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IMMERSING QUASI-FUCHSIAN SURFACES OF ODD
EULER CHARACTERISTIC IN CLOSED HYPERBOLIC

3-MANIFOLDS

Yi Liu

Abstract

In this paper, it is shown that every closed hyperbolic 3-manifold
contains an immersed quasi-Fuchsian closed subsurface of odd
Euler characteristic. The construction adopts the good pants
method, and the primary new ingredient is an enhanced version
of the connection principle, which allows one to connect any two
frames with a path of frames in a prescribed relative homology
class of the frame bundle. The existence result is applied to
show that every uniform lattice of PSL(2,C) admits an exhausting
nested sequence of sublattices with exponential homological tor-
sion growth. However, the constructed sublattices are not normal
in general.

1. Introduction

For any arbitrary closed hyperbolic 3-manifold, immersed quasi-
Fuchsian closed subsurfaces have been constructed by J. Kahn and
V. Markovic [KM1]. While their subsurfaces are always orientable, it is
possible to build non-orientable subsurfaces of even Euler characteristic
by modifying their construction, (see [Su1] for example). It remains to
be an open question whether a subsurface can be constructed to have
odd Euler characteristic, [Ag2, Section 11, Question 7]. The question
finds its motivation in several aspects of hyperbolic 3-manifold geome-
try, including all the results we state in the introduction. The theme
result of this paper is an affirmative answer to the existence question:

Theorem 1.1. Let M be a closed hyperbolic 3-manifold. Then there
exists a connected closed surface of odd Euler characteristic Σ which
admits a π1–injective, quasi-Fuchsian immersion j : Σ #M .

When an orientable closed 3-manifold contains an embedded closed
subsurface of odd Euler characteristic, the manifold admits a degree-one
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map onto the real projective 3-space, by a characterization of C. Hayat-
Legrand, S. Wang, and H. Zieschang [HWZ, Theorem 4.1]. This fact
provides one reason for us to be interested in the virtual existence of
such subsurfaces. Since hyperbolic 3-manifold groups are LERF [Ag1,
Theorem 9.2], Theorem 1.1 has the following immediate consequence:

Corollary 1.2. Every closed hyperbolic 3-manifold has an orientable
finite cover which admits a degree-one map onto the real projective 3-
space.

Corollary 1.2 might be a toy case of some more general fact. In
[Su2], H. Sun has proved that closed hyperbolic 3-manifolds virtually
2-dominates any other orientable closed 3-manifolds. In other words, for
any closed orientable 3-manifold N , every closed hyperbolic 3-manifold
M has an orientable finite cover which admits a map onto N of degree 2.
It seems that with the improved techniques of this paper (Theorem 3.1),
there is a good chance to promote Sun’s result to virtual 1-dominations.

Another curious application of Theorem 1.1 shows certain exponential
torsion growth for uniform lattices of PSL(2,C):

Theorem 1.3. Every uniform lattice Γ of PSL(2,C) contains an ex-
hausting nested sequence of non-normal torsion-free sublattices {Γi}i∈N
such that

lim inf
n→∞

log |H1(Γn; Z)tors|
[Γ : Γn]

> 0.

Here the sequence being nested means that each subgroup Γn con-
tains its successor Γn+1, and being exhausting means that the common
intersection of all the subgroups is trivial. The term in the logarithmic
function is the cardinality of the torsion subgroup of the first integral
homology of the group Γn.

For general uniform lattices of PSL(2,C), Theorem 1.3 seems to be
the first known exhausting sequence of sublattices with exponential ho-
mological torsion growth. A key feature of the construction is that it
produces a huge number of disjointly embedded subsurfaces of odd Eu-
ler characteristic in the quotient hyperbolic 3-manifolds H3 /Γn, so a
positive portion of Z2 homological torsion can be recognized. As to
be explained in more details in Section 5, our approach is conceptually
simple but technically nontrivial. Besides Theorem 1.1, the construc-
tion relies essentially on the virtual specialness of hyperbolic 3-manifold
groups, proved by I. Agol [Ag1] and D. Wise [Wi]. In particular, the
sublattices are constructed inductively by invoking Wise’s Malnormal
Special Quotient Theorem. The statement of Theorem 1.3 is known
to be false for certain uniform lattices of higher-rank simple real Lie
groups, including SL(n,R) for n > 2 and SO(p, q) for q > 1 and large p,
[AbGN].
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It should be pointed out, however, that Theorem 1.3 does not say
much about the well known asymptotic growth conjecture on virtual
homological torsion, (see [BV, Conjecture 1.13] for arithmetic lattices
and [Lü, Question 13.73] for closed Riemannian manifolds). One (op-
timistic) version of the conjecture may be stated as follows: Given a
lattice Γ of PSL(2,C), for all exhausting nested sequences of normal
torsion-free sublattices of Γ, the limit in Theorem 1.3 exists and equals
Vol(H3 /Γ) / 6π. Even if Γ is uniform, the sublattices {Γn}n∈N of our
construction are far from normal. In fact, as n increase, larger and larger
balls emerge in the quotient hyperbolic 3-manifolds, but in a highly scat-
tered fashion with relatively small total volume, so the sequence is not
even convergent in the Benjamini–Schramm sense.

The major innovation of this paper is an enhanced version of the con-
nection principle in good pants constructions, Theorem 3.1. The reader
is referred to Section 2 for terminology and background on this topic.
To illustrate the primary issue, suppose that we are asked to construct
a good curve γ so that it bounds a surface built up with good pants. It
is known that we can design the construction to make γ good and null
homologous in M , the oriented closed hyperbolic 3-manifold under con-
sideration. Even so, there is still one geometric obstruction. As a good
curve, γ has a so-called canonical lift γ̂ in the frame bundle SO(M),
which is a loop of frames well defined up to homotopy. For the null ho-
mologous good curve γ to bound a good panted subsurface, it turns out
that its canonical lift γ̂ must also be null homologous in SO(M). There-
fore, we need to seek for some refinement of our construction to make
sure that the homology class of the canonical lift can be controlled. A
solution of the example task above contains the key idea of our refined
construction. An outline is deferred to the last part of the introduction.

It turns out that the construction for Theorem 1.1 can be reduced
to a very similar situation: We need to find a ‘semi-good’ curve

√
γ

whose double cover is a bounding good curve γ. In fact, the presence of
such a curve γ is necessary since a good panted subsurface of odd Euler
characteristic contains an odd number of good pants, so the gluing map
as a free involution on the union of cuffs must preserve some component
by the parity. One could produce the semi-good curve

√
γ by an ad hoc

modification of the construction of the example task. Alternatively, as
we present in this paper, we can establish a more generally adaptable
construction, which allows us to connect frames by good paths of frames
in any prescribed relative homology class (Theorem 3.1). Accompanied
with the enhanced version of the connection principle, the package of
[LM] can be applied to produce good curves and panted 2-complexes
in closed hyperbolic 3-manifolds, now with significantly more precise
control of their homology. For simplicity, we state the following ordi-
nary form of Theorem 3.1, which roughly says that every integral first
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homology class of the frame bundle can be represented by a good curve,
eventually, as we increase the required length.

Theorem 1.4. Let M be an oriented closed hyperbolic 3-manifold.
Given any homology class Ξ ∈ H1(SO(M);Z) and any constant ε > 0,
there exists a constant R0 = R0(ε,M,Ξ) > 1 such that the following
holds true. For every constant R > R0, there exists an (R, ε/R)–curve
γ in M of which the canonical lift γ̂ represents Ξ in H1(SO(M);Z).

We remark that fixing ε and M , the a priori bound R0(ε,M,Ξ) can
be chosen to depend linearly on the word length of Ξ, with respect to
any finite generating set of the first homology. As R tends to infinity,
the number of (R, ε/R)–curves representing any given class Ξ grows
exponentially fast, in a fashion independent of Ξ. In fact, it is possible
to derive the asymptotics from Kimoto–Wakayama [KW], (see also [PS,
SW]).

We end up our introduction by sketching a solution to our example
task, to construct of a good curve γ with a null homologous canonical lift
γ̂. As mentioned, the first attempt is to create a null homologous good
curve ζ. We take two (oriented) long closed geodesic paths a, b based
at the same point p ∈ M , making sure that they point very sharply
against each other, with little twist in the normal direction. In other
words, we apply the connection principle as usual to construct a and
b so that the initial direction of a and the terminal direction of b are
approximately some unit vector ~tp at p, while the terminal direction

of a and the initial direction of b are approximately −~tp; moreover, we

require the parallel transport of some unit vector ~np ⊥ ~tp at p along
either a or b is approximately ~np. Then a null homologous good curve ζ
can be constructed as the (reduced) cyclic concatenation of the commu-
tator word abāb̄. However, a fundamental calculation tells us that the
canonical lift ζ̂ represents the nontrivial element [ĉ] ∈ H1(SO(M);Z),
in general, (see Lemma 3.4). This should not be too surprising because
of the following intuition: If we were on an oriented closed hyperbolic
surface rather than in a 3-manifold, the same construction would work
perfectly well, but there would be no chance for ζ to bound an immersed
subsurface, since it has an odd self-intersection number.

We are, therefore, hinted to make some essential use of the extra
dimension. The trick is to intentionally misalign the invariant nor-
mal vectors of a and b with some small angular difference, and take
a suitable power of ζ to be the desired γ. For simplicity, let us as-
sume that the injectivity radius of M is not too small, say, at least
1. Choose two unit normal vectors ~np and ~np(2π/400), the rotation

of ~np about ~tp of the angle 2π/400. We construct the closed paths
a and b as before except asking a to preserve ~np and b to preserve
~np(2π/400), approximately. This causes some tiny nontrivial honolomy
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of the concatenated path abāb̄: The transport of ~np along the path be-
comes approximately ~np(2π/100). If we believe, for the intuitive reason

above, that the parallel transport path of the frame p = (~tp, ~np,~tp×~np)
along the commutator path is approximately relatively homologous to
the path of spinning frames p(φ) about ~tp parametrized by the angle
φ ∈ [0, 2π/100], then we can expect that the cyclically concatenated
path (abāb̄)100 gives rise to a null homologous good curve γ with a null
homologous canonical lift γ̂, as if the accumulated effect of the normal
spinning corrected the homology class of γ̂ from [ĉ] back to 0. To imple-
ment the idea, of course, we need to set up fundamental calculations and
estimates, and make careful choice of error scales and other constants.
The idea condenses roughly to Proposition 3.5, which is the heart of
Theorem 3.1.

The paper is organized as follows. In Section 2, we review the good
pants construction of Kahn–Markovic and its subsequent development.
In Section 3, we introduce our enhanced version of the connection prin-
ciple. The proof of Theorem 1.4 can be found at the end of that section.
Section 4 contains the proof of our theme result, Theorem 1.1. The es-
sential construction for Theorem 1.3 is presented in Section 5, and the
complete proof is summarized in Section 6.

Acknowledgments. The author would like to thank Ian Agol and Vlad
Markovic for many interesting and inspiring conversations. The author
also thanks Hongbin Sun for valuable communications.

2. Preliminaries

This section contains a compact introduction to the good pants
method. This method has been invented by J. Kahn and V. Markovic
[KM1] to resolve the Surface Subgroup Conjecture and developed by
various authors in subsequent works, see [Ha, KM2, LM, Sa, Su1,
Su2]. For closed hyperbolic 3-manifolds and potentially for other com-
pact rank-one locally symmetric spaces, it provides a package of tools
which enables one to conveniently construct certain π1–injectively im-
mersed 2-subcomplexes, especially nearly totally geodesic subsurfaces.
For the purpose of this paper, we restrict our discussion to closed hy-
perbolic 3-manifolds and include only a minimal collection of relevant
materials.

Let M be an oriented closed hyperbolic 3-manifold. The idea of the
good pants method is to produce π1–injectively immersed 2-complexes
in M by gluing pairs of good pants in a nice way along their common
cuffs, which are good curves. Roughly speaking, a good curve in M is
an oriented geodesic loop with nearly trivial holonomy; a pair of good
pants in M is an oriented immersed pair of pants which is nearly regular
and nearly totally geodesic.
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In quantitative terms, suppose that 0 < ε < 1 and R > 1 are given
constants, where ε is presumably very small and R very large. An
(R, ε)–curve is defined to be an oriented geodesic loop of complex length
approximately the real value R, with the error required to be at most
ε in absolute value of the difference. A pair of (R, ε)–pants is defined
to be an (unmarked) oriented immersed pair of pants with a few extra
requirements on its shape, as follows. First, the three cuffs are required
to be (R, ε)–curves. Under this assumption, there are three seams which
are topologically properly embedded arcs of the given pair of pants, and
which are geometrically uniquely realized as the common perpendicular
geodesic arcs between the cuffs. Hence, there are six well-defined feet,
namely, the unit normal vectors of the cuffs attached at the endpoints of
the seams pointing into the seams. Then we require, moreover, that each
foot of a cuff should be approximately equal to the parallel transport of
the other foot of that cuff, along the half cuff in the forward direction.
Here the error is measured in angle between unit normal vectors and it is
required to be at most ε. The point of these requirements is that it only
makes sense to speak of the complex half length of an (R, ε)–curve as a
cuff of a (nonsingular) π1–injectively immersed pair of pants, and being
a pair of good pants requires all the cuffs to have complex half length
ε–close to R/2 (rather than R/2+π·

√
−1). We do not distinguish (R, ε)–

curves which are the same up to change of parametrization, or (R, ε)-
pants which are the same up to homotopy and orientation-preserving
self-homeomorphism. The reader is referred to [KM1, Section 2] for
the original definition and [LM, Section 2] for expanded discussions.

Adopt the notations

ΓR,ε(M) = { (R, ε)–curves of M}; ΠR,ε(M) = { (R, ε)–pants of M }.

For any given constant ε, as long as R is sufficiently large, where an a
priori lower bound depends only on M and ε, ΓR,ε(M) and ΠR,ε(M)
are always non-empty. In fact, (R, ε)–curves and (R, ε)–pants can be
produced using the following basic construction, which is an immediate
consequence of the (exponential) mixing property of the frame flow, (see
[KM1, Lemma 4.4], [LM, Lemma 4.15]):

Proposition 2.1 (Connection principle). Let M be an oriented closed
hyperbolic 3-manifold. Let ~tp ⊥ ~np and ~tq ⊥ ~nq be two pairs of orthogo-
nal unit vectors at the points p and q of M , respectively.

Given any positive constant δ, and for every sufficiently large positive
constant L with respect to M and δ, there exists a geodesic path s in M
from p to q with the following properties:

• The length of s is δ–close to L. The initial direction of s is δ–
close to ~tp and the terminal direction of s is δ–close to ~tq, where
the distance is measured by the angle between unit vectors.
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• The parallel transport from p to q along s takes ~np to a unit vector
~n′q which is δ–close to ~nq.

Moreover, as the required cuff length R grows, there will eventually
be plenty of (R, ε)–pants and their feet tend to be very evenly dis-
tributed on the unit normal bundle over every (R, ε)–curve. By nicely
gluing a suitable collection of good pants along common cuffs, Kahn
and Markovic are able to resolve the Surface Subgroup Conjecture for
closed hyperbolic 3-manifolds [KM1]:

Theorem 2.2. Every closed hyperbolic 3-manifold contains a π1–
injectively immersed quasi-Fuchsian closed subsurface.

Associated with the constructed surface is a naturally induced pants
decomposition with markings, so the shape of surface can be described
by its complex Fenchel–Nielsen coordinates. In those terms, the com-
plex half length and the shearing parameter for each glued cuff C are
approximately (hl(C), s(C)) ≈ (R/2, 1). The first component has error
at most ε and the second component has error at most ε/R.

The relative version of the construction problem has been studied in
[LM], namely, whether a collection of good curves can bound a sub-
surface which is nicely glued from good pants. Regarding any given
collection of (R, ε)–curves (possibly with multiplicity) as an element of
the free integral module ZΓR,ε(M) (in the non-negative hyper-octant),
and, similarly, (R, ε)–pants as of ZΠR,ε(M), an obstruction to solving
the relative problem lies in the cokernel of the homomorphism:

∂ : ZΠR,ε(M) −→ ZΓR,ε(M)

defined by taking any pair of pants to the sum of its three cuffs. For
large R with respect to ε and M , the (R, ε)–panted cobordism group of
M is defined to be:

ΩR,ε(M) = ZΓR,ε(M) / ∂(ZΠR,ε(M)).

The group ΩR,ε(M) can be fully characterized by the following cor-
respondence [LM, Theorem 5.2]. We denote by SO(M) the SO(3)–
principal bundle over M of orthonormal frames with right orientation.

Theorem 2.3. For any sufficiently small positive constant ε with
respect to M , and any sufficiently large positive constant R with respect
to M and ε, there exists a canonical isomorphism:

Φ: ΩR,ε(M) −→ H1(SO(M); Z).

Moreover, for all γ ∈ ΓR,ε(M), the projection of Φ(γ) in H1(M ; Z)
equals the homology class of γ.

For the goal of this paper, it is important to understand the imple-
mentation of Φ. It suffices to specify the assignment of Φ to each curve
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γ ∈ ΓR,ε(M). In fact, the homology class Φ(γ) can be represented by
the canonical lift of the curve γ, denoted as

γ̂ ∈ π1(SO(M)),

and γ̂ is defined as follows.
Suppose that γ is an (R, ε)–curve. Take a special orthonormal frame

p = (~tp, ~np,~tp × ~np) ∈ SO(M) at a point p ∈ γ such that ~tp is the unit
tangent vector of γ at p. Here the cross notation stands for the cross
product for the oriented tangent space TpM with the Riemannian inner
product. For sufficiently large R with respect to M and ε, the parallel
transport of p along γ back to p is a frame p′ which can be connected
with p by a unique shortest path in SO(M)|p. Then the canonical lift
γ̂ can be represented by the closed path which is the concatenation of
three consecutive subpaths: The first is the parallel-transportation path
from p to p′ along γ; the second is a closed path in SO(M)|p based at
p′ which represents the unique nontrivial central element

ĉ ∈ π1(SO(M));

and the third is the shortest path in SO(M)|p connecting p′ and p. The
resulting loop of frames does not depend on the auxiliary choices up
to free homotopy in SO(M), so γ̂ ∈ π1(SO(M)) is well defined. Note
that the second sub-path above ensures that Φ vanishes on boundary of
pants.

It turns out that elements of ΩR,ε(M) are the only obstructions to
solving the relative construction problem. For simplicity, we state a
special case as follows. The case with multicurve boundary is completely
analogous, see [LM], [Su2, Corollary 2.7].

Theorem 2.4. For any sufficiently small positive constant ε with
respect to M , and any sufficiently large positive constant R with respect
to M and ε, the following statement holds true.

For any curve γ ∈ ΓR,ε(M), there exists an oriented, connected, π1–
injectively immersed quasi–Fuchsian subsurface of M which is (R, ε)–
panted and bounded by γ if and only if the canonical lift γ̂ ∈ π1(SO(M))
is null homologous in SO(M).

Note that Theorem 2.4 does not say anything about the existence of
(R, ε)–curves with homologically trivial canonical lifts. The existence
follows from Theorem 1.4, which is proved in the rest of this paper.

We finish this section with the following finer version of the good
pants method that we have discussed so far. This has been pointed out
by [Su2, Remark 2.9], see also [Sa], as a consequence of the exponential
mixing rate of the frame flow. In the rest of this paper, we adopt the
finer version so as to invoke some estimations from [Su1].
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Declaration 2.5. All the notations and results that have appeared
in this section remain compatible and true with the constant ε replaced
by ε/R, (and δ replaced by δ/L).

3. Connecting frames in a prescribed homology class

LetM be an oriented closed hyperbolic 3-manifold. Denote by SO(M)
the special orthonormal frame bundle over M . Let p and q be a pair of
(possibly coincident) frames in SO(M) at points p and q of M , respec-
tively. Denote by

π1(SO(M),p,q),

the set of relative homotopy classes of paths in SO(M) from p to q.

Each element ξ̂ of π1(SO(M),p,q) represents a relative homology class

[ξ̂] ∈ H1(SO(M),p ∪ q; Z) with the property ∂∗[ξ̂] = [q]− [p], where

∂∗ : H1(SO(M),p ∪ q; Z) −→ H0(p ∪ q; Z)

is the induced homomorphism of the relative pair (SO(M),p∪q). Since
the preimage ∂−1

∗ ([q] − [p]) is an affine H1(SO(M);Z), one may think

of the assignment ξ̂ 7→ [ξ̂] as a model of a natural relative grading
for π1(SO(M),p,q) such that the grading differences between elements
are valued in H1(SO(M); Z). In this way, π1(SO(M),p,q) decomposes
naturally into the disjoint union of its grading classes.

The following theorem is an enhanced version of the connection prin-
ciple which respects gradings.

Theorem 3.1. Let M be an oriented closed hyperbolic 3-manifold.
Let p = (~tp, ~np,~tp × ~np) and q = (~tq, ~nq,~tq × ~nq) in SO(M) be a pair
of special orthonormal frames at points p and q of M , respectively. Let
Ξ ∈ H1(SO(M),p ∪ q; Z) be a relative homology class with boundary

∂∗[ξ̂] = [q]− [p].
Given any positive constant δ, and for every sufficiently large positive

constant L with respect to M , Ξ, and δ, there exists a geodesic path s
in M from p to q with the following properties:

• The length of s is (δ/L)–close to L. The initial direction of s is
(δ/L)–close to ~tp and the terminal direction of s is (δ/L)–close to
~tq.
• The parallel transport from p to q along s takes p to a frame q′

which is (δ/L)–close to q, and there exists a unique shortest path
in SO(M)|q between q′ and q.
• Denote by ŝ the path which is the concatenation of the parallel-

transport path from p to q′ with the shortest path from q′ to q.
The relative homology class represented by ŝ ∈ π1(SO(M),p,q)
equals Ξ.



466 Y. LIU

Note that when p coincides with q, the union p∪ q is understood as
a single point in SO(M). The metric on SO(M) is considered to be the
naturally induced SO(3)–invariant Riemannian metric.

In the rest of this section, we prove Theorem 3.1 by construction.
We fix an oriented closed hyperbolic 3-manifold M throughout this sec-
tion.

3.1. Basic calculations for parallel-transport paths of frames.
We start by three calculations for the homology classes of frame paths.
The first calculation tells us that if we concatenate a consecutive chain
of long geodesic paths in M with small total bending, then parallel
transport of any frame along the concatenated path or its reduction
yields almost the same path of frames up to homotopy. The second
calculation is parallel to the first one, for the reduction of the cyclic
concatenation of a consecutive cycle. The third calculation considers
a special situation that if we concatenate a consecutive commutator
chain of long geodesic paths in M with small bending and twisting,
then parallel transport of any frame along the concatenated path yields
a path of frames which is almost closed and null homologous in the
frame bundle.

By a consecutive chain of geodesic paths in M , we mean a finite
sequence of oriented geodesic paths such that the terminal endpoint of
any member of the sequence, except the final one, is the initial endpoint
of its successor. The reduced concatenation of a consecutive chain is
the unique geodesic path in M which is homotopic to the concatenation
of the chain relative to the endpoints. A consecutive cycle of geodesic
paths is a chain whose last member has its terminal endpoint the same
as the initial point of the first one. The reduced cyclic concatenation is
the unique geodesic loop without base point which is freely homotopic
to the cyclic concatenation of the cycle.

We do not attempt to make the most economic choices for universal
constants in the estimates. Instead, powers of ten are often used, and
the power roughly counts the number of basic steps that have been
taken.

Lemma 3.2. Let s1, · · · , sm be a consecutive chain of m geodesic
paths in M . Suppose that the length of each si is at least L, and suppose
that the terminal direction of each si, except sm, is δ–close to the initial
direction of si+1. Denote by s the reduced concatenation of s1, · · · , sm.
Let p be a frame in SO(M) at the initial endpoint p of s1. Denote by q
and q′ the parallel transport of p along the concatenation of s1, · · · , sm
and along s to the terminal endpoint q of sm, respectively.

Then for universally small mδ and sufficiently large L with respect to
δ, there exists a unique shortest path in SO(M)|q from q′ to q. More-
over, the parallel-transport path from p to q is homotopic to the con-
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catenation of the parallel-transport path from p to q′ and the shortest
path in SO(M)|q from q′ to q.

In fact, it suffices to require mδ to be so small that any ball of radius
100mδ can be embedded in any fiber of SO(M), and the following proof
implies that the asserted unique shortest geodesic has length bounded
by 100mδ.

Proof. First consider the basic case if m equals 2. Then the consecu-
tive geodesic paths s1, s2 spans a unique geodesic 2-simplex T , which is
immersed in M , and the reduced concatenated path s is geometrically
the third edge of T . For universally small δ and sufficiently large L with
respect to δ, the area of T can be bounded by 2δ. As parallel transport
takes any frame p ∈ SO(M)|p along the chain s1, s2 to q ∈ SO(M)|q,
and along s to q′ ∈ SO(M)|q, it follows that the distance between q
and q′ can be bounded by 10δ. We may, in addition, require that δ is
so small that any ball of radius 100δ in SO(M)|q is embedded. Then
there is a unique path of the shortest length in SO(M)|q connecting q′

and q, which we denote as η̂.
To see the claimed homotopy in this case, let h : [0, 1] → T be the

altitude of T on the side s so that h(1) is the joint point of s1 and s2,
and h(0) lies on s. For a parameter t ∈ [0, 1], consider the t-family
of consecutive chains s1(h(t)), s2(h(t)) in T which is formed by the

two geodesic segments [p, h(t)] and [h(t), q]. Denote by ξ̂t the path of
frames given by the parallel transport of p along the concatenation of
s1(h(t)), s2(h(t)). As t ∈ [0, 1] varies, the endpoint of ξ̂t in SO(M)|q
gives rise to a path η̂′ from q′ to q. It follows from the construction
of ξ̂t that ξ̂0η̂

′ is homotopic to ξ̂1, the parallel-transport path along the
concatenated chain s1, s2. On the other hand, the distance estimation
as above can also be applied for pairs of points on η̂′, so η̂′ has diameter
bounded by 10δ in SO(M)|q. It follows that η̂′ can be homotoped to η̂

within SO(M)|q. Then ξ̂1 is homotopic to ξ̂0η̂, which proves the basic
case.

The general case can be done by applying the basic case for m −
1 times. In other words, we triangulate the polygon formed by the
consecutive chain s1, · · · , sm and the reduced concatenation s by adding
diagonals, and then apply the basic case to each geodesic 2-simplex
that fills a triangle. (See [LM, Lemma 4.8 (a)] for the geometry of the
diagonals.) Then the total area of the 2-simplices is bounded by about
mδ. When this quantity is small enough, q′ and q can be connected
by a uniquely shortest path in SO(M)|q, of length at most 100mδ. We
omit the details because the estimation is straightforward. q.e.d.

Lemma 3.3. Let s1, · · · , sm be a consecutive cycle of m geodesic
paths in M . Suppose that the length of each si is at least L, and suppose
that the terminal direction of each si is δ–close to the initial direction of
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si+1, where sm+1 means s1. Denote by γ the reduced cyclic concatena-
tion of s1, · · · , sm. Let p be a frame in SO(M) at the initial endpoint p
of s1. Denote by p′ the parallel transport of p along the cyclic concate-
nation of s1, · · · , sm back to p. Let q be a frame in SO(M) at a point
q′ ∈ γ. Denote by q′ the parallel transport of q along γ back to q.

Then for universally small (mδ) and sufficiently large L with respect
to δ, there exist unique shortest paths in SO(M)|p from p′ to p, and in
SO(M)|q from q′ to q. Moreover, the cyclic concatenation of parallel-
transport path from p to p′ with the shortest path in SO(M)|p from p′ to
p is freely homotopic to the cyclic concatenation of the parallel-transport
path from q to q′ with and the shortest path in SO(M)|q from q′ to q.

Proof. Note that under the assumptions, the annulus between the
cyclic concatenation of the cycle and its reduction can be chosen to
have small area, and q ∈ γ can be chosen 10δ–close to p. See [LM,
Lemma 4.8 (b)] for the geometry. Then the lemma can be proved in a
way similar to Lemma 3.2. q.e.d.

Lemma 3.4. Let a, b be a pair of geodesic paths in M with all the
endpoints the same point p. Suppose that there exists a unit vector ~t
at ~p such that ~t is δ–close to the initial direction of a and the terminal
direction of b, and that −~t is δ–close to the terminal direction of a and
the initial direction of b. Moreover, suppose that there exists a unit
vector ~n ⊥ ~t at p of which the parallel transport along a and along b are
both δ–close to ~n. Let p be a frame in SO(M) at p. Denote by q the
parallel transport of p along the concatenated path abāb̄, where the bar
notation stands for the orientation reversal.

Then for universally small δ, there exists a unique shortest path in
SO(M)|p from q to p. Moreover, the concatenation of the parallel-
transport path from p to q and the shortest path in SO(M)|p from q to
p is null homologous in SO(M).

Proof. Observe that it suffices to prove the lemma for a specific frame
p in SO(M)|p. In fact, suppose that we have found a (cellular) 2-
chain C = k1σ1 + · · ·+ krσr bounded by the claimed cycle for p, where
σi : D

2 → SO(M) are 2-cells. Since any other frame p′ in SO(M)|p can
be written as p · g where g ∈ SO(3) is a constant matrix, the 2-chain
C · g = k1σ1 · g + · · · + krσr · g is bounded by the claimed cycle for
p′. This is because the right action of SO(3) on the principal bundle
SO(M) preserves the metric and commutes with parallel transport.

In the rest of the proof, we argue for the frame p = (~t, ~n,~t × ~n) in
SO(M)|p. Denote by p† ∈ SO(M) the frame (−~t, ~n,−~t× ~n).

For universally small δ, we may assume that any ball of radius 1000δ
in SO(M)|p is embedded. By the assumption, the parallel transport of
p consequentially along a, b, ā, b̄ gives rise to four frames p1, · · · ,p4 ∈
SO(M)|p such that p1 and p3 lie in the (100δ)–neighborhood of p†,
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while p2 and p4 lie in the (100δ)–neighborhood of p. Note that p4 = q,
and it is already clear that q can be connected by a unique shortest
path in SO(M)|p.

It remains to show that the claimed cycle is a boundary in SO(M).
Writing p0 = p, the claimed cycle is the sum of the parallel-transport
paths [pi,pi+1] for i= 0, 1, 2, 3 and the shortest path [p4,p0] in SO(M)|p.
We argue by homologically simplifying the claimed cycle until it is ob-
viously null homologous in SO(M). To this end, denote by

p ·RN (θ) ∈ SO(M)|p,
the rotation of p about ~n by an angle θ, which is given by the right
action of the matrix

RN (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ∈ SO(3).

Note that p·RN (0) = p and p·RN (π) = p†. Denote by p†i = pi ·RN (π),

and by ξ̂i the path from pi to p†i , parametrized as p·RN (θ) for θ ∈ [0, π].
We have approximately

p0,p
†
1,p2,p

†
3,p4 ≈ p,

with error at most 100δ from p, and, similarly,

p†0,p1,p
†
2,p3,p

†
4 ≈ p†.

By our assumption on the smallness of δ, those frames near p, or p†

respectively, can be mutually connected by unique shortest paths in
SO(M)|p.

Consider the paths [p0,p1] and [p2,p3]. Because there is a rectangle
parametrized as a family of parallel-transport paths [p2,p3]·RN (θ) along
ā where θ ∈ [0, π], the path [p2,p3] is homologous to the (1-chain) sum of

ξ̂2 and [p2,p3] ·RN (π) and −ξ̂3. The middle term [p2,p3] ·RN (π) equals

the parallel-transport path from p†2 along ā, where p†2 is approximately
p†. Since [p0,p1] is the parallel-transport path from p0 along a, where
p0 is approximately p, the path [p2,p3]·RN (π) is almost the orientation
reversal of [p0,p1]. More precisely, their sum is homologous to the sum

of the shortest paths [p0,p
†
3] and [p†2,p1] near p and p†, respectively.

This yields

[p0,p1] + [p2,p3] = ξ̂2 − ξ̂3 + [p0,p
†
3] + [p†2,p1],

as 1-chains of SO(M) modulo 1-boundaries. Similarly,

[p1,p2] + [p3,p4] = ξ̂3 − ξ̂4 + [p1,p
†
4] + [p†3,p2],

modulo 1-boundaries. Since p2 and p4 are near to each other,

ξ̂2 − ξ̂4 = −[p†2,p
†
4]− [p4,p2],
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modulo 1-boundaries. Therefore, the claimed cycle

[p0,p1] + [p1,p2] + [p2,p3] + [p3,p4] + [p4,p0]

is equal to a linear combination of shortest paths in SO(M)|p that are

near p or p†, modulo 1-boundaries of SO(M). It follows that the claimed
cycle is null homologous in SO(M). q.e.d.

3.2. Substitution for paths of spinning frames. Given a parameter
φ ∈ R, and for any frame p = (~tp, ~np,~tp × ~np) in SO(M) at a point p in
M , we denote by

p(φ) = (~tp, ~np(φ),~tp × ~np(φ)) ∈ SO(M)|p,
the rotation of p about ~tp by an angle φ. In other words,

p(φ) = p ·RT (φ),

where RT (φ) ∈ SO(3) stands for the matrix

RT (φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 .
This gives rise to a 1-parameter family of spinning frames

p ·RT : R→ SO(M)|p.

Proposition 3.5. Let p = (~tp, ~np,~tp × ~np) in SO(M) be a frame at
a point p in M . Let φ ∈ R be a constant and denote by ω̂ the path of
spinning frames from p to p(φ) which is parametrized by the interval
[0, φ].

Given any positive constant δ, and for every sufficiently large L with
respect to M and δ, there exists a geodesic path s in M with both end-
points p which satisfies the following requirements:

• The length of s is (δ/L)–close to L. The initial direction and the
terminal direction of s are both (δ/L)–close to ~tp.
• The parallel transport from p back to p along s takes p to a frame

q′ which is (δ/L)–close to p(φ), and there exists a unique shortest
path in SO(M)|p between q′ and p(φ).
• Denote by ŝ the path which is the concatenation the parallel-trans-

port path from p to q′ with the shortest path from q′ to p(φ).
The relative homology class represented by ŝ ∈ π1(SO(M),p,p(φ))
equals [ω̂] ∈ H1(SO(M),p ∪ p(φ); Z).

3.2.1. The local case. Supposing that φ is given with |φ| small enough,
we first show a local case of Proposition 3.5, namely, for any δ > 0 at
most |φ|, and any for sufficiently large L > 0 with respect to M and δ,
the geodesic path s in M can be constructed with the asserted properties
of Proposition 3.5.

To be specific, it suffices to require |φ| to be so small that the (|φ| ×
104)–neighborhood of p is embedded in SO(M)|p. Then the path of
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spinning frames p ·RT : [0, 10φ]→ SO(M)|p is the unique shortest path
between p and p(10φ) in SO(M)|p. Then for any 0 < δ < |φ|, we require
L > 1 to be so large that the connection principle can be applied with
respect to δ × 10−3.

The construction of the local case is as follows. By the connection
principle, we construct geodesic paths a and b in M with all endpoints
p of the following shape (or pose):

• The length of a is (δ/100L)–close to L/4. The same holds for the
length of b.
• The initial direction and the terminal direction of a are (δ/100L)–

close to ~tp and −~tp respectively. Oppositely, the initial direction

and the terminal direction of b are (δ/100L)–close to −~tp and ~tp
respectively.
• The parallel transport along a takes ~np back to ~np up to an error

at most δ/100L in angle. However, the parallel transport along b
takes ~np to ~np(φ/2) with error at most δ/100L.

The asserted path s can be taken as the reduced concatenation of the
consecutive chain

a, b, ā, b̄,

where the bar notation stands for orientation reversal. In other words, s
is the unique geodesic path inM which is homotopic to the concatenated
path relative to the endpoints. We check that the constructed path s
satisfies the requirements of Proposition 3.5 as follows.

The first requirement about the length and directions at endpoints
of s follows from the length estimate of [LM, Lemma 4.8 (1)].

The second requirement about the parallel transport of p along s can
be checked by considering the effect on the basis vectors. The parallel
transport of ~tp along s ends up (δ/10L)–close to ~tp by the direction es-
timates of the first requirement with slightly more careful control of the
error. The parallel transport of ~np consequentially along a, b, ā, b̄ results
in four vectors which are (δ/10L)–close to ~np, ~np(φ/2), ~np(−φ/2), ~np(φ)
respectively. This is because the effect of parallel transport of vectors
~u ⊥ ~t along a or ā is approximately the reflection about the axis R~np in

the orthogonal complement of ~tp, while along b or b̄ the axis is R~np(φ/4).
Then the parallel transport of ~np along the reduced concatenation s can
be estimated by the phase estimate of [LM, Lemma 4.8 (2)], (choos-
ing auxiliary framing of the segments a, b, ā, b̄ approximately the four
vectors above). Combining the estimates for the parallel transport of
~tp and ~np yields the desired estimation for the distance between q′ and
p(φ).

The third requirement on the homology class of ŝ is satisfied because
of Lemmas 3.2 and 3.4. In fact, applying those lemmas with δ there
taken to be |10φ|, it follows that parallel transport along s takes p to
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a frame q′ ∈ SO(M)|p which can be connected to p(φ) along a unique
shortest path [q′,p] in SO(M)|p. Moreover, the parallel-transport path
[p,q′] concatenated with the short path [q′,p] represents a 1-cycle which
is null homologous in SO(M). Since φ is small as chosen, the short
path [q′,p] is homotopic, relative to endpoints, to the concatenation of
the shortest path [q′,p(φ)] in SO(M)|p with the reversal of the frame-
spinning path ω̂ = [p,p(φ)].

Therefore, the path s constructed above meets all the requirements
of Proposition 3.5, as claimed for the local case.

3.2.2. The general case. We proceed to prove the general case of
Proposition 3.5. Let p = (~tp, ~np,~tp × ~np) in SO(M) be a frame at a
point p in M , and let φ ∈ R be an arbitrarily given constant.

Note that replacing φ with φ+ 4kπ for any integer k does not change
the homology class of the frame-spinning path [ω̂] ∈ H1(SO(M),p ∪
p(φ);Z), because π1(SO(M)|p) ∼= Z2. Hence, we may assume that φ ∈
[4π, 8π), and for some universally large integer D > 0, say 105, we may
assume that the value

φD = φ/D > 0

is as small as applicable to the local case. In particular, any ball of
radius 1000φD in SO(M)|p is embedded. Given any δ > 0, we may
assume that 1000δ < 4π/D, possibly after replacing it with a smaller
value. This ensures that any ball of radius 100δ in SO(M)|p is convex
and isometrically embedded. Let L > 1 be so large that LD = L/D
works for the local case with respect to δD = δ/D2.

Under the setting above, we construct the asserted path s as follows.
By applying the local case, we obtain a geodesic path sD, so that all
the requirements of Proposition 3.5 are satisfied by sD with respect to
the describing parameters (φD, δD, LD). We take the asserted geodesic
path s in M to be the reduced concatenation of the consecutive chain
of paths in M :

a1, · · · , aD,
which consists of D copies ai of sD.

The first two requirements of Proposition 3.5 can be shown to be
satisfied by s using a similar argument as the local case, which applies
the estimates of [LM, Lemma 4.8]. It remains to check that the almost
parallel-transport path ŝ ∈ π1(SO(M),p,p(φ)) in the third require-
ment of Proposition 3.5 is homologous to the frame-spinning path ω̂ in
H1(SO(M),p ∪ p(φ);Z).

To this end, write ω̂ as the concatenation of consecutive subpaths
ω̂1, · · · , ω̂D, where ω̂i is the frame-spinning path parametrized by the
subinterval [(i − 1)φD, iφD] of [0, φ]. The terminal endpoint of ω̂i is
the frame pi = p(iφD). Parallel transport of p consequentially along
a1, · · · , aD gives rise to a sequence of points q1, · · · ,qD. We also set
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q0 = p. Since each ai is a copy of sD, it is easy to estimate that parallel-
transport along ai takes pi−1 to a frame p′i in SO(M)|p, which lies in
the (100δD)–neighborhood of pi; and, hence, it can be estimated that
qi lies in the (100δ/D)–neighborhood of pi. By our assumption, the
balls Bi of radius 100δ centered at pi are mutually disjointly embed-
ded in SO(M)|p, and any pair of frames in each Bi can be connected
by a unique shortest path in Bi. The fact that ai is a copy of sD im-
plies that, as a 1-chain of SO(M), the parallel-transport path [qi−1,qi]
equals ω̂i plus some 1-chains in Bi−1 and Bi, modulo 1-boundaries of
SO(M). It follows that the consequential concatenation of [qi−1,qi],
where i = 0, · · · , D − 1, is equal to ω̂ plus 1-chains in ∪iBi modulo 1-
boundaries of SO(M). By Lemma 3.2, the consequential concatenation
of the D paths [qi−1,qi] equals the parallel-transport path [p,q′] of p
along s, up to 1-chains of BD and 1-boundaries of SO(M). It follows
that the almost parallel-transport path ŝ in the third requirement of
Proposition 3.5 differs from ω̂ only by 1-boundaries of SO(M) and 1-
cycles of ∪iBi, which are again 1-boundaries of SO(M). This verifies
the third requirement of Proposition 3.5.

Therefore, we have completed the proof of Proposition 3.5 in the
general case.

3.3. Connecting frames in a grading class. In this section, we
prove Theorem 3.1. Suppose that p = (~tp, ~np,~tp×~np) and q = (~tq, ~nq,~tq×
~nq) in SO(M) be frames given at points p and q of M , respectively. For
any given relative homology class Ξ ∈ H1(SO(M),p∪ q; Z), the goal is
to construct a geodesic segment s in M from p to q so that the parallel-
transportation path of p along s almost represents Ξ. Furthermore, for
any given constant δ > 0, we want s to have length approximately L,
and transport p approximately to q, with error bounded by δ/L, and
we want the construction to be possible for any sufficiently large L > 0.

The recipe consists of three steps: First, we construct a geodesic seg-
ment w from p to q which realizes the projection of Ξ in H1(M,p∪q;Z).
Then we adjust w by concatenating it nearly smoothly with null homol-
ogous closed geodesic paths a, b based at p, q respectively, so that the
reduced concatenation awb have approximately the wanted directions
at the endpoints. Finally, we adjust the awb by further concatenating it
with a frame-spinning path z based at q, in a nearly smooth fashion, so
that the parallel-transport path induced by the reduced concatenation
awbz almost represents Ξ. We can appropriately choose the length of
the paths a,w, b, z so that their reduced concatenation awbz yields the
desired segment s.

To be precise, suppose that a constant δ > 0 is given. Possibly
after replacing it with a smaller value (depending the injectivity radius
of M), we may assume, in addition, that any ball of radius 1000δ is
embedded in SO(M). At this point, we simply assume that L > 1
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is any arbitrary constant which is sufficiently large to enable all the
participating constructions and estimates in our recipe. A specific lower
bound for L is summarized at the end of our recipe.

The recipe for constructing the asserted s is as follows.
Step 1. We take w to be a geodesic path in M from p to q which

realizes the projection of Ξ in H1(M,p ∪ q;Z). Here the projection is
induced by the projection map SO(M) → M . Since all but finitely
many such w are long, for any constant K0 = K0(δ) > 1, to be specified
later, we may assume that the length of w is at least K0. On the other
hand, there exists a constant

K1 = K1(K0,M,Ξ) > K0,

so that the length of w is at most K1, such as the minimal length of
paths in the projection of Ξ of length at least K0 +1. Denote the length
of w by

K0 < `(w) < K1.

Step 2. We take a to be a geodesic path in M from p to p, and b a
geodesic path in M from q to q, so that the following properties hold.

• The length `(a) of a is (δ/100L)–close to L/4−`(w)/2. The initial
direction of a is (δ/100L)–close to ~tp, and the terminal direction
of a is (δ/100L)–close to the initial direction of w. Moreover, a is
null homologous in M .
• The length `(b) of b is (δ/100L)–close to L/4− `(w)/2. The initial

direction of b is (δ/100L)–close to the terminal direction of w, and
the terminal direction of b is (δ/100L)–close to ~tq. Moreover, b is
null homologous in M .

The geodesic path a can be taken to be the reduced concatenation of a
commutator of two suitably chosen geodesic paths at p, and, similarly,
can we construct b. An explicit construction can be found in [Su2,
Lemma 3.4]. For example, to invoke the lemma to create a geodesic
path a, one may take the vectors ~v1 and ~v2 there to be ~tp and the initial
direction of w, and the vector ~n there to be any unit vector perpendicular
to both ~v1 and ~v2. Let

L1 = L1(δ,K1,M) > 10K1

be an a priori lower bound for L to enable the construction for a and
b. Note that `(a) and `(b) are, hence, at least K0.

Step 3. We take z to be a geodesic path in M from q to q as follows.
Recall that the notation q(φ) stands for the rotation of q about ~tq by
an angle φ. By our construction, the parallel transport of ~np consequen-
tially along a,w, b is a unit vector ~m at q which is nearly orthogonal to
~tq. Pick a value φ ∈ R such that ~nq(−φ) minimizes the distance to ~m

among unit vectors orthogonal to ~tq. We apply Proposition 3.5 to con-
struct two candidates of z, denoted as z↑ and z↓. One of them satisfies
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the following properties, and the other satisfies the same properties but
with φ replaced by φ+ 2π.

• The length of z is (δ/100L)–close to L/2. The initial direction and
the terminal direction of z are both (δ/100L)–close to ~tq.
• The parallel transport from q back to q along z takes q(−φ) to a

frame q′ which is (δ/100L)–close to q, and there exists a unique
shortest path in SO(M)|p between q′ and q.
• Denote by ẑ the path which is the concatenation the parallel-

transport path from q(−φ) to q′ with the shortest path from q′

to q. The relative homology class represented by ẑ ∈ π1(SO(M),
q(−φ),q) equals [ω̂] ∈ H1(SO(M),q(−φ) ∪ q; Z), where [ω̂] de-
notes the framing-spinning path from q(−φ) to q, (see Proposition
3.5).

Note that q(−φ) = q(−φ− 2π) but the corresponding [ω̂] are different
for the two candidates, so the relative homology classes

[ẑ↑], [ẑ↓] ∈ H1(SO(M),q(−φ) ∪ q; Z)

differ exactly by the canonical element [ĉ] ∈ H1(SO(M);Z) of order 2,
namely, the nontrivial element of H1(SO(M)|q;Z) ∼= Z2. Let

L2 = L2(δ,K0,M) > K0

be a lower bound for L so that the application of Proposition 3.5 is
valid.

The geodesic path w, a, b, z↑, z↓ that we have constructed are all longer
than the presumed constant K0 > 1. According to [LM, Lemma 4.9]
and Lemma 3.2 we can choose K0 = K0(δ) > 1 to be sufficiently large,
then both of the geodesic paths s↑ = awbz↑ and s↓ = awbz↓, which
are obtained by reduced concatenation, satisfy the first two asserted
properties of Theorem 3.1. Regarding to the third property, s↑ and s↓
give rise to two paths of frames ŝ↑ and ŝ↓ from p to q, and exactly one
of them represents Ξ ∈ H1(SO(M),p ∪ q;Z) while the other represents
Ξ + [ĉ].

To finish our recipe, we take the correct z and the corresponding
reduced concatenation

s = awbz,

so that ŝ represents Ξ. Then the geodesic path s in M from p to q meets
all the asserted properties of Theorem 3.1.

To summarize, suppose that p, q in SO(M) are given. For any con-
stant δ > 0, we choose constants K0, K1, L1, and L2 in order, and
take

L3 = L3(δ,M,Ξ) = max(L1, L2).

Then for any constant L > L3, the asserted geodesic path s in M from
p to q of Theorem 3.1 can be construction following the recipe above.

This completes the proof of Theorem 3.1.
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3.4. Proof of Theorem 1.4. We derive Theorem 1.4 from the relative
version Theorem 3.1 as follows.

Given any homology class Ξ ∈ H1(SO(M);Z) and any constant ε >
0, we take an arbitrary frame p = (~tp, ~np,~tp × ~np) ∈ SO(M)|p at a
point p ∈ M . Identify H1(SO(M);Z) naturally with H1(SO(M),p;Z).
Denote by

ĉ ∈ π1(SO(M)),

the nontrivial central element, which is unique of order 2. For suffi-
ciently large R with respect to ε, M , and Ξ + [ĉ], we apply Theorem
3.1 to construct a geodesic path s in M from p to p with the following
properties:

• The length of s is (ε/10R)–close to R. The initial direction and
the terminal directions are both (ε/10R)–close to ~tp.
• The parallel transport of p along s is a frame p′ ∈ SO(M)|p which

is (ε/10R)–close to p.
• The asserted concatenated path ŝ represents Ξ+[ĉ] in H1(SO(M),

p;Z).

Denote by γ the unique free geodesic loop which is freely homotopic to
the closed path s.

It follows from Lemma 3.3 that γ is an (R, ε/R)–curve. Moreover, for
any frame q at a point q ∈ γ, the cyclic concatenation of the parallel-
transport path [q,q′] of q around γ with the shortest path [q′,q] in
SO(M)|q is freely homotopic to the closed path ŝ in SO(M), but its
free homotopy class differs from the canonical lift γ̂ ∈ π1(SO(M)) by a
factor ĉ, (see Section 2). Therefore, [γ̂] equals Ξ in H1(SO(M);Z), as
desired.

This completes the proof of Theorem 1.4.

4. Subsurface of odd Euler characteristic

In this section, we construct immersed quasi-Fuchsian subsurfaces
of odd Euler characteristic in closed hyperbolic 3-manifolds, proving
Theorem 1.1.

Let M be a closed hyperbolic 3-manifold. Without loss of general-
ity, we assume that M is orientable and fix an orientation, otherwise
we pass to an orientable double cover. Denote by SO(M) the special
orthonormal frame bundle over M .

Take an arbitrary frame in SO(M) at a point p in M , denote as

p = (~tp, ~np,~tp × ~np).
Denote by p∗ ∈ SO(M)|p the frame

p∗ = (~tp,−~np,−~tp × ~np).
For a sufficiently small constant ε > 0 and some sufficiently large con-
stant R > 1, which we specify in the summary at the end of the proof,
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we apply Theorem 3.1 to construct a geodesic path s in M with both
endpoints p satisfying the following requirements:

• The length of s is (ε/100R)–close to R/2. The initial direction
and the terminal direction of s are both (ε/100R)–close to ~tp.
• The parallel transport of p along s back to p is (ε/100R)–close to

p∗.
• The closed path s in null homologous in H1(M ;Z).

Note that there are two qualified candidates for the relative homology
class Ξ = [ŝ] in H1(SO(M),p ∪ p∗; Z) as of Theorem 3.1, differing
from each other by the homology class of the central nontrivial element
ĉ ∈ π1(SO(M)). Either of them works fine. For sufficiently small ε and
large R, the closed geodesic loop of M which is freely homotopic to the
cyclic concatenation of two copies of s is a good curve:

γ ∈ ΓR,ε(M).

The closed geodesic loop of M freely homotopic to s itself, denoted as
√
γ ∈ π1(M)

is not good. It is doubly covered by γ, and has complex length approx-
imately R/2 + π ·

√
−1, with error at most ε/2R in absolute value.

For sufficiently small ε and large R, we observe the following fact:

Lemma 4.1. The canonical lift γ̂ ∈ π1(SO(M)) is null homologous
in SO(M).

Proof. Since the element s ∈ π1(M,p) is homologically trivial, there
exists a path of frames α̂ ∈ π1(SO(M),p,p∗) which is contained in
SO(M)|p, such that the path ŝ from p to p∗ as in the conclusion of
Theorem 3.1 is relatively homologous to α̂. Denote by RT (π) ∈ SO(3)
the matrix

RT (π) =

 1 0 0
0 −1 0
0 0 −1

 .
It follows that the path

α∗ = α̂ ·RT (π),

from p∗ to p is relatively homologous to ŝ·RT (π). By Lemma 3.3 and the
definition of the canonical lift, the cyclic concatenation of ŝ with ŝ·RT (π)
differs from γ̂ by a factor ĉ, as an element of π1(SO(M)). On the other
hand, the concatenation of α̂ with α̂∗ represents ĉ in π1(SO(M)) by the
topology of SO(3). We conclude that γ̂ is homologically 2[ĉ] = 0 in
H1(SO(M);Z). q.e.d.

Therefore, it follows from Theorem 2.4 that there exists a π1-injec-
tively immersed, (R, ε)–panted, connected, quasi-Fuchsian subsurface

F #M,
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which is oriented and bounded by γ. In fact, the complex Fenchel–
Nielsen coordinates associated to any glued cuff C of F can be re-
quired to satisfy (hl(C), s(C)) ≈ (R/2, 1) with error at most (ε/R, ε/R2)
componentwise, the same as in the original construction of Kahn and
Markovic (Theorem 2.2 and Declaration 2.5).

We would like to identify every pair of antipodal points of γ, or topo-
logically to glue to the boundary of F a Möbius band with the core√
γ, so as to produce an immersed non-orientable subsurface Σ as our

output. However, to guarantee that Σ is π1–injective, we want to make
sure that geometrically F contains no properly embedded essential arcs
which are relatively short compared to R. This is the last technical
point that we need to address before completing the construction.

To this end, denote by G(F ) the dual graph of the inherited pants
decomposition of F . Namely, the vertices of G(F ) are the (R, ε)–pants
of F , and the edges of G(F ) are the glued cuffs, which are the (R, ε)–
curves in the interior of F . The graph G(F ) is trivalent except at the
distinguished valence-2 vertex P0 which contains ∂F .

Lemma 4.2. The panted subsurface F can be constructed to satisfy
the extra condition that every non-contractible closed combinatorial path
of G(F ) based at P0 has combinatorial length at least ReR/4.

Proof. Suppose that F0 is an oriented connected (R, ε)–panted sub-
surface with connected boundary γ, as guaranteed by Theorem 2.4. We
may require F0 to have complex Fenchel–Nielsen coordinates
(ε/R, ε/R2)–close to (R/2, 1) for every glued cuff. See [Su2, Corollary
2.7] for an outline of the construction based on [LM].

Denote by P0 the distinguished pair of pants of F0 with one cuff ∂F .
Denote by C1, C2 the other two cuffs of P0, and P1, P2 the other two
pairs of pants adjacent to P0 along C1, C2 accordingly. Take an oriented
connected closed (R, ε)–panted surface E with complex Fenchel–Nielsen
coordinates (ε/R, ε/R2)–close to (R/2, 1), (Theorem 2.2). We may re-
quire that (the pants types of) P1 and P2 also appear in the inherited
pants decomposition of E. This follows from [LM, Theorems 2.9 and
2.10]. Possibly after passing to a finite cover of E induced by a regular
finite cover of the dual graph G(E), we may assume that every embed-

ded cycle of G(E) has combinatorial length at least ReR/4 and no edge
of G(E) is separating.

We modify F0 to obtain a new subsurface F with the asserted prop-
erty. Take a copy E′ of E such that some pair of pants P ′1 ⊂ E′ has the
same pants type of P1, with a cuff C ′1 corresponding to C1. Denote by
P ′ ⊂ E′ the pants adjacent to P ′1 along C ′1. We make a cross change
between F0 and E′ along the parallel glued cuffs C1 and C ′1. Namely,
cut F0 along C1, and E′ along C ′1; identify the new unglued cuff of P ′1
with the new unglued cuff of P0, and, similarly, glue the pants P1 and P ′

along their new unglued cuffs. In the same way, we make a cross change
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between F0 and another copy E′′ of E along cuffs corresponding to C2.
In effect, we obtain a new (R, ε)–panted subsurface F which is oriented
and bounded by γ. The complex Fenchel–Nielsen coordinates remain
(ε/R, ε/R2)–close to (R, 1). The pants decomposition graph G(F ) is
obtained from G(F0) and two copies of G(E) by two cross changes of
edges corresponding to C1 and C2. It is straightforward to see that G(F )
has no non-contractible closed path based at P0 of combinatorial length
smaller than ReR/4. Therefore, the panted subsurface F is as desired.

q.e.d.

Take F to be a connected oriented (R, ε)–panted immersed subsurface
of M bounded by the (R, ε)–curve γ, such that the complex Fenchel–
Nielsen coordinates are approximately (R/2, 1) for every glued cuff, with
error at most (ε/R, ε/R2) componentwise. Suppose, in addition, that
the pants decomposition graph G(F ) satisfies the conclusion of Lemma
4.2. Since γ doubly cover the closed geodesic

√
γ of M , the pre-image

of any point of
√
γ is a pair of antipodal points in γ. We identify every

pair of antipodal points of ∂F accordingly.
The result is a connected closed immersed subsurface

Σ #M,

which is no longer orientable. However, it is π1–injectively immersed and
geometrically finite, hence, quasi–Fuchsian, by a geometric criterion due
to H. Sun [Su1, Theorem 2.6]. Furthermore, the Euler characteristic of
S can be computed by:

χ(Σ) = χ(F ) = 1− 2 · genus(F ),

which is an odd number.
In summary, we can choose some sufficiently small ε > 0 accord-

ing to M and some sufficiently large R > 0 according to M and ε, and
construct a closed quasi–Fuchsian subsurface Σ #M of odd Euler char-
acteristic as asserted. Fixing a choice of ε, it suffices to require that R
should be so large that all the constructions and estimates that we have
done work.

This completes the proof of Theorem 1.1.

5. Irregular exhausting tower with exponential torsion
growth

In this section, we present the core construction of Theorem 1.3,
which can be stated in slightly more details as follows.

Proposition 5.1. Let M be an orientable closed hyperbolic 3-mani-
fold. Suppose that there are closed surfaces S and Σ, and there are
maps ιS : S → M , and ιΣ : Σ → M , and ρ : M → S with the following
properties:
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• The surface S is orientable, and Σ of odd Euler characteristic.
• The maps ιS and ιΣ are embeddings with mutually disjoint images.
• The composition ρ ◦ ιS is homotopic to the identity, and the com-

position ρ ◦ ιΣ is homotopic to a constant point map.

Then for any constant 0 < ε < 1 and any base point ∗ of M , there exists
a tower of finite covers of M with distinguished lifted base points:

· · · −→ (M̃n, õn) −→ · · · −→ (M̃2, õ2) −→ (M̃1, õ1) −→ (M, ∗).

Moreover, the following requirements are satisfied:

• The injectivity radii of M̃n at the base points are unbounded.
• The number of distinct lifts of ιΣ into each M̃n is at least (1− ε) ·

[M̃n : M ]. Hence,

lim
n→∞

log |Tor1(H1(M̃n;Z),Z2)|
[M̃n : M ]

≥ (1− ε) log 2.

To illustrate the strategy, let us briefly explain the first move. That
is, given a nontrivial element g1 ∈ π(M, ∗), how to construct a finite

cover (M̃1, õ1) into which g1 does not lift but many Σ lifts. We can first
take a cyclic cover (M ′1, o

′
1) dual to S of some large degree d. Writing

V for the complement of S in M , we can decompose M ′1 into d lifted
copies Vi of V , where i ∈ Zd. If g1 intersects S algebraically nontrivially,
we can simply take d to be very large and M̃1 to be M ′1. Otherwise, g1

lifts into M ′1 based at o′1, and it is contained in the union W of some
consecutive pieces Vi nearby. As the number of pieces in W depends
only on g1, W occupies a very small portion of M ′1 if we choose d to

be large. To construct M̃1, the idea is to assemble a finite cover of
W and some finite covers of other pieces Vj . We want to require that
g1 does not lift to the finite cover of W , and meanwhile, that every
preimage component of Σ in the finite cover of any other piece Vj is a
lift of Σ. The latter can be ensured if the finite cover of Vj comes from
a finite cover of S, via the inclusion of V into M and the retraction of
M onto S. The former can be ensured by the residual finiteness of W .
However, in order to glue these individual covering pieces together, it
is crucial to know that their restriction to the boundary are isomorphic
covers of S, better characteristic. This is guaranteed by the so-called
omnipotence lemma (Lemma 5.3), a consequence of Wise’s Malnormal
Special Quotient Theorem. Assume that all these are done, then we will
obtain a desired M̃1 in which g1 disappears but most lifts of Σ survive.

The construction can be iterated to destroy more elements from
π1(M, ∗), one at each time. If the degrees of cyclic covers are chosen to
grow very fast, the total portion of non-lifts (or ‘damaged lifts’) of Σ
will remain small. To argue by induction in a formal way, we introduce
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some notion called generalized digital expansion to encode a cyclic cov-
ering tower {M ′n} underlying the asserted {M̃n}. A precise induction
hypothesis can be found as the statement of Lemma 5.4.

The rest of this section is devoted to the proof of Proposition 5.1.

5.1. Cyclic towers encoded by generalized digital expansions.
In this subsection, we introduce a tower of finite cyclic covers which is
to be considered as an intermediate step toward the construction of the
exhausting tower asserted by Proposition 5.1.

For this subsection, we suppose that (M, ∗) is an orientable closed
3-manifold, and S is an embedded non-separating oriented connected
closed subsurface of M which misses ∗. Denote by

V = M \Nhd◦(S),

the compact submanifold of M obtained by cutting along S. Let d be
an odd positive integer which is at least 3.

5.1.1. Generalized digital expansion and blocks. For any positive
integer n, denote by [dn] the set of the dn consecutive integers centered
at 0, namely,

[dn] =

{
0,±1,±2, · · · ,±d

n − 1

2

}
.

Adopt the notation

sn = 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

There is a canonical bijective correspondence between sets:

[dsn ] ←→ [d]× [d2]× · · · × [dn],

a ↔ (a0, a1, · · · , an−1),

which is determined by the relation

a =
n−1∑
i=0

ajd
sj .

We view the correspondence as a generalized digital expansion for the
integers a of [dsn ]: At the j-th place with the assigned weight dsj , the
digit aj is taken from the digit set [dj+1], which is particular for that
place.

We say that two integers a, a′ ∈ [dsn ] are in the same block, denoted
as

a ∼ a′,
if the generalized digital expansions of a and a′ agree from the (n− 1)–
th place all the way down to the highest place with a digit 0. In other
words, if aj 6= 0 for all j = 0, · · · , n−1, then a ∼ a′ means aj = a′j for all

j = 0, · · · , n−1; if ak = 0 for some k ∈ {0, · · · , n−1} and aj 6= 0 for all
j = k+ 1, · · · , n− 1, then a ∼ a′ means aj = a′j for all j = k, · · · , n− 1.
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Since being in the same block is an equivalence relation on [dsn ], we call
the equivalence classes the blocks of [dsn ]. Denote the set of blocks of
[dsn ] as

Bn = Bn(d) = [dsn ]/ ∼ .
For any block β ∈ Bn, the level of β is said to be k ∈ {0, · · · , n− 1}, if
for some (hence, any) integer a ∈ β, ak is the highest 0 in the expansion
of a; the level of β is formally defined to be ∞, if the block β consists
of a single integer which has no 0 digits.

For example, the subset [dsn−1 ] of [dsn ] is the only block of level (n−1).
Its size is 1/dn of [dsn ]. Any of the remaining blocks of [dsn ], say of a level
j other than∞, looks like a shifted subset [dsj ] centered at some integer
with an expansion (0, · · · , 0, aj+1, · · · , an−1), where aj+1, · · · , an−1 are
nonzero. For large n, the blocks of level ∞ in [dsn ] reminds us of the
picture of Cantor’s dust set, but the dust is really heavy:

Lemma 5.2. Given any constant 0 < ε < 1, the following statement
holds true for all sufficiently large odd positive integers d: For all n ∈ N,
the number of blocks of level ∞ in [dsn ] is greater than (1− ε) · dsn.

Proof. The number Cn of the blocks of level ∞ in [dsn ] is clearly
(d − 1) × · · · × (dn − 1). For an odd positive integer d at least 3, the
portion of such blocks (Cn / d

sn) is strictly decreasing as n grows. The
limit can be expressed as φ(1/d) using the Euler function:

φ(q) =
∞∏
j=1

(1− qn) =
∞∑

k=−∞
(−1)kq(3k2−k)/2

= 1− q − q2 + q5 + q7 − · · · .

When d is sufficiently large, we have φ(1/d) > 1 − ε, so Cn is at least
(1− ε) · dsn . q.e.d.

5.1.2. Encoding a tower of finite cyclic covers. Continue to adopt
the notations of the generalized digital expansion with respect to d.
Denote by

· · · −→M ′n −→ · · · −→M ′2 −→M ′1 −→M,

the tower of finite cyclic covers dual to S with the covering degree

[M ′n : M ] = dsn ,

so M ′n covers M ′n−1 cyclically of degree dn.
Since V is the compact submanifold obtained by cutting M along S,

the boundary ∂V has two components ∂±V parallel to S inside M such
that the (outward) induced orientation of ∂±V coincides with ∓S. The
cyclic cover M ′n can be constructed by gluing dsn copies Vn(a) of V in
such a way that ∂+Vn(a) is identified with ∂−Vn(a+ 1) for all a ∈ [dsn ].
By convention, Vn(d

sn−1
2 + 1) stands for Vn(−dsn−1

2 ). Moreover, each
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block β ∈ Bn corresponds to a block of pieces Wn(β) of M ′n obtained
by gluing the unit pieces Vn(a) for all a ∈ β.

Therefore, we have the following decompositions of M ′n by various
lifts of S:

M ′n =
⋃

a∈[dsn ]

Vn(a) =
⋃
β∈Bn

Wn(β).

Equip each M ′n with the lifted base point o′n which lies in the unit piece
Vn(0). Therefore, o′n is contained in the unique block of pieces,

o′n ∈Wn(β0) ⊂M ′n,
where β0 ∈ Bn is the unique block of level (n−1); for the blocks β ∈ Bn

of level ∞, the corresponding Wn(β) are all isomorphic to V .

5.1.3. Boundary-characteristic finite covers for blocks of pieces.
In literature, [DLW, PW] for example, boundary-characteristic finite
covers have been considered for JSJ pieces of irreducible closed 3-mani-
folds to construct interesting finite covers. We consider a very similar
situation where V and S play the roles of a JSJ piece and a JSJ torus
accordingly. Continue to consider the tower of finite cyclic covers of M
encoded by the generalized digital expansion with respect to d.

For any block of pieces Wn(β), we say that a (possibly disconnected)

finite cover W̃ of Wn(β) is S̃–boundary-characteristic, if S̃ is a character-

istic finite cover of S and if every boundary component of W̃ is isomor-
phic to S̃, as a cover of S given by the composition W̃ →Wn(β)→M .

Recall that a characteristic cover X̃ of a path-connected space X is
a covering space of X which corresponds to a characteristic subgroup
of π1(X), namely, a subgroup invariant under the action of the auto-

morphism group Aut(π1(X)). If X̃ is a characteristic cover of some
characteristic cover of X, it is also characteristic over X.

The following omnipotence lemma is a consequence of the Malnor-
mal Special Quotient Theorem due to D. T. Wise [Wi, Theorem 12.3],
(see [AGM] for an alternate proof). This lemma allows us to produce
boundary-characteristic finite covers as deep as we wish. The assump-
tion can certainly be replaced by a weaker one that M is hyperbolic and
V has incompressible acylindrical boundary.

Lemma 5.3. If M is hyperbolic and S is a retract of M , then for
every finite cover W ′′ of a block of pieces Wn(β), there exists a char-

acteristic finite cover S̃∗ of S such that the following statement holds
true:

For every characteristic finite cover S̃ of S̃∗, there exists a regular
finite cover W̃ of Wn(β) which is S̃–boundary-characteristic. Moreover,

the covering projection of W̃ to Wn(β) factors through W ′′.

Proof. Observe that it suffices to prove for any connected W ′′, oth-
erwise taking S̃∗ to be a common characteristic finite cover of those
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constructed componentwise. If β ∈ Bn is a block of level j other than
∞, the block of pieces Wn(β) is homeomorphic to M ′j removing a lift

of S. Therefore, it suffices to prove for Wn(β) ∼= V , otherwise arguing
using M ′j instead of M . We may also assume that any given W ′′ is
regular over V , otherwise replacing it with a further one such.

Because M is atoroidal and S is a retract of M , the inclusion of S
into M induces an embedding of H = π1(S) into π1(M) is as (a rep-
resentative of the conjugacy class of) a malnormal subgroup. Accord-
ingly, the peripheral subgroups H± = π1(∂±V ) of the word hyperbolic
group G = π1(V ) form a malnormal pair of quasi-convex subgroups.
By [Wi, Theorem 16.6], G is virtually special. Moreover, it is implied
by Wise’s Malnormal Special Quotient Theorem [Wi, Theorem 12.3]

that there exist finite-index subgroups H̃∗± of H± with the following

property: For any further finite-index subgroup H̃± of H̃∗±, the quotient

G/ 〈〈H̃+, H̃−〉〉, of G by the normal closure of H̃±, is word hyperbolic
and virtually special. In particular, it is residually finite. Without loss
of generality, we may assume that H̃∗± are chosen to be characteristic in

H±, and isomorphic to the same characteristic finite-index subgroup H̃∗

of H. Since the given G′′ = π1(W ′′) is of finite index in G, we may also

assume that H̃∗ is chosen so deep that the intersection of any conjugate
of H± with G′′ contains the corresponding conjugate of H̃∗±. Finally,

we take the asserted characteristic finite cover S̃∗ of S to be the one
corresponding to H̃∗.

To verify the stated property, for any characteristic cover S̃ of S̃∗,
denote by H̃± ∼= H̃ = π1(S̃) the corresponding subgroup of H̃∗±

∼= H̃∗ =

π1(S̃∗). Observe that the normal closure 〈〈H̃+, H̃−〉〉 intersects H± in

exactly H̃±: In fact, the composition of the inclusion and the retraction
V →M → S induces a homomorphism G→ H such that the image of
the normal closure 〈〈H̃+, H̃−〉〉 equals the normal subgroup H̃ of H, and,
moreover, either of the subgroups H± is mapped isomorphically onto H.
It follows that the intersection 〈〈H̃+, H̃−〉〉∩H± is contained by H̃±, so it

has to be exactly H̃±. Using the residual finiteness of G/ 〈〈H̃+, H̃−〉〉,
we can, therefore, find a finite-index normal subgroup G̃ of G which
intersects H± in exactly H̃±. Take G̃′′ to be the finite-index normal
G̃ ∩ G′′ of G. Then any conjugate of H± intersects G̃′′ in exactly the
corresponding conjugate of H̃±. Therefore, the regular finite cover W̃ ′′
of V corresponding to G̃′′ has every boundary component isomorphic
to S̃, and the covering projection W̃ ′′ → V factors through the given
intermediate cover W ′′. Such a cover W̃ ′′ of V satisfies the claimed
properties and we rewrite it as W̃ in accordance with the statement.

q.e.d.

5.2. Construction of the asserted tower. We construct the asserted
tower of Proposition 5.1 adopting the notations and assumptions there.
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Given a constant 0 < ε < 1, choose a sufficiently large odd positive
integer d as provided by Lemma 5.2. The notations such as sn, [dn], Bn

from the generalized digital expansion with respect to d remains effective
for the rest of this section. Note that the existence of the retract ρ forces
the oriented connected subsurface S to be non-separating. Denote by

· · · −→ (M ′n, o
′
n) −→ · · · −→ (M ′2, o

′
2) −→ (M ′1, o

′
1) −→ (M, ∗),

the tower of finite cyclic covers dual to S, of degree dsn over M , and
with lifted base points, as before.

Take a sequence which includes all the elements of π1(M, ∗), denoted
by

{ gn ∈ π1(M, ∗) }n∈N.
By inserting trivial elements between terms, we may assume that the
sequence satisfies the following additional properties:

• The first element g1 is trivial.
• For every n ∈ N, the algebraic intersection number 〈[gn], [S]〉 is

bounded strictly by dsn in absolute value. Here [gn] ∈ H1(M ;Z)
and [S] ∈ H2(M ;Z) are the homology classes accordingly.
• Furthermore, if 〈[gn], [S]〉 equals 0, then the based lift of gn in
M ′n is contained in the base block of pieces Wn(β0), up to based
homotopy.

Under the above setting, the asserted tower can be constructed by the
following lemma. In the context of coverings spaces, the term elevation
is customarily used to mean a preimage component of a sub-manifold
in the referred cover, so as to distinguish from the more common term
lift, which is equivalently a homeomorphic elevation.

Lemma 5.4. Under the assumptions of Proposition 5.1 and with the
notations above, there are finite connected characteristic covers {S̃n →
S}n∈N and base-pointed connected finite (irregular) covers { (M̃n, õn)→
(M ′n, o

′
n) }n∈N such that the following properties are satisfied:

• Each M̃n+1 is a finite cover of M̃n, and the covering maps fit into
the commutative diagram:

M̃n+1 −−−−→ M̃ny y
M ′n+1 −−−−→ M ′n

• The element gn does not lift into M̃n based at õn for any n ∈ N,
unless it is trivial.
• For each block β ∈ Bn of level∞ and for every elevation W̃ in M̃n

of Wn(β) ∼= V , the induced covering map W̃ → V is isomorphic

to the pull-back of the covering map S̃n → S via the composition:

V
incl.−−−−→ M

ρ−−−−→ S.
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Proof. We construct S̃n and (M̃n, õn) by induction on n ∈ N. For n

equal to 1, we can simply take S̃1 to be S and (M̃1, õ1) to be (M ′1, o
′
1).

Suppose that all its previous stages have been completed, then we pro-
ceed with the n-th stage, where n is greater than 1.

We introduce a few notations. Denote

(M×n , o×n ) =
(
M ′n ×M ′n−1

M̃n−1, (o′n, õn−1)
)
,

the fiber product of base-pointed covering spaces. The space M×n is
a possibly disconnected base-pointed finite cover of M ′n−1 that factors

through both M ′n and M̃n−1. It can be concretely described as follows:
As d is an odd number, there is a unique lift S′n−1 of S in M ′n−1 fur-
thermost from o′n−1; therefore, M×n can be obtained as a cyclic cover

of M̃n−1 of degree dn, which is dual to the preimage of S′n−1. For
any block β ∈ Bn, denote by W×n (β) the preimage of the block of

pieces Wn(β) ⊂ M ′n. Observe that W×n (β) are all S̃n−1–boundary-
characteristic over Wn(β). In fact, by the induction hypothesis, for

any block γ ∈ Bn−1 of level ∞, every elevation W̃ of Wn−1(γ) in M̃n−1

is S̃n−1–boundary-characteristic. Then the observation follows as every
component of W×n (β) is next to a lift of such W̃ . Indeed, any bound-

ary component of W×n (β) is shared with a lift of such W̃ . Denote the
disjoint union of all W×n (β) by

W×n =
⊔
β∈Bn

W×n (β).

The gluing is formally given by an orientation-reversing free involution:

∂W×n
ν×−−−−→ ∂W×n ,

which commutes with the underlying gluing identification between the
components of all ∂Wn(β) via the covering projection. Identifying each
orbit of ν×n to a point yields

M×n = W×n / ν×n .

There are two simple cases where the construction of S̃n and (M̃n, õn)

is straightforward. If the element gn ∈ π1(M, ∗) is trivial, S̃n can be

taken simply as S̃n−1, and (M̃n, õn) can be taken as the base component
of (M×n , o×n ). Similarly, if the algebraic intersection number 〈[gn], [S]〉
in M is nontrivial, hence, less than dsn in absolute value. By the as-
sumptions on {gn}n∈N, the element gn does not lift to M ′n or M×n . So

again, we can take S̃n and (M̃n, õn) the same as the trivial case.
It remains to prove the essential case when gn is nontrivial with

〈[gn], [S]〉 = 0 in M . In this case, gn lifts to be a nontrivial element
of π1(M ′n, o

′
n). Moreover, abusing the notation, we have

gn ∈ π1(Wn(β0), o′n)



QF SUBSURFACE OF ODD EULER CHARACTERISTIC 487

by the assumption of {gn}n∈N. Denote by W×n (β0) the preimage of
Wn(β0) inM×n . By the residual finiteness of π1(Wn(β0), o′n), there exists
a further regular finite cover W ′′n(β0) of Wn(β0) which factors through
W×n (β0), such that gn does not lift to W ′′n(β0). By choosing any base
point o′′n lifting o×n , we have

gn 6∈ π1(W ′′n(β0), o′′n).

Note that the furthermost lift S′n−1 of S in M ′n−1 above has the
property that its complement lifts into M ′n as the interior of Wn(β0).
Moreover, S′n−1 is a retract of M ′n−1, since S is a retract of M as as-
sumed by Proposition 5.1. By applying Lemma 5.3 with respect to
M ′n−1, S′n−1 and W ′′n(β0), we obtain a finite characteristic cover S̃∗n(β0)
of S′n−1

∼= S. It has the property that for any further finite character-
istic cover of S, boundary-characteristic finite covers of W ′′n(β0) with
the prescribed boundary pattern exist, and can be constructed to factor
through W ′′n(β0). Similarly, for each block β ∈ Bn of level j other than
∞ or (n − 1), apply Lemma 5.3 with respect to M ′j , S

′
j and W×n (β) to

obtain a finite characteristic cover S̃∗n(β) of S; for each β ∈ B of level

∞, we can simply take S̃∗n(β) to be S̃n−1. We take a finite characteristic
cover

S̃∗n −→ S,

which factors through S̃∗n(β) for all β ∈ Bn. Note that S̃∗n → S factors

through S̃n−1.
To construct the claimed S̃n and (M̃n, õn), we first take the claimed

finite characteristic cover

S̃n −→ S

to be a finite characteristic cover of S̃n−1 which factors through S̃∗n. For

example, one may simply take S̃n to be S̃∗n. The claimed base-pointed fi-

nite cover (M̃n, õn) can be constructed by merging S̃n–boundary-charac-
teristic covers of W×n (β) as follows.

For each block β ∈ Bn, we first construct an S̃n–boundary-character-
istic cover W̃n(β) of W×n (β), in the following way. For the block β0 ∈
Bn of level (n − 1), take an S̃n–boundary-characteristic finite cover of

W×n (β0) which factors through W ′′n(β0), denoted as W̃n(β0). Similarly,

for each block β ∈ Bn of level j other than ∞ or (n − 1), take an S̃n–
boundary-characteristic finite cover of W×n (β). For each block β ∈ Bn

of level ∞, we need a more specific construction of W̃n(β) to meet
the third property of Lemma 5.4. Note that W×n (β) is isomorphic to
Wn−1(γ) × [dn] for some level–∞ block γ ∈ Bn−1. Therefore, by the
induction hypothesis, any component W× ofW×n (β), as a covering space

of Wn(β) ∼= V , is isomorphic to the pull-back via S̃n−1 → S of

V
ρV−−−−→ S,
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the composition of the retraction ρ of M to S with the inclusion of V
into M . In other words, it is isomorphic to a fiber product:

W× ∼= V ×ρV S̃n−1.

Denote the S̃n–boundary-characteristic cover of Wn(β) ∼= V :

W̃ ∼= V ×ρV S̃n,

then W̃ is isomorphic to the pull-back of S̃n via ρV and the covering
projection factors through W×. As W× runs over the components of
W×(β), take W̃n(β) for the level–∞ block β to be the disjoint union

of all the W̃ accordingly. Let us formally put together all the building
parts W̃n(β) that we have constructed above:

W̃n =
⊔
β∈Bn

W̃n(β).

At this point, we may not yet be able to obtain a closed manifold by
assembling the components of W̃n, because the boundary components
of W̃n that we wanted to glue up together may not be balanced in
amount between opposite orientations. We need to suitably duplicate
the components of W̃n to meet the balance condition. A simple solution
is to introduce a quantity

Kn = Kn(W̃n →W×),

which is defined to be the least common multiple of all the local covering
degrees [W̃n :W×n ]W× where W× runs over all the components of W×n .

Here the (unsigned) local covering degree [W̃n :W×n ]W× is defined to be

the number of lifts in W̃n for any point of W×. Replace the preimage of
each component W× by the disjoint union of Kn / [W̃n :W×n ]W× copies

of itself. It is easy to see that the new cover W̃n has constant local
degree [W̃n : W×n ]W× = Kn for all W×. So the balance condition is

satisfied as W̃n is already boundary-characteristic over W×n .

We can construct the claimed M̃n by gluing up the components of
W̃n along boundary. There is a fairly routine procedure to do so. We
provide some details below for the reader’s reference. (See [DLW, PW]
for similar constructions with respect to JSJ decompositions.) The bal-
ance condition allows us to construct a free involution ν̃] which pairs up
oppositely oriented boundary components and commutes with the pair-
ing free involution ν×] via the covering projection, namely, the following

diagram commutes:

π0(∂W̃n)
ν̃]−−−−→ π0(∂W̃n)y y

π0(∂W×n )
ν×]−−−−→ π0(∂W×n )
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Furthermore, suppose that P̃± ∈ π0(∂W̃n) is a pair of oppositely ori-
ented boundary components whose projection P×± ∈ π0(∂W×n ) satisfies

ν×] (P×+ ) = P×− . Since the covering projections P̃± → P×± are character-

istic modeled on S̃n → S̃n−1, we can promote the gluing free involution
ν×|P×± to ν̃P̃± , namely, the following diagram commutes:

P̃±
ν̃−−−−→ P̃∓y y

P×±
ν×−−−−→ P×∓

Promoting ν× to all the components of ∂W̃n, which have been paired
up by ν̃], we obtain an orientation-reversing free involution

∂W̃n
ν̃−−−−→ ∂W̃n.

Finally, we take the claimed finite cover of M ′n to be

M̃n = W̃n / ν̃.

The claimed base point õn of M̃n can be chosen as any lift of o′n in

W̃n(β0). It is clear from the construction that the claimed properties

of Lemma 5.4 are satisfied by S̃n and (M̃n, õn). This completes the
induction. q.e.d.

5.3. Verification of the asserted properties. To briefly summarize
what we have done so far, under the assumptions of Proposition 5.1,
for any given constant 0 < ε < 1, a sufficiently large positive integer d
has been chosen as guaranteed by Lemma 5.2. Moreover, the following
commutative diagram of covering maps between base-pointed covers of
M has been constructed by Lemma 5.4, where the upper row is the
asserted tower of Proposition 5.1 and the lower row is the cyclic tower
dual to S encoded by the generalized digital expansion with respect to
d:

· · · −−→ (M̃n, õn) −−→ · · · −−→ (M̃2, õ2) −−→ (M̃1, õ1) −−→ (M, ∗)y y y yid

· · · −−→ (M ′n, o
′
n) −−→ · · · −−→ (M ′2, o

′
2) −−→ (M ′1, o

′
1) −−→ (M, ∗)

As before, we denote by Wn(β) the block of pieces of M ′n and W̃n(β)

their preimage in M̃n accordingly.
It remains to verify the requirements of Proposition 5.1 are satisfied.

The injectivity radii of M̃n at õn tends to infinity as n grows, because
of the second property of Lemma 5.4. The estimate of lifts of ιΣ is a
consequence of the third property of Lemma 5.4. In fact, for every block
β ∈ Bn of level ∞, any component W̃ of W̃n is a regular finite cover
of V isomorphic the pull-back of the characteristic finite cover S̃n → S
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via the composition ρV : V → S of the retraction ρ of M to S with the
inclusion of V into M . Since ρ ◦ ιΣ is homotopic to a constant point
map, every elevation of Σ into W̃ is a lift, and the number of such lift
is the covering degree [S̃n : S]. Therefore, the number of lifts of ιΣ into

W̃n(β), for any level–∞ blocks β ∈ Bn, equals

|π0(W̃n(β))| · [S̃n : S] = [M̃n : M ′n].

The number of lifts of ιΣ into M̃ is at least the number of such lifts,
which is at least

(1− ε) · dsn · [M̃n : M ′n] = (1− ε) · [M̃n : M ],

as asserted. The estimate of the homological torsion size follows imme-
diately from the topological fact:

Lemma 5.5. If Σ1, · · · ,Σm are mutually disjointly embedded closed
subsurfaces of odd Euler characteristic in an orientable compact 3-mani-
fold N , then H1(N ;Z) contains a submodule isomorphic to Z⊕m2 .

Remark 5.6. The author thanks I. Agol for pointing out to him the
connection between this fact and exponential torsion growth in dual-
graph covers. Theorem 1.3 grows out of that interesting observation.

Proof. Each [Σi] represents an element [Σi] ∈ H1(N ;Z2) via Poincaré
duality. Since Σi has odd Euler characteristic, in the cohomology ring of
Z2 coefficients, [Σi]

3 is nontrivial by [HWZ, Theorem 4.1], but [Σi][Σj ]
is 0 for every distinct pair i, j by the mutual disjointness. It follows that
[Σi] cannot be lifted to H1(N ;Z) but they span an m-dimensional sub-
space of H1(N ;Z2). By the Universal Coefficient Theorem, H1(N ;Z)
contains a torsion submodule isomorphic to Z⊕m2 . q.e.d.

This completes the proof of Proposition 5.1.

6. Application to uniform lattices of PSL(2,C)

In this section, we derive the existence of exhausting nested sequence
of finite index subgroup with exponential homological torsion growth
for uniform lattices of PSL(2,C), proving Theorem 1.3.

Let Γ be any uniform lattice of PSL(2,C). Take a torsion-free finite-

index subgroup Γ̇ of Γ, so the quotient space

N = H3 / Γ̇

is an orientable closed hyperbolic 3-manifold.
By [Ag1] and [Wi, Theorem 16.6], we may assume that π1(N) ∼= Γ̇

is cocompactly special, namely, it admits a special cocompact action
on a CAT(0) cube complex. By Theorem 1.1, there is a connected
closed surface of odd Euler characteristic Σ which admits a π1–injective
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quasi-Fuchsian immersion into N . Take S to be an orientable connected
closed surface which also admits a π1–injective quasi-Fuchsian immer-
sion into N , for example, some finite cover of Σ. Form a 2-complex X
by attaching an arc α between S and Σ, so

π1(X) ∼= π1(S) ∗ π1(Σ).

By well known constructions, we can find a map

f : X −→ N,

which embeds π1(X) into π1(N) as a quasi-convex subgroup. Moreover,
we can require the restrictions to S and Σ to be the claimed quasi-
Fuchsian immersions above.

Since π1(N) is word hyperbolic and special, and π1(X) is embedded
as a quasi-convex subgroup, it follows from [HW, Theorem 7.3] (see
also [Wi, Theorem 4.13]) that π1(X) is a virtual retract of π1(N). In
terms of maps, there exists a finite cover

M → N,

into which f lifts to be a map

ιX : X −→M,

and there exists a map

ρX : M −→ X,

such that ρX ◦ ιX is homotopic to the identity. In fact, it is not hard
to argue that ιX can be homotoped to be an embedding. Fix a generic
base point ∗ of M . Denote by ιS and ιΣ the induced embeddings of S
and Σ into M , and by ρ the composition of retraction maps:

M
ρX−−−−→ X

retr.−−−−→ S.

Finally, we apply Proposition 1.3 to conclude that (M, ∗) admits an
exhausting nested tower of base-pointed finite covers with exponential
homological torsion growth. Since π1(M, ∗) is isomorphic to a finite
index subgroup of Γ, the same conclusion holds for Γ as well. This
completes the proof of Theorem 1.3.
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