanifold
M is completely determined by

µ̂, Φ(ξ, η).

Here the formal mapping Φ is in Cc(τ̂11, . . . , τ̂1p)∩ C(τ̂1) and tangent to
the identity. Moreover, Φ is uniquely determined up to the equivalence
relation Φ ∼ RεΦR

−1
ε with Rε : ξj = εjξ, η

′
j = εjηj (1 ≤ j ≤ p), ε2j = 1

and εs+s∗ = εs. Furthermore, if the normal form (1.5) of σ can be

achieved by a convergent transformation, so does the normal form M̂
of M .

Here the set C(τ̂1) ∩ Cc(τ̂11, . . . , τ̂1p) is defined in Lemma 7.2 for an
invertible matrix B1, while the B1 in the above theorem needs to be
the identity matrix. See also Theorem 7.7 for an expanded form of
Theorem 1.5, including the expression of the normal form M̂ .

We should mention some very recent works related to the study of
CR-singularities [13, 9, 11, 17]. We now mention related normal form
problems. The normal form problem, that is the equivalence to a model
manifold, of analytic real hypersurfaces in Cn with a non-degenerate
Levi-form has a complete theory achieved through the works of E. Car-
tan [5], [6], Tanaka [23], and Chern–Moser [7]. In another direction,
the relations between formal and holomorphic equivalences of real an-
alytic hypersurfaces (thus, there is no CR singularity) have been in-
vestigated by Baouendi–Ebenfelt–Rothschild [1], [2], Baouendi–Mir–
Rothschild [3], and Juhlin–Lamel [14], where positive (i.e. convergent)
results were obtained. In a recent paper, Kossovskiy and Shafikov [16]
showed that there are real analytic real hypersurfaces which are formally
but not holomorphically equivalent. In the presence of CR singularity,
the problems and techniques required are, however, different from those
used in the CR case. See [12] for further references therein. The reader
is also referred to a recent work of Kossovskiy–Lamel [15] for conver-
gence results and a recent survey by Mir [18] on the interplay between
formal and holomorphic equivalence in CR-geometry.

1.7. Notation. We briefly introduce notation used in the paper. The
identity map is denoted by I. The matrix of a linear map y = Ax is
denoted by a bold-faced A. We denote by LF the linear part at the
origin of a mapping F : Cm → Cn with F (0) = 0. Let F ′(0) or DF (0)
denote the Jacobian matrix of the F at the origin. Then LF (z) =
F ′(0)z. We also denote by DF (z) or simply DF , the Jacobian matrix
of F at z, when there is no ambiguity. If F is a family of mappings
fixing the origin, let LF denote the family of linear parts of mappings
in F . By an analytic (or holomorphic) function, we shall mean a germ
of analytic function at a point (which will be defined by the context)
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otherwise stated. We shall denote by On (resp. Ôn, Mn, M̂n) the space
of germs of holomorphic functions of Cn at the origin (resp. of formal
power series in Cn, holomorphic germs, and formal germs vanishing at
the origin).

Acknowledgment. The authors are grateful to the anonymous referee
for helping them improve the exposition of the paper.

2. Moser–Webster involutions and product quadrics

In this section, we will first recall a formal and convergent result
from [12] that will be used to classify real submanifolds admitting the
maximum number of deck transformations. We will then derive the
family of deck transformations for the product quadrics.

We consider a formal real submanifold of dimension 2p in C2p defined
by

(2.1) M : zp+j = Ej(z
′, z̄′), 1 ≤ j ≤ p.

Here Ej are formal power series in z′, z′. We assume that

(2.2) Ej(z
′, z̄′) = hj(z

′, z′) + qj(z
′) +O(|(z′, z′)|3)

and hj , qj are homogeneous quadratic polynomials. The formal com-
plexification of M is defined by

M :

{
zp+i = Ei(z

′, w′), i = 1, . . . , p,

wp+i = Ēi(w
′, z′), i = 1, . . . , p.

We define a formal deck transformation of π1 to be a formal biholomor-
phic map

τ : (z′, w′)→ (z′, f(z′, w′)), τ(0) = 0,

such that π1τ = π1, i.e. E ◦ τ = E. Assume that q−1(0) = 0 and that
the formal manifold defined by (2.1)–(2.2) satisfies condition D that
its formal branched covering π1 admits 2p formal deck transformations.
Then π admits a unique set of p deck transformations {τ11, . . . , τ1p} such
that each τ1j fixes a hypersurface in M.

As in the Moser–Webster theory, the significance of the two sets of in-
volutions is the following proposition that transforms the normalization
of the real manifolds into that of two families {τi1, . . . , τip} (i = 1, 2)
of commuting involutions satisfying τ2j = ρτ1jρ for an antiholomorphic
involution ρ. Let us recall the anti-holomorphic involution

(2.3) ρ0 : (z′, w′)→ (w′, z′).

Proposition 2.1. Let M,M̃ be formal (resp. real analytic) real sub-
manifolds of dimension 2p in C2p of the form (2.1)–(2.2). Suppose that

M,M̃ satisfy condition D. Then the following hold :
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(i) M and M̃ are formally (resp. holomorphically) equivalent if and
only if their associated families of involutions {τ11, . . . , τ1p, ρ0} and
{τ̃11, . . . , τ̃1p, ρ0} are formally (resp. holomorphically) equivalent.

(ii) Let T1 = {τ11, . . . , τ1p} be a family of formal holomorphic (resp.
holomorphic) commuting involutions such that the tangent spaces
of Fix(τ11), . . . ,Fix(τ1p) are hyperplanes intersecting transversally
0. Let ρ be an anti-holomorphic formal (resp. holomorphic) invo-

lution and let T2 = {τ21, . . . , τ2p} with τ2j = ρτ1jρ. Let [M2p]
LTi
1

be the set of linear functions without constant terms that are in-
variant by LTi. Suppose that

(2.4) [M2p]
LT1
1 ∩ [M2p]

LT2
1 = {0}.

There exists a formal (resp. real analytic) submanifold defined by

(2.5) z′′ = (B2
1 , . . . , B

2
p)(z′, z′),

for some formal (resp. convergent) power series B1, . . . , Bp such
that M satisfies condition D. The set {τ̃11, . . . , τ̃1p, ρ0} of invo-
lutions of M is formally (resp. holomorphically) equivalent to
{τ11, . . . , τ1p, ρ}.

The above proposition is proved in [12, Propositions 2.8 and 3.2].
Since we need to apply the realization several times, let us recall how
(2.5) is constructed. Using the fact that τ11, . . . , τ1p are commuting in-
volutions of which the sets of fixed points are hypersurfaces intersecting
transversally, we ignore ρ and linearize them simultaneously as

Zj : zp+j → −zp+i, zi → zi, i 6= j,

for 1 ≤ j ≤ p. Thus, in z coordinates, invariant functions of τ11, . . . , τ1p

are generated by z1, . . . , zp and z2
p+1, . . . , z

2
2p. In the original coordinates,

zj = Aj(ξ, η), 1 ≤ j ≤ p, are invariant by the involutions, while zp+j =

B̃j(ξ, η) is skew-invariant by τ1j . Then Aj ◦ ρ(ξ, η) are invariant by
the second family {τ2i}. Condition (2.4) ensures that ϕ : (z′, w′) =

(A(ξ, η), A ◦ ρ(ξ, η)) is a germ of formal (biholomorphic) mapping at
the origin. Then

M : zp+j = B̃2
j ◦ ϕ−1(z′, z′), 1 ≤ j ≤ p

is a realization for {τ11, . . . , τ1p, ρ} in the sense stated in the above propo-
sition.

Next we recall the deck transformations for a product quadric
from [12].

Let us first recall involutions in [19] where the complex tangents
are elliptic (with non-vanishing Bishop invariant) or hyperbolic. When
γ1 6= 0, the non-trivial deck transformations of

Qγ1 : z2 = |z1|2 + γ1(z2
1 + z2

1),
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for π1, π2 are τ1 and τ2, respectively. They are

τ1 : z′1 = z1, w′1 = −w1 − γ−1
1 z1; τ2 = ρτ1ρ,

with ρ being defined by (2.3). Here the formula is valid for γ1 =∞ (i.e.
γ−1

1 = 0). Note that τ1 and τ2 do not commute and σ = τ1τ2 satisfies

σ−1 = τiστi = ρσρ, τ2
i = I, ρ2 = I.

When the complex tangent is not parabolic, the eigenvalues of σ are
µ, µ−1 with µ = λ2 and γλ2 − λ + γ = 0. For the elliptic complex
tangent, we can choose a solution λ > 1, and in suitable coordinates we
obtain

τ1 : ξ′ = λη +O(|(ξ, η)|2), η′ = λ−1ξ +O(|(ξ, η)|2),

τ2 = ρτ1ρ, ρ(ξ, η) = (η, ξ),

σ : ξ′ = µξ +O(|(ξ, η)|2), η′ = µ−1η +O(|(ξ, η)|2), µ = λ2.

When the complex tangent is hyperbolic, i.e. 1/2 < γ ≤ ∞, τi and σ
still have the above form, while |µ| = 1 = |λ| and

ρ(ξ, η) = (ξ, η).

We recall from [19] that

γ1 =
1

λ+ λ−1
.

Note that for a parabolic Bishop surface, the linear part of σ is not
diagonalizable.

Consider a quadric of the complex type of CR singularity

(2.6) Qγs : z3 = z1z2 + γsz
2
2 + (1− γs)z2

1 , z4 = z3.

Here γs is a complex number.
By condition B, we know that γs 6= 0, 1. Recall from [12] that the

deck transformations for π1 are generated by two involutions

τ11 :


z′1 = z1,

z′2 = z2,

w′1 = −w1 − (1− γs)−1z2,

w′2 = w2;

τ12 :


z′1 = z1,

z′2 = z2,

w′1 = w1,

w′2 = −w2 − γ−1
s z1.

We still have ρ defined by (2.3). Then τ2j = ρτ1jρ, j = 1, 2, are given
by

τ21 :


z′1 = −z1 − (1− γs)−1w2,

z′2 = z2,

w′1 = w1,

w′2 = w2;

τ22 :


z′1 = z1,

z′2 = −z2 − γ−1
s w1,

w′1 = w1,

w′2 = w2.
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Thus, τi = τi1τi2 is the unique deck transformation of πi that has the
smallest dimension of the fixed-point set among all deck transforma-
tions. They are

τ1 :


z′1 = z1,

z′2 = z2,

w′1 = −w1 − (1− γs)−1z2,

w′2 = −w2 − γ−1
s z1;

τ2 :


z′1 = −z1 − (1− γs)−1w2,

z′2 = −z2 − γ−1
s w1,

w′1 = w1,

w′2 = w2.

Also σs1 := τ11τ22 and σs2 := τ12τ21 are given by

σs1 :


z′1 = z1,

z′2 = −z2 − γ−1
s w1,

w′1 = (1− γs)−1z2 + ((γs − γ2
s)
−1 − 1)w1,

w′2 = w2;

σs2 :


z′1 = −z1 − (1− γs)−1w2,

z′2 = z2,

w′1 = w1,

w′2 = γ−1
s z1 + ((γs − γ2

s )−1 − 1)w2.

And σs := τ1τ2 = σs1σs2 is given by

σs :


z′1 = −z1 − (1− γs)−1w2,

z′2 = −z2 − γ−1
s w1,

w′1 = (1− γs)−1z2 + ((γs − γ2
s)
−1 − 1)w1,

w′2 = γ−1
s z1 + ((γs − γ2

s )−1 − 1)w2.

Suppose that γs 6= 1/2. The eigenvalues of σs are

µs, µ−1
s , µ−1

s , µs,(2.7)

µs = γ−1
s − 1.(2.8)

Here if µs = µs and µ−1
s = µ−1

s then each eigenspace has dimension
2. Under suitable linear coordinates, the involution ρ, defined by (2.3),
takes the form

(2.9) ρ(ξ1, ξ2, η1, η2) = (ξ2, ξ1, η2, η1).

Moreover, for j = 1, 2, we have τ2j = ρτ1jρ and

τ1j : ξ′j = λjηj , η′j = λ−1
j ξj ; ξ′i = ξi, η′i = ηi, i 6= j;

λ1 = λs, λ2 = λ
−1
s , µs = λ2

s.

By a permutation of coordinates that preserves ρ, we obtain a unique
holomorphic invariant µs satisfying

(2.10) |µs| ≥ 1, Imµs ≥ 0, 0 ≤ arg λs ≤ π/2, µs 6= −1.

By condition E, we have |µs| 6= 1.
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Although the case γs = 1/2 is not studied in this paper, we remark
that when γs = 1/2 the only eigenvalue of σs1 is 1. We can choose
suitable linear coordinates such that ρ is given by (2.9), while
(2.11)
σs1 : ξ′1 = ξ1, η′1 = η1 + ξ1, ξ′2 = ξ2, η′2 = η2

σs2 : ξ′1 = ξ1, η′1 = η1, ξ′2 = ξ2, η′2 = −ξ2 + η2,
σs : ξ′1 = ξ1, η′1 = ξ1 + η1, ξ′2 = ξ2, η′2 = −ξ2 + η2.

Note that eigenvalue formulae (2.7) and the Jordan normal form (2.11)
tell us that τ1 and τ2 do not commute, while σs1 and σs2 commute and
they are diagonalizable if and only if γs 6= 1/2. We further remark that
when µs satisfies (2.10), we have

Re γs ≤ 1/2, Im γs ≥ 0, if |µs| ≥ 1, Imµs ≥ 0;(2.12)

Re γs = 1/2, Im γs ≥ 0, γs 6= 1/2, if |µs| = 1, Imµs ≥ 0, µs 6= 1;(2.13)

γs < 1/2, γs 6= 0, if µ2
s > 1; γs = 1/2, if µs = 1.(2.14)

We have, therefore, proved the following.

Proposition 2.2. Quadratic surfaces in C4 of complex type CR sin-
gularity at the origin are classified by (2.6) with γs uniquely determined
by (2.12)–(2.14).

The region of eigenvalue µ, restricted to E := {|µ| ≥ 1, Imµ ≥ 0}, can
be described as follows: For a Bishop quadric, µ is precisely located in
ω := {µ ∈ C : |µ| = 1} ∪ [1,∞). The value of µ of a quadric of complex
type, is precisely located in Ω := E \ {−1}, while ω = ∂E \ (−∞,−1).

In summary, under the condition that no component is a Bishop
parabolic quadric or a complex quadric with γs = 1/2, we have found
linear coordinates for the product quadrics such that the normal forms
of S, Tij , ρ of the corresponding σ, σj , τij , ρ0 are given by

S : ξ′j = µjξj , η′j = µ−1
j ηj ;

Tij : ξ′j = λijηj , η′j = λ−1
ij ξj , ξ′k = ξk, η′k = ηk, k 6= j;

ρ :

{
(ξ′e, η

′
e, ξ
′
h, η
′
h) = (ηe, ξe, ξh, ηh),

(ξ′s, ξ
′
s+s∗ , η

′
s, η
′
s+s∗) = (ξs+s∗ , ξs, ηs+s∗ , ηs).

Notice that we can always normalize ρ0 into the above normal form ρ.
For various reversible mappings and their relations with general map-

pings, the reader is referred to [20] for recent results and references
therein.

To derive our normal forms, we shall transform {τ1, τ2, ρ} into a nor-
mal form first. We will further normalize {τ1j , ρ} by using the group
of biholomorphic maps that preserve the normal form of {τ1, τ2, ρ}, i.e.
the centralizer of the normal form of {τ1, τ2, ρ}.
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3. Quadrics with the maximum number of deck
transformations

In Proposition 2.1, we describe the basic relation between the classi-
fication of real manifolds and that of two families of involutions inter-
twined by an antiholomorphic involution, which is established in [12].
As an application, we obtain in this section a normal form for two fam-
ilies of linear involutions and use it to construct the normal form for
their associated quadrics. This section also serves as an introduction
to our approach to find the normal forms of the real submanifolds at
least at the formal level. At the end of the section, we will also intro-
duce examples of quadrics of which S is given by Jordan matrices. The
perturbation of such quadrics will not be studied in this paper.

3.1. Normal form of two families of linear involutions. To formu-
late our results, we first discuss the normal forms which we are seeking
for the involutions. We are given two families of commuting linear in-
volutions T1 = {T11, . . . , T1p} and T2 = {T21, . . . , T2p} with T2j = ρT1jρ.
Here ρ is a linear anti-holomorphic involution. We set

T1 = T11 · · ·T1p, T2 = ρT1ρ.

We also assume that each Fix(T1j) is a hyperplane and ∩Fix(T1j) has
dimension p. By [12, Lemma 2.4], in suitable linear coordinates, each
T1j has the form

Zj : ξ′ = ξ, η′i = ηi (i 6= j), η′j = −ηj .

Thus, combining with (2.4) gives us

dim[M2p]
Ti
1 = p, [M2p]

Ti
1 = [M2p]

Ti
1 ,(3.1)

dim[M2p]
Ti
1 = p, [M2p]

T1
1 ∩ [M2p]

T2
1 = {0}.(3.2)

Recall that [M2p]1 denotes the linear holomorphic functions without
constant terms. We would like to find a change of coordinates ϕ such
that ϕ−1T1jϕ and ϕ−1ρϕ have a simpler form. We would like to show

that two such families of involutions {T1, ρ} and {T̃1, ρ̃} are holomorphi-
cally equivalent, if there are normal forms are equivalent under a much
smaller set of changes of coordinates, or if they are identical in the ideal
situation.

Next, we describe our scheme to derive the normal forms for linear
involutions. The scheme to derive the linear normal forms turns out to
be essential to derive normal forms for non-linear involutions and the
perturbed quadrics. We define

S = T1T2.

Besides conditions (3.1)–(3.2), we will soon impose condition E that S
has 2p distinct eigenvalues.
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We first use a linear map ψ to diagonalize S to its normal form

Ŝ : ξ′j = µjξ, η′j = µ−1
j ηj , 1 ≤ j ≤ p.

The choice of ψ is not unique. We further normalize T1, T2, ρ under
linear transformations commuting with Ŝ, i.e. the invertible mappings
in the linear centralizer of Ŝ. We use a linear map that commutes with
Ŝ to transform ρ into a normal form too, which is still denoted by ρ.
We then use a transformation ψ0 in the linear centralizer of Ŝ and ρ to
normalize the T1, T2 into the normal form

T̂i : ξ
′
j = λijηj , η′j = λ−1

ij ξj , 1 ≤ j ≤ p.

Here we require λ2j = λ−1
1j . Thus, µj = λ2

1j for 1 ≤ j ≤ p, and
λ11, . . . , λ1p form a complete set of invariants of T1, T2, ρ, provided the
normalization satisfies

λ1e > 1, Imλ1h > 0, arg λ1s ∈ (0, π/2), |λs| > 1.

This normalization will be verified under condition E.
Next we normalize the family T1 of linear involutions under mappings

in the linear centralizer of T̂1, ρ. Let us assume that T1, ρ are in the
normal forms T̂1, ρ. To further normalize the family {T1, ρ}, we use the
crucial property that T11, . . . , T1p commute pairwise and each T1j fixes
a hyperplane. This allows us to express the family of involutions via a
single linear mapping φ1:

T1j = ϕ1φ1Zjφ
−1
1 ϕ−1

1 .

Here the linear mapping ϕ1 depends only on λ1, . . . , λp. Expressing
φ1 in a non-singular p × p constant matrix B, the normal form for
{T11, . . . , T1p, ρ} consists of invariants λ1, . . . , λp and a normal form of
B. After we obtain the normal form for B, we will construct the nor-
mal form of the quadrics by using the realization procedure in Proposi-
tion 2.1 (see the paragraph after that proposition or the proof in [12]).

We now carry out the details.
Let T1 = T11 · · ·T1p, T2 = ρT1ρ and S = T1T2. Since Ti and ρ are

involutions, then S is reversible with respect to Ti and ρ, i.e.

S−1 = T−1
i STi, S−1 = ρ−1Sρ, T 2

i = I, ρ2 = I.

Therefore, if κ is an eigenvalue of S with a (non-zero) eigenvector u,
then

Su = κu, S(Tiu) = κ−1Tiu, S(ρu) = κ−1ρu, S(ρTiu) = κρTiu.

Following [19] and [22], we will divide eigenvalues of product quadrics
that satisfy condition E into 3 types: µ is elliptic if µ 6= ±1 and µ is
real, µ is hyperbolic if |µ| = 1 and µ 6= 1, and µ is complex otherwise.
The classification of σ into the types corresponds to the classification
of the types of complex tangents described in section 2; namely, an
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elliptic (resp. hyperbolic) complex tangent is tied to a hyperbolic (resp.
elliptic) mapping σ.

We first characterize the linear family {T1, T2, ρ} that can be realized
by a product quadric with S being diagonal.

Lemma 3.1. Let {T1, T2} be a pair of linear involutions on C2p sat-
isfying (3.2). Suppose that T2 = ρT1ρ for a linear anti-holomorphic
involution and S = T1T2 is diagonalizable. Then {T1, T1, ρ} is real-
ized by the product of quadrics of type elliptic, hyperbolic, or complex.
In particular, if S has 2p distinct eigenvalues, then 1 and −1 are not
eigenvalues of S.

Proof. The last assertion follows from the first part of the lemma
immediately. Thus, the following entire proof does not assume that S
has distinct eigenvalues. Let Ei(νi) with i = 1, . . . , 2p be eigenspaces of
S = T1T2 with eigenvalues νi. Thus,

C2p =

2p⊕
i=1

Ei(νi), C2p	Ei(νi) :=
⊕
j 6=i

Ej(νj).

Fix an i and denote the corresponding space by E(ν). Since σ−1 =
T1σT1, then T1E(ν) = T2E(ν), which is equal to some invariant space
E(ν−1). Take an eigenvector e ∈ E(ν) and set e′ = T1e.

Let us first show that 1 is not an eigenvalue. Assume for the sake of
contradiction that E(1) is spanned by a (non-zero) eigenvector e. Then
T1 preserves E(1). Otherwise, e′ and e are independent. Now T2e =
T1e = e′ and Ti(e+ e′) = e′ + e, which contradicts Fix(T1) ∩ Fix(T2) =
{0}. With E(1) being preserved by Ti, we have Tie = εe and ε = ±1,
since Ti are involutions. We have ε 6= 1 since Fix(T1) ∩ Fix(T2) = {0}.
Thus, T1e = −e = T2e. Then Fix(T1) and Fix(T2) are subspaces of
C2p	E(1) and both are of dimension p. Hence, Fix(T1)∩Fix(T2) 6= {0},
a contradiction.

Since S−1 = ρ−1Sρ and S−1 = T−1
i STi then T1 sends E(ν) to some

E(ν−1) as mentioned earlier, while ρ sends E(ν) to some E(ν−1). Thus,
each of Ti, ρ yields an involution on the set {E(ν1), . . . , E(ν2p)}.

Let E1(−1), . . . , Ek(−1) be all spaces invariant by T1. Since T2 =
T1S, they are also invariant by T2. Then none of the k spaces is invariant
by ρ. Indeed, if one of them, say Ej generated by ej , is invariant by ρ,
we have T1ej = εej and ρej = bej with ε2 = 1 = |b|. We get T2ej =
(ρT1ρ)ej = εej and σej = ej , which contracts that σ has eigenvalue −1
on Ej . Furthermore, if E(−1) is invariant by T1, then ρE(−1) is also
invariant by T1 as T1 = ρT2ρ. Thus, we may assume that ρEj = E`+j
for 1 ≤ j ≤ ` := k/2. For each j with 1 ≤ j ≤ `, either T1 = I = −T2 on
Ej and T1 = ρT2ρ = −I on E`+j , or T1 = −I on Ej and T1 = I on Ej+`.
Interchanging Ej , E`+j if necessary, we may assume that T1 = I = −T2

on Ej and T1 = −I = −T2 on E`+j . We can restrict the involutions
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T1, T2, ρ on C2 := Ej ⊕ E`+j as it is invariant by the three involutions.
By the realization in [19], {T1, T2, ρ} is realized by a Bishop quadric; in
fact, it is Q∞. Assume now that E(−1) is not invariant by T1. Thus,

Ti sends E(−1) into a different Ẽ(−1). Assume first that E(−1) is

invariant by ρ. Then Ẽ(−1) is also invariant by ρ as ρ = T2ρT1. Thus,

as the previous case {T1, T2, ρ}, restricted to E(−1)⊕ Ẽ(−1) is realized
by Q∞.

Suppose now that ρ does not preserve E(−1). Recall that we already

assume that T1(E(−1)) = Ẽ(−1) is different from E(−1). Let us show

that Ẽ(−1) 6= ρE(−1). Otherwise, we let ẽ = ρe with e being an
eigenvector in E(−1). Then T1e = aẽ. So T2e = ρT1ρe = a−1ẽ and
T1T2e = |a|−2e. This contracts Se = −e. We now realize E(−1) ⊕
ρE(−1)⊕ Ẽ(−1)⊕ρẼ(−1) by a product of two copies of Q∞ as follows.
Take a non-zero vector e ∈ E(−1). Define e1 = e + T1e. So T1e1 =
e1, Se1 = −e1, and T2e1 = T1Se1 = −e1. Define ẽ1 = ρe1; then
T1ẽ1 = ρT2ρẽ1 = −ẽ1. Define ẽ2 = e1 − T1e1; then T1ẽ2 = −ẽ2 and
T2ẽ2 = ẽ2. Define e2 = ρẽ2; then T1e2 = ρT2ρe2 = e2. In coordinates
z1e1 + w1ẽ1 + z2e2 + w2ẽ2, we have T1(zj) = zj and T1(wj) = −wj
and ρ(zj) = wj . Therefore, {T1, T2, ρ} is realized by the product of two
copies of Q∞.

Consider now the case ν, denoting some νi, is positive and ν 6= 1. We
have

(3.3) Ti : E(ν)→ E(ν−1), i = 1, 2.

There are two cases: ρE(ν) = E(ν−1) or ρE(ν) := Ẽ(ν−1) 6= E(ν−1).
For the first case, the family {T1, T2, ρ}, restricted to E(ν)⊕E(ν−1), is
realized by an elliptic Bishop quadric Qγ with γ 6= 0. For the second
case, we want to verify that {T1, T2, ρ}, restricted to E(ν) ⊕ ρE(ν) ⊕
E(ν−1)⊕ ρE(ν−1), is realized by a quadric of complex type singularity.

Write ν1 := ν = λ2
1, λ2 := λ

−1
1 , and ν2 := ν−1

1 . (The redundant
complex conjugate is for the rest of cases.) Let u1 be an eigenvector
in E(ν). Define v1 = λ1T1u1 ∈ E(ν−1). Then Tju1 = λ−1

j v1. Define

u2 = ρu1 and v2 = ρv1. Then T1u2 = ρT2ρu2 = ρT2u1 = λ−1
2 v2. Thus,

σuj = νjuj and σvj = ν−1
j vj . We now realize the family of involutions

by a quadratic submanifold. For the convenience of the reader, we repeat
part of argument in [12]; see the paragraph after Proposition 2.1. In
coordinates ξ1u1 + ξ2u2 + η1v1 + η2v2, we have Ti(ξ, η) = (λiη, λ

−1
i ξ)

and ρ(ξ, η) = (ξ2, ξ1, η2, η1). Let

zj = ξj + λjηj , wj = zj ◦ ρ, j = 1, 2;

z3 = (η1 − λ−1
1 ξ1)2, z4 = (η2 − λ−1

2 ξ2)2.

Expressing ξj , ηj via (z1, z2, w1, w2), we obtain

z3 = L2
1(z1, z2, w1, w2), z4 = L2

2(z1, z2, w1, w2).
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Setting w1 = z1 and w2 = z2, we obtain the defining equations of
M ⊂ C4 that is a realization of {T1, T2, ρ}.

Assume now that ν < 0 and ν 6= −1. We still have (3.3). We want
to show that ρ(E(ν)) 6= E(ν−1) where E(ν−1) is in (3.3), i.e. the above
second case in which ν > 0 occurs and the above argument shows that
{T1, T2, ρ}, restricted to E(ν)⊕ρE(ν)⊕E(ν−1)⊕ρE(ν−1), is realized by
a quadric of complex type singularity. Suppose that ρE(ν) = E(ν−1).
Take e ∈ E(ν). We can write ẽ = ρe ∈ E(ν−1). Then T1e = aẽ. We
have T2e = T1Se = νaẽ and T2e = ρT1ρe = ρ(a−1e) = a−1ẽ. We obtain
ν = |a|−2 > 0, a contradiction.

Analogously, if ν has modulus 1 and is different from ±1, we have two
cases: ρE(ν) = E(ν−1) or ρE(ν) := Ẽ(ν−1) 6= E(ν−1). In the first case,
{T1, T2, ρ} restricted to the two dimensional subspace is realized by a
hyperbolic quadric Qγ with γ 6= ∞. In the second case its restriction
to the 4-dimensional subspace is realized by a quadric of complex CR
singularity with |ν| = 1. In fact, the same argument is valid. Namely,

let λ2
1 = ν = ν1. Let λ2 = λ

−1
1 and ν2 = ν−1

1 . Take an eigenvector
e1 ∈ E(ν). Define ẽ1 = λ1T1e1, e2 = ρe1 and ẽ2 = ρẽ1. Then define
zj , wj and Lj as above, which gives us a realization. We leave the
details to the reader. Finally, if ν, ν−1, ν−1, ν are distinct, then we
have a realization proved in Theorem 3.7 for a general case where all
eigenvalues are distinct. q.e.d.

Of course, there are non-product quadrics that realize {T1, T2, ρ} in
Lemma 3.1 and the main purpose of this section is to classify them
under condition E. We now assume conditions E and (3.1)–(3.2) for the
rest of the section to derive a normal form for T1j and ρ.

We need to choose the eigenvectors of S and their eigenvalues in such
a way that T1, T2 and ρ are in a normal form. We will first choose
eigenvectors to put ρ into a normal form. After normalizing ρ, we will
then choose eigenvectors to normalize T1 and T2.

First, let us consider an elliptic eigenvalue µe. Let u be an eigenvector
of µe. Then u and v = ρ(u) satisfy

(3.4) S(v) = µ−1
e v, Tj(u) = λ−1

j v, µe = λ1λ
−1
2 .

Now T2(u) = ρT1ρ(u) implies that

λ2 = λ
−1
1 , µe = |λ1|2.

Replacing (u, v) by (cu, cv), we may assume that λ1 > 0 and λ2 = λ−1
1 .

Replacing (u, v) by (v, u) if necessary, we may further achieve

ρ(u) = v, λ1 = λe > 1, µe = λ2
e > 1.

We still have the freedom to replace (u, v) by (ru, rv) for r ∈ R∗, while
preserving the above conditions.
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Next, let µh be a hyperbolic eigenvalue of S and S(u) = µhu. Then
u and v = T1(u) satisfy

ρ(u) = au, ρ(v) = bv, |a| = |b| = 1.

Replacing (u, v) by (cu, v), we may assume that a = 1. Now T2(v) =

ρT1ρ(v) = bu. To obtain b = 1, we replace (u, v) by (u, b−1/2v). This
give us (3.4) with |λj | = 1. Replacing (u, v) by (v, u) if necessary, we
may further achieve

ρ(u) = u, ρ(v) = v, λ1 = λh, µh = λ2
h, arg λh ∈ (0, π/2).

Again, we have the freedom to replace (u, v) by (ru, rv) for r ∈ R∗,
while preserving the above conditions.

Finally, we consider a complex eigenvalue µs. Let S(u) = µsu. Then
ũ = ρ(u) satisfies S(ũ) = µ−1

s ũ. Let u∗ = T1(u) and ũ∗ = ρ(u∗). Then
S(u∗) = µ−1

s u∗ and S(ũ∗) = µsũ
∗. We change eigenvectors by

(u, ũ, u∗, ũ∗)→ (u, ũ, cu∗, cũ∗),

so that

ρ(u) = ũ, ρ(u∗) = ũ∗,

Tj(u) = λ−1
j u∗, Tj(ũ) = λj ũ

∗, λ2 = λ−1
1 .

Note that S(u) = λ2
1u, S(u∗) = λ−2

1 u∗, S(ũ) = λ
−2
1 ũ, and S(ũ∗) = λ

2
1ũ
∗.

Replacing (u, ũ, u∗, ũ∗) by (u∗, ũ∗, u, ũ) changes the argument and the
modulus of λ1 as λ−1

1 becomes λ1. Replacing them by (ũ, u, ũ∗, u∗)

changes only the modulus as λ1 becomes λ̄−1
1 and then replacing them

by (u∗, ũ∗,−u,−ũ) changes the sign of λ1. Therefore, we may achieve

µs = λ2
s, λ1 = λs, arg γs ∈ (0, π/2), |λs| > 1.

We still have the freedom to replace (u, u∗, ũ, ũ∗) by (cu, cu∗, cũ, cũ∗).
We summarize the above choice of eigenvectors and their correspond-

ing coordinates. First, S has distinct eigenvalues

λ2
e = λ

2
e, λ−2

e ; λ2
h, λ

2
h = λ−2

h ; λ2
s, λ−2

s , λ
−2
s , λ

2
s.

Also, S has linearly independent eigenvectors satisfying

Sue = λ2
eue, Su∗e = λ−2

e u∗e,

Svh = λ2
hvh, Sv∗h = λ−2

h v∗h,

Sws = λ2
sws, Sw∗s = λ−2

s w∗s , Sw̃s = λ
−2
s w̃s, Sw̃∗s = λ

2
sw̃
∗
s .

Furthermore, the ρ, T1, and the chosen eigenvectors of S satisfy

ρue = u∗e, T1ue = λ−1
e u∗e;

ρvh = vh, ρv∗h = v∗h, T1vh = λ−1
h v∗h;

ρws = w̃s, ρw∗s = w̃∗s , T1ws = λ−1
s w∗s , T1w̃s = λsw̃

∗
s .
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For normalization, we collect elliptic eigenvalues µe and µ−1
e , hyper-

bolic eigenvalues µh and µ−1
h , and complex eigenvalues in µs, µ

−1
s , µ−1

s

and µs. We put them in the order

µe = µe, µp+e = µ−1
e ,

µh, µp+h∗+h = µh,

µs, µs+s∗ = µ−1
s , µp+s = µ−1

s , µp+s∗+s = µs.

Here and throughout the paper the ranges of subscripts e, h, s are re-
stricted to

1 ≤ e ≤ e∗, e∗ < h ≤ e∗ + h∗, e∗ + h∗ < s ≤ p− s∗.
Thus, e∗ + h∗ + 2s∗ = p. Using the new coordinates∑

(ξeue+ηeu
∗
e)+

∑
(ξhvh+ηhv

∗
h)+

∑
(ξsws+ξs+s∗w̃s+ηsw

∗
s+ηs+s∗w̃

∗
s),

we have normalized σ, T1, T2 and ρ. In summary, we have the following
normal form.

Lemma 3.2. Let T1, T2 be linear holomorphic involutions on C2p

that satisfy (3.2). Suppose that T2 = ρ0T1ρ0 for some anti-holomorphic
linear involution ρ0. Assume that S = T1T2 has n distinct eigenvalues.
There exists a linear change of holomorphic coordinates that transforms
T1, T2, S, ρ0 simultaneously into the normal forms T̂1, T̂2, Ŝ, ρ:

T̂1 : ξ′j = λjηj , η′j = λ−1
j ξ, 1 ≤ j ≤ p;(3.5)

T̂2 : ξ′j = λ−1
j ηj , η′j = λjξj , 1 ≤ j ≤ p;(3.6)

Ŝ : ξ′j = µjξj , η′j = µ−1
j ηj , 1 ≤ j ≤ p;(3.7)

ρ :


ξ′e = ηe, η′e = ξe,

ξ′h = ξh, η′h = ηh,

ξ′s = ξs+s∗ , ξ′s+s∗ = ξs,
η′s = ηs+s∗ , η′s+s∗ = ηs.

(3.8)

Moreover, the eigenvalues µ1, . . . , µp satisfy

µj = λ2
j , 1 ≤ j ≤ p;(3.9)

λe > 1, |λh| = 1, |λs| > 1, λs+s∗ = λ
−1
s ;(3.10)

arg λh ∈ (0, π/2), arg λs ∈ (0, π/2);(3.11)

λe′ < λe′+1, 0 < arg λh′ < arg λh′+1 < π/2;(3.12)

arg λs′ < arg λs′+1, or arg λs′ = arg λs′+1 and |λs′ | < |λs′+1|.(3.13)

Here 1 ≤ e′ < e∗, e∗ < h′ < e∗ + h∗, and e∗ + h∗ < s′ < p − s∗. And
1 ≤ e ≤ e∗, e∗ < h ≤ e∗+h∗, and e∗+h∗ < s ≤ p−s∗. If S̃ is also in the
normal form (3.7) for possible different eigenvalues µ̃1, . . . , µ̃p satisfying

(3.9)–(3.13), then S and S̃ are equivalent if and only if their eigenvalues
are identical.
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The above normal form of ρ will be fixed for the rest of paper. Note
that in case of non-linear involutions {τ11, . . . , τ1p, ρ} of which the linear
part are given by {T11, . . . , T1p, ρ} we can always linearize ρ first under
a holomorphic map of which the linear part at the origin is described in
above normalization for the linear part of {τ11, . . . , τ1p, ρ}. Indeed, we
may assume that the linear part of the latter family is already in the
normal form. Then ψ = 1

2(I + (Lρ) ◦ ρ) is tangent to the identity and
(Lρ) ◦ψ ◦ ρ = ψ, i.e. ψ transforms ρ into Lρ while preserving the linear
parts of τ11, . . . , τ1p. Therefore, in the non-linear case, we can assume
that ρ is given by the above normal form. The above lemma tells us
the ranges of eigenvalues µe, µh and µs that can be realized by quadrics
that satisfy conditions E and (3.1)–(3.2).

Having normalized T1 and ρ, we want to further normalize the family
{T11, . . . , T1p} under linear maps that preserve the normal forms of T̂1

and ρ. We know that the composition of T1j is in the normal form, i.e.

(3.14) T11 · · ·T1p = T̂1

is given in Lemma 3.2. We first find an expression for all T1j that com-
mute pairwise and satisfy (3.14), by using invariant and skew-invariant

functions of T̂1. Let

(ξ, η) = ϕ1(z+, z−)

be defined by

z+
e = ξe + λeηe, z−e = ηe − λ−1

e ξe,(3.15)

z+
h = ξh + λhηh, z−h = ηh − λhξh,(3.16)

z+
s = ξs + λsηs, z−s = ηs − λ−1

s ξs,(3.17)

z+
s+s∗ = ξs+s∗ + λ

−1
s ηs+s∗ , z−s+s∗ = ηs+s∗ − λsξs+s∗ .(3.18)

In (z+, z−) coordinates, ϕ−1
1 T̂1ϕ1 becomes

Z : z+ → z+, z− → −z−.

We decompose Z = Z1 · · ·Zp by using

Zj : (z+, z−)→ (z+, z−1 , . . . , z
−
j−1,−z

−
j , z

−
j+1, . . . , z

−
p ).

To keep simple notation, let us use the same notions x, y for a linear
transformation y = A(x) and its matrix representation:

A : x→ Ax.

The following lemma, which can be verified immediately, shows the
advantages of coordinates z+, z−.

Lemma 3.3. The linear centralizer of Z is the set of mappings of
the form

(3.19) φ : (z+, z−)→ (Az+,Bz−),
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where A,B are constant and possibly singular matrices. Let ν be a
permutation of {1, . . . , p}. Then Zjφ = φZν(j) for all j if and only if φ
has the above form with B = diagν d. Here

(3.20) diagν(d1, . . . , dp) := (bij)p×p, bjν(j) = dj , bjk = 0 if k 6= ν(j).

In particular, the linear centralizer of {Z1, . . . , Zp} is the set of mappings
(3.19) in which B are diagonal.

To continue our normalization for the family {T1j}, we note that

ϕ−1
1 T11ϕ1, . . ., ϕ

−1
1 T1pϕ1 generate an abelian group of 2p involutions

and each of these p generators fixes a hyperplane. By [12, Lemma 2.4],
there is a linear transformation φ1 such that

ϕ−1
1 T1jϕ1 = φ1Zjφ

−1
1 , 1 ≤ j ≤ p.

Computing two compositions on both sides, we see that φ1 must be in
the linear centralizer of Z. Thus, it is in the form (3.19). Of course,

φ1 is not unique; φ̃1 is another such linear map for the same T1j if and

only if φ̃1 = φ1ψ1 with ψ1 ∈ C(Z1, . . . , Zp). By (3.19), we may restrict
ourselves to φ1 given by

(3.21) φ1 : (z+, z−)→ (z+,Bz−).

Then φ̃1 yields the same family {T1j} if and only if its corresponding

matrix B̃ = BD for a diagonal matrix D.
In the above we have expressed all T11, . . . , T1p via equivalence classes

of matrices. It will be convenient to restate them via matrices.
For simplicity, Ti and S denote T̂i, Ŝ, respectively. In matrices, we

write

T1 :

(
ξ
η

)
→ T1

(
ξ
η

)
, ρ :

(
ξ
η

)
→ ρ

(
ξ
η

)
, S :

(
ξ
η

)
→ S

(
ξ
η

)
.

Recall that the bold faced A represents a linear map A. Then

T1 =

(
0 Λ1

Λ−1
1 0

)
2p×2p

, S =

(
Λ2

1 0
0 Λ−2

1

)
2p×2p

.

We will abbreviate

ξe∗ = (ξ1, . . . , ξe∗), ξh∗ = (ξe∗+1, . . . , ξe∗+h∗), ξ2s∗ = (ξe∗+h∗+1, . . . , ξp).

We use the same abbreviation for η. Then (ξe∗ ,ηe∗), (ξh∗ ,ηh∗), and
(ξ2s∗ ,η2s∗) subspaces are invariant under T1j , T1, and ρ. We also de-

note by T e∗1 , T h∗1 , T s∗1 the restrictions of T1 to these subspaces. Define
analogously for the restrictions of ρ, S to these subspaces. Define di-
agonal matrices Λ1e∗ ,Λ1h∗ ,Λ1s∗ , of size e∗ × e∗, h∗ × h∗ and s∗ × s∗
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respectively, by

Λ1 =


Λ1e∗ 0 0 0

0 Λ1h∗ 0 0
0 0 Λ1s∗ 0

0 0 0 Λ
−1
1s∗

 , Λ1 =


Λ1e∗ 0 0 0

0 Λ−1
1h∗

0 0

0 0 Λ1s∗ 0
0 0 0 Λ−1

1s∗

 .

Thus, we can express T s∗1 and Ss∗ in (2s∗)× (2s∗) matrices

Ts∗
1 =


0 0 Λ1s∗ 0

0 0 0 Λ
−1
1s∗

Λ−1
1s∗

0 0 0

0 Λ1s∗ 0 0

 ,Ss∗ =


Λ2

1s∗ 0 0 0

0 Λ
−2
1s∗ 0 0

0 0 Λ−2
1s∗

0

0 0 0 Λ
2
1s∗

.
Let Ik denote the k× k identity matrix. With the abbreviation, we can
express ρ as

ρe∗ =

(
0 Ie∗

Ie∗ 0

)
, ρh∗ = I2h∗ ,

ρs∗ =


0 Is∗ 0 0

Is∗ 0 0 0
0 0 0 Is∗
0 0 Is∗ 0

 .

Note that ρ is anti-holomorphic linear transformation. If A is a complex
linear transformation, in (ξ, η) coordinates the matrix of ρA is ρA, i.e.

ρA :

(
ξ
η

)
→ ρA

(
ξ
η

)
,

with

ρ =



0 0 0 0 Ie∗ 0 0 0
0 Ih∗ 0 0 0 0 0 0
0 0 0 Is∗ 0 0 0 0
0 0 Is∗ 0 0 0 0 0

Ie∗ 0 0 0 0 0 0 0
0 0 0 0 0 Ih∗ 0 0
0 0 0 0 0 0 0 Is∗
0 0 0 0 0 0 Is∗ 0


.

For an invertible p× p matrix A, define an n× n matrix EA by

(3.22) EA :=
1

2

(
Ip −A

A−1 Ip

)
, E−1

A =

(
Ip A
−A−1 Ip

)
.

For a p× p matrix B, we define

B∗ :=

(
Ip 0
0 B

)
.
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Therefore, we can express

T1j = EΛ1B∗ZjB
−1
∗ E−1

Λ1
, T2j = ρT1jρ,(3.23)

Zj = diag(1, . . . , 1,−1, 1, . . . , 1).(3.24)

Here −1 is at the (p+ j)-th place. By Lemma 3.3, B is uniquely deter-
mined up to equivalence relation via diagonal matrices D:

(3.25) B ∼ BD.

We have expressed all {T11, . . . , T1p, ρ} for which T̂1 = T11 · · ·T1p and ρ
are in the normal forms in Lemma 3.2 and we have found an equivalence
relation to classify the involutions. Let us summarize the results in a
lemma.

Lemma 3.4. Let {T11, . . . , T1p, ρ} be the involutions of a quadric
manifold M . Assume that S = T1ρT1ρ has distinct eigenvalues. Then
in suitable linear (ξ, η) coordinates, T11, . . . , T1p are given by (3.23),

while T11 · · ·T1p = T̂1 and ρ are given by (3.5) and (3.8), respectively.
Moreover, B in (3.23) is uniquely determined by the equivalence relation
(3.25) for diagonal matrices D.

Recall that we divide the classification for {T11, . . . , T1p, ρ} into two

steps. We have obtained the classification for T11 ◦ · · · ◦ T1p = T̂1 and
ρ in Lemma 3.2. Having found all {T11, . . . , T1p, ρ} and an equivalence
relation, we are ready to reduce their classification to an equivalence
problem that involves two dilatations and a coordinate permutation.

Lemma 3.5. Let {Ti1, . . . , Tip, ρ} be given by (3.23). Suppose that

T̂1 = T11 · · ·T1p, ρ, T̂2 = ρT̂1ρ, and Ŝ = T̂1T̂2 have the forms in

Lemma 3.2. Suppose that Ŝ has distinct eigenvalues. Let {T̂11, . . . ,

T̂1p, ρ} be given by (3.23) where λj are unchanged and B is replaced

by B̂. Suppose that R−1T1jR = T̂1ν(j) for all j and Rρ = ρR. Then
the matrix of R is R = diag(a,a) with a = (ae∗ ,ah∗ ,as∗ ,a

′
s∗), while a

satisfies the reality condition

ae∗ ∈ (R∗)e∗ , ah∗ ∈ (R∗)h∗ , as∗ = a′s∗ ∈ (C∗)s∗ .(3.26)

Moreover, there exists d ∈ (C∗)p such that for 1 ≤ i, j ≤ p

B̂ = (diag a)−1B(diagν d), i.e., a−1
i biν−1(j)dν−1(j) = b̂ij .(3.27)

Conversely, if a,d satisfy (3.26) and (3.27), then R−1T1jR = T̂1ν(j) and
Rρ = ρR.

Proof. Suppose R−1T1jR = T̂1ν(j) and Rρ = ρR. Then R−1T̂1R = T̂1

and R−1ŜR = Ŝ. The latter implies that the matrix of R is diagonal.
The former implies that

R : ξ′j = ajξj , η′j = ajηj ,
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with aj ∈ C∗. Now Rρ = ρR implies (3.26). We express R−1T1jR =

T̂1ν(j) via matrices:

(3.28) EΛ1B̂∗Zν(j)B̂
−1
∗ E−1

Λ1
= R−1EΛ1B∗ZjB

−1
∗ E−1

Λ1
R.

In view of formula (3.22), we see that EΛ1 commutes with R = diag(a,a).

The above is equivalent to thatψ := B−1
∗ RB̂∗ satisfies Zν(j) = ψ−1Zjψ.

By Lemma 3.3 we obtain ψ = diag(A, diagν d). This shows that(
A 0
0 diagν d

)
=

(
I 0
0 B

)−1(
diag a 0

0 diag a

)(
I 0

0 B̂

)
.

The matrices on diagonal yield A = diag a and (3.27). The lemma is
proved. q.e.d.

Lemma 3.5 does not give us an explicit description of the normal
form for the families of involutions {T11, . . . , T1p, ρ}. Nevertheless, by
the lemma, we can always choose a ν and diag d such that the diagonal
elements of B̃, corresponding to {T̃1ν(1), . . . , T̃1ν(p), ρ}, are 1.

Remark 3.6. In what follows, we will fix a B and its associated
{T1, ρ} to further study our normal form problems.

3.2. Normal form of the quadrics. We now use the matrices B
to express the normal form for the quadratic submanifolds. Here we
follow the realization procedure in Proposition 2.1. We will use the
coordinates z+, z− again to express invariant functions of T1j and use
them to construct the corresponding quadric. We will then pull back
the quadric to the (ξ, η) coordinates and then to the z, z coordinates to
achieve the final normal form of the quadrics.

We return to the construction of invariant and skew-invariant func-
tions z+, z− in (3.15)–(3.18) when B is the identity matrix. For a general
B, we define Φ1 and the matrix Φ−1

1 by

Φ1(Z+, Z−) = (ξ, η), Φ−1
1 := B−1

∗ E−1
Λ1

=

(
I Λ1

−B−1Λ−1
1 B−1

)
.

Note that Z+ = z+ and Φ−1
1 T1jΦ1 = Zj , by (3.23). The Z+, Z−i with

i 6= j are invariant functions of T1j , while Z−j is a skew-invariant function
of T1j . They can be written as

(3.29) Z+ = ξ + Λ1η, Z− = B−1(−Λ−1
1 ξ + η).

Therefore, the invariant functions of T1 are generated by

Z+
j = ξj + λjηj , (Z−j )2 = (B̃j(−Λ−1

1 ξ + η))2, 1 ≤ j ≤ p.

Here B̃j is the jth row of B−1. The invariant (holomorphic) functions
of T2 are generated by

(3.30) W+
j = Z+

j ◦ ρ, (W−j )2 = (Z−j ◦ ρ)2, 1 ≤ j ≤ p.
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Here W−j = Z−j ◦ ρ. We will soon verify that

m : (ξ, η)→ (z′, w′) = (Z+(ξ, η),W+(ξ, η))

is biholomorphic. A straightforward computation shows that mρm−1

equals

ρ0 : (z′, w′)→ (w′, z′).

We define

M : z′′p+j = (Z−j ◦m
−1(z′, z′))2.

We want to find a simpler expression for M . We first separate B from
Z− by writing

Ẑ− := (−Λ−1
1 I), Z− = B−1Ẑ−.(3.31)

Note that m does not depend on B. To compute Ẑ− ◦m−1, we will use
matrix expressions for (ξe∗ ,ηe∗), (ξh∗ ,ηh∗) and (ξ2s∗ ,η2s∗) subspaces.
Let me∗ ,mh∗ ,ms∗ be the restrictions m to these subspaces. In the ma-
trix form, we have by (3.30)

W+ = Z+ρ, W− = Z−ρ.

Recall that Λ1 = diag(Λe∗ ,Λh∗ ,Λ1s∗ ,Λ
−1
1s∗). Thus,

me∗ =

[
I Λ1e∗

Λ1e∗ I

]
, mh∗ =

[
I Λ1h∗

I Λ−1
1h∗

]
,

ms∗ =


I 0 Λ1s∗ 0

0 I 0 Λ
−1
1s∗

0 I 0 Λ1s∗

I 0 Λ−1
1s∗

0

 ,
m−1
e∗ =

[
I −Λ1e∗

−Λ1e∗ I

] [
(I−Λ2

1e∗)
−1 0

0 (I−Λ2
1e∗)

−1

]
,

m−1
h∗

=

[
I −Λ2

1h∗
−Λ1h∗ Λ1h∗

] [
(I−Λ2

1h∗
)−1 0

0 (I−Λ2
1h∗

)−1

]
,

m−1
s∗ =


Λ−1

1s∗
0 0 −Λ1s∗

0 Λ1s∗ −Λ
−1
1s∗ 0

−I 0 0 I
0 −I I 0

[Ls∗ 0
0 −Ls∗

]
,

Ls∗ =

[
(Λ−1

1s∗
−Λ1s∗)

−1 0

0 (Λ1s∗ −Λ
−1
1s∗)

−1

]
.

Note that I−Λ2
1 is diagonal. Using (3.31) and the above formulae, the

matrices of Ẑ−1
e∗ ◦m

−1, Ẑ−h∗ ◦m
−1, and Ẑ−1

s∗ ◦m
−1 are respectively given
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by

Ẑ−e∗m
−1
e∗ = Le∗

[
I −2(Λ1e∗ + Λ−1

1e∗
)−1
]
,

Le∗ = (I−Λ2
1e∗)

−1(−Λ1e∗ −Λ−1
1e∗

),

Ẑ−h∗m
−1
h∗

= Lh∗
[
I −2Λ1h∗(Λ1h∗ + Λ−1

1h∗
)−1
]
,

Lh∗ = (I−Λ2
1h∗)

−1(−Λ1h∗ −Λ−1
1h∗

),

Ẑ−s∗m
−1
s∗ =

[
−I−Λ−2

1s∗
0 0 2I

0 −I−Λ
2
1s∗ 2I 0

] [
Ls∗ 0
0 −Ls∗

]

= L̃s∗

[
I 0 0 −2(I + Λ−2

1s∗
)−1

0 I −2(I + Λ
2
1s∗)

−1 0

]
,

L̃s∗ =

[
(I + Λ−2

1s∗
)(Λ1s∗ −Λ−1

1s∗
)−1 0

0 (I + Λ
2
1s∗)(Λ

−1
1s∗ −Λ1s∗)

−1

]
.

Combining the above identities, we obtain

Ẑ−1m−1 = diag(Le∗ ,Lh∗ , L̃s∗)

(
Ip,−2 diag

(
Γe∗ ,Λ1h∗Γh∗ ,

[
0 Γ̃s∗

Γs∗ 0

]))
,

with Γ̃s∗ = I− Γs∗ and

(3.32)
Γe∗ = (Λ1e∗ + Λ−1

1e∗
)−1, Γh∗ = (Λ1h∗ + Λ−1

1h∗
)−1,

Γs∗ = (I + Λ
2
1s∗)

−1.

We define B̃j to be the j-th row of

(3.33) B̃ := B−1 diag(Le∗ ,Lh∗ , L̃s∗).

With z′s∗ = (zp−s∗+1, . . . , zp), the defining equations of M are given
by

z′′p+j =
{
B̃j · (ze∗ − 2Γe∗ze∗ , zh∗ − 2Γh∗Λ1h∗zh∗ ,

zs∗ − 2Γs∗z
′
s∗ , z

′
s∗ − 2(I− Γs∗)zs∗)

}2
.

Let us replace zj with j 6= h and zh by izj and i
√
λhzh, respectively for

1 ≤ j ≤ p. Replace zp+j by −zp+j . In the new coordinates, M is given
by

z′′p+j =
{
B̂j · (ze∗ + 2Γe∗ze∗ , zh∗ + 2Γh∗zh∗ ,

zs∗ + 2γs∗z
′
s∗ , z

′
s∗ + 2(1− γs∗)zs∗)

}2
.
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Explicitly, we have

(3.34) QB,γ : zp+j =
(e∗+h∗∑

`=1

b̂j`(z` + 2γ`z`)

+

p−s∗∑
s=e∗+h∗+1

b̂js(zs + 2γszs+s∗) + b̂j(s+s∗)(zs+s∗ + 2(1− γs)zs)
)2
,

for 1 ≤ j ≤ p. Here

γs =
1

1 + Λ2
1s

= Γs.

By (3.33), we also obtain the following identity

B̂ = B−1 diag(Le∗ ,Lh∗Λ
1/2
1h∗
, L̃s∗).

The equivalence relation (3.27) on the set of non-singular matrices B
now takes the form

(3.35) ̂̃B = (diagν d)−1B̂ diag a,

where a satisfies (3.26) and diagν d is defined in (3.20).
Therefore, by Proposition 2.1 we obtain the following classification

for the quadrics.

Theorem 3.7. Let M be a quadratic submanifold defined by (2.1)–
(2.2) satisfying condition D. Let T1, T2 = ρT1ρ be the pair of Moser–
Webster involutions of M . Suppose that S = T1T2 has 2p distinct
eigenvalues. Then M is holomorphically equivalent to (3.34) with B̂ ∈
GL(p,C) being uniquely determined by the equivalence relation (3.35).

Note that the holomorphic classification of {T1, ρ} agrees with its
linear classification, while the holomorphic classification of the quadratic
manifolds cannot be restricted to linear transformations.

When B̂ is the identity, we obtain the product of 3 types of quadrics

Qγe : zp+e = (ze + 2γeze)
2;

Qγh : zp+h = (zh + 2γhzh)2;

Qγs : zp+s = (zs + 2γszs+s∗)
2, zp+s+s∗ = (zs+s∗ + 2(1− γs)zs)2,

(3.36)

with

(3.37) γe =
1

λe + λ−1
e
, γh =

1

λh + λh
, γs =

1

1 + λ
2
s

.

Note that arg λs ∈ (0, π/2) and |λs| > 1. Thus,

(3.38) 0 < γe < 1/2, γh > 1/2, γs ∈ {z ∈ C : Re z < 1/2, Im z > 0}.
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Remark 3.8. By seeking simple formulae (3.29) for invariant func-
tions Z+ of {T1j} and (3.30) for invariant functions W+ of {T2j} =
{ρT1jρ}, we have mismatched the indices so that W+

s+s∗(ξ, η), instead
of W+

s , is invariant by T2s. In (3.36) for p = 2 and h∗ = e∗ = 0, by
interchanging (zs, zp+s) with (zs+s∗ , zp+s+s∗) we get the quadric (1.2),
an equivalent form of (3.36).

We define the following invariants.

Definition 3.9. We call (γ1, . . . , γp−s∗), given by formulae (3.37)–
(3.38), the Bishop invariants of the quadrics. The equivalence classes

B̂ of non-singular matrices B under the equivalence relation (3.27) are
called the extended Bishop invariants for the quadrics.

Note that Γe∗ has diagonal elements in (0, 1/2), and Γh∗ has diagonal
elements in (1/2,∞), and Γs∗ has diagonal elements in (−∞, 1/2) +
i(0,∞).

We remark that Z−j is skew-invariant by T1i for i 6= j and invariant

by τ1j . Therefore, the square of a linear combination of Z−1 , . . . , Z
−
p

might not be invariant by all T1j . This explains the presence of B as
invariants in the normal form.

It is worthy stating the following normal form for two families of linear
holomorphic involutions which may not satisfy the reality condition.

Proposition 3.10. Let Ti = {Ti1, . . . , Tip}, i = 1, 2 be two fami-
lies of distinct and commuting linear holomorphic involutions on C2p.
Let Ti = Ti1 · · ·Tip. Suppose that for each i, Fix(Ti1), . . ., Fix(Tip) are
hyperplanes intersecting transversally. Suppose that T1, T2 satisfy (3.2)
and S = T1T2 has 2p distinct eigenvalues. In suitable linear coordinates,
the matrices of Ti, S are

Ti =

(
0 Λi

Λ−1
i 0

)
, S =

(
Λ2

1 0
0 Λ−2

1

)
,

with Λ2 = Λ−1
1 being diagonal matrix whose entries do not contain

±1,±i. The Λ2
1 is uniquely determined up to a permutation in diagonal

entries. Moreover, the matrices of Tij are

(3.39) Tij = EΛi(Bi)∗Zj(Bi)
−1
∗ E−1

Λi
,

for some non-singular complex matrices B1,B2 uniquely determined by
the equivalence relation

(3.40) (B1,B2) ∼ (B̃1, B̃2)

:= ((diag a)−1B1 diagν1 d1, (diag a)−1B2 diagν2 d2),
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where diagν1 d1,diagν2 d2 are defined as in (3.20), and R = diag(a,a)
is a non-singular diagonal complex matrix representing the linear trans-
formation ϕ such that

ϕ−1Tijϕ = T̃iνi(j), i = 1, 2, j = 1, . . . , p.

Here T̃i is the family of the involutions associated to the matrices B̃i,
and EΛi and B∗ are defined by (3.22)–(3.23).

Proof. Let κ be an eigenvalue of S with (non-zero) eigenvector u.
Since TiSTi = S−1. Then S(Ti(u)) = κ−1Ti(u). This shows that κ−1 is
also an eigenvalue of S. By Lemma 3.1, 1 and −1 are not eigenvalues of
S. Thus, we can list the eigenvalues of S as µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p . Let

uj be an eigenvector of S with eigenvalue µj . Fix λj such that λ2
j = µj .

Then vj := λjT1(uj) is an eigenvector of S with eigenvalue µ−1
j . The∑

ξjuj + ηjvj defines a coordinate system on C2p such that Ti, S have
the above matrices Λi and S, respectively. By (3.21) and (3.23), Tij
can be expressed in (3.39), where each Bi is uniquely determined up to

Bi diag di. Suppose that {T̃1j}, {T̃2j} are another pair of families of lin-

ear involutions of which the corresponding matrices are B̃1, B̃2. If there
is a linear change of coordinates ϕ such that ϕ−1Tijϕ = T̃iνi(j), then in
the matrix R of ϕ, we obtain (3.40); see a similar computation for (3.27)
by using (3.28). Conversely, (3.28) implies that the corresponding pairs
of families of involutions are equivalent. q.e.d.

Finally, we conclude the section with examples of quadratic manifolds
of maximum deck transformations for which the corresponding σ is not
diagonalizable.

Example 3.11. Let K be a p× p invertible matrix. Let T1, ρ, T2 =
ρT1ρ, S have matrices

T1 =

(
0 K

K−1 0

)
, T2 =

(
0 K

−1

K 0

)
,

ρ =

(
0 Ip
Ip 0

)
, S =

(
KK 0

0 K−1K
−1

)
.

One can verify that the sets of fixed points of T1, T2 intersect transver-
sally if

(3.41) det(K−K
−1

) 6= 0.

We can decompose T1 = T11 · · ·T1p where T11, . . . , T1p are commuting
involutions and each of them fixes a hyperplane by using(

0 K
K−1 0

)
=

(
K 0
0 I

)(
0 I
I 0

)(
K 0
0 I

)−1

.
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In coordinates, we have T1 : (ξ, η)t → T1(ξ, η)t. Thus, the linear invari-
ant functions of {T11, . . . , T1p} are precisely generated by linear invariant
functions of T1, and they are linear combinations of the entries of the
column vector ξt + Kηt. On the other hand, the linear invariant func-
tions of {T21, . . . , T2p} are linear combinations of the entries of the vector

ξt + K
−1
ηt. The two sets of entries are linearly independent functions;

indeed, if there are row vectors a,b such that

a(ξt + Kηt) + b(ξt + K
−1
ηt) = 0,

then a = b and a(K −K
−1

) = 0. Thus, a = 0 if (3.41) holds. Thus,
condition (3.41) also implies (3.1)–(3.2). By Proposition 2.1, the family
of {T11, . . . , T1p, ρ}, in particular, the matrix S, can be realized by a
quadratic manifold.

For a more explicit example, let Jp be the p× p Jordan matrix with
entries 1 or 0. Then K = λJp satisfies (3.41) if λ is positive and λ 6= 1,

as K
−1

= λ
−1

J−1
p . For another example, set

Kλ =

(
0 λJq
λJq 0

)
, KλKλ =

(
λ2J2

q 0

0 λ
2
J2
q

)
,

with q = p/2 and p even. If λ ∈ C and λ 6= 0,±1 then K satisfies (3.41)
as

Kλ
−1

=

(
0 λ−1J−1

q

λ
−1

J−1
q 0

)
.

When λ = 1 and q = 2, we obtain S in (2.11) if the above J2 is replaced

by J
1/2
2 , the Jordan matrix with eigenvalue 1 and off-diagonal entries

1/2.

4. Formal deck transformations and centralizers

In section 2, we describe the equivalence of the classification of real
analytic submanifolds M that admit the maximum number of deck
transformations and the classification of the families {τ11, . . . , τ1p, ρ}
of involutions that satisfy some mild conditions (see Proposition 2.1).
To classify the families of involutions and to find their normal forms,
we will also study the centralizers of various linear maps to deal with
resonance. This is relevant as the normal form of σ will belong to the
centralizer of its linear part and any further normalization will also be
performed by transformations that are in the centralizer.

In this subsection, we describe centralizers regarding Ŝ, T̂1 and T̂1. We
will also describe the complement sets of the centralizers, i.e. the sets of
mappings which satisfy suitable normalizing conditions. Roughly speak-
ing, our normal forms are in the centralizers and coordinate transforma-
tions that achieve the normal forms are normalized, while an arbitrary
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formal transformation admits a unique decomposition of a mapping in
a centralizer and a mapping in the complement of the centralizer.

Recall that

Ŝ : ξ′j = µjξj , η′j = µ−1
j ηj , 1 ≤ j ≤ p,(4.1)

T̂i : ξ
′
j = λijηj , η′j = λ−1

ij ξ, 1 ≤ j ≤ p,(4.2)

with µj = λ2
1j and λ−1

2j = λ1j = λj .

Definition 4.1. Let F be a family of formal mappings on Cn fixing
the origin. Let C(F) be the centralizer of F , i.e. the set of formal
holomorphic mappings g that fix the origin and commute with each
element f of F , i.e., f ◦ g = g ◦ f .

Note that we do not require that elements in C(F) be invertible or
convergent.

We first compute the centralizers.

Lemma 4.2. Let Ŝ be given by (4.1) with µ1, . . . , µp being non-

resonant. Then C(Ŝ) consists of mappings of the form

(4.3) ψ : ξ′j = aj(ξη)ξj , η′j = bj(ξη)ηj , 1 ≤ j ≤ p.

Let τ1, τ2 be formal holomorphic involutions such that Ŝ = τ1τ2. Then

τi : ξ
′
j = Λij(ξη)ηj , η′j = Λ−1

ij (ξη)ξj , 1 ≤ j ≤ p,

with Λ1jΛ
−1
2j = µj. The centralizer of {T̂1, T̂2} consists of the above

transformations satisfying

(4.4) bj = aj , 1 ≤ j ≤ p.

Proof. Let ej = (0, . . . , 1, . . . , 0) ∈ Np, where 1 is at the jth place.
Let ψ be given by

ξ′j =
∑

aj,PQξ
P ηQ, η′j =

∑
bj,PQξ

P ηQ.

By the non-resonance condition, it is straightforward that if ψŜ = Ŝψ,
then aj,PQ = bj,QP = 0 if P − Q 6= ej . Note that Ŝ−1 = T0ŜT0 for

T0 : (ξ, η)→ (η, ξ). Thus, τ1T0 commutes with Ŝ. So τ1T0 has the form

(4.3) in which we rename aj , bj by Λ1j , Λ̃1j , respectively. Now τ2
1 = I

implies that

Λ1j((Λ11Λ̃11)(ζ)ζ1, . . . , (Λ1pΛ̃1p)(ζ)ζp)Λ̃1j(ζ) = 1, 1 ≤ j ≤ p.

Then Λ1j(0)Λ̃1j(0) = 1. Applying induction on d, we verify that for
all j

Λ1j(ζ)Λ̃1j(ζ) = 1 +O(|ζ|d), d > 1.

Having found the formula for τ1T0, we obtain the desired formula of τ1

via composition (τ1T0)T0. q.e.d.
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Let D1 := diag(µ11, . . . , µ1n), . . . ,D` := diag(µ`1, . . . , µ`n) be diago-
nal invertible matrices with complex entries. Set D := {Diz}i=1,...`.

Definition 4.3. Let F be a formal mapping of Cn that is tangent
to the identity.

(i) Let n = 2p. F is normalized with respect to Ŝ, if F = (f, g) is
tangent to the identity and F contains no resonant terms, i.e.

fj,(A+ej)A = 0 = gj,A(A+ej), |A| > 0.

(ii) Let n = 2p. F is normalized with respect to {T̂1, T̂2}, if F = (f, g)
is tangent to the identity and

fj,(A+ej)A = −gj,A(A+ej), |A| > 0.

(iii) F is normalized with respect to D if it does not have components
along the centralizer of D, i.e. for each Q with |Q| ≥ 2,

fj,Q = 0, if µQi = µij for all i.

Let Cc(Ŝ) (resp. Cc(T̂1, T̂2), Cc(D)) denote the set of formal mappings

normalized with respect to Ŝ (resp. {T̂1, T̂2}, the family D). For conve-

nience, we let Cc2(Ŝ) (resp. Cc2(T̂1, T̂2), Cc2(D)) denote the set of formal

mappings F − I with F ∈ Cc(Ŝ) (resp. Cc(T̂1, T̂2), Cc(D)).

Let F = (F1, . . . , Fn) : Cn → Cn be a formal mapping. Define a
formal mapping Fsym : Cn → Cn by

(Fsym)i,P = max
1≤j≤n,ν∈Sn

|{Fj ◦ ν}P |,

where Sn is the set of permutations ν of coordinates zi → zν(i). Let us
recall the following lemma from [12, Lemma 4.3].

Lemma 4.4. Let Ĥ be a real subspace of (M̂2
n)n. Let π : (M̂2

n)n → Ĥ
be a R linear projection (i.e. π2 = π) that preserves the degrees of the

mappings and let Ĝ := (I−π)(M̂2
n)n. Suppose that there is a positive

constant C such that π(E) ≺ CEsym for any E ∈ (M̂2
n)n. Let F be a

formal map tangent to the identity. There exists a unique decomposition
F = HG−1 with G− I ∈ Ĝ and H − I ∈ Ĥ. If F is convergent, then G
and H are also convergent.

Lemma 4.5. Let ψ be a mapping that is tangent to the identity.
There exist unique ψ0 ∈ C(T̂1, T̂2) and ψ1 ∈ Cc(T̂1, T̂2) such that ψ =
ψ1ψ

−1
0 . Moreover, if ψ is convergent, then ψ0 and ψ1 are convergent.

Proof. Let Ĝ = C2(T̂1, T̂2) and Ĥ = Cc2(T̂1, T̂2). We need to find a R-

linear projection such that Ĥ = π(M̂2
n)n, Ĝ = (I−π)(M̂2

n)n, and π(E) ≺
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CEsym. Note that g ∈ C2(T̂1, T̂2) and h ∈ Cc2(T̂1, T̂2) are determined by
conditions

gj,(γ+ej)γ = g(j+p),γ(γ+ej), hj,(γ+ej)γ = −h(j+p),γ(γ+ej), 1 ≤ j ≤ p,
gj,PQ = g(j+p),QP = 0, P −Q 6= ej .

Thus, if h − g = K, we determine g uniquely by combining the above
identities with

gj,(γ+ej)γ =
−1

2

{
Kj,(γ+ej)γ +K(j+p),γ(γ+ej)

}
,

hj,(γ+ej)γ =
1

2

{
Kj,(γ+ej)γ −K(j+p),γ(γ+ej)

}
,

for 1 ≤ j ≤ p. For the remaining coefficients of h, set hi,PQ = Ki,PQ.
Therefore, π(K) := h ≺ Ksym and the lemma follows form Lemma 4.4.

q.e.d.

Analogously, for any formal mapping ψ that is tangent to the identity,
there is a unique decomposition ψ = ψ1ψ

−1
0 with ψ1 ∈ Cc(Ŝ) and ψ0 ∈

C(Ŝ). If ψ is convergent, then ψ0, ψ1 are convergent.
Recall that for j = 1, . . . , p, we define

Zj : ξ′ = ξ, η′k = ηk, k 6= j, η′j = −ηj .

We have seen in section 3 how invariant functions of Zj play a role in
constructing normal form of quadrics. In section 7, we will also need a
centralizer for non linear maps (see Lemma 7.2) to obtain normal forms
for two families of involutions. Therefore, let us first recall the following
lemma on the centralizer of Z1, . . . , Zp.

Lemma 4.6. The centralizer, C(Z1, . . . , Zp), consists of formal map-
pings

(ξ, η)→ (U(ξ, η), η1V1(ξ, η), . . . , ηpVp(ξ, η)),

such that U(ξ, η), V (ξ, η) are even in each ηj. Let Cc(Z1, . . . , Zp) denote
the set of mappings I + (U, V ) which are tangent to the identity such
that for Q,Q′ ∈ 2Np, |P |+ |Q| > 1, and |P |+ |Q′| > 0,

(4.5) Uj,PQ = Vj,P (ej+Q′) = 0.

Let ψ be a mapping that is tangent to the identity. There exist unique
ψ0 ∈ C(Z1, . . . , Zp) and ψ1 ∈ Cc(Z1, . . . , Zp) such that ψ = ψ1ψ

−1
0 .

Moreover, if ψ is convergent, then ψ0 and ψ1 are convergent.

Proof. The lemma follows immediately from Lemma 4.4 in which Ĥ
is the R linear space of mappings (U, V ) without constant or linear
terms, which satisfy (4.5). The projection π is the unique projection

onto Ĥ (i.e. π2 = π, and π is the identity on Ĥ) such that π is linear
and preserves degrees, and π(E) = 0 if E(ξ, η) = O(|(ξ, η)|2) and E ∈
C2(Z1, . . . , Zp). q.e.d.
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5. Formal normal forms of the reversible map σ

Let us first describe our plan to derive the normal forms of M . We
would like to show that two families of involutions {τ1j , τ2j , ρ} and
{τ̃1j , τ̃2j , ρ̃} are holomorphically equivalent, if their corresponding nor-
mal forms are equivalent under a much smaller set of changes of coor-
dinates. Ideally, we would like to conclude that {τ̃1j , τ̃2j , ρ̃} are holo-
morphically equivalent if and only if their corresponding normal forms
are the same, or if they are the same under a change of coordinates
with finitely many parameters. For instance, the Moser–Webster nor-
mal form for real analytic surfaces (p = 1) with non-vanishing elliptic
Bishop invariant falls into the former situation, while the Chern–Moser
theory [7] for real analytic hypersurfaces with non-degenerate Levi-form
is an example for the latter. Such a normal form will tell us if the real
manifolds have infinitely many invariants or not. One of our goals is to
understand if the normal form so achieved can be realized by a conver-
gent normalizing transformation. We will see soon that we can achieve
our last goal under some assumptions on the family of involutions. Al-
ternatively and perhaps for simplicity of the normal form theory, we
would like to seek normal forms which are dynamically or geometrically
significant.

Recall that for each real analytic manifold that has 2p, the maximum
number of, commuting deck transformations {τ1j}, we have found a
unique set of generators τ11, . . . , τ1p so that each Fix(τ1j) has codimen-
sion 1. More importantly τ1 = τ11 · · · τ1p is the unique deck transforma-
tion of which the set of fixed points has dimension p. Let τ2 = ρτ1ρ and
σ = τ1τ2. To normalize {τ1j , τ2j , ρ}, we will choose ρ to be the standard
anti-holomorphic involution determined by the linear parts of σ. Then
we normalize σ = τ1τ2 under formal mapping commuting with ρ. This
will determine a normal form {τ∗1 , τ∗2 , ρ} and σ∗ = τ∗1 τ

∗. This part of
normalization is analogous to the Moser–Webster normalization. When
p = 1, Moser and Webster obtained a unique normal form by a simple
argument. However, this last step of simple normalization is not avail-
able when p > 1. By assuming µ associated to σ∗ satisfies condition L,
we will obtain a unique formal normal form σ̂, τ̂1, τ̂2 for σ, τ1, τ2. Next,
we need to construct the normal form for the families of involutions. We
first ignore the reality condition, by finding Φ which transforms {τ1j}
into a set of involutions {τ̂1j} which is decomposed canonically accord-
ing to τ̂1. This allows us to express {τ11, . . . , τ1p, ρ} via {τ̂1, τ̂2,Φ, ρ},
as in the classification of the families of linear involutions. Finally, we
further normalize {τ̂1, τ̂2,Φ, ρ} to get our normal form.

Definition 5.1. Throughout this section and next, we denote {h}d
the set of coefficients of hP with multiindices P satisfying |P | ≤ d if h(x)
is a map or function in x as power series. We denote by AP (t),A(y; t),
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etc., a universal polynomial whose coefficients and degree depend on a
multiindex. The variables in these polynomials will involve a collection
of Taylor coefficients of various mappings. The collection will also de-
pend on |P |. As such dependency (or independency to coefficients of
higher degrees) is crucial to our computation, we will remind the reader
the dependency when emphasis is necessary.

For instance, let us take two formal mappings F,G from Cn into
itself. Suppose that F = I +f with f(x) = O(|x|2) and G = LG + g
with g(x) = O(|x|2) and LG being linear. For P ∈ Nn with |P | > 1, we
can express

(F−1)P = −fP + FP ({f}|P |−1),(5.1)

(G ◦ F )P = gP + ((LG) ◦ f)P + GP (LG; {f, g}|P |−1),(5.2)

(F−1 ◦G ◦ F )P = gP − (f ◦ (LG))P + ((LG) ◦ f)P(5.3)

+HP (LG; {f, g}|P |−1).

5.1. Formal normal forms of pair of involutions {τ1, τ2}. We first
find a normal form for σ in C(S).

Proposition 5.2. Let σ be a holomorphic map. Suppose that σ has
a non-resonant linear part

Ŝ : ξ′j = µjξj , ηj = µ−1
j ηj , 1 ≤ j ≤ p.

Then there exists a unique normalized formal map Ψ ∈ Cc(Ŝ) such that

σ∗ = Ψ−1σΨ ∈ C(Ŝ). Moreover, σ̃ = ψ−1
0 σ∗ψ0 ∈ C(Ŝ), if and only if

ψ0 ∈ C(Ŝ) and it is invertible. Let

σ∗ : ξ′j = µ̂j(ξη)ξj , η′j = ν̂j(ξη)ηj ,

σ̃ : ξ′j = µ̃j(ξη)ξj , η′j = ν̃j(ξη)ηj ,

ψ0 : ξ′j = aj(ξη)ξj , η′j = bj(ξη)ηj .

(i) Assume that τ1, τ2 are holomorphic involutions and σ = τ1τ2.
Then σ∗ = τ∗1 τ

∗
2 with

τ∗i = Ψ−1τiΨ: ξ′j = Λij(ξη)ηj , η′j = Λ−1
ij (ξη)ξj ;(5.4)

νj = µ−1
j , µj = Λ1jΛ

−1
2j .

Let the linear part of τi be given by

T̂i : ξ
′
j = λijηj , η′j = λ−1

ij ξj .

Suppose that λ−1
2j = λ1j. There exists a unique ψ0 ∈ Cc(T̂1, T̂2)

such that

τ̃i = ψ−1
0 τ∗i ψ0 : ξ′j = Λ̃ij(ξη)ηj , η′j = Λ̃−1

ij (ξη)ξj ;

µ̃j = Λ̃2
1j = ν̃−1

j , Λ̃2j = Λ̃−1
1j .(5.5)
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Let ψ1 be a formal biholomorphic map. Then {ψ−1
1 τ̃1ψ1, ψ

−1
1 τ̃2ψ1}

has the same form as of {τ̃1, τ̃2} if and only if ψ1 ∈ C(T̂1, T̂2);

moreover, Λ̃ij(ξη), µ̃j(ξη) are transformed into

(5.6) Λ̃ij ◦ ψ̃1, µ̃j ◦ ψ̃1,

for ψ̃1(ζ) = (diag c(ζ))2ζ, ψ1(ξ, η) = ((diag c(ξη))ξ, (diag c(ξη))η).
(ii) Assume further that τ2 = ρτ1ρ, where ρ is defined by (3.8). Let

ρz : ζj → ζj , 1 ≤ j ≤ e∗ + h∗; ζs → ζs+s∗ , e∗ + h∗ < s ≤ p− s∗.

Then ρΨ = Ψρ, τ∗2 = ρτ∗1 ρ, and (σ∗)−1 = ρσ∗ρ. The last two
identities are equivalent to

Λ−1
2e = Λ1e ◦ ρz, µe ◦ ρz = µe, 1 ≤ e ≤ e∗;(5.7)

Λ2h = Λ1h ◦ ρz, µh ◦ ρz = µ−1
h , e∗ < h ≤ h∗ + e∗;(5.8)

Λ2(s) = Λ1(s∗+s) ◦ ρz,(5.9)

Λ2(s∗+s) = Λ1s ◦ ρz, µ−1
s ◦ ρz = µs∗+s, h∗ + e∗ < s ≤ p− s∗.(5.10)

Let ψ0 and τ̃i = ψ−1
0 τ∗i ψ0 be as in (i). Then ρψ0 = ψ0ρ, and τ̂1, τ̂2

satisfy

Λ̃ie = Λ̃ie ◦ ρz, Λ̃−1
ih = Λ̃ih ◦ ρz, Λ̃is+s∗ = Λ̃−1

is ◦ ρz.(5.11)

Proof. We will use the Taylor formula

f(x+ y) = f(x) +
m∑
k=1

1

k!
Dkf(x; y) +Rm+1f(x; y),

with Dkf(x; y) = {∂kt f(x+ ty)}|t=0 and

(5.12) Rm+1f(x; y) = (m+ 1)

∫ 1

0
(1− t)m

∑
|α|=m+1

1

α!
∂αf(x+ ty)yα dt.

Set D = D1. Let σ be given by

ξ′j = µ0
j (ξη)ξj + fj(ξ, η), η′j = ν0

j (ξη)ηj + gj(ξ, η),

with

(5.13) (f, g) ∈ Cc2(Ŝ), ord(f, g) = d ≥ 2.

We need to find Φ ∈ Cc(S) such that Ψ−1σΨ = σ∗ is given by

ξ′j = µj(ξη)ξj , η′j = νj(ξη)ηj .

By definition, Ψ has the form

ξ′j = ξj + Uj(ξ, η), η′j = ηj + Vj(ξ, η), Uj,(P+ej)P = Vj,P (P+ej) = 0.

The components of Ψσ∗ are

ξ′j = µj(ξη)ξj + Uj(µ(ξη)ξ,ν(ξη)η),(5.14)

η′j = νj(ξη)ηj + Vj(µ(ξη)ξ,ν(ξη)η).(5.15)
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To derive the normal form, we only need Taylor theorem in order one.
This can also demonstrate small divisors in the normalizing transfor-
mation; however, one cannot see the small divisors in the normal forms.
Later we will show the existence of divergent normal forms. This re-
quires us to use Taylor formula whose remainder has order two. By the
Taylor theorem, we write the components of σΨ as

ξ′j = (µ0
j (ξη) +Dµ0

j (ξη)(ηU + ξV + UV ))(ξj + Uj)(5.16)

+ fj(ξ, η) +Dfj(ξ, η)(U, V ) +Aj(ξ, η),

η′j = (ν0
j (ξη) +Dν0

j (ξη)(ηU + ξV + UV ))(ηj + Vj)(5.17)

+ gj(ξ, η) +Dgj(ξ, η)(U, V ) +Bj(ξ, η).

Recall our notation that UV = (U1(ξ, η)V1(ξ, η), . . . , Up(ξ, η)Vp(ξ, η)).
The second order remainders are

Aj(ξ, η) = R2µ
0
j (ξη; ξU + ηV + UV )(ξj + Uj)(5.18)

+R2fj(ξ, η;U, V ),

Bj(ξ, η) = R2ν
0
j (ξη; ξU + ηV + UV )(ηj + Vj)(5.19)

+R2gj(ξ, η;U, V ).

Note that the remainder R2µ
0 is independent of the linear part of µ0.

Thus,

R2µ
0
j = R2(µ0

j − Lµ0
j ), R2ν

0
j = R2(ν0

j − Lν0
j ).

Calculate the largest degrees w, d′ of coefficients of µ0−Lµ0, (U, V, f, g)
on which Aj,PQ depend: It is easy to see that d′ ≥ d ≥ 2 and w ≥ 2.
We have

2(w − 2) + 2(d+ 1) + 1 ≤ |P |+ |Q|;
3 + d+ d′ ≤ |P |+ |Q| or 2d+ d′ − 2 ≤ |P |+ |Q|,

where the first two inequalities are obtained from the first term on the
right-hand side of (5.18) and its second term yields the last inequality.
Thus, we have crude bounds

w ≤ |P |+ |Q|+ 1− 2d

2
, d′ ≤ |P |+ |Q| − d.

Analogously, we can estimate the degrees of coefficients of ν0. We obtain

Aj,PQ = Aj,PQ({µ0 − Lµ0} |P |+|Q|+1−2d
2

; {f, U, V }|P |+|Q|−d),(5.20)

Bj,QP = Bj,QP ({ν0 − Lν0} |P |+|Q|+1−2d
2

; {g, U, V }|P |+|Q|−d).(5.21)

Recall that {f, U, V }d is the set of coefficients of fPQ, UPQ, VPQ with
|P |+ |Q| ≤ d. Here Aj,PQ(t′; t′′),Bj,QP (t′; t′′) are polynomials of which
each has coefficients that depend only on j, P,Q and they vanish at
t′′ = 0.
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To finish the proof of the proposition, we will not need the explicit
expressions involving Dµ0

j , Dν0
j , Dfj , Dgj . We will use these derivatives

in the proof of Lemma 6.1. So we derive these expression in this proof
too.

We apply the projection (5.14)–(5.15) and (5.16)–(5.17) onto Cc2(S),
via monomials in each component of both sides of the identities. The
images of the mappings

(ξ, η) 7→ (U(µ(ξη)ξ,ν(ξη)η), V (µ(ξη)ξ,ν(ξη)η)),

(ξ, η) 7→ (µ0(ξη)U(ξ, η),ν0(ξη)V (ξ, η))

under the projection are 0. We obtain from (5.14)–(5.17) and (5.18)–
(5.19) that d0 = d. Next, we project (5.14)–(5.15) and (5.16)–(5.17)

onto C2(Ŝ), via monomials in each component of both sides of the iden-
tities. Using (5.13) and (5.20) we obtain

µj,P = µ0
j,P + {Dfj(U, V )}P+ej ,P(5.22)

+MP ({µ0} 2|P |+1−2d
2

; {f, U, V }P (d)),

νj,P = ν0
j,P + {Dgj(U, V )}P,P+ej(5.23)

+NP ({ν0} 2|P |+1−2d
2

; {g, U, V }P (d)),

with

P (d) = 2|P |+ 1− d.
HereMP ,NP are polynomials of which each has coefficients that depend
only on P , and {µ0}a stands for the set of coefficients µ0

Q with |Q| ≤ a
for a real number a ≥ 0. Note that Uj,PQ = Vj,QP = 0 when |P |+ |Q| =
2, or ord(f, g) > |P |+ |Q|. And MP = NP = 0 when ord(f, g) > P (d),
by (5.13). We have

{Uj(µ(ξη)ξ,ν(ξη)η)}PQ =

µP−QUj,PQ + Uj,PQ({µ,ν} |P |+|Q|−d
2

, {U}|P |+|Q|−2).

Comparing coefficients in (5.14), (5.16), and using (5.20), we get for
` = |P |+ |Q|

(µP−Q − µj)Uj,PQ = {fj +Dfj(U, V )}PQ
+ Uj,PQ({µ0} `+1−2d

2
, {µ,ν} `−d

2
; {f, U, V }`−2).

We have analogous formulae for Vj,QP . Using (5.22), we obtain with
|P |+ |Q| = `

(µP−Q − µj)Uj,PQ = {fj +Dfj(U, V )}PQ(5.24)

+ Uj,PQ({µ0,ν0} `−d
2

; {f, g, U, V }`−2),
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(µQ−P − µ−1
j )Vj,QP = {gj +Dgj(U, V )}PQ(5.25)

+ Vj,QP ({µ0,ν0} `−d
2

; {f, g, U, V }`−2),

for µP−Q 6= µj , which are always solvable. Inductively, by using (5.24)–
(5.25) and (5.22)–(5.23), we obtain unique solutions U, V,µ,ν. More-
over, the solutions and their dependence on the coefficients of f, g and
small divisors have the form

(µP−Q − µj)Uj,PQ = {fj +Dfj(U, V )}PQ(5.26)

+ U∗j,PQ(δ`−2, {µ0,ν0} `−d
2

; {f, g}`−2),

(µQ−P − µ−1
j )Vj,QP = {gj +Dgj(U, V )}PQ(5.27)

+ V∗j,QP (δ`−2, {µ0,ν0} `−d
2

; {f, g}`−2),

where ` = |P |+ |Q| and µP−Q 6= µj , and

(5.28) δ` =

p⋃
j=1

{
µj , µ

−1
j ,

1

µP − µj
: P ∈ Zp, P 6= ej , |P | ≤ `

}
.

This shows that for any µ0,ν0 there exists a unique mapping Ψ trans-
forms σ into σ∗. Furthermore, U∗j,PQ(t′; t′′),V∗j,QP (t′; t′′) are polynomials
of which each has coefficients that depend only on j, P,Q, and they van-
ish at t′′ = 0.

For later purpose, let us express µ,ν in terms of f, g. We substitute
expressions (5.26)–(5.27) for U, V in (5.22)–(5.23) to obtain

µj,P = µ0
j,P + {Dfj(U, V )}P+ejP(5.29)

+M∗j,P (δP (d), {µ0,ν0}P (d)
2

; {f, g}P (d)),

νj,P = ν0
j,P + {Dgj(U, V )}PP+ej(5.30)

+N ∗j,P (δP (d), {µ0,ν0}P (d)
2

; {f, g}P (d)),

with f, g satisfying (5.13).

Assume that σ̃ = ψ−1
0 σ∗ψ0 commutes with Ŝ. By Corollary 4.5,

we can decompose ψ0 = HG−1 with G ∈ C(Ŝ) and H ∈ Cc(Ŝ). Fur-

thermore, G−1σ̃G commutes with Ŝ and H−1σ∗H. By the uniqueness
conclusion for the above ψ0, H must be the identity. This shows that
ψ0 ∈ C(Ŝ).

(i). Assume that we have normalized σ. We now use it to normalize
the pair of involutions. Assume that σ = τ1τ2 and τ2

j = I. Then

σ∗ = τ∗1 τ
∗
2 . Let T0(ξ, η) := (η, ξ). We have T0(σ∗)−1T0 = T0τ

∗
1σ
∗τ∗1T0.

By the above normalization, T0(σ∗)−1T0 commutes with Ŝ. Therefore,

τ∗1T0 belongs to the centralizer of Ŝ and it must be of the form (ξ, η)→
(ξΛ1(ξη), ηΛ∗1(ξη)). Then (τ∗1 )2 = I implies that

Λ1(ξη(Λ1Λ∗1)(ξη))Λ∗1(ξη) = 1.
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The latter implies, by induction on d > 1, that Λ1Λ∗1 = 1 +O(d) for all
d > 1, i.e. Λ1Λ∗1 = 1.

Let τ∗i be given by (5.4). We want to achieve Λ̃1jΛ̃2j = 1 for τ̃i =

ψ−1
0 τ∗i ψ0 by applying a transformation ψ0 in Cc(T̂1, T̂2) that commutes

with Ŝ. According to Definition 4.3, it has the form

ψ0 : ξj = ξ̃j(1 + aj(ζ̃)), ηj = η̃j(1− aj(ζ̃)),

with aj(0) = 0. Here ζ̃j := ξ̃j η̃j and ζ̃ := (ζ̃1, . . . , ζ̃p). Computing the

products ζ in ζ̃ and solving ζ̃ in ζ, we obtain

ψ−1
0 : ξ̃j = ξj(1 + bj(ζ))−1, η̃j = ηj(1− bj(ζ))−1.

Note that (a2
j )P = Aj,P ({a}|P |−1), and

ξjηj = ξ̃j η̃j(1− a2
j (ζ̃)), ξ̃j η̃j = ξjηj(1− b2j (ζ))−1.

From ψ−1
0 ψ0 = I, we get

bj(ζ) = aj(ζ̃), bj,P = aj,P + Bj,P ({a}|P |−1).(5.31)

By a simple computation we see that τ̃i = ψ−1
0 τ∗i ψ0 is given by

ξ̃′j = η̃jΛ̃ij(ζ̃), η̃′j = ξ̃jΛ̃
−1
ij (ζ̃),

with
Λ̃1jΛ̃2j(ζ̃) = (Λ1jΛ2j)(ζ)(1 + bj(ζ

′))−2(1− aj(ζ̃))2.

Here ζ ′j = ζj(1−a2
j (ζ̃)). Using (5.31) and the implicit function theorem,

we determine aj uniquely to achieve Λ̃1jΛ̃2j = 1.
To identify the transformations that preserve the form of τ̃1, τ̃2, we

first verify that each element ψ1 ∈ C(T̂1, T̂2) preserves that form. Ac-
cording to (4.4), we have

ψ1 : ξj = ξ̃j ãj(ζ̃), ηj = η̃j ãj(ζ̃),

ψ−1
1 : ξ̃j = ξj b̃j(ζ), η̃j = ηj b̃j(ζ),

b̃j(ζ)ãj(ζ̃) = 1.

This shows that ψ−1
1 τ̃i is given by

ξ̃′j = Λ̃ij(ζ)b̃j(ζ)ηj , η̃′j = Λ̃−1
ij (ζ)b̃j(ζ)ξj .

Then ψ−1
1 τ̃iψ1 is given by

ξ̃′j = Λ̃ij(ζ)η̃j , η̃′j = Λ̃−1
ij (ζ)ξ̃j .

Since ζj = ζ̃j ã
2
j (ζ̃), then ψ−1

1 τ̃iψ1 still satisfy (5.5). Conversely, sup-
pose that ψ1 preserves the forms of τ̃1, τ̃2. We apply Corollary 4.5 to
decompose ψ1 = φ1φ

−1
0 with φ0 ∈ C(T̂1, T̂2) and φ1 ∈ Cc(T̂1, T̂2). Since

we just proved that each element in C(T̂1, T̂2) preserves the form of τ̃i,
then φ1 = ψ1φ0 also preserves the forms of τ̃1, τ̃2. On the other hand,
we have shown that there exists a unique mapping in Cc(T̂1, T̂2) which
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transforms {τ∗1 , τ∗2 } into {τ̃1, τ̃2}. This shows that φ0 = I. We have
verified all assertions in (i).

(ii). It is easy to see that Cc(Ŝ) and Cc(T̂1, T̂2) are invariant under

conjugacy by ρ. We have Ψ−1σΨ = σ∗ and Ψ ∈ Cc(Ŝ). Note that
ρσρ = σ−1 and ρσ∗ρ have the same form as of (σ∗)−1, i.e. they are in

C(Ŝ) and have the same linear part. We have ρΨρσρΨ−1ρ = ρ(σ∗)−1ρ.
The uniqueness of Ψ implies that ρΨρ = Ψ and τ∗2 = ρτ∗1 ρ. Thus, we

obtain relations (5.7)–(5.10). Analogously, ρψ0ρ is still in Cc(T̂1, T̂2),
and ρφ0ρ preserves the form of τ̃1, τ̃2. Thus, ρψ0ρ = ψ0 and τ̃2 = ρτ̃1ρ,
which gives us (5.11). q.e.d.

We will also need the following uniqueness result.

Corollary 5.3. Suppose that σ has a non-resonant linear part Ŝ.
Let Ψ be the unique formal mapping in Cc(Ŝ) such that Ψ−1σΨ ∈
C(Ŝ). If Ψ̃ ∈ Cc(Ŝ) is a polynomial map of degree at most d such that

Ψ̃−1σΨ̃(ξ, η) = σ̃(ξ, η) +O(|(ξ, η)|d+1) and σ̃ ∈ C(Ŝ), then Ψ̃ is unique.

In fact, Ψ− Ψ̃ = O(d+ 1).

Proof. The proof is contained in the proof of Proposition 5.2. Let us
recap it by using (5.26)–(5.27) and the proposition. We take a unique

normalized mapping Φ such that Φ−1Ψ̃−1σΨ̃Φ ∈ C(Ŝ). By (5.26)–
(5.27), Φ = I + O(d + 1). From Proposition 5.2 it follows that ψ0 :=

Ψ̃ΦΨ−1 ∈ C(Ŝ). We obtain Ψ̃Φ = ψ0Ψ. Thus, ψ0Ψ = Ψ̃ + O(d + 1).

Since ψ0 ∈ C(Ŝ), and Ψ, Ψ̃ are in Cc(Ŝ), we conclude that Ψ = Ψ̃ +
O(d+ 1). q.e.d.

For clarity, we state the following uniqueness results on normalization.

Corollary 5.4. Let σ have a non-resonant linear part and let σ be
given by

ξ′j = µ0
j (ξη)ξj + f0

j (ξ, η), η′j = ν0
j (ξη)ηj + g0

j (ξ, η).

Let Ψ = I + (U, V ) ∈ Cc(Ŝ) and let σ∗ = Ψ−1σΨ be given by

ξ′j = µj(ξη)ξj + fj(ξ, η), η′j = νj(ξη)ηj + gj(ξ, η).

Suppose that (f0, g0) and (f, g) are in Cc2(Ŝ), and

ord(f0, g0) ≥ d, ord(fj , gj) ≥ d, d ≥ 2.

Then ord(U, V ) ≥ d and

µj,P = µ0
j,P , νj,P = ν0

j,P , 1 ≤ 2|P |+ 1 < 2d− 1.(5.32)

Proof. By Corollary 5.3, we know that ord(U, V ) ≥ d. Expanding
both sides of σΨ = Ψσ∗ for terms of degree less than 2d− 1, we obtain

µ0
j (ξη)(ξj + Uj(ξ, η)) +Dµ0

j (ξη)(ξV + ηU)ξj + f0
j (ξ, η)

= µj(ξη)ξj + fj(ξ, η) + Uj(µ(ξη)ξ,ν(ξη)η) +O(2d− 1).
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Note that ξiVi(ξ, η)ξj and ηiUi(ξ, η)ξj and Uj(µ(ξη)ξ,ν(ξη)η) do not
contain terms of the form ξQηQξj . Comparing the coefficients of ξP ηP ξj
for 2|P |+ 1 < 2d− 1, we obtain the first identity in (5.32). The second
identity can be obtained similarly. q.e.d.

When p = 1, Proposition 5.2 is due to Moser and Webster [19]. In
fact, they achieved

µ̃1(ζ1) = µ1e
δζs1 .

Here δ = 0,±1 for the elliptic case and δ = 0,±i for the hyperbolic
case when µ1 is not a root of unity, i.e. γ is non-exceptional. In partic-
ular, the normal form is always convergent, although the normalizing
transformations are generally divergent for the hyperbolic case.

Let us find out further normalization that can be performed to pre-
serve the form of σ∗. In Proposition 5.2, we have proved that if σ is
tangent to Ŝ, there exists a unique Ψ ∈ Cc(Ŝ) such that Ψ−1σΨ is an

element σ∗ in the centralizer of Ŝ. Suppose now that σ = τ1τ2 while τi
is tangent to T̂i. Let τ∗i = Ψ−1τiΨ. We have also proved that there is a

unique ψ0 ∈ Cc(T̂1, T̂2) such that τ̃i = ψ−1
0 τ∗i ψ0, i = 1, 2, are of the form

(5.5), i.e.

τ̃i : ξ
′
j = Λ̃ij(ζ)ηj , η′j = Λ̃−1

ij (ζ)ξj ;

σ̃ : ξ′j = µ̃j(ζ)ξj , η′j = µ̃−1
j (ζ)ηj .

Here ζ = (ξ1η1, . . . , ξpηp), Λ̃2j = Λ̃−1
1j and µ̃j = Λ̃2

1j . We still have
freedom to further normalize τ̃1, τ̃2 and to preserve their forms. However,
any new coordinate transformation must be in C(T̂1, T̂2), i.e. it must
have the form

ψ1 : ξj → aj(ξη)ξj , ηj → aj(ξη)ηj .

When τ2j = ρτ1jρ, we require that ψ1 commutes with ρ, i.e.

ae = ae, ah = ah, as = as+s∗ .

In ζ coordinates, the transformation ψ1 has the form

(5.33) ϕ : ζj → bj(ζ)ζj , 1 ≤ j ≤ p,
with bj = a2

j . Therefore, the mapping ϕ needs to satisfy

be > 0, bh > 0, bs = bs+s∗ .

Recall from (5.7)–(5.10) the reality conditions on µ̃j

µ̃e ◦ ρz = µ̃e, 1 ≤ e ≤ e∗;

µ̃h ◦ ρz = µ̃−1
h , e∗ < h ≤ h∗ + e∗;

µ̃s∗+s = µ̃−1
s ◦ ρz, h∗ + e∗ < s ≤ p− s∗.

Here

ρz : ζj → ζj , ζs → ζs+s∗ , ζs+s∗ → ζs,

for 1 ≤ j ≤ e∗ + h∗ and e∗ + h∗ < s ≤ p− s∗.
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Therefore, our normal form problem leads to another normal form
problem which is interesting in its own right. To formulate a new nor-
malization problem, let us define F = (F1, . . . , Fp) by

Fj(ζ) :=

{
log(µ̃j(ζ)/µ̃j(0)), 1 ≤ j ≤ e∗,
−i log(µ̃j(ζ)/µ̃j(0)), e∗ < j ≤ p.

(5.34)

Then the reality conditions on µ̃ become

F = ρzFρz.(5.35)

The transformations (5.33) will then satisfy

ρzϕρz = ϕ, bj(0) > 0, 1 ≤ j ≤ e∗ + h∗.

Under condition L on µ̃, we have transformed the reality condition on µ
into a linear condition (5.35). This will be useful to further normalize µ̃.
Therefore, when F ′(0) is additionally diagonal and invertible and its jth
diagonal entry is positive for j = e, h, we apply a dilation ϕ satisfying the
above condition so that F is tangent to the identity. Then any further
change of coordinates must be tangent to the identity too. Thus, we
need to normalize the formal holomorphic mapping F by composition
F ◦ ϕ, for which we study in next subsection.

5.2. A normal form for maps tangent to the identity. Let us
consider a germ of holomorphic mapping F (ζ) in Cp with an invertible
linear part Aζ at the origin. According to the inverse function theorem,
there exists a holomorphic mapping Ψ with Ψ(0) = 0, Ψ′(0) = I such
that F ◦Ψ(ζ) = Aζ. On the other hand, if we impose some restrictions
on Ψ, we can no longer linearize F in general.

To focus on applications to CR singularity and to limit the scope
of our investigation, we now deliberately restrict our analysis to the
simplest case: F is tangent to the identity. We shall apply our result to
F as defined by (5.34). In what follows, we shall devise a normal form
of such an F under right composition by Ψ that preserve all coordinate
hyperplanes, i.e. Ψj(ζ) = ζjΨ̃j(ζ), j = 1, . . . , p.

Lemma 5.5. Let F be a formal holomorphic map of Cp that is tan-
gent to the identity at the origin.

(i) There exists a unique formal biholomorphic map ψ which preserves

all ζj = 0 such that F̂ := F ◦ ψ has the form

F̂ (ζ) = ζ + f̂(ζ), f̂(ζ) = O(|ζ|2); ∂ζj f̂j = 0, 1 ≤ j ≤ p.(5.36)

(ii) If F is convergent, the ψ in (i) is convergent. If F commutes
with ρz, so does the ψ.

(iii) The formal normal form in (i) has the form

(5.37) f̂j,Q = fj,Q − {Dfj · f}Q + Fj,Q({f}|Q|−2), qj = 0, |Q| > 1.

Here Fj,Q are universal polynomials and vanish at 0.
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Proof. (i). Write F (ζ) = ζ + f(ζ) and

ψ : ζ ′j = ζj + ζjgj(ζ), gj(0) = 0.

For F̂ = F ◦ ψ, we need to solve for f̂ , g from

f̂j(ζ) = ζjgj(ζ) + fj ◦ ψ(ζ).

Fix Q = (q1, . . . , qp) ∈ Np with |Q| > 1. We obtain unique solutions

gj,Q−ej = −{fj(ψ(ζ))}Q, qj > 0,(5.38)

f̂j,Q := {fj(ψ(ζ))}Q, qj = 0.(5.39)

We first obtain gj,Q−ej = −fj,Q + GQ({f}|Q|−1, {g}|Q|−2). This deter-
mines

(5.40) gj,Q−ej = −fj,Q + GQ({f}|Q|−1).

Next, we expand fj(ψ(ζ)) = fj(ζ) + Dfj(ζ) · (ζ1g1(ζ), . . . , ζpgp(ζ)) +
R2fj(ζ; ζg(ζ)). The last term, with ord g ≥ 1, has the form

{R2fj(ζ; ζg(ζ))}Q = Fj,Q({f}|Q|−2, {g}|Q|−2) = F̃j,Q({f}|Q|−2).

Combining (5.39), the expansion, and (5.40), we obtain (5.37).
(ii). Assume that F is convergent. Define h(ζ) =

∑
|hQ|ζQ. We

obtain for every multi-index Q = (q1, . . . , qp) and for every j satisfying
qj ≥ 1

gj,Q−ej ≤
{
fj(ζ1 + ζ1g1(ζ), . . . , ζp + ζpgp(ζ))

}
Q
.

Set w(ζ) =
∑
ζkgk(ζ). We obtain

w(ζ) ≺
∑

fj(ζ1 + w(ζ), . . . , ζp + w(ζ)).

Note that fj(ζ) = O(|ζ|2) and w(0) = 0. By the Cauchy majorization

and the implicit function theorem, w and, hence, g, ψ, f̂ are convergent.
(iii). Assume that ρzFρz = F . Then ρzF̂ ρz is normalized, ρzψρz

is tangent to the identity, and the jth component of ρzF̂ ρz(ζ) − ζ is
independent of ζj . Thus, ρzψρz normalizes F too. By the uniqueness
of ψ, we obtain ρzψρz = ψ.

By rewriting (5.39), we obtain

(5.41) f̂j,Q = fj,Q + {fj(ψ)− fj}Q = fj,Q + F ′j,Q({f}|Q|−1, {g}|Q|−2).

From (5.38), it follows that

gk,Q−ek = −fk,Q + Gk,Q−ek({f}|Q|−1, {g}|Q|−2), |Q| > 1.

Note that {g}0 = 0 and {f}1 = 0. Using the identity repeatedly, we
obtain gk,Q−ek = −fk,Q + G∗k,Q−ek({f}|Q|−1). Therefore, we can rewrite

(5.41) as (5.37). q.e.d.
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5.3. A unique formal normal form of a reversible map σ. We
now state a normal form for {τ1, τ2, ρ} under a condition on the third-
order invariants of σ.

Theorem 5.6. Let τ1, τ2 be a pair of holomorphic involutions with
linear parts T̂i. Let σ = τ1τ2. Assume that the linear part of σ is

Ŝ : ξ′j = µjξj , ηj = µ−1
j ηj , 1 ≤ j ≤ p

and µ1, . . . , µp are non-resonant. Let Ψ ∈ Cc(Ŝ) be the unique formal
mapping such that

τ∗i = Ψ−1τiΨ: ξ′j = Λij(ξη)ηj , η′j = Λij(ξη)−1ξj ;

σ∗ = Ψ−1σΨ: ξ′j = µj(ξη)ξj , η′j = µj(ξη)−1ηj ,

with µj = Λ1jΛ
−1
2j . Suppose that µ satisfies condition L.

(i) Then there exists an invertible formal map ψ1 ∈ C(Ŝ) such that

τ̂i = ψ−1
1 τ∗i ψ1 : ξ′j = Λ̂ij(ξη)ηj , η′j = Λ̂ij(ξη)−1ξj ;

σ̂ = ψ−1
1 σ∗ψ1 : ξ′j = µ̂j(ξη)ξj , η′j = µ̂j(ξη)−1ηj .(5.42)

Here Λ̂2j = Λ̂−1
1j , and T̂i is the linear part of τ̂i. Moreover, µ̂

satisfies (1.7).
(ii) The centralizer of {τ̂1, τ̂2} consists of 2p dilations (ξ, η)→ (aξ, aη)

with aj = ±1. And Λ̂ij are unique. If Λij are convergent, then ψ1

is convergent too.
(iii) Suppose that σ̂ is divergent. If σ is formally equivalent to a

mapping σ̃ ∈ C(Ŝ) then σ̃ must be divergent too.
(iv) Let ρ be given by (3.8) and let τ2 = ρτ1ρ. Then the above Ψ and

ψ1 commute with ρ. Moreover, τ̂i, σ̂ are unique.

Proof. Assertions in (i) are direct consequences of Proposition 5.2 and

Lemma 5.5 in which F is the M̃ in Proposition 5.2. The assertion in (ii)
on the centralizer of {τ̂1, τ̂2} is obtained from (5.6) of Proposition 5.2

in which Λ̃ij = Λ̂ij . Indeed, by (5.6), if ψ preserves {τ̂1, τ̂2}, then
ψ(ξ, η) = (c(ξη)ξ, c(ξη)η) and µ̂j(c

2(ξη)ξη) = µ̂j(ξη). This shows that

µ̂j ◦ ψ̃ = µ̂j for ψ̃(ζ) = c2(ζ)ζ. Since µ̂j − µ̂j(0) = µjζj + o(|ζ|2) then

ψ̃ is the identity, i.e. cj = ±1. Now (iii) follows from (ii) too. Indeed,
suppose σ is formally equivalent to some convergent

σ̃ : ξj = µ̃j(ξη)ξj , η′j = µ̃j(ξη)−1ηj .

By Lemma 5.5, there exists a unique convergent mapping ϕ : ζ ′j =

bj(ζ)ζj (1 ≤ j ≤ p) with bj(0) = 1 such that µ̃ ◦ ϕ is in the normal
form (1.7). Then

(ξ′j , η
′
j) = (b

1/2
j (ξη)ξj , b

1/2
j (ξη)ηj), 1 ≤ j ≤ p
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transforms σ̃ into a convergent mapping σ∗. Since the normal form for
µ is unique, then σ̂ = σ∗. In particular, σ̂ is convergent.

(iv). Note that ρσρ = σ−1. Also ρ(σ∗)−1ρ has the same form as σ∗.
By (ρΨ−1ρ)σ(ρΨρ) = (ρσ∗ρ)−1, we conclude that ρΨρ = Ψ. The rest
of assertions can be verified easily. q.e.d.

Note that (µ−1
1 , · · · ,µ−1

p ) is also normalized in the form (1.7). Under
condition L, the above theorem completely settles the formal classifica-
tion of {τ1, τ2, ρ}. It also says that the normal form τ̂1, τ̂2 can be
achieved by a convergent transformation, if and only if σ∗ can
be achieved by some convergent transformation, i.e. the Ψ in
the theorem is convergent.

5.4. An algebraic manifold with linear σ. We conclude the section
showing that when τ1, τ2 are normalized as in this section, {τij} might
still be very general; in particular, {τ1j , ρ} cannot always be simultane-
ously linearized even at the formal level. This is one of main differences
between p = 1 and p > 1.

Example 5.7. Let p = 2. Let φ be a holomorphic mapping of the
form

φ : ξ′i = ξi + qi(ξ, η), η′i = ηi + λ−1
i qi(T1(ξ, η)), i = 1, 2.

Here qi is a homogeneous quadratic polynomial map and

T1(ξ, η) = (λ1η1, λ2η2, λ
−1
1 ξ1, λ

−1
2 ξ2).

Let τ1j = φT1jφ
−1 and τ2j = ρτ1jρ. Then φ commutes with T1 and

τ1 = T1. In particular, τ2 = ρT1ρ and σ = τ1τ2 are in linear normal
forms. However, τ11 is given by

ξ′1 = λ1η1 − q1(λη, λ−1ξ) + q1(λ1η1, ξ2, λ
−1
1 ξ1, η2) +O(3),

ξ′2 = ξ2 − q2(ξ, η) + q2(λ1η1, ξ2, λ
−1
1 ξ1, η2) +O(3),

η′1 = λ−1
1 ξ1 − λ−1

1 q1(ξ, η) + λ−1
1 q1(ξ1, λ2η2, η1, λ

−1
2 ξ2) +O(3),

η′2 = η2 − λ−1
2 q2(λη, λ−1ξ) + λ−1

2 q2(ξ1, λ2η2, η1, λ
−1
2 ξ2) +O(3).

Notice that the common zero set V of ξ1η1 and ξ2η2 is invariant under
τ1, τ2, σ and ρ. In fact, they are linear on V . However, for (ξ′, η′) =
τ11(ξ, η), we have

ξ′1η
′
1 = −η1q1(0, ξ2, η) + η1q1(0, λ2η2, η1, λ

−1
2 ξ2)− λ−1

1 ξ1q1(0, λ2η2, λ
−1ξ)

+ λ−1
1 ξ1q1(0, ξ2, λ

−1
1 ξ1, η2) mod (ξ1η1, ξ2η2, O(4)).

For a generic q, τ11 does not preserve V .

By Proposition 5.2, {τ11, τ12, ρ} is not linearizable, when the above
linear σ is non-resonant. By a simple computation, we can verify that
σj = τ1jτ2j for j = 1, 2 do not commute with each other. In fact,
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we proved in [12] that if the µ1, . . . , µp are nonresonant, σj commute
pairwise, and σ is linear as above, then τ1j must be linear.

6. Divergence of all normal forms of a reversible map σ

Unlike the Birkhoff normal form for Hamiltonian systems, the normal
form of Poincaré–Dulac is not unique for a general σ; it just belongs to
the centralizer of the linear part S of σ. One can obtain a divergent
normal form easily from any non-linear Poincaré–Dulac normal form of
σ = τ1τ2 by conjugating with a divergent transformation in the central-
izer of S; see (5.6). We have seen how the small divisors enter in the
computation of the normalizing transformations via (5.26)–(5.27) and
(5.22)–(5.23) in the computation of the normal forms. To see the effect
of small divisors on normal forms, we first assume a condition, to be
achieved later, on the third order invariants of σ and then we shall need
to modify the normalization procedure. We will use two sequences of
normalizing mappings to normalize σ. The composition of normalized
mappings might not be normalized. Therefore, the new normal form
σ̃ might not be the σ∗ in Proposition 5.2. We will show that this σ̃,
after it is transformed into the normal form σ̂ in Theorem 5.6 (i), is
divergent. Using the divergence of σ̂, we will then show that any other
normal forms of σ that are in the centralizer of S must be divergent too.
This last step requires a convergent solution given by Lemma 5.5.

Our goal is to see a small divisor in a normal form σ̃; however, they
appear as a product. This is more complicated than the situation for
the normalizing transformations, where a small divisor appears in a
much simple way. In essence, a small divisor problem occurs naturally
when one applies a Newton iteration scheme for a convergence proof.
For a small divisor to show up in the normal form, we have to go be-
yond the Newton iteration scheme, measured in the degree or order of
approximation in power series. Therefore, we first refine the formulae
(5.22).

Lemma 6.1. Let σ be a holomorphic mapping, given by

ξ′j = µ0
j (ξη)ξj + fj(ξ, η), η′j = ν0

j (ξη)ηj + gj(ξ, η), 1 ≤ j ≤ p.

Here µ0
j (0) = µj = ν0

j (0)−1. Suppose that ord(f, g) ≥ d ≥ 4 and

I + (f, g) ∈ Cc(S). There exist unique polynomials U, V of degree at
most 2d− 1 such that Ψ = I + (U, V ) ∈ Cc(S) transforms σ into

σ∗ : ξ′ = µ(ξη)ξ + f̃(ξ, η), η′ = ν(ξη)η + g̃(ξ, η),

with I + (f̃ , g̃) ∈ Cc(S) and ord(f̃ , g̃) ≥ 2d. Moreover,

Uj,PQ = (µP−Q − µj)−1(fj,PQ(6.1)

+ U∗j,PQ(δ`−2, {µ0,ν0} `−d
2

; {f, g}`−2)),
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Vj,QP = (µQ−P − µ−1
j )−1(gj,QP(6.2)

+ V∗j,QP (δ`−2, {µ0,ν0}d; {f, g}`−2)),

for 2 ≤ |P |+|Q| = ` ≤ 2d−1 and µP−Q 6= µj. In particular, ord(U, V ) ≥
d. Also,

µj,P = µ0
j,P , 2|P |+ 1 < 2d− 1,(6.3)

µj,P = µ0
j,P + {Dfj(U, V )}(P+ej)P , 2|P |+ 1 = 2d− 1.(6.4)

Assume further that µ0 satisfies condition L. Then for 2|P |+1 = 2d+1,
we have

µj,P = µ0
j,P + µj

{
2(UjVj)PP + (U2

j )(P+ej)(P−ej)

}
(6.5)

+ {Dfj(U, V )}(P+ej)P .

We recall that δl is defined by (5.28).

Remark 6.2. Note that (6.3) follows from (5.32). Formulae (6.3),
(6.4), (6.5) give us an effective way to compute the Poincaré–Dulac
normal form. Although (6.4) contains small divisors, it will be more
convenient to associate small divisors to (6.5) when we have 3 elliptic
components in σ.

Proof. Let Di denote ∂ζi . Let Du(ξ, η) and Dv(ζ) denote the gradi-
ents of two functions. Let us expand both sides of the ξj components
of Ψσ∗ = σΨ for terms of degree 2d + 2. For its left-hand side, Corol-
lary 5.3 implies that ord(U, V ) ≥ d and we can use ordDUj · (f̃ , g̃) ≥
2d−1+d ≥ 2d+2 as d ≥ 3. For its right-hand side, we use (5.16)–(5.19).
We obtain

µjξj + f̃j(ξ, η) + Uj(µξ,νη) = fj(ξ, η) +Dfj(ξ, η)(U, V )(6.6)

+Aj(ξ, η) +
(
M0
j +Dµ0

j (ηU + ξV + UV )
)

(ξj + Uj) +O(2d+ 2),

where µ,ν,µ0,ν0 are evaluated at ξη and U, V are evaluated at (ξ, η).

Since f̃(µ(ξη)ξ,ν(ξη)η) = O(|ξ, η|2d), then (6.1)–(6.2) follow from
(5.26)–(5.27), where by Definition 5.1

U∗j,PQ(·; 0) = V∗j,QP (·; 0) = 0.

Next, we refine (5.29) to verify the remaining assertions. We recall from
(5.18) the remainders

Aj(ξ, η) = R2µ
0
j (ξη; ξU + ηV + UV )(ξj + Uj) +R2fj(ξ, η;U, V ).

Here by (5.12), we use the Taylor remainder formula

R2f(x; y) = 2

∫ 1

0
(1− t)

∑
|α|=2

1

α!
∂αf(x+ ty)yα dt.
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Since ord(U, V ) ≥ d, ord(f, g) ≥ d, and d ≥ 4, then Aj , defined by
(5.18), satisfies

Aj(ξ, η) = O(|(ξ, η)|2d+2).

Recall that fj(ξ, η) and Uj(ξ, η) do not contain terms of the form ξjξ
P ηP ,

while gj(ξ, η) and Vj(ξ, η) do not contain terms of the form ηjξ
P ηP .

Comparing both sides of (6.6) for coefficients of ξjξ
P ηP with |P | = d−1,

we get (6.4).
Assume now that condition L holds for µ0. Assume that i 6= j. Then

Diµ
0
j (ξη) = O(|ξη|). Thus, Diµ

0
j (ξη)ηiUi(ξ, η) and Diµ

0
j (ξη)ξiVi(ξ, η)

do not contain terms of ξP ηP , and

Diµ
0
j (ξη)ξiUi(ξ, η)Vi(ξ, η) = O(2d+ 3).

Since (f̃ , g̃) ∈ Cc2(S) and (f̃ , g̃) = O(2d), then f̃j(µ(ξη)ξ,ν(ξη)η) does
not contain terms ξP ηP ξj for 2|P |+ 1 = 2d+ 1. Now (6.5) follows from
a direction computation. q.e.d.

Set |δN (µ)| := max {|ν| : ν ∈ δN (µ)} for

δN (µ) =

p⋃
j=1

{
µj , µ

−1
j ,

1

µP − µj
: P ∈ Zp, P 6= ej , |P | ≤ N

}
.

Definition 6.3. We say that µP∗−Q∗−µj and µQ∗−P∗−µ−1
j are small

divisors of height N , if there exists a partition
p⋃
i=1

{
|µP−Q − µi| : P,Q ∈ Np, |P |+ |Q| ≤ N,µP−Q 6= µi

}
= S0

N ∪ S1
N ,

with |µP∗−Q∗ − µj | ∈ S0
N and S1

N 6= ∅ such that

maxS0
N < C minS0

N , maxS0
N < (minS1

N )LN < 1.

Here C depends only on an upper bound of |µ| and |µ|−1 and

LN ≥ N.
If |µP∗−Q∗−µj | is in S0

N and if P∗, Q∗ ∈ Np, we call |P∗−Q∗| the degree

of the small divisors µP∗−Q∗ − µj and µQ∗−P∗ − µ−1
j .

To avoid confusion, let us call µP∗−Q∗ − µj that appear in S0
N the

exceptional small divisors. These small divisors have been used by Cre-
mer [8] and Siegel [21]. The degree and height play different roles in
computation. The height serves as the maximum degree of all small
divisors that need to be considered in computation.

Roughly speaking, the quantities in S0
N are comparable but they are

much smaller than the ones in S1
N . We will construct µ for any pre-

scribed sequence of positive integers LN so that

maxS0
N < (minS1

N )LN < 1,
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for a subsequence N = Nk tending to ∞. Furthermore, to use the
small divisors we will identify all exceptional small divisors of height
2Nk + 1 and all degrees of the exceptional small divisors with Nk being
the smallest.

We start with the following lemma which gives us small divisors that
decay as rapidly as we wish.

Lemma 6.4. Let Lk be a strictly increasing sequence of positive inte-
gers. There exist a real number ν ∈ (0, 1/2) and a sequence (pk, qk) ∈ N2

such that e, 1, ν are linearly independent over Q, and

|qkν − pk − e| ≤ ∆(pk, qk)
Lpk+qk ,(6.7)

∆(pk, qk) = min
{1

2
, |qν − p− re| : 0 < |r|+ |q| < 3(qk + 1),(6.8)

(p, q, r) 6= 0,±(pk, qk, 1),±2(pk, qk, 1)
}
.

Proof. We consider two increasing sequences {mk}∞k=1, {nk}∞k=1 of
positive integers, which are to be chosen. For k = 1, 2, . . ., we set

ν = νk + ν ′k, νk =

k∑
`=1

1

m`!

n∑̀
j=0

1

j!
, ν ′k =

∑
`>k

1

m`!

n∑̀
j=0

1

j!
,

qk = mk!.

We choose mk > (m`)!(n`!) for k > ` and decompose

qkν = pk + ek + e′k,

pk = mk!νk−1 ∈ N, ek =

nk∑
`=0

1

k!
, e′k = mk!ν

′
k.

We have e′k < mk!
∑

`>k
e
m`!

and

qkν = pk + e+ e′k −
∞∑

`=nk+1

1

`!
,

|qkν − pk − e| ≤ mk!ν
′
k +

∞∑
`=nk+1

1

`!
<
{

12(3(qk + 1)3)!
}−Lpk+qk .(6.9)

Here (6.9)k is achieved by choosing (m2, n1), . . . , (mk+1, nk) succes-
sively. Clearly we can get 0 < ν < 1/2 if m1 is sufficiently large.

Next, we want to show that re+p+qν 6= 0 for all integers p, q, r with
(p, q, r) 6= (0, 0, 0). Otherwise, we rewrite −mk!p = mk!(qν + re) as

−mk!p = qpk + r

mk∑
j=0

mk!

j!
+ qe+ q

e′k − ∞∑
`=nk+1

1

`!

+ r
∑
j>mk

mk!

j!
.
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The left-hand side is an integer. On the right-hand side, the first two
terms are integers, qe is a fixed irrational number, and the rest terms
tend to 0 as k →∞. We get a contradiction.

To verify (6.7), we need to show that for each tuple (p, q, r) satisfying
(6.8),

(6.10) |qν − p− re| ≥ |qkν − pk − e|
1

Lpk+qk .

We first note the following elementary inequality

(6.11) |p+ qe| ≥ 1

(q − 1)!
min

{
3− e, 1

q + 1

}
, p, q ∈ Z, q ≥ 1.

Indeed, the inequality holds for q = 1. For q ≥ 2 we have q!e = m + ε
with m ∈ N and

ε :=
∞∑

k=q+1

q!

k!
>

1

q + 1
.

Furthermore, 1− ε > 1− 2
q+1 = q−1

q+1 as

ε <
1

q + 1
+
∑
k≥q+2

1

k(k − 1)
=

2

q + 1
.

We may assume that q ≥ 0. If q = 0, then |r| < 3qk + 3 by condition in
(6.8) and, hence, |p+ re| ≥ 1

(3qk+4)! by (6.11). Now (6.10) follows from

(6.9). Assume that q > 0. We have

| − qν + p+ re| ≥ | − q pk + e

qk
+ p+ re| − q |e+ pk − qkν|

qk
(6.12)

=

∣∣∣∣qkp− qpkqk
+
rqk − q
qk

e

∣∣∣∣− q |e+ pk − qkν|
qk

.

We first verify that qkp− qpk and q− rqk do not vanish simultaneously.
Assume that both are zero. Then (p, q, r) = r(pk, qk, 1). Thus, |r| 6= 1, 2,
and |r| ≥ 3 by conditions in (6.8); we obtain |r| + |q| ≥ 3(|qk| + 1), a
contradiction. Therefore, either qkp − qpk or rqk − q is not zero. By
(6.11) and (6.12),

| − qν + p+ re| ≥ 1

qk
· 1

3
· 1

(|rqk − q|+ 1)!
− q |e+ pk − qkν|

qk

≥ 1

(3qk + 4)2!
− 4|e+ pk − qkν|.

Using (6.9) twice, we obtain the next two inequalities:

| − qν + p+ re| ≥ 1

2

{
(3qk + 4)2!

}−1 ≥ |pk + e− qkν|
1

Lpk+qk .

The two ends give us (6.10). q.e.d.

We now reformulate the above lemma as follows.
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Lemma 6.5. Let Lk be a strictly increasing sequence of positive in-
tegers. Let ν ∈ (0, 1/2), and let pk and qk be positive integers as in
Lemma 6.4. Set (µ1, µ2, µ3) := (e−1, eν , ee). Then

|µPk − µ3| ≤ (C∆∗(Pk))
L|Pk| , Pk = (pk, qk, 0),(6.13)

∆∗(Pk) = min
j

{
|µR − µj | : R ∈ Z3, |R| ≤ 2(qk + pk) + 1,(6.14)

R− ej 6= 0,±(pk, qk,−1),±2(pk, qk,−1)
}
.

Here C does not depend on k. Moreover, all exceptional small divisors
of height 2|Pk|+ 1 have degree at least |Pk|. Moreover, µPk − µ3 is the
only exceptional small divisor of degree |Pk| and height 2|Pk|+ 1.

In the definition of ∆∗(Pk), equivalently we require that

R 6= Pk, R
1
k, R

2
k, R

3
k,

with R1
k := −Pk + 2e3, R

2
k := 2Pk − e3, and R3

k := −2Pk + 3e3. Note
that |R1

k| = |Pk| + 2, |R2
k| = 2|Pk| + 1, and |R3

k| = 2|Pk| + 3 are bigger

than |Pk|, i.e. the degree of the exceptional small divisor µPk−µ3. Each

µR
i
k − µ3 is a small divisor comparable with µPk − µ3. Finally, ∆∗(Pk)

tends to zero as |Pk| → ∞. Let us set N := 2|Pk|+ 1, and

S0
N : =

{
|µPk − µ3|, |µR

1
k − µ3|, |µR

2
k − µ3|, |µR

3
k − µ3|

}
,

S1
N : =

⋃
j

{
|µR − µj | : R ∈ Z3, |R| ≤ 2(qk + pk) + 1,

R− ej 6= 0, ±(pk, qk,−1), ±2(pk, qk,−1)
}
.

This implies that the last paragraph of Lemma 6.5 holds when the LN
in Definition 6.3, denoted it by L′N , takes the value L′N = L2N+1, while
LN is prescribed in Lemma 6.5.

Proof. By Lemma 6.4, we find a real number ν ∈ (0, 1/2) and positive
integers pk, qk such that e, 1, ν are linearly independent over Q and

|qkν − e− pk| ≤ ∆(pk, qk)
L|Pk| ,(6.15)

∆(pk, qk) = min {|qν − re− p| : 0 < |r|+ |q| < 3(qk + 1),

(p, q, r) 6= 0,±(pk, qk, 1),±2(pk, qk, 1)} .

Note that µ1, µ2, µ3 are positive and non-resonant. We have

|µPk − µ3| = |µ3| · |eqkν−pk−e − 1|.

Let ν∗ := (−1, ν, e). If |R · ν∗ − ν∗j | < 2, then by the intermediate value
theorem

e−2|µj ||R · ν∗ − ν∗j | ≤ |µR − µj | ≤ e2|µj ||R · ν∗ − ν∗j |.
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If R · ν∗ − ν∗j > 2 or R · ν∗ − ν∗j < −2, we have

|µR − µj | ≥ e−2|µj |.
Thus, we can restate the properties of ν∗ as follows:

|µ−(pk,qk,0) − µ3| ≤ C ′(C ′∆̃(pk, qk))
L|Pk| ,

∆̃(pk, qk) = min
{
|µ(p,q,r) − 1| : 0 < |r|+ |q| < 3(qk + 1),

(p, q, r) 6= 0,±(pk, qk,−1),±2(pk, qk,−1)} .
Recall that 0 < ν < 1/2. By (6.15), we have |qkν − e − pk| < 1. Since
pk, qk are positive, then pk < νqk < qk/2. Assume that |µR − µj | =
∆∗(Pk), |R| ≤ 2(pk + qk) + 1, and

R− ej 6= 0,±(pk, qk,−1),±2(pk, qk,−1).

Set R′ := R− ej and (p, q, r) := R′. Then ∆∗(Pk) = |µj ||µR
′ − 1|. Also,

|r| + |q| ≤ |R′| ≤ |R| + 1 ≤ 2(pk + qk) + 2 ≤ qk + 2qk + 2 < 3(qk + 1).

This shows that |µQ′ − 1| ≥ ∆̃(pk, qk). We obtain ∆∗(Pk) ≥ µj∆(p,qk).
We have verified (6.13). For the remaining assertions, see the remark
following the lemma. q.e.d.

In the above we have retained µj > 0 which are sufficient to realize

µ1, µ2, µ3, µ−1
1 , µ−1

2 , µ−1
3 as eigenvalues of σ for an elliptic complex tan-

gent. Indeed, with 0 < µ1 < 1, interchanging ξ1 and η1 preserves ρ and
changes the (ξ1, η1) components of σ into (µ−1

1 ξ1, µ1η1).
We are ready to prove Theorem 1.4, which is restated here:

Theorem 6.6. There exists a non-resonant elliptic real analytic 3-
submanifold M in C6 such that M admits the maximum number of
deck transformations and all Poincaré–Dulac normal forms of the σ
associated to M are divergent.

Proof. We will not construct the real analytic submanifoldM directly.
Instead, we will construct a family of involutions {τ11, . . . , τ1p, ρ} so that
all Poincaré–Dulac normal forms of σ are divergent. By the realization
in Proposition 2.1, we get the desired submanifold.

We first give an outline of the proof. To prove the theorem, we first
deal with the associated σ and its normal form σ̃, which belongs to the
centralizer of S, the linear part of σ at the origin. Thus, σ∗ has the
form

σ∗ : ξ′i = µj(ξη)ξj , η′j = νj(ξη)ηj , j = 1, . . . , p.

We assume that µ satisfies condition L. We then normalize σ∗ into the
normal form σ̂ stated in Theorem 5.6 (i). (In Lemma 6.1 we take F

to be (5.34) and F̂ to be defined by (5.34) with M̂i replacing Mi.) We
will show that σ̂ is divergent if σ is well chosen. By Theorem 5.6 (iii),
all normal forms of σ in the centralizer of S are divergent. To get σ∗,
we use the normalization of Proposition 5.2 (i). To get σ̂, we normalize
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further using Lemma 5.5. To find a divergent σ̂, we need to tie the
normalizations of two formal normal forms together, by keeping track
of the small divisors in the two normalizations.

We will start with our initial pair of involutions {τ0
1 , τ

0
2 } satisfying

τ0
2 = ρτ0

1 ρ such that σ0 is a third order perturbation of S. We require
that τ0

1 be the composition of τ0
11, . . . , τ

0
1p. The latter can be realized

by a real analytic submanifold by using Proposition 2.1. We will then
perform a sequence of holomorphic changes of coordinates ϕk such that
τk1 = ϕkτ

k−1
1 ϕ−1

k , τk2 = ρτk1 ρ, and σk = τk1 τ
k
2 . By abuse of notation,

τki , σ
k, etc. do not stand for iterating the maps k times. Each ϕk is

tangent to the identity to order dk. For a suitable choice of ϕk, we
want to show that the coefficients of order dk of the normal form of σk

increase rapidly to the effect that the coefficients of the normal form
of the limit mapping σ∞ increase rapidly too. Here we will use the
exceptional small divisors to achieve the rapid growth of the coefficients
of the normal forms. Roughly speaking, the latter requires us to keep
track the rapid growth for a sequence of coefficients in the normal form
in a sequence of two-step normalizations. Recall from Lemma 6.1 that
if we have

σ : ξ′j = µj(ξη)ξj + fj(ξ, η), η′j = νj(ξη)ηj + gj(ξ, η), 1 ≤ j ≤ p,

with ord(f, g) ≥ d ≥ 4 and (f, g) ∈ Cc2(S), then there is a polynomial

mapping Ψ: ξ′ = ξ + Û(ξ, η), η′ = η + V̂ (ξ, η) in Cc(S) that has order d
and degree at most 2d− 1 such that for the new mapping

σ̂ := Ψ−1σΨ: ξ′j = µ̂j(ξη)ξj + f̂j(ξ, η), η′j = ν̂j(ξη)ηj + ĝj(ξ, η),

the coefficients of µj(ξη)ξj of degree 2d+ 1 have the form

µ̂j,P = µj,P + µj

{
2(Ûj V̂j)PP + (Û2

j )(P+ej)(P−ej)

}
(6.16)

+{Dfj(Û , V̂ )}(P+ej)P .

It is crucial that for suitable multi-indices, both Ûj , V̂j contain the ex-
ceptional small divisors of degree d as formulated in Lemma 6.5 (see

also Definition 6.3). Although Dfj(Û , V̂ ) contains (exceptional) small
divisors, they can only appear at most once in each term, provided fj
contains no small divisor of degree d. The formula (6.16) appears as
simple as it is, it requires that σ has been normalized to degree d. To
achieve such a σ, we need to use a preliminary change of coordinates
Φ: ξ′ = ξ +U(ξ, η), η′ = η+ V (ξ, η) via polynomials of degree less than
d. The Φ depends only on small divisors of degree < d, but none of
them are exceptionally small. Therefore, by composing ΨΦ, we obtain
(6.16) where small divisors of degree < d are absorbed into terms µj,P
and the products of two exceptional small divisors in (6.16), if they ex-
ist, dominate the other terms in µ̂j,P . Of course, we need to apply a
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sequence of transformations Φ,Ψ and we should leave the coefficients
of a certain degree unchanged in the process once they become large,
which are possible by Corollary 5.4.

We now present the proof. Let σ0 = τ0
1 τ

0
2 , τ0

2 = ρτ0
1 ρ, and

τ0
1 : ξ′j = Λ0

1j(ξη)ηj , η′j = (Λ0
1j(ξη))−1ξj ,

σ0 : ξ′j = (Λ0
1j(ξη))2ξj , η′j = (Λ0

1j(ξη))−2ηj .

Since we consider the elliptic case, we require that (Λ0
1j(ξη))2 = µje

ξjηj .

So ζ → (Λ0
1)2(ζ) is biholomorphic. Recall that σ0 can be realized by

{τ0
11, . . . , τ

0
1p, ρ}. We will take

ϕk : ξ′j = (ξ − h(k)(ξ), η), ordh(k) = dk > 3,(6.17)

dk ≥ 2dk−1, |h(k)
P | ≤ 1.(6.18)

We will also choose each h
(k)
j (ξ) to have one monomial only. Let ∆r :=

∆3
r denote the polydisc of radius r. Let ‖ · ‖ be the sup norm on C3.

Let H(k)(ξ) = ξ− h(k)(ξ) and we first verify that Hk = H(k) ◦ · · · ◦H(1)

converges to a holomorphic function on the polydisc ∆r1 for r1 > 0
sufficiently small; consequently, ϕk ◦ · · · ◦ ϕ1 converges to a germ of
holomorphic map ϕ∞ at the origin. Note that H(k) sends ∆rk into

∆rk+1
for rk+1 = rk + rdkk . We want to show that when r1 is sufficiently

small,

(6.19) rk ≤ sk := (2− 1

k
)r1.

It holds for k = 1. Let us show that rk+1/rk − 1 ≤ θk := sk+1/sk − 1,
i.e.

rdk−1
k ≤ θk =

1

(k + 1)(2k − 1)
.

We have (2r1)dk−1 ≤ (2r1)k when 0 < r1 < 1/2. Fix r1 sufficiently small
such that (2r1)k < 1

(k+1)(2k−1) for all k. By induction, we obtain (6.19)

for all k. In particular, we have ‖h(k)(ξ)‖ ≤ ‖ξ‖ + ‖H(k)(ξ)‖ ≤ 2rk+1

for ‖ξ‖ < rk. To show the convergence of Hk, we write Hk−Hk−1(ξ) =

−h(k) ◦Hk−1. By the Schwarz lemma, we obtain

‖h(k) ◦Hk−1(ξ)‖ ≤ 2rk+1

rdk1

‖ξ‖dk , ‖ξ‖ < r1.

Note that the above estimate is uniform under conditions (6.17)–(6.18).
Therefore, Hk converges to a holomorphic function on ‖ξ‖ < r1.

Throughout the proof, we make initial assumptions that dk and h(k)

satisfy (6.17)–(6.18), e−1 ≤ µj ≤ ee, and µQ 6= 1 for Q ∈ Z3 with Q 6= 0.

Set σk = τk1 τ
k
2 , τk2 = ρτk1 ρ, and

τk1 = ϕkτ
k−1
1 ϕ−1

k .
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We want σk not to be holomorphically equivalent to σk−1. Thus, we
have chosen a ϕk that does not commute with ρ in general. Note that σk

is still generated by a real analytic submanifold; indeed, when τk−1
i =

τk−1
i1 · · · τk−1

ip and τk−1
2j = ρτk−1

1j ρ, we still have the same identities if the

superscript k− 1 is replaced by k and τk1j equals ϕkτ
k−1
1j ϕ−1

k . It is clear

that σk = σk−1 +O(dk). As power series, we have

(6.20) σ` = σk−1 +O(dk), k ≤ ` ≤ ∞.

Note that as limits in convergence, τ∞ij = limk→∞ τ
k
ij , τ

∞
i = limk→∞ τ

k
i

and σ∞ = limk→∞ σ
k satisfy

τ∞2j = ρτ∞1j ρ, τ∞i = τ∞i1 · · · τ∞ip , τ∞2 = ρτ∞1 ρ, σ∞ = τ∞1 τ∞2 .

Of course, {τ11, . . . , τ1p, ρ} satisfies all the conditions that ensure it can
be realized by a real analytic submanifold.

We know that σ∞ does not have a unique normal form in the central-
izer S. Therefore, we will choose a procedure that arrives at a unique
formal normal form in S. We show that this unique normal form is
divergent; and, hence, by Theorem 5.6 (iii) any normal form of σ that
is in the centralizer of S must diverge.

We now describe the procedure. For a formal mapping F , we have a
unique decomposition

F = NF +N cF, NF ∈ C(S), N cF ∈ Cc(S).

Set σ̂∞0 = σ∞. For k = 0, 1, . . ., we take a normalized polynomial

map Φk ∈ Cc2(S) of degree less than dk such that σ∞k := Φ−1
k σ̂∞k Φk is

normalized up to degree dk − 1. Specifically, we require that

deg Φk ≤ dk − 1, Φk ∈ Cc(S); N cσ∞k (ξ, η) = O(dk).

Take a normalized polynomial map Ψk+1 such that Ψk+1 and σ̂∞k+1 :=

Ψ−1
k+1σ

∞
k Ψk+1 satisfy

deg Ψk+1 ≤ 2dk − 1; Ψk+1 ∈ Cc2(S), N cσ̂∞k+1 = O(2dk).

We can repeat this for k = 0, 1, . . .. Thus, we apply two sequences of
normalization as follows

σ̂∞k+1 = Ψ−1
k+1 ◦ Φ−1

k · · ·Ψ
−1
1 ◦ Φ−1

0 ◦ σ
∞ ◦ Φ0 ◦Ψ1 · · ·Φk ◦Ψk+1.

We will show that Ψk+1 = I + O(dk) and Φk = I + O(2dk−1). This
shows that the sequence Φ0Ψ1 · · ·ΦkΨk+1 defines a formal biholomor-
phic mapping Φ so that

(6.21) σ̂∞ := Φ−1σ∞Φ

is in a normal form. Finally, we need to combine the above normalization
with the normalization for the unique normal form in Lemma 5.5. We
will show that the unique normal form diverges.
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Let us recall previous results to show that Φk,Ψk+1 are uniquely
determined. Set

σ̂∞k :

ξ
′
j = µ̂

(k)
j (ξη)ξj + f̂

(k)
j (ξ, η),

η′j = ν̂
(k)
j (ξη)ηj + ĝ

(k)
j (ξ, η),

(6.22)

(f̂ (k), ĝ(k)) ∈ Cc2(S).(6.23)

Recall that σ̂0 = σ∞. Assume that we have achieved

(6.24) (f̂ (k), ĝ(k)) = O(2dk−1).

Here we take d−1 = 2 so that (6.22)–(6.24) hold for k = 0. By Propo-

sition 5.2, there is a unique normalized mapping Φ̃k that transforms
σ̂∞k into a normal form. We denote by Φk the truncated polynomial

mapping of Φ̃k of degree dk − 1. We write

Φk : ξ′ = ξ + U (k)(ξ, η), η′ = η + V (k)(ξ, η),

(U (k), V (k)) = O(2), deg(U (k), V (k)) ≤ dk − 1.

By Corollary 5.3, Φk satisfies

σ∞k = Φ−1
k σ̂∞k Φk :

ξ
′
j = µ

(k)
j (ξη)ξj + f

(k)
j (ξ, η),

η′ = ν
(k)
j (ξη)ηj + g

(k)
j (ξ, η),

(f (k), g(k)) ∈ Cc2(S), ord(f (k), g(k)) ≥ dk.(6.25)

In fact, by (5.26)–(5.27) (or (5.24)–(5.25)), we have

U
(k)
j,PQ = (µP−Q − µj)−1

{
f̂

(k)
j,PQ(6.26)

+Uj,PQ(δd−1, {µ̂(k), ν̂(k)}[ d−1
2

]; {f̂
(k), ĝ(k)}d−1)

}
,

V
(k)
j,QP = (µQ−P − µ−1

j )−1
{
ĝ

(k)
j,QP(6.27)

+ Vj,QP (δd−1, {µ̂(k), ν̂(k)}[ d−1
2

]; {f̂
(k), ĝ(k)}d−1)

}
,

for |P | + |Q| = d < dk and µP−Q 6= µj . By (5.29)–(5.30) (or (5.22)–
(5.23)), we have

µ
(k)
P = µ̂

(k)
P +MP (δ2|P |−1, {µ̂(k), ν̂(k)}|P |−1; {f̂ (k), ĝ(k)}2|P |−1),(6.28)

ν
(k)
P = ν̂

(k)
P +NP (δ2|P |−1, {µ̂(k), ν̂(k)}|P |−1; {f̂ (k), ĝ(k)}2|P |−1),(6.29)

for 2|P |−1 < dk. Recall that Uj,PQ,Vj,QP ,Mj,P , and Nj,P are universal
polynomials in their variables. In notation defined by Definition 5.1,

Uj,PQ( r; 0) = Vj,QP ( r; 0) = 0, MP ( r; 0) = NP ( r; 0) = 0.
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We apply (6.26)–(6.27) for d < 2dk−1 ≤ dk and (6.28)–(6.29) for 2|P | −
1 < 2dk−1 ≤ dk to obtain

Φk − I = (U (k), V (k)) = O(2dk−1),(6.30)

µ
(k)
P = µ̂

(k)
P , ν

(k)
P = ν̂

(k)
P , |P | ≤ dk−1.(6.31)

In fact, by Corollary 5.4, the above holds for |P | < 2dk−1 − 1.
By Lemma 6.1, there is a unique normalized polynomial mapping

Ψk+1(ξ, η) = (ξ + Û (k+1)(ξ, η), η + V̂ (k+1)(ξ, η)),

(Û (k+1), V̂ (k+1)) ∈ Cc2(S),

(Û (k+1), V̂ (k+1)) = O(2), deg(Û (k+1), V̂ (k+1)) ≤ 2dk − 1,

such that σ̂∞k+1 = Ψ−1
k+1Φ−1

k σ∞k ΦkΨk+1 satisfies the following:

σ̂∞k+1 : ξ′j = µ̂
(k+1)
j (ξη)ξj + f̂

(k+1)
j , η′j = ν̂

(k+1)
j (ξη)ηj + ĝ

(k+1)
j ,

(f̂ (k+1), ĝ(k+1)) ∈ Cc2(S), ord(f̂ (k+1), ĝ(k+1)) ≥ 2dk.

By (6.1)–(6.2), we know that

Û
(k+1)
j,PQ = (µP−Q − µj)−1

{
f

(k)
j,PQ(6.32)

+ U∗j,PQ(δ`−1, {µ(k),ν(k)}[ `−1
2

]; {f
(k), g(k)}`−1)

}
,

V̂
(k+1)
j,QP = (µQ−P − µ−1

j )−1
{
g

(k)
j,QP(6.33)

+ V∗j,QP (δ`−1, {µ(k),ν(k)}[ `−1
2

]; {f
(k), g(k)}`−1)

}
,

for dk ≤ |P |+ |Q| = ` ≤ 2dk − 1 and µP−Q 6= µj . Recall that U∗j,PQ and
V∗j,QP are universal polynomials in their variables. In notation defined

by Definition 5.1, U∗j,PQ(·; 0) = V∗j,QP (·; 0) = 0. Thus,

Ψk+1 − I = (Û (k+1), V̂ (k+1)) = O(dk),(6.34)

Û
(k+1)
j,PQ =

f
(k)
j,PQ

µP−Q − µj
, V̂

(k+1)
j,QP =

g
(k)
j,QP

µQ−P − µ−1
j

,(6.35)

for |P |+ |Q| = dk. Here µP−Q 6= µj . By (6.3)–(6.5), we have

µ̂
(k+1)
j,P ′ = µ

(k)
j,P ′ , |P ′| < dk − 1;(6.36)

µ̂
(k+1)
j,P ′ = µ

(k)
j,P +

{
Df

(k)
j (ξ, η)(Û (k+1), V̂ (k+1))

}
(P+ej)P

,(6.37)

|Pk| = dk − 1;
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µ̂
(k+1)
j,P = µ

(k)
j,P + µj

{
2(Û

(k+1)
j V̂

(k+1)
j )PP(6.38)

+ ((Û
(k+1)
j )2)(P+ej)(P−ej )

}
+
{
Df

(k)
j (ξ, η)(Û (k+1), V̂ (k+1))

}
(P+ej)P

, |P | = dk.

As stated in Corollary 5.4, the coefficients of µ̂
(k+1)
j (ξη)ξj of degree

2dk + 1 do not depend on the coefficients of f (k), g(k) of degree ≥ 2dk,
provided (f (k), g(k)) = O(dk) is in Cc2(S) as it is assumed.

Next, we need to estimate the size of coefficients of µ(k) that appear
in (6.36)–(6.38). Recall that we apply two sequences of normalization.
We have

σ̂∞k+1 = Ψ−1
k+1 ◦ Φ−1

k · · ·Ψ
−1
1 ◦ Φ−1

0 ◦ σ
∞ ◦ Φ0 ◦Ψ1 · · ·Φk ◦Ψk+1.

Thus, M (k), N (k) depend only on σ∞, Φ0,Ψ1,Φ1, . . . ,Ψk−1,Φk.
Recall that if u1, . . . , um are power series, then {u1, . . . , um}d denotes

the set of their coefficients of degree at most d, and |{u1, . . . , um}d|
denotes the sup norm. We need some crude estimates on the growth of
Taylor coefficients. If F = I+f and f = O(2) is a map in formal power
series, then (5.1)–(5.3) imply

|{F−1}m| ≤ (2 + |{f}m|)`m ,(6.39)

|{G ◦ F}m| ≤ (2 + |{f,G}m|)`m ,

|{F−1 ◦G ◦ F}m| ≤ (2 + |{f,G}m|)`m ,(6.40)

In general, if Fj are formal mappings of Cn that are tangent to the
identity, then

|{F−1
k · · ·F

−1
1 GF1 · · ·Fk}m| ≤ (2+|{F1, . . . , Fk, G}m|)`m,k , 1 ≤ k <∞.

In particular, if Fj = I +O(j) for j = 1, . . . ,m, then for any k ≥ |P | :=
m we have

(F−1
k · · ·F

−1
1 GF1 · · ·Fk)P = (F−1

m · · ·F−1
1 GF1 · · ·Fm)P ,

|{F−1
k · · ·F

−1
1 GF1 · · ·Fk}m| ≤ (2 + |{F1, . . . , Fm, G}m|)`

′
m , 1 ≤ k ≤ ∞.

We may take `′m by `m, while `m depends only on m. We have similar
estimates for Fk · · ·F1GF

−1
1 · · ·F−1

k . Recall that 1/
√

2 < λj < ee/2 < 4.

Using τk1j = ϕkτ
k−1
1j ϕ−1

k = ϕk . . . ϕ1τ
0
1jϕ
−1
1 . . . ϕ−1

k and, hence, τk1 =

ϕk . . . ϕ1τ
0
1ϕ
−1
1 . . . ϕ−1

k and σk = τk1 (ρτk2 ρ), we obtain |{τk1 }m| ≤ (2 +

|{τ0
1 , ϕ1, . . . , ϕm}m|)`

′
m ≤ 6`

′
m and |{σk}m| ≤ (8`

′
m)`m . Thus, we obtain

(6.41) |{σk}m| ≤ 8`m`
′
m , |{σ∞}m| ≤ 8`m`

′
m .

Here we have used (6.17)–(6.18).
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For simplicity, let δi denote δi(µ). Inductively, let us show that for
k = 0, 1, . . .,

|{µ̂(k), ν̂(k)}P | ≤ |δdk−1−1|Lm , m = 2|P |+ 1 < 2dk−1 − 1,(6.42)

|{σ̂∞k }PQ| ≤ |δ2dk−1−1|Lm , m = |P |+ |Q| ≥ 2dk−1 − 1,(6.43)

|µ(k)
j,P |+ |ν

(k)
j,P | ≤ |δdk−1|Lm , m = 2|P |+ 1,(6.44)

|f (k)
j,PQ|+ |g

(k)
j,QP | ≤ |δdk−1|Lm , m = |P |+ |Q| ≥ dk.(6.45)

Note that the last inequalities are equivalent to |{σ∞k }m| ≤ |δdk−1|Lm .

Here and in what follows Lm does not depend on the choices of µj , dk, h
(k)

which satisfy the initial conditions, i.e. 1/e ≤ µj ≤ ee and (6.17)–(6.18)
but are arbitrary otherwise. However, it suffices to find constants Lm,k
replacing Lm and depending on k such that (6.42)–(6.45) hold. Indeed,
by (6.30) and (6.34) we have Ψk+1 = I+O(dk) and Φk = I+O(2dk−1).
Since σ̂∞k+1 = Ψ−1

k+1σ
∞
k Ψk+1 and σ∞k = Φ−1

k σ̂∞k Φk, then

σ̂∞k+1 = σ̂∞k +O(2dk−1), σ∞k+1 = σ∞k +O(dk),

as dk ≥ 2dk−1. Since dk increases to ∞ with k, then (6.42)–(6.45) with
Lm,k in place of Lm imply that they also hold for

Lm = min
k

max{Lm,1, . . . , Lm,k : (σ̂∞` − σ̂∞k , σ∞` − σ̂∞k ) = O(m), ` > k}.

Therefore, in the following the dependence of Lm on k will not be indi-
cated. The estimates (6.42)–(6.43) hold trivially for σ̂∞0 = σ∞, k = 0
and d−1 = 2 by (6.20) and (6.41). Assuming (6.42)–(6.43), we want
to verify (6.44)–(6.45). We also want to verify (6.42)–(6.43) when k is
replaced by k + 1.

The Φk = I + (U (k), V (k)) is a polynomial mapping. Its degree is at
most dk − 1 and its coefficients are polynomials in {σ̂k}dk−1 and δdk−1;
see (6.26)–(6.27). Hence,

|U (k)
j,PQ|+ |V

(k)
j,QP | ≤ |δdk−1|Lm , m = |P |+ |Q|.(6.46)

Applying (6.40) to σ∞k = Φ−1
k σ̂∞k Φk, we obtain (6.44)–(6.45) from

(6.42)–(6.43). Here we use that fact that since dk ≥ 2dk−1, the small
divisors in δ2dk−1−1 appear in δdk−1 too. To obtain (6.42)–(6.43) when
k is replaced by k + 1, we note that Ψk+1 is a polynomial map that
has degree at most 2dk − 1 and the coefficients of degree m bounded by
δLm

2dk−1; see (6.32)–(6.33). This shows that

(6.47) |Û (k+1)
j,PQ |+ |V̂

(k+1)
j,QP | ≤ |δ2dk−1|Lm , |P |+ |Q| = m.

We then obtain (6.42)–(6.43) when k is replaced by k + 1 for σ̂∞k+1 by

applying (6.40) to σ̂∞k+1 = Ψ−1
k+1σ

∞
k Ψk+1 and by using (6.44)–(6.45) for

σ∞k and (6.47) for Ψk+1.
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Let us summarize the above computation for σ̂∞ defined by (6.21).
We know that σ̂∞ is the unique power series such that σ̂∞−σ̂∞k = O(dk)
for all k, and σ̂∞ is a formal normal form of σ∞. Let us write

σ̂∞ :

{
ξ′j = µ̂∞j (ξη)ξj ,

η′j = ν̂∞j (ξη)ηj .

Let |P | ≤ dk. By (6.31), we get µ̂
(k+1)
P = µ

(k+1)
P ; by (6.36) in which k

is replaced by k + 1, we get µ̂
(k+2)
P = µ

(k+1)
P as |P | ≤ dk < dk+1 − 1.

Therefore,

(6.48) µ̂∞P = µ̂
(k+1)
P , |P | ≤ dk.

For |P | < dk − 1, (6.36) says that µ̂
(k+1)
j,P = µ

(k)
P ; by (6.44) that holds

for any P , we obtain

|µ̂∞P | = |µ̂
(k+1)
j,P | ≤ |δdk−1|Lm , m = 2|P |+ 1, |P | < dk − 1,(6.49)

|µ̂∞j,P | ≤ |δdk−1|Lm(1 + |δdk |), m = 2|P |+ 1 = 2dk − 1.(6.50)

We have verified (6.42)–(6.45). The sequence Lm depend only on

(6.51) m = dk + 1, dk, dk−1, . . . , d0, dj ≥ 2dj−1, dj > 3.

To obtain rapid increase of coefficients of µ̂
(k+1)
j,P , we want to use both

small divisors hidden in Û
(k)
j,PQ and V̂

(k)
j,QP in (6.38). Therefore, if µ

(k)
j,P

is already sufficiently large for |P | = dk that will be specified later, we

take ϕk to be the identity, i.e. τk1 = τk−1
1 . Otherwise, we need to achieve

it by choosing

τk1 = ϕkτ
k−1
1 ϕ−1

k .

Therefore, we examine the effect of a coordinate change by ϕk on these
coefficients.

Recall that we are in the elliptic case. We have ρ(ξ, η) = (η, ξ) and
τk2 = ρτk1 ρ. Recall that

ϕk : ξ′j = (ξ − h(k)(ξ), η), ordh(k) = dk > 3.

By a simple computation, we obtain

τk1 (ξ, η) = τk−1
1 (ξ, η) + (−h(k)(λη), λ−1h(k)(ξ)) +O(|(ξ, η)|dk+1),

τk2 (ξ, η) = τk−1
2 (ξ, η) + (λ−1h(k)(η),−h(k)(λξ)) +O(|(ξ, η)|dk+1).

Then we have

σk = σk−1 + (r(k), s(k)) +O(dk + 1);(6.52)

r(k)(ξ, η) = −λh(k)(λξ)− h(k)(λ2ξ),

s(k)(ξ, η) = λ−2h(k)(η) + λ−1h(k)(λ−1η).
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Since σk converges to σ∞, from (6.52) it follows that

(6.53) σ∞ = σk−1 + (r(k), s(k)) +O(dk + 1).

For |P |+ |Q| = dk, we have

r
(k)
j,PQ =

{
−λjh(k)

j (λξ)− h(k)
j (λ2ξ)

}
PQ

,

s
(k)
j,QP =

{
λ−2
j h

(k)
j (η) + λ−1

j h
(k)
j (λ−1η)

}
QP

.

We obtain

r
(k)
j,P0 = −λP+ejh

(k)
j,P − λ

2Ph
(k)
j,P ,(6.54)

s
(k)
j,0P = λ−2

j h
(k)
j,P + λ−P−ejh

(k)
j,P , |P | = dk,(6.55)

r
(k)
j,PQ = s

(k)
j,QP = 0, |P |+ |Q| = dk, Q 6= 0.(6.56)

The above computation is actually sufficient to construct a divergent
normal form σ̃ ∈ C(S). To show that all normal forms of σ in C(S) are
divergent, We need to related it to the normal form σ̂ in Theorem 5.6,
which is unique. This requires us to keep track of the small divisors in
the normalization procedure in the proof of Lemma 5.5.

Recall that F (k+1) is defined by (5.34) in which µ̃j are replaced by

µ̂
(k+1)
j . Thus,

(6.57) F
(k+1)
j (ζ) = ζj + a

(k+1)
j (ζ), 1 ≤ j ≤ 3.

We also define F∞j by (5.34) in which µ̃j are replaced by µ̂∞j . Then

F∞j (ζ) = ζj + a∞j (ζ). Then by (6.48),

(6.58) a∞j,P = a
(k+1)
j,P , |P | ≤ dk.

By (6.57) and log(1 + x) = x+ x2

2 +O(3), we have for |P | > 1

(6.59) a
(k+1)
j,P (ζ) = µ−1

j µ̂
(k+1)
j,P + µ−1

j µ̂
(k+1)
j,P−ej +Aj,P ({µ̂(k+1)

j }|P |−2).

By (6.49)–(6.50), we estimate the last two terms as follows

|Aj,P ({µ̂(k+1)
j }|P |−2)| ≤ |δdk−1|L

∗
mLm , |P | = dk, m = 2|P |+ 1,(6.60)

|µ̂(k+1)
j,Q | ≤ |δdk−1|Lm(1 + |δdk |), m = 2|Q|+ 1 = 2dk − 1.(6.61)

Here L∗m ≥ 1 is independent of k and depends only on the degrees of the
polynomials Aj,P . Recall from the formula (5.37) that F (k+1), F∞ have

the normal forms F̂ (k+1) = I + â(k+1) and F̂∞ = I + â∞, respectively.
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The coefficients of â
(k+1)
j,Q and â∞j,Q are zero, except the ones given by

â
(k+1)
j,Q = a

(k+1)
j,Q − {Da(k+1)

j · a(k+1)}Q + Bj,Q({a(k+1)}|Q|−2),

â
(∞)
j,Q = a

(∞)
j,Q − {Da

(∞)
j · a(∞)}Q + Bj,Q({a(∞)}|Q|−2),

for Q = (q1, . . . , qp), qj = 0, and |Q| > 1. Derived from the same
normalization, the Bj,Q in both formulae stands for the same polynomial

and independent of k. Hence, â
(∞)
j,P = â

(k+1)
P for |P | ≤ dk, by (6.58).

Combining (6.38) and (6.48) yields â∞3,Q = â
(k+1)
3,Q and

â∞3,Q = 2(Û
(k+1)
3 V̂

(k+1)
3 )QQ + ((Û

(k+1)
3 )2)(Q+e3)(Q−e3)(6.62)

+µ−1
3 {Df

(k)
3 (ξ, η)(Û (k+1), V̂ (k+1))}(Q+e3)Pk

+AQ({µ̂(k+1)}|Q|−2)

+µ−1
3 µ

(k)
3,Q + µ−1

3 µ̂
(k+1)
Q−e3 − {Da

(k+1)
j · a(k+1)}Q.

The above formula holds for any Q with |Q| = dk. To examine the effect
of small divisors, we assume that

Pk = (pk, qk, 0), |Pk| = dk

are given by Lemma 6.5, so are µ1, µ2, and µ3. However, Pk and µ
depend on a sequence Lm (to be renamed as L′m) in Lemma 6.5.
We will determine the sequence L′m and, hence, Pk and µj later.

Note that the second term in (6.62) is 0 as the third component of
Pk− e3 is negative. We apply the above computation to the Pk. Taking
a subsequence of Pk if necessary, we may assume that dk ≥ 2dk−1 and
dk−1 > 3 for all k ≥ 1. The 4 exceptional small divisors of height
2|Pk|+ 1 in (6.14) are

µPk − µ3, µ−Pk − µ−1
3 , µ2Pk−e3 − µ3, µ−2Pk+e3 − µ−1

3 .

The last two cannot show up in â∞3,Pk
, since their degree, 2dk+1, is larger

than the degrees of Taylor coefficients in â3,Pk
. We have 3 products of

the two exceptional small divisors of height 2|Pk| + 1 and degree |Pk|,
which are

(µPk−µ3)(µ−Pk−µ−1
3 ), (µPk−µ3)(µPk−µ3), (µ−Pk−µ−1

3 )(µ−Pk−µ−1
3 ).

The (Û
(k+1)
3 V̂

(k+1)
3 )PkPk

contains the first product, but none of the other

two. The third term and f
(k)
3 in â∞3,Pk

do not contain exceptional small

divisors of degree |Pk| = dk > 2dk−1 − 1. Since f
(k)
3 = O(dk) by (6.25),

the exceptional small divisors of height 2|Pk| + 1 can show up at most
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once in the fourth term of â∞3,Pk
. Therefore, we arrive at

â∞3,Pk
= 2Û

(k+1)
3,Pk0 V̂

(k+1)
3,0Pk

+ Â1
Pk

(δdk−1,
1

µPk − µ3
; {f (k), g(k)}dk)

+ Â2
Pk

(δdk−1; {f (k), g(k)}dk) + µ−1
3 µ

(k)
3,Pk

+APk
({µ̂(k+1)}|Pk|−2)

+ µ−1
3 µ

(k+1)
3,Pk−1 − {Da

(k+1)
3 · a(k+1)}Pk

,

Â1
k(δdk−1,

1

µPk − µ3
; {f (k), g(k)}dk) = (Û

(k+1)
3,Pk0 , V̂

(k+1)
3,0Pk

)

· Â3
Pk

(δdk−1; {f (k), g(k)}dk).

Note that ÂiPk
and APk

are polynomials independent of k. Set

m = 2dk + 1.

In the following we can increase the value of L∗m in (6.60) or when it
reappears for a finite number of times such that the estimates involv-

ing L∗m are valid for all k. By (6.44) and (6.60), we obtain |µ(k)
3,Pk
| +

|A3
Pk

({µ̂(k+1)}|Pk|−2)| ≤ δ
L∗mLm

dk−1 . By (6.59), the smallest |Q| for which

ai,Q contains an exceptional small divisor in δdk is 2|Q| + 1 = 2dk − 1.

Now, {Da(k+1)
3 · a(k+1)}Pk

is a linear combination of products of two
terms and at most one of the two terms contains an exceptional small
divisor; if the both terms contain an exceptional small divisor, one

term is a
(k+1)
3,Q′ with 2|Q′| + 1 ≥ 2dk − 1, while another is a

(k+1)
i,Q′′ with

2|Q′′| + 1 ≥ 2dk − 1. (Here Q′ − ei + Q′′ = Pk and the ith compo-
nent of Q′ is positive.) Then dk = |Pk| = |Q′| + |Q′′| − 1 ≥ 2dk − 2, a
contradiction. Therefore, by (6.59)–(6.61), we have

|{a(k+1)
3 · a(k+1)}Pk

| ≤ |δdk−1|L
∗
mLm(1 + |δdk |).

By (6.61), we also have |µ(k+1)
j,Pk−1| ≤ |δdk−1|Lm(1 + |δdk |). Omitting the

arguments in the polynomial functions, we obtain from (6.46)–(6.47),
and (6.48) that

|Â1
Pk
|+ |Â2

Pk
|+ |µ(k+1)

3,Pk−1|+ |µ
(k)
3,Pk
|+ |APk

|+ |{Da(k+1)
3 · a(k+1)}Pk

|

≤ |δdk−1(µ)|L∗mLm

|µPk − µ3|
,

for m = 2|Pk| + 1 and a possibly larger Lm. We remark that al-
though each term in the inequality depends on the choices of the se-
quences µi, dj , h

(`), the Lm does not depend on the choices, provided

that µj , dk, h
(i) satisfy our initial conditions. Therefore, we have

|â∞3,Pk
| ≥ 2|Û (k+1)

3,Pk0 V̂
(k+1)

3,0Pk
| − |δdk−1(µ)|L

∗
2|Pk|+1

L2|Pk|+1 |µPk − µ3|−1.
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Recall that σ∞k = Φ−1
k Ψ−1

k−1 · · ·Φ
−1
0 σ∞Φ0Ψ1 · · ·Φk. Set

σ̃∞k := Φ−1
k Ψ−1

k−1 · · ·Φ
−1
0 σk−1Φ0Ψ1 · · ·Φk.

By (6.53), we get

(6.63) σ∞k = σ̃∞k + (r(k), s(k)) +O(dk + 1).

Recall that Φk depends only on coefficients of σ̂∞k−1 = Ψ−1
k−1σ

∞
k−2Ψk−1 of

degree less than dk, while Ψk−1 depends only on coefficients of σ∞k−1 =

Φ−1
k−1σ̂k−1Φk−1 of degree at most 2dk−1 − 1 which is less than dk too.

Therefore, Φk,Ψk−1, . . . ,Φ0 depend only on coefficients of σ∞ of degree
less than dk. On the other hand, σ∞ = σk−1 + O(dk). Therefore, σ̃∞k
depends only on σk−1, and, hence, it depends only on h(`) for ` < k. By
(6.63), we can express

(6.64) f
(k)
j,PQ = f̃

(k)
j,PQ + r

(k)
j,PQ, g

(k)
j,QP = g̃

(k)
j,QP + s

(k)
j,QP ,

where |P | + |Q| = dk and f̃
(k)
j,PQ, g̃

(k)
j,QP depend only on h(`) for ` < k.

Collecting (6.35), (6.64), and (6.54)–(6.56), we obtain

|â∞3,Pk
| ≥ 2

|Tk|
|µPk − µ3||µ−Pk − µ−1

3 |
− |δdk−1(µ)|L

∗
2dk+1L2dk+1

|µPk − µ3|
,

with

Tk =

(
−λPk+e3h

(k)
3,Pk
− λ2Pkh

(k)
3,Pk

+ f̃
(k−1)
3,Pk0

)
×
(
λ−2

3 h
(k)
3,Pk

+ λ−Pk−e3h
(k)
3,Pk

+ g̃
(k−1)
3,0Pk

)
= −λ2Pk−2e3

(
λe3−Pkh

(k)
3,Pk

+ h
(k)
3,Pk
− λ−2Pk f̃

(k−1)
3,Pk0

)
×
(
λe3−Pkh

(k)
3,Pk

+ h
(k)
3,Pk

+ λ2
3g̃

(k−1)
3,0Pk

)
.

Set T̃k(h
(k)
3,Pk

) := −λ2e3−2PkTk. We are ready to choose h
(k)
3,Pk

to get

a divergent normal form. We have |λPk−e3 + 1| ≥ 1. Then one of

|T̃k(0)|, |T̃k(1)|, |T̃k(−1)| is at least 1/4; otherwise, we would have

2|λPk−e3 + 1|2 = |T̃k(1) + T̃k(−1)− 2T̃k(0)| < 1,

which is a contradiction. This shows that by taking h
(k)
3,Pk

to be one of
0, 1,−1, we have achieved

|Tk| ≥
1

4
µPk−e3 .

Therefore,

(6.65) |â∞3,Pk
| ≥ µPk−e3

2|µPk − µ3||µ−Pk − µ−1
3 |
− |δdk−1(µ)|L

∗
2dk+1L2dk+1

|µPk − µ3|
.
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Recall that µ3 = ee. If |µPk − µ3| < 1 then 1/2 < µPk−e3 < 2. The
above inequality implies

(6.66) |â∞3,Pk
| ≥ µ2Pk

4|µPk − µ3|2
,

provided

|µPk − µ3| ≤
1

4
|δdk−1(µ)|−L

∗
2dk+1L2dk+1 , |Pk| = dk.

For the last inequality to hold, it suffices have

(6.67) |µPk − µ3| ≤ |δdk−1(µ)|−L
∗
2dk+1L2dk+1−1

, |δdk−1(µ)|−1 < 1/4.

When (6.66), we still have (6.65). Thus, we have derived universal
constants L2dk+1, L

∗
2dk+1 for any Pk = (pk, qk, 0) as long as |Pk| = dk >

3. The sequence L∗m, Lm do not depend on the choice of λ and they
are independent of k; however, it depends on d0, d1, . . . , dk as described
in (6.51). Let us denote the constants L2dk+1, L∗2dk+1 in (6.67) respec-

tively by (L2dk+1(d0, . . . , dk), L
∗
2dk+1)(d0, . . . , dk). We now remove the

dependence of Lm on the partition d0, . . . , dk and define Lm for m > 7
as follows. For each m > 7, define

Dm = {(d0, . . . , dk) : 3 < d0 ≤ d1/2 ≤ · · · ≤ dk/2k,
2dk + 1 ≤ m, k = 0, 1, . . . },

L′N = N + 2 max{(L2dk+1L
∗
2dk+1)(d0, . . . , dk) : (d0, . . . , dk) ∈ D2N+1}.

Let us apply Lemma 6.5 to the sequence L′N . Therefore, there exist µ

and a sequence of Pk = (pk, qk, 0) satisfying |µPk−µ3| ≤ (C∆∗(Pk))
L′|Pk| .

Taking a subsequence if necessary, we may assume that dk = |Pk| ≥
2dk−1 and dk > 3. Thus,

|µPk − µ3| ≤ (C∆∗(Pk))
L′|Pk| ≤ (∆∗(Pk)

1/2)
L′|Pk|

≤ (δdk−1(µ))
−L′|Pk|

/2 ≤ |δdk−1(µ)|−L
′
2dk+1

≤ |δdk−1(µ)|−L
∗
2DK+1(d0,...,dk)L2dk+1(d0,...,dk)−1

,

which gives us (6.67). Here the second inequality follows from

C(∆∗(Pk))
1/2 < 1,

when k is sufficiently large. The third inequality is obtained as follows.
The definition of ∆∗(Pk) and |Pk| = dk imply that any small divisor in
δdk−1(µ) is contained in ∆∗(Pk). Also, ∆∗(Pk) < µ−1

i for i = 1, 2, 3 and

k sufficiently large. Hence, ∆∗(Pk) ≤ δ−1
dk−1(µ), which gives us the third

inequality. We have that Lk ≥ k. From (6.66) and (6.67) it follows that

|â∞3,Pk
| > δdk+1

dk−1
(µ) = δ

|Pk|+1
dk−1

(µ),

for k sufficiently large. As δdk(µ)→ +∞, this shows that the divergence

of F̂3 and the divergence of the normal form σ̂.
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As mentioned earlier, Theorem 5.6 (iii) implies that any normal form

of σ that is in the centralizer of Ŝ must diverge. q.e.d.

7. A unique formal normal form of a real submanifold

Recall that we consider submanifolds of which the complexifications
admit the maximum number of deck transformations. The deck trans-
formations of π1 are generated by {τi1, . . . , τ1p}. We also set τ2j = ρτ1jρ.
Each of τi1, . . . , τip fixes a hypersurface and τi = τ11 · · · τ1p is the unique
deck transformation of πi whose set of fixed points has the smallest
dimension. We first normalize the composition σ = τ1τ2. This normal-
ization is reduced to two normal form problems. In Proposition 5.2 we
obtain a transformation Ψ to transform τ1, τ2, and σ into

τ∗i : ξ′j = Λij(ξη)ηj , η′j = Λ−1
ij (ξη)ξj ,

σ∗ : ξ′j = µj(ξη)ξj , η′j = µ−1
j (ξη)ηj , 1 ≤ j ≤ p.

Here Λ2j = Λ−1
1j and µj = Λ2

1j are power series in the product ζ =

(ξ1η1, . . . , ξpηp). We also normalize the map µ by a transformation ϕ
which preserves all coordinate hyperplanes. This is the second normal
form problem, which is solved formally in Theorem 5.6 under condition
L on µ. This gives us a map Ψ1 which transforms τ1, τ2, and σ into
τ̂1, τ̂2, σ̂ of the above form where Λij and µj become Λ̂ij , µ̂j .

In this section, we derive a unique formal normal form for

{τ11, . . . , τ1p, ρ},
under the above condition that µ̂ is in the norm form (1.7). In this case,
we know from Theorem 5.6 that C(σ̂) consists of only 2p dilatations

(7.1) Rε : (ξj , ηj)→ (εjξj , εjηj), εj = ±1, 1 ≤ j ≤ p.
We will consider two cases. In the first case, we impose no restriction
on the linear parts of {τij} but the coordinate changes are restricted to
mappings that are tangent to the identity. The second is for the family
{τij} that arises from a higher order perturbation of a product quadric,
while no restriction is imposed on the changes of coordinates. We will
show that in both cases, if the normal form of σ can be achieved by a
convergent transformation, the normal form of {τ11, . . . , τ1p, ρ} can be
achieved by a convergent transformation too.

We now restrict our real submanifolds to some classes. First, we
assume that σ and τ1, τ2 are already in the normal form σ̂ and τ̂1, τ̂2

such that

τ̂i : ξ
′ = Λ̂i(ξη)η, η′ = Λ̂i(ξη)−1ξ, Λ̂2 = Λ̂−1

1 ,(7.2)

σ̂ : ξ′ = µ̂(ξη)ξ, η′ = µ̂(ξη)−1η, µ̂ = Λ̂2
1.(7.3)

Let us start with the general situation without imposing condition
L on µ̂. Assume that σ̂ and τ̂i are in the above forms. We want to
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describe {τ1j , ρ}. Let us start with the linear normal forms described in
Lemma 3.5 or Proposition 3.10. Recall that Zj = diag(1, . . . ,−1, . . . , 1)
with −1 at the (p + j)-th place, and Z := Z1 · · ·Zp. Let Zj (resp. Z)
be the linear transformation with the matrix Zj (resp. Z). We also use
notation

B∗ =

(
I 0
0 B

)
, EΛ̂i

=

(
I Λ̂i

−Λ̂−1
i I

)
.(7.4)

Here B, as well as Λ̂i given by (7.2), is a non-singular complex (p× p)
matrix. Assume that B1 and B2 are invertible p× p matrices. Define

(7.5)

(Bi)∗ :

(
ξ
η

)
→ (Bi)∗

(
ξ
η

)
,

EΛ̂i
:

(
ξ
η

)
→
(

I Λ̂i(ξη)

−Λ̂−1
i (ξη) I

)(
ξ
η

)
.

Let us assume that in suitable linear coordinates, the linear parts Lτij =
Tij of two families of involutions {τi1, . . . , τip} for i = 1, 2 are given by

Tij := EΛi,Bi ◦ Zj ◦ E
−1
Λi,Bi

,(7.6)

EΛi,Bi := EΛi ◦ (Bi)∗, Λi := Λ̂i(0).(7.7)

Note that (Bi)∗ commutes with Z. Also, EΛ̂i
◦ τ̂i = Z ◦ EΛ̂i

. We have
the decomposition

τ̂i = τ̂i1 · · · τ̂ip,(7.8)

EΛ̂i,Bi
:= EΛ̂i

◦ (Bi)∗, τ̂ij := EΛ̂i,Bi
◦ Zj ◦ E−1

Λ̂i,Bi
.(7.9)

As before, we assume that S is non resonant. For real submanifolds, we
still impose the reality condition τ2j = ρτ1jρ where ρ is given by (1.3).
Then we take T2j = ρT1jρ, B1 = B in (7.4)–(7.9). The following lemma
describes a way to classify all involutions {τ11, . . . , τ1p, ρ} provided that
σ is in a normal form.

Lemma 7.1. Let {τ1j} and {τ2j} be two families of formal holomor-
phic commuting involutions. Let τi = τi1 · · · τip and σ = τ1τ2. Suppose
that

τi = τ̂i : ξ
′
j = Λ̂ij(ξη)ηj , η′j = Λ̂ij(ξη)−1ξj ;

σ = σ̂ : ξ′j = µ̂j(ξη)ξj , η′j = µ̂j(ξη)−1ηj ,

with µ̂j = Λ̂2
1j and µ̂j(0) = µj. Suppose that µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p

satisfy the non-resonant condition (1.4). Assume further that the linear
parts Tij of τij are given by (7.6). Then we have the following :

(i) For i = 1, 2 there exists Φi ∈ C(τ̂i), tangent to the identity, such
that Φ−1

i τijΦi = τ̂ij for 1 ≤ j ≤ p.



190 X. GONG & L. STOLOVITCH

(ii) Let {τ̃1j} and {τ̃2j} be two families of formal holomorphic com-
muting involutions. Let τ̃i = τ̃i1 · · · τ̃ip and σ̃ = τ̃1τ̃2. Suppose

that τ̃i = τ̂i and σ̃ = σ̂ and Φ̃−1
i τ̃ijΦ̃i = ̂̃τ ij with Φ̃i ∈ C(τ̂i) being

tangent to the identity and̂̃τ ij = EΛ̂i,B̃i
◦ Zj ◦ E−1

Λ̂i,B̃i
.

Here for i = 1, 2, the matrix B̃i is non-singular. Then

Υ−1τijΥ = τ̃iνi(j), i = 1, 2, j = 1, . . . , p,

if and only if there exist Υ ∈ C(τ̂1, τ̂2) and Υi ∈ C(τ̂i) such that

Φ̃i = Υ−1 ◦ Φi ◦Υi, i = 1, 2,(7.10)

Υ−1
i τ̂ijΥi = ̂̃τ iνi(j), 1 ≤ j ≤ p.

Here each νi is a permutation of {1, . . . , p}.
(iii) Assume further that τ2j = ρτ1jρ with ρ being defined by (1.3).

Define τ̂1j by (7.8) and let τ̂2j := ρτ̂1jρ. Then we can choose

Φ2 = ρΦ1ρ for (i). Suppose that Φ̃2 = ρΦ̃1ρ where Φ̃1 is as in
(ii). Then {τ̃1j , ρ} is equivalent to {τ1j , ρ} if and only if there
exist Υi, νi with ν2 = ν1, and Υ satisfying the conditions in (ii)
and Υ2 = ρΥ1ρ. The latter implies that Υρ = ρΥ.

Proof. (i). Note that τ̂ij is conjugate to Zj via the map EΛ̂i,Bi
. Fix

i. Each τ̂ij is an involution and its set of fixed-point is a hypersur-
face. Furthermore, Fix(τ11), . . . ,Fix(τ1p) intersect transversally at the
origin. By [12, Lemma 2.4], there exists a formal mapping ψi such
that ψ−1

i τijψi = Lτij . Now Lψi commutes with Lτij , Replacing ψi by
ψi(Lψi)

−1, we may assume that ψi is tangent to the identity. We also

find a formal mapping ψ̂i, which is tangent to the identity, such that
ψ̂−1
i τ̂ijψ̂i = Lτ̂ij = Lτij . Then Φi = ψiψ̂

−1
i fulfills the requirements.

(ii). Suppose that

τij = Φiτ̂ijΦ
−1
i , τ̃ij = Φ̃i

̂̃τ ijΦ̃−1
i .

Assume that there is a formal biholomorphic mapping Υ that transforms
{τij} into {τij} for i = 1, 2. Then

(7.11) Υ−1τijΥ = τ̃iνi(j), j = 1, . . . , p, i = 1, 2.

Here νi is a permutation of {1, . . . , p}. Then

(7.12) τ̂iΥ = Υτ̂i, σ̂Υ = Υσ̂.

Set Υi := Φ−1
i ΥΦ̃i. We obtain

Υ−1
i τ̂ijΥi = ̂̃τ iνi(j), 1 ≤ j ≤ p,(7.13)

Φ̃i = Υ−1ΦiΥi, i = 1, 2.(7.14)
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Conversely, assume that (7.12)–(7.14) are valid. Then (7.11) holds as

Υ−1τijΥ = Υ−1Φiτ̂ijΦ
−1
i Υ = Φ̃iΥ

−1
i τ̂ijΥiΦ̃

−1
i = τ̃νi(j).

(iii). Assume that we have the reality assumption τ2j = ρτ1jρ and
τ̃2j = ρτ̃1jρ. As before, we take Φ1, tangent to the identity, such that

τ1j = Φ1τ̂1jΦ
−1
1 . Let Φ2 = ρΦ1ρ. By τ̂2j = ρτ̂1jρ, we get τ2j = ρτ1jρ =

Φ2τ̂2jΦ
−1
2 for ν2 = ν1. Suppose that Φ̃i associated with τ̃1j and ρ satisfy

the analogous properties. Suppose that Υ−1τijΥ = τ̃iνi(j) with ν2 = ν1,

and Υρ = ρΥ. Letting Υ1 = Φ−1
1 ΥΦ̃1 we get Υ2 = ρΥ1ρ. Conversely, if

Υ1 and Υ2 satisfy Υ2 = ρΥ1ρ, then

ρΥρ = ρΦ1Υ1Φ̃−1
1 ρ = Φ2Υ2Φ̃−1

2 = Υ.

This shows that Υ satisfies the reality condition. q.e.d.

Now we assume that µ̂ is in the normal form (1.7). We assume that
the linear part Tij of τij are given by (7.6), where the non-singular
matrix B is arbitrary. As mentioned earlier in this section, the group
of formal biholomorphisms that preserve the form of σ̂ consists of only
linear involutions Rε defined by (7.1). This restricts the holomorphic
equivalence classes of the quadratic parts of M . By Proposition 3.10,
such quadrics are classified by a more restricted equivalence relation,
namely, (B̃1, B̃2) ∼ (B1,B2), if and only if

B̃i = (diag a)−1Bi diagνi d, i = 1, 2.

To deal with a general situation, let us assume for the moment that
B1,B2 are arbitrary invertible matrices.

Using the normal form {τ̂1, τ̂2} and the matrices B1,B2, we first
decompose τ̂i = τ̂11 · · · τ̂1p. By Lemma 7.1 (i), we then find Φi such that

τij = Φiτ̂ijΦ
−1
i , 1 ≤ j ≤ p.

For each i, Φi commutes with τ̂i. It is within this family of {Bi,Φi; i =
1, 2} with Φi ∈ C(τ̂i) for i = 1, 2 that we will find a normal form for
{τij}. When restricted to τ2j = ρτ1jρ, the classification of the real
submanifolds is within the family of {τ1j , ρ} as described in Lemma 7.1
(iii).

From Lemma 7.1 (ii), the equivalence relation on C(τ̂i) is given by

Φ̃i = Υ−1ΦiΥi, i = 1, 2.

Here Υi and Υ satisfy

Υ−1
i τ̂ijΥi = τ̂iνi(j), 1 ≤ j ≤ p; Υ−1τ̂iΥ = τ̂i, i = 1, 2.

We now construct a normal form for {τij} within the above family.
Let us first use the centralizer of Cc(Z1, . . . , Zp), described in Lemma 4.6,
to define the complement of the centralizer of the family of non-linear
commuting involutions {τ̂11, . . . , τ̂1p}. Recall that the mappings EΛ̂i
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and (Bi)∗ are defined by (7.5). According to Lemma 4.6, we have the
following.

Lemma 7.2. Let i = 1, 2. Let {τ̂i1, . . . , τ̂ip} be given by (7.9). Then

C(τ̂i1, . . . , τ̂ip) =
{
EΛ̂i,Bi

◦ φ0 ◦ E−1

Λ̂i,Bi
: φ0 ∈ C(Z1, . . . , Zp)

}
,

C(τ̂i) =
{
EΛ̂i,Bi

◦ φ0 ◦ E−1

Λ̂i,Bi
: φ0 ∈ C(Z)

}
.

Set

Cc(τ̂i1, . . . , τ̂ip) :=
{
EΛ̂i,Bi

◦ φ1 ◦ E−1

Λ̂i,Bi
: φ1 ∈ Cc(Z1, . . . , Zp)

}
.

For each i, every formal biholomorphic mapping ψ admits a unique
decomposition ψ1ψ

−1
0 with

ψ1 ∈ Cc(τ̂i1, . . . , τ̂ip), ψ0 ∈ C(τ̂i1, . . . , τ̂ip).

If τ̂ij and ψ are convergent, then ψ0, ψ1 are convergent.

When τ2j = ρτ1jρ, only C(τ̂11, . . . , τ̂1p) and its complement will be
used in the normal forms constructed in Propositions 7.4 and 7.6 and
Theorem 7.7.

Proposition 7.3. Let τ̂i, σ̂ be given by (7.2)–(7.3) in which µ̂ is in
the formal normal form (1.7). Let {τ̂ij} be given by (7.9). Suppose that

τij = Φiτ̂ijΦ
−1
i , τ̃ij = Φ̃iτ̂ijΦ̃

−1
i 1 ≤ j ≤ p,(7.15)

Φi ∈ C(τ̂i), Φ̃i ∈ C(τ̂i), Φ̃′i(0) = Φ′i(0) = I, i = 1, 2.(7.16)

Then {Υ−1τijΥ} = {τ̃ij} for i = 1, 2 and for some invertible Υ ∈
C(τ̂1, τ̂2), if and only if there exist formal biholomorphisms Υ,Υ∗1,Υ

∗
2

such that

Υ−1 ◦ (Bi)∗ ◦ Zj ◦ (Bi)
−1
∗ ◦Υ = (Bi)∗ ◦ Zνi(j) ◦ (Bi)

−1
∗ ,(7.17)

Φ̃i = Υ−1ΦiΥ
∗
iΥ, Υ∗i ∈ C(τ̂i1, . . . , τ̂ip), i = 1, 2,(7.18)

Υσ̂Υ−1 = σ̂,(7.19)

where each νi is a permutation of {1, . . . , p}. Assume further that τ̂2j =

ρτ̂1jρ and Φ2 = ρΦ1ρ and Φ̃2 = ρΦ̃1ρ. We can take Υ∗2 = ρΥ∗1ρ and
ν2 = ν1, if additionally

Υρ = ρΥ.

Proof. Recall that

τij = Φiτ̂ijΦ
−1
i , Φi ∈ C(τ̂i); τ̃ij = Φ̃iτ̂ijΦ̃

−1
i , Φ̃i ∈ C(τ̂i).

Suppose that

(7.20) Υ−1τijΥ = τ̃iνi(j), j = 1, . . . , p, i = 1, 2.
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By Lemma 7.1, there are invertible Υi such that

Υ−1
i τ̂ijΥi = τ̂iνi(j), 1 ≤ j ≤ p,(7.21)

Φ̃i = Υ−1 ◦ Φi ◦Υi, i = 1, 2.(7.22)

Let us simplify the equivalence relation. By Theorem 5.6, C(τ̂1, τ̂2)
consists of 2p dilations Υ of the form (ξ, η) → (aξ, aη) with aj = ±1.

Since Φi, Φ̃i are tangent to the identity, then DΥi(0) is diagonal because

LΥi = Υ.

Clearly, Υ commutes with each non-linear transformation EΛ̂i
. Simpli-

fying the linear parts of both sides of (7.21), we get

(7.23) Υ−1 ◦ ((Bi)∗ ◦ Zj ◦ (Bi)
−1
∗ ) ◦Υ = (Bi)∗ ◦ Zνi(j) ◦ (Bi)

−1
∗ .

From the commutativity of Υ and EΛ̂i
again and the above identity, it

follows that

(7.24) Υ−1 ◦ τ̂ij ◦Υ = τ̂νi(j), j = 1, . . . , p, i = 1, 2.

Using (7.15) and (7.24), we can rewrite (7.20) as

Υ−1Φiτ̂ijΦ
−1
i Υ = τ̃iνi(j) = Φ̃iΥ

−1τ̂ijΥΦ̃−1
i .

It is equivalent to Υ∗i τ̂ij = τ̂ijΥ
∗
i , where we define

Υ∗i := Φ−1
i ΥΦ̃iΥ

−1.

Therefore, by (7.10), in C(τ̂i), Φ̃i and Φi are equivalent, if and only if

Φ̃i = Υ−1ΦiΥ
∗
iΥ, Υ∗i ∈ C(τ̂i1, . . . , τ̂ip), i = 1, 2.

Conversely, if Υ∗i ,Υ satisfy (7.17)–(7.19), we take Υi = Υ∗iΥ to get
(7.22) by (7.18). Note that (7.19) ensures that Υ commutes with τ̂i and
EΛ̂i

. Then (7.24), or equivalently (7.23) (i.e. (7.17)) as Υ commutes

with EΛ̂i
, gives us (7.21). By Lemma 7.1, (7.21)–(7.22) are equivalent

to (7.20). q.e.d.

Proposition 7.4. Let {τij}, {τ̃ij}, Φi, and Φ̃i be as in Proposi-

tion 7.3. Decompose Φi = Φi1◦Φ−1
i0 with Φi1 ∈ Cc(τ̂i1, . . . , τ̂1p) and Φi0 ∈

C(τ̂i1, . . . , τ̂1p), and decompose Φ̃i analogously. Then {{τ1j}, {τ2j}} and
{{τ̃1j}, {τ̃2j}} are equivalent under a mapping that is tangent to the

identity if and only if Φi1 = Φ̃i1 for i = 1, 2. Assume further that
τ2j = ρτ1jρ and τ̃2j = ρτ̃1jρ. Then two families are equivalent under a
mapping that is tangent to the identity and commutes with ρ if and only
if Φ11 = Φ̃11.

Proof. When restricting to changes of coordinates that are tangent
to the identity, we have Υ = I in (7.20). Also (7.17) holds trivially as νi
is the identity. By the uniqueness of the decomposition Φi = Φi1Φ−1

i0 ,

(7.18) becomes Φi1 = Φ̃i1. q.e.d.



194 X. GONG & L. STOLOVITCH

We consider a general case without restriction on coordinate changes.

Lemma 7.5. Let Υ = diag(a,a) with a ∈ {−1, 1}p. Let B be a
nonsingular p×p matrix and let ν be a permutation of {1, . . . , p}. Then

(7.25) Υ−1 ◦B∗ ◦ Zj ◦B−1
∗ ◦Υ = B∗ ◦ Zν(j) ◦B−1

∗ , 1 ≤ j ≤ p,
if and only if

(7.26) B = (diag a)−1B(diagν d).

In particular, if B is an upper or lower triangular matrix, then ν = I
and d = a.

Proof. Let Z̃j = diag(1, . . . ,−1, . . . , 1) be the matrix where −1 at
the j-th place. Set C := B−1 diag a B and C = (cij). In 2 × 2 block

matrices, we see that (7.25) is equivalent to CZ̃ν(j) = Z̃jC, i.e.

−ciν(j) = ciν(j), i 6= j.

Therefore, C = diagν d with dj = cjν(j), by (3.20). q.e.d.

We will assume that M is a higher order perturbation of non-resonant
product quadric. Let us recall σ̂ be given by (7.3) and define τ̂ij as
follows:

σ̂ :

{
ξ′j = µ̂j(ξη)ξj ,

η′j = µ̂−1
j (ξη)ηj ,

τ̂ij :


ξ′j = Λ̂ij(ξη)ηj ,

η′j = Λ̂−1
ij (ξη)ξj ,

ξ′k = ξk,

η′k = ηk, k 6= j,

with Λ̂2j = Λ̂−1
1j and µ̂j = Λ̂2

1j . Let τ̂i = τ̂i1 · · · τ̂1p. Recall that EΛ̂i
in

(7.5).

Proposition 7.6. Let {τ11, . . . , τ1p, ρ} be the family of involutions
with ρ be given by (1.3). Suppose that the linear parts of τ1j are given
by (7.6) and associated σ is non-resonant, while the associated matrix B
for {T1j} satisfies the non-degeneracy condition that (7.26) holds only
for ν = I. Let σ̂ be the formal normal form of the σ associated to M that
is given by (7.3) in which µ̂ is in the formal normal form (1.7). Let τ̂1j

be given by (7.9) and τ̂2j = ρτ̂1jρ. Then in suitable formal coordinates
the involutions τij have the form

τ1j = Ψτ̂1jΨ
−1, τ2j = ρτ1jρ,

Ψ ∈ C(τ̂1) ∩ Cc(τ̂11, . . . , τ̂1p), Ψ′(0) = I.
(7.27)

Assume further that τ̃11, . . . , τ̃1p have the form (7.27) in which Ψ is

replaced by Ψ̃. Then there exists a formal mapping R commuting with
ρ and transforming the family {τ̃11, . . . , τ̃1p} into {τ11, . . . , τ1p} if and
only if R is an Rε defined by (7.1) and

(7.28) Ψ̃ = R−1
ε ΨRε, Rερ = ρRε.
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In particular, {τ11, . . . , τ1p, ρ} is formally equivalent to {τ̂11, . . . , τ̂1p, ρ}
if and only if Ψ in (7.27) is the identity map.

Proof. We apply Proposition 7.3. We need to refine the equivalence
relation (7.17)–(7.19). First we know that (7.19) means that Υ = Rε and
it commutes with ρ. It remains to refine (7.18). We have Φ2 = ρΦ1ρ.
By assumption, we know that ν1 in (7.17) must be the identity. Then
Φ1 ∈ Cc(τ̂11, . . . , τ̂1p) implies that Υ−1Φ1Υ ∈ Cc(τ̂11, . . . , τ̂1p); indeed,
by (7.26) we have

ΥEΛi◦(Bi)∗ = EΛi◦Υ◦(Bi)∗ = EΛi◦(Bi)∗◦D, D̃ = diag(diag a, diag d).

Note that ψ0 = (U, V ) is in C2(Z1, . . . , Zp) if and only if

U(ξ, η) = Ũ(ξ, η2
1, . . . , η

2
p), Vj(ξ, η) = ηj Ṽj(ξ, η

2
1, . . . , η

2
p).

Let ψ1 = (U, V ) be in Cc2(Z1, . . . , Zp), i.e.

U(ξ, η) =
∑
i

ηiŨi(ξ, η
2
1, . . . , η

2
i ),

Vj(ξ, η) = V ∗j (ξ, η) + ηj
∑
i

ηiṼi(ξ, η
2
1, . . . , η

2
i ),

where V ∗j (ξ, η) is independent of ηj . Since D is diagonal, then Dψ1D
−1

is in Cc2(Z1, . . . , Zp). This shows that conjugation by Υ preserves the set
Cc(τ̂11, . . . , τ̂1p). Also Υ commutes with each τ̂1j . Hence, it preserves
C(τ̂11, . . . , τ̂1p). By the uniqueness of decomposition, (7.18) becomes

Φ̃11 = Υ−1Φ11Υ, Φ̃−1
10 = Υ−1Φ−1

10 Υ∗1Υ.

The second equation defines Υ∗1 that is in C(τ̂11, . . . , τ̂1p) as Υ,Φ10, Φ̃10

are in the centralizer. Rename Φ11, Φ̃11 by Ψ, Ψ̃. This shows that the
equivalence relation is reduced to (7.28). q.e.d.

We now derive the following formal normal form.

Theorem 7.7. Let M be a real analytic submanifold that is a third
order perturbation of a non-resonant product quadric. Assume that the
formal normal form σ̂ of the map σ associated to µ satisfying condition
L and the µ̂ associated with σ̂ is in the formal normal form (1.7). Let
EΛ̂1

be defined by (7.4). Then M is formally equivalent to a formal

submanifold in the (z1, . . . , z2p)-space defined by

M̃ : zp+j = (λ−1
j Uj(ξ, η)− Vj(ξ, η))2, 1 ≤ j ≤ p,

where (U, V ) = EΛ̂1(0)E
−1

Λ̂1
Ψ−1, Ψ is tangent to the identity and is in

C(τ̂1) ∩ Cc(τ̂11, . . . , τ̂1p), defined in Lemma 7.2, and ξ, η are solutions to

zj =Uj(ξ, η) +λjVj(ξ, η), zj =Uj ◦ ρ(ξ, η) +λjVj ◦ ρ(ξ, η), 1≤ j≤ p.
Furthermore, the Ψ is uniquely determined up to conjugacy RεΨR

−1
ε by

an involution Rε : ξj → εjξj , ηj → εjηj for 1 ≤ j ≤ p that commutes with
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ρ, i.e. εs+s∗ = εs and ε2j = 1. The formal holomorphic automorphism

group of M̂ consists of involutions of the form

Lε : zj → εjzj , zp+j → zp+j , 1 ≤ j ≤ p,
with ε satisfying RεΨ = ΨRε and εs+s∗ = εs. If the σ associated to M is

holomorphically equivalent to a Poincaré–Dulac normal form, then M̃
can be achieved by a holomorphic transformation too.

Proof. We first choose linear coordinates so that the linear parts of
{τ11, . . . , τ1p, ρ} are in the normal form in Lemma 3.2. We apply Propo-
sition 7.6 and assume that τij are already in the normal form. The rest
of the proof is essentially in Proposition 2.1 and we will be brief. Write
T1j = EΛ̂1(0) ◦Zj ◦E

−1

Λ̂1(0)
. Let ψ = (U, V ) with U, V being given in the

theorem. We obtain

τ1j = Ψτ̂1jΨ
−1 = ψ−1T1jψ, 1 ≤ j ≤ p.

Let fj = ξj + λjηj and hj = (λjξj − ηj)2. The invariant functions of
{T11, . . . , T1p} are generated by f1, . . . , fp, h1, . . . , hp. This shows that
the invariant functions of {τ11, . . . , τ1p} are generated by f1 ◦ψ, . . . , fp ◦
ψ, h1 ◦ψ, . . . , hp ◦ψ. Set g := f ◦ ψ ◦ ρ. We can verify that φ = (f ◦ψ, g)
is biholomorphic. Now φρφ−1 = ρ0. Let M be defined by

zp+j = Ej(z
′, z′), 1 ≤ j ≤ p,

where Ej = hj ◦ φ−1. Then Ej ◦ φ and zj ◦ φ = fj are invariant by
{τ1k}. This shows that {φτijφ−1} has the same invariant functions as
deck transformations of π1 of the complexificationM of M . By Lemma
2.5 in [12], {φτ1jφ

−1} agrees with the unique set of generators for the
deck transformations of π1. Then M is a realization of {τ11, . . . , τ1p, ρ}.

Finally, we identity the formal automorphisms of M , which fix the
origin. For such an automorphism F on Cn, define

F̃ (z′, w′) = (F (z′, E(z′, w′)), F (w′, E
′
(w′, z′)))

on M. Then φ−1F̃ φ preserves {τ11, . . . , τ1p, ρ}. By Proposition 7.6,

φ−1F̃ φ = Rε, Rερ = ρRε, and RεΨ = ΨRε. Given (7.1), we write
Rε = (L′ε, L

′
ε). In view of (U, V ) = EΛ̂1(0)E

−1

Λ̂1
Ψ−1, we obtain that

L′εU = URε and L′εV = V Rε. Since zj = Uj(ξ, η) + λjVj(ξ, η) and

zp+j = (λ−1
j Uj(ξ, η)− Vj(ξ, η))2, then z′ ◦ F̃ = L′εz

′ and z′′ ◦ F̃ = z′′ as

functions in (z′, w′). This shows that z′ ◦ F = L′ez
′ and z′′ ◦ F = z′′ as

functions in (z′, z′′). Therefore, F = Lε. q.e.d.

Remark 7.8. Let b be on the unit circle with 0 ≤ arg b < π. Let

B =

(
1 b

b̃ 1

)
, |b̃| ≤ 1, bb̃ 6= 1.

One can check that (7.26) admits a solution ν 6= I if and only if b̃ = −b.
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