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VANISHING POHOZAEV CONSTANT AND
REMOVABILITY OF SINGULARITIES

Jürgen Jost, Chunqin Zhou & Miaomiao Zhu

Abstract

Conformal invariance of two-dimensional variational problems
is a condition known to enable a blow-up analysis of solutions and
to deduce the removability of singularities. In this paper, we iden-
tify another condition that is not only sufficient, but also necessary
for such a removability of singularities. This is the validity of the
Pohozaev identity. In situations where such an identity fails to
hold, we introduce a new quantity, called the Pohozaev constant,
which on one hand measures the extent to which the Pohozaev
identity fails and, on the other hand, provides a characterization
of the singular behavior of a solution at an isolated singularity. We
apply this to the blow-up analysis for super-Liouville type equa-
tions on Riemann surfaces with conical singularities, because in
the presence of such singularities, conformal invariance no longer
holds and a local singularity is in general non-removable unless
the Pohozaev constant is vanishing.

1. Introduction

Many variational problems of profound interest in geometry and
physics are borderline cases of the Palais–Smale condition, and stan-
dard theory does not apply to deduce the existence and to control the
behavior of solutions. One needs additional ingredients and tools. For
two-dimensional problems, like harmonic maps from Riemann surfaces
(or in physics, the nonlinear sigma model), minimal and prescribed
mean curvature surfaces in Riemannian manifolds, pseudoholomorphic
curves, Liouville type problems as occurring, for instance, in prescrib-
ing the Gauss curvature of a surface, Ginzburg–Landau and Toda type
problems, and as inspired by quantum field theory and super string the-
ory, Dirac-harmonic maps and super-Liouville equations, etc., it turned
out that conformal invariance is a key property that enables a successful
analysis. The fundamental technical aspect of all such problems is the
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existence of bubbles, that is, the concentration of solutions at isolated
points. Since the fundamental work of Sacks–Uhlenbeck [29] and Wente
[34], we know that even when such a bubble splits off, the remaining
solution is smooth, that is, can be extended through the point where the
bubble singularity had been developing. This is called blow-up analysis,
and it depends on a precise characterization of the bubble type solutions.
In other words, conformal invariance is a sufficient condition for such a
blow-up analysis. In technical terms, conformal invariance produces a
holomorphic quadratic differential. For harmonic map type problems, it
is well known that finiteness of the energy functional in question implies
that that differential is in L1. This then yields important estimates. For
(super-)Liouville equations, the energy functional and the holomorphic
quadratic differential are defined in a different way. Finiteness of the
energy is not sufficient to get the L1 bound of that differential and,
hence, this is an extra assumption leading to the removability of local
singularities (Prop 2.6, [19]).

It turns out, however, that some important problems in the class
mentioned no longer satisfy conformal invariance. An example that we
shall investigate in this paper are (super-)Liouville equations on sur-
faces with conical singularities. Another example, which we shall treat
in a subsequent paper, is the super-Toda system. Also, some inhomo-
geneous lower order terms in a problem can destroy conformal invari-
ance.

Thus, in order to both understand the scope of the blow-up analy-
sis in general and to handle some concrete two-dimensional geometric
variational problems, we have searched for a condition that is not only
sufficient, but also necessary for the blow-up analysis. The condition
that we have identified is the Pohozaev identity. This condition is al-
ready known to play a crucial role in geometric analysis (see, for in-
stance, [30] or [3] for a version of the Pohozaev identity for non-linear
eigenvalue equations of the Dirac operator on Riemannian spin mani-
folds with boundary), but what is new here is that we can show that
this identity by itself suffices for the blow-up analysis. In fact, there
are situations where this identity fails to hold. In order to handle these
more complicated cases, we introduce a new quantity that is associated
to a solution, called the Pohozaev constant. By definition, this quan-
tity measures the extent to which the Pohozaev identity fails. In other
words, that identity holds iff the Pohozaev constant vanishes. On the
other hand, it turns out that this quantity also provides a characteri-
zation of the singular behavior of a solution at an isolated singularity.
As already mentioned, we demonstrate the scope of this strategy at a
rather difficult and subtle example, the (super-)Liouville equation on
surfaces with conical singularities. We hope that the general scheme
will become clear from our treatment of this particular example.



VANISHING POHOZAEV CONSTANT 93

Thus, in order to get more concrete, we now introduce that exam-
ple. The classical Liouville functional for a real-valued function u on a
smooth Riemann surface M with conformal metric g is

E (u) =

∫
M
{1

2
|∇u|2 +Kgu− e2u}dv,

where Kg is the Gaussian curvature ofM . The Euler–Lagrange equation
for E(u) is the Liouville equation

−∆gu = 2e2u −Kg.

Liouville [26] studied this equation in the plane, that is, for Kg = 0. The
Liouville equation comes up in many problems of complex analysis and
differential geometry of Riemann surfaces, for instance, the prescribing
curvature problem. The interplay between the geometric and analytic
aspects makes the Liouville equation mathematically very interesting.

It also occurs naturally in string theory as discovered by Polyakov
[27], from the gauge anomaly in quantizing the string action. There then
also is a natural supersymmetric version of the Liouville functional and
equation, coupling the bosonic scalar field to a fermionic spinor field. It
turns out, however, that we also obtain a very interesting mathemati-
cal structure if we consider ordinary instead of fermionic (Grassmann
valued) spinor fields. Therefore, in [17], we have introduced the super-
Liouville functional, a conformally invariant functional that couples
a real-valued function and a spinor ψ on a closed smooth Riemannian
surface M with conformal metric g and a spin structure,

E (u, ψ) =

∫
M
{1

2
|∇u|2 +Kgu+ 〈(D/ + eu)ψ,ψ〉 − e2u}dv.

The Euler–Lagrange system for E(u, ψ) is{
−∆gu = 2e2u − eu 〈ψ,ψ〉 −Kg,
D/ gψ = −euψ, in M.

The analysis of classical Liouville type equations was developed in [5,
24, 25, 7, 16], and the corresponding analysis for super-Liouville equa-
tions in [17, 19, 20, 21, 22]. In particular, the complete blow-up theory
for sequences of solutions was established, including the energy identity
for the spinor part, the blow-up value at blow-up points and the pro-
file for a sequence of solutions at the blow-up points. For results by
physicists about super-Liouville equations, we refer to [28, 1, 15].

In this paper, as an application and a test of our general scheme, we
shall study super-Liouville equations on surfaces with conical singulari-
ties and establish the geometric and analytic properties for this system.
For this purpose, let us first recall the definition of surfaces with coni-
cal singularities, following [32]. A conformal metric g on a Riemannian
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surface M without boundary has a conical singularity of order α (a real
number with α > −1) at a point p ∈M if in some neighborhood of p

g = e2u|z − z(p)|2α|dz|2,

where z is a coordinate of M defined in this neighborhood and u is
smooth away from p and continuous at p. The point p is then said to be
a conical singularity of angle θ = 2π(1 + α). For example, a (somewhat
idealized) American football has two singularities of equal angle, while
a teardrop has only one singularity. Both these examples correspond
to the case −1 < α < 0; in case α > 0, the angle is larger than 2π,
leading to a different geometric picture. Such singularities also appear
in orbifolds and branched coverings. They can also describe the ends
of complete Riemann surfaces with finite total curvature. If (M, g) has
conical singularities of order α1, α2, · · · , αm at q1, q2, · · · , qm, then g is
said to represent the divisor A = Σm

j=1αjqj . Importantly, the presence
of such conical singularities destroys conformal invariance, because the
conical points are different from the regular ones.

Let (M,A, g) be a compact Riemann surface (without boundary) with
conical singularities of divisor A and with a spin structure. Associated
to g, one can define the gradient ∇ and the Laplacian operator ∆ in
the usual way. We consider the super-Liouville functional on M , a
conformally invariant functional that couples a real-valued function u
and a spinor ψ on M

E (u, ψ) =

∫
M
{1

2
|∇u|2 +Kgu+ 〈(D/ + eu)ψ,ψ〉 − e2u}dvg.

The Euler–Lagrange system for E(u, ψ) is

(1)

{
−∆gu = 2e2u − eu 〈ψ,ψ〉 −Kg,
D/ gψ = −euψ, in M\{q1, q2, · · · , qm}.

When ψ vanishes, we obtain the classical Liouville equation, or the
prescribing curvature equation on M with conical singularities (see [32,
12]). In [10, 11, 6, 31, 7, 9], the blow-up theory of the following
Liouville type equations with singular data was systematically studied:

−∆gu = λ
Keu∫

M Keudg
− 4π(Σm

j=1αjδqj − f),

where (M, g) is a smooth surface and the singular data appear in equa-
tion. In this paper, we aim to provide an analytic foundation for the
system (1).

The local super-Liouville type system (which is deduced in Section
3) we shall study is the following:
(2){
−∆u(x) = 2V 2(x)|x|2αe2u(x) − V (x)|x|αeu(x)|Ψ|2,

D/ Ψ = −V (x)|x|αeu(x)Ψ,
in Br(0).
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Here α ≥ 0, V (x) is a C1,β function satisfying 0 < a ≤ V (x) ≤ b and
Br = Br(0) is a disc in R2. We also assume that (u,Ψ) satisfy the
following energy condition:

(3)

∫
Br(0)

|x|2αe2u + |Ψ|4dx < +∞.

Our first result is the following Brezis–Merle type concentration com-
pactness:

Theorem 1.1. Let (un,Ψn) be a sequence of solutions satisfying
(4){
−∆un(x) = 2V 2(x)|x|2αne2un(x) − V (x)|x|αneun(x)|Ψn|2,

D/ Ψn = −V (x)|x|αneun(x)Ψn,
in Br,

with the energy condition

(5)

∫
Br

|x|2αne2undx < C, and

∫
Br

|Ψn|4 dx < C,

for some constant C > 0. Assume that

i) αn ∈ R+, αn → α with α ≥ 0,
ii) V ∈ C1,β(Br), 0 < a ≤ V (x) ≤ b < +∞.

Define

Σ1 = {x ∈ Br, there is a sequence yn → x such that un(yn)→ +∞},
Σ2 = {x ∈ Br, there is a sequence yn → x such that |Ψn(yn)| → +∞}.

Then, we have Σ2 ⊂ Σ1. Moreover, (un,Ψn) admits a subsequence, still
denoted by (un,Ψn), satisfying

a) Ψn is bounded in L∞loc(Br\Σ2).
b) For un, one of the following alternatives holds:

i) un is bounded in L∞loc(Br).
ii) un → −∞ uniformly on compact subsets of Br.
iii) Σ1 is finite, nonempty and either

un is bounded in L∞loc(Br\Σ1),

or

un → −∞ uniformly on compact subsets of Br\Σ1.

The proof of this concentration result does not yet need the Pohozaev
identity. But we shall then proceed to the subtler aspects of the blow-
up analysis, and for that, the Pohozaev identity will play a crucial role.
We shall first show that global singularities can be removed, that is, an
entire solution on the plane can be conformally extended to the sphere.
In the subsequent analysis, we shall show that in the blow-up process,
no energy will be lost, neither in the Liouville part un nor in the spinor
part Ψn. The technically longest part of our scheme (see Section 6)
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consists in exploring the blow-up behavior of (4) and (5) at each blow-
up point, to show that the energy identity holds for the spinor parts
Ψn.

Theorem 1.2. Notations and assumptions as in Theorem 1.1. Then
there are finitely many bubbling solutions of ( 2) and ( 3) on R2 with
α ≥ 0 and V ≡ const: (ui,k,Ψi,k), i = 1, 2, · · · , l; k = 1, 2, · · · , Li, all
of which can be conformally extended to S2, such that, after selection
of a subsequence, Ψn converges in C2

loc to some Ψ on Br(0)\Σ1 and the
following energy identity holds:

lim
n→∞

∫
Br(0)

|Ψn|4dv =

∫
Br(0)

|Ψ|4dv +
l∑

i=1

Li∑
k=1

∫
S2

|Ψi,k|4dv.

The essential step in the proof of Theorem 1.2 is the removability of
a local singularity for solutions of (2) and (3) defined on a punctured
disc (see Section 4).

In order to see the scope of our result, we point out that, in general,
a local singularity of (u,Ψ) is not removable. For example, when α = 0,
if we set

u(x) = log
(2 + 2β)|x|β

1 + 2|x|2+2β
,(6)

then u is a solution of

−∆u = 2e2u, in R2\{0},
where β > −1. Therefore, (u, 0) is a solution of (2) with α = 0 and
with finite energy in R2\{0}. It is clear that x = 0 is a local singularity
which is not removable when β 6= 0.

So, one needs to find some sufficient condition to remove the local
singularity. In [19], the authors considered the following simpler case
of α = 0 and V (x) ≡ 1:{

−∆u = 2e2u − eu 〈ψ,ψ〉 ,
D/ ψ = −euψ, in Br0 \ {0}.

In this case, they defined the following quadratic differential

T (z)dz2 = {(∂zu)2 − ∂2
zu+

1

4
〈ψ, dz · ∂z̄ψ〉+

1

4
〈dz̄ · ∂zψ,ψ〉}dz2,

and showed that it is holomorphic in Br0\{0}. Then one observes that∫
Br(0) |T (z)|dz = +∞ for (u, 0) in the above example (6). So, in [19], the

authors proposed the assumption that
∫
Br(0) |T (z)|dz ≤ C and showed

that this is a sufficient condition for the removability of a local singular-
ity. However, in the more general case considered in this paper, namely,
when α > 0 or the coefficient function V (x) is nonconstant, then we do
not have such a holomorphic quadratic differential and the argument in
[19] does not work. Therefore, we need to develop a new method.
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To describe our new method, as it applies to the super-Liouville sys-
tem, let (u,Ψ) be a solution of (2) and (3) defined on a punctured disc.
We define a quantity C(u,Ψ) ∈ R, called the Pohozaev constant as-
sociated to (u,Ψ) (see Definition 4.1). We shall show that there is a
constant γ < 2π(1 + α) such that

u(x) = − γ

2π
log|x|+ h, near 0,

where h is bounded near 0. Moreover, we show that C(u,Ψ) and γ
satisfy the following relation:

C(u,Ψ) =
γ2

4π
.

In particular, we can prove that the local singularity for (u,Ψ) is remov-
able if and only if the associated Pohozaev constant C(u,Ψ) = 0, which
is equivalent to the fact that the Pohozaev type identity for (u,Ψ) holds
(see Theorem 4.2).

Looking back to the example (6) illustrated above, it is easy to see
that the Pohozaev constant C(u, 0) = πβ2 6= 0 when β 6= 0.

Moreover, applying our new method to the removability of a local
singularity, we shall see in Section 7 that the energy identity for the
spinor will enable us to derive

Theorem 1.3. Notations and assumptions as in Theorem 1.1. As-
sume that the blow-up set Σ1 6= ∅. Then

un → −∞ uniformly on compact subsets of Br(0) \ Σ1.

Furthermore,

2V (x)|x|2αne2un − V (x)|x|αneun |Ψn|2 ⇀
∑
xi∈Σ1

βiδi,

in the sense of distributions, and βi ≥ 4π for xi ∈ Σ1 ∩Br(0) \ {0} and
βi ≥ 4π(1 + α) for xi ∈ Σ1 ∩ {0}.

To investigate further the blow-up behavior of a sequence of solutions
of (4) and (5), let us define the blow-up value at a blow-up point p ∈ Σ1

as follows:

(7) m(p) = lim
ρ→0

lim
n→∞

∫
Bρ(p)

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx.

In Section 8, we shall then obtain

Theorem 1.4. Notations and assumptions as in Theorem 1.1. As-
sume that the blow-up set Σ1 6= ∅. Let p ∈ Σ1 and assume that p is the
only blow-up point in B̄ρ0(p) for some small ρ0 > 0. If

(8) max
∂Bρ0 (p)

un − min
∂Bρ0 (p)

un ≤ C,
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then the blow-up value m(p) = 4π when p 6= 0 and m(p) = 4π(1 + α)
when p = 0.

For the global super-Liouville equations, if we let (M,A, g) be a com-
pact Riemann surface with conical singularities represented by the divi-
sor A = Σm

j=1αjqj , αj > 0 and with a spin structure. Writing g = e2φg0,
where g0 is a smooth metric on M , in Section 9, we can deduce from
the results for the local super-Liouville equations:

Theorem 1.5. Let (un, ψn) be a sequence of solutions of ( 1) with
energy conditions: ∫

M
e2undg < C,

∫
M
|ψn|4dg < C.

Define

Σ1 = {x ∈M, there is a sequence yn → x such that un(yn)→ +∞} .

Then there exists G ∈W 1,q(M, g0)∩C2
loc(M\Σ1) with

∫
M Gdg0 = 0 for

1 < q < 2 such that

un + φ− 1

|M |

∫
M

(un + φ)dg0 → G,

in C2
loc(M\Σ1) and weakly in W 1,q(M, g0). Moreover, in Σ1 = {p1, · · · ,

pl}, then for R > 0 small such that BR(pk) ∩ Σ1 ∩ {q1, ..., qm} = {pk},
k = 1, 2, · · · , l, we have
(9)

G(x) =

{
− 1

2πm(pk) log d(x, pk) + g(x), if pk 6= q1, ..., qm,
−( 1

2πm(pk)− αj) log d(x, pk) + g(x), if pk = qj , j = 1, ...,m,

for x ∈ BR(pk)\{pk} with g ∈ C2(BR(pk)), where d(x, pk) denotes the
Riemannian distance between x and pk with respect to g0 and

m(pk) = lim
R→0

lim
n→∞

∫
BR(pk)

(2e2(un+φ) − eun+φ|e
φ
2ψn|2 −Kg0)dg0.

It is clear from the above theorem that

max
∂Bρ0 (p)

un − min
∂Bρ0 (p)

un ≤ C,

if p ∈ Σ1 and p is the only blow-up point in B̄ρ0(p) for some small
ρ0 > 0. Then we get the blow-up value m(p) = 4π when p is not a
conical singularity of M and m(p) = 4π(1 + α) when p is a conical
singularity of M with order α.

On the other hand, on the surface (M,A, g) with the divisor A =
Σm
j=1αjqj , αj > 0, by the Gauss–Bonnet formula,

1

2π

∫
M
Kgdg = X (M,A).
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Here X (M,A) is the Euler characteristic of (M,A) defined by

X (M,A) = X (M) + |A|,

where X (M) = 2 − 2gM is the topological Euler characteristic of M
itself, gM is the genus of M and |A| = Σm

j=1αj is the degree of A. Then
we deduce that∫

M
2e2un − eun |ψn|2dg =

∫
M

2e2(un+φ) − eun+φ|e
φ
2ψn|2dg0

= 4π(1− gM ) + 2πΣm
j=1αj .

Since the possible values of limn→∞
∫
M 2e2(un+φ)−eun+φ|e

φ
2ψn|2dg0 are

4πk0 + Σm
j=14π(1 + αj)kj ,

for some nonnegative integers k0 and kj , j = 1, ...,m. Therefore, we
have the following:

Theorem 1.6. Let (M,A, g) be a surface with divisor

A = Σm
j=1αjqj , αj > 0.

Then

(i) if 4π(1− gM ) + 2πΣm
j=1αj = 4π, then the blow-up set Σ1 contains

at most one point. In particular, Σ1 contains at most one point if
gM = 0 and A = 0.

(ii) if 4π(1− gM ) + 2πΣm
j=1αj < 4π, then the blow-up set Σ1 = ∅.

Remark 1.7. Our method can also be applied to deal with a se-
quence of solutions (un,Ψn) of the following local super-Liouville type
equations with two coefficient functions
(10){
−∆un(x) = 2V 2

n (x)|x|2αne2un(x) −Wn(x)|x|αneun(x)|Ψn|2,
D/ Ψn =−Wn(x)|x|αneun(x)Ψn,

in Br,

and satisfying the energy condition

(11)

∫
Br

|x|2αne2undx < C, and

∫
Br

|Ψn|4 dx < C.

for some constant C > 0, where

i) αn > −1 and αn → α > −1,
ii) Vn,Wn ∈ C0(Br), 0 < a ≤ Vn(x),Wn(x) ≤ b < +∞,
||∇Vn||L∞(Br)

+ ||∇Wn||L∞(Br)
≤ C.

By slightly modifying the proofs of some analytical properties in Sec-
tion 3, Section 4, Section 5 as well as Theorem 1.1, Theorem 1.2, Theo-
rem 1.3, Theorem 1.4, Theorem 1.5, the corresponding blow-up results
hold (see more details in Section 10). For similar results for Liouville
type equations with singular data and with −1 < α < 0, we refer to [9].
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2. Invariance of the global system and special solutions

In this section, we start with the invariance of the global super-
Liouville equations under conformal diffeomorphisms that preserve the
conical points. Then, we shall provide two special solutions.

Proposition 2.1. The functional E(u, ψ) is invariant under con-
formal diffeomorphisms ϕ : M → M preserving the divisor, that is,
ϕ∗A = A and ϕ∗(ds2) = λ2ds2, where λ > 0 is the conformal factor of
the conformal map ϕ,. Set

ũ = u ◦ ϕ− lnλ,

ψ̃ = λ−
1
2ψ ◦ ϕ,

Then E(u, ψ) = E(ũ, ψ̃). In particular, if (u, ψ) is a solution of ( 1), so

is (ũ, ψ̃).

The proof of Proposition 2.1 is the same as that of the case of A = 0
considered in [17].

As we will see later (Section 6), however, the local super-Liouville
type system (2) we shall study is not conformally invariant near the
conical singularity. During the blow-up process, after suitable rescaling
and translation in the domain, we can obtain bubbling solutions of (2)
and (3) on R2 with α ≥ 0 and V ≡ const, at which point we can
apply the above invariance of the global system and the singularity
removability results in Section 4 and Section 5 to conclude that these
bubbling solutions can be conformally extended to S2.

Now we present some examples of solutions of the super-Liouville
equations (1). Let (M,ds2) be the mathematical version of an American
football, i.e., M is a sphere with two antipodal singularities of equal
angle. From [33], (M,ds2) is conformally equivalent to C ∪ ∞ with
constant curvature K = 1 and conical singularities at z = 0 and z =∞
with the same angle α, and with the conformal metric

(2 + 2α)2|z|2αdz2

(1 + |z|2+2α)2
,

for α being not an integer. Therefore, if we define a conformal map
ϕ : (M,ds2)→ C ∪∞ such that

(ϕ−1)∗(ds2) =
(2 + 2α)2|z|2αdz2

(1 + |z|2+2α)2
,
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then u = 1
2 log 1

2 + 1
2 log det |dϕ| are solutions of

−∆u+ 1− 2e2u = 0 on M\{ϕ−1(0), ϕ−1(∞)}.

In particular, this yields solutions of the form (u, 0) of (1).
There is another example of a solution of (1). Let us recall that a

Killing spinor is a spinor ψ satisfying

∇Xψ = λX · ψ, for any vector field X,

for some constant λ. On the standard sphere, there are Killing spinors
with the Killing constant λ = 1

2 , see, for instance, [4]. Such a Killing
spinor is an eigenspinor, i.e.,

D/ ψ = −ψ,

with constant |ψ|2. Choosing a Killing spinor ψ with |ψ|2 = 1, (0, ψ)
is a solution of (1). If we let π be the stereographic projection from
S2\{northpole} to the Euclidean plane R2 such that the metric of R2 is

4

(|1 + |x|2)2
|dx|2,

then any Killing spinor has the form

v + x · v√
1 + |x|2

,

up to a translation or a dilation (see [4]). We put ψ̃ = v+x·v√
1+|x|2

. Then

(0, ψ) = (0, (log det |dϕ|)−
1
2 ψ̃ ◦ ϕ) is a solution of (1).

3. The local super-Liouville system

In this section, we shall first derive the local version of the super-
Liouville equations. Then we shall analyze the regularity of solutions
under the small energy condition. Consequently, we can prove Theo-
rem 1.1.

It is well known that (see, e.g., [32]), in a small neighborhood U(p)
of a given point p ∈M , we can define an isothermal coordinate system
x = (x1, x2) centered at p, such that p corresponds to x = 0 and ds2 =
e2φ|x|2α(dx2

1+dx2
2) inB2r(0) = {(x2

1+x2
2) < 2r}, where φ is smooth away

from p and continuous at p. We can choose such a neighborhood small
enough so that if p is a conical singular point of ds2, then U(p)∩A = {p}
and α > 0, while, if p is a smooth point of ds2, then U(p) ∩ A = ∅ and
α = 0. Consequently, with respect to the isothermal coordinates, (u, ψ)
satisfies
(12){

−∆u(x) = e2φ(x)|x|2α(2e2u(x) − eu(x)|ψ|2(x)−Kg),

D/ (e
φ(x)
2 |x|

α
2 ψ) =−eφ(x)|x|αeu(x)(e

φ(x)
2 |x|

α
2 ψ),

in Br(0).
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Here ∆ = ∂2
x1x1 + ∂2

x2x2 is the usual Laplacian. The Dirac operator D/
is the usual one, which can be seen as the (doubled) Cauchy–Riemann
operator. That is, let e1 = ∂

∂x1
and e2 = ∂

∂x2
be the standard orthonor-

mal frame on R2. A spinor field is simply a map Ψ : R2 → ∆2 = C2,
and e1, e2 acting on spinor fields can be identified with multiplication
with matrices

e1 =

(
0 1
−1 0

)
, e2 =

(
0 i
i 0

)
.

If Ψ :=

(
f
g

)
: R2 → C2 is a spinor field, then the Dirac operator is

D/ Ψ =

(
0 1
−1 0

) ∂f

∂x1
∂g

∂x1

+

(
0 i
i 0

) ∂f

∂x2
∂g

∂x2

 = 2

 ∂g

∂z̄

−∂f
∂z

 ,

where

∂

∂z
=

1

2

(
∂

∂x1
− i ∂

∂x2

)
,

∂

∂z̄
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
.

For more details on Dirac operator and spin geometry, we refer to [23].
We note that the last term in the first equation of (12) is e2φ|x|2αKg,

which satisfies

−∆φ = e2φ|x|2αKg.

Since φ is continuous, elliptic regularity implies that φ ∈ W 2,p
loc for all

p < +∞ if α ≥ 0 and if the curvature Kg of M is regular enough.

Therefore, by Sobolev embedding, φ ∈ C1,δ if α ≥ 0. If we denote
V (x) = eφ and W (x) = e2φ|x|2αKg, then 0 < a ≤ V (x) ≤ b and W (x)
is in Lp(Br(0)) for all p > 1 if the curvature Kg of M is regular enough.

Therefore, equations (12) can be rewritten as:{
−∆u(x) = 2V 2(x)|x|2αe2u(x) − V (x)|x|αeu(x)|Ψ|2 −W (x),

D/ Ψ =−V (x)|x|αeu(x)Ψ,
in Br(0).

Here α ≥ 0, V (x) and W (x) satisfy the following conditions:

i) 0 < a ≤ V (x) ≤ b;
ii) W (x) ∈ Lp(Br(0)), for all p > 1.

Furthermore, let w(x) satisfy{
−∆w(x) = −W (x), in Br(0),

w(x) = 0, on ∂Br(0).

It is easy to see that w(x) is C1,β in Br(0) for some 0 < β < 1. Setting
v(x) = u(x)− w(x), then (v,Ψ) satisfies{
−∆v(x) = 2V 2(x)e2w(x)|x|2αe2v(x) − V (x)ew(x)|x|αev(x)|Ψ|2,

D/ Ψ =−V (x)ew(x)|x|αev(x)Ψ,
in Br(0).
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Now we come to the local version of the singular super-Liouville-type
equations
(13){
−∆u(x) = 2V 2(x)|x|2αe2u(x) − V (x)|x|αeu(x)|Ψ|2,

D/ Ψ = −V (x)|x|αeu(x)Ψ,
in Br(0).

Here V (x) is a C1,β function and satisfies 0 < a ≤ V (x) ≤ b. We also
assume that (u,Ψ) satisfy the energy condition:

(14)

∫
Br(0)

|x|2αe2u + |Ψ|4dx < +∞.

Next we consider the regularity of solutions under the energy condi-
tion. We put Br := Br(0).

First, we define weak solutions of (13) and (14). We say that (u,Ψ) is

a weak solution of (13) and (14), if u ∈W 1,2(Br) and Ψ ∈W 1, 4
3 (Γ(ΣBr))

satisfy∫
Br

∇u∇φdx =

∫
Br

(2V 2(x)|x|2αe2u − V (x)|x|αeu|Ψ|2)φdx,∫
Br

〈Ψ, D/ ξ〉dx = −
∫
Br

V (x)|x|αeu〈Ψ, ξ〉dx,

for any φ ∈ C∞0 (Br) and any spinor ξ ∈ C∞ ∩W 1, 4
3

0 (Γ(ΣBr)). A weak
solution is a classical solution by the following:

Proposition 3.1. Let (u,Ψ) be a weak solution of (13) and (14).
Then (u,Ψ) ∈ C2(Br)× C2(Γ(ΣBr)).

Note that when α = 0 this proposition is proved in [17] (see Propo-
sition 4.1). When α > 0, it is clear that we can no longer use the
inequality 2

∫
u+ <

∫
e2u <∞ to get the L1 integral of u+. So, we need

a trick, which was introduced in [10], to prove this proposition.

Proof of Proposition 3.1. By the standard elliptic method, to prove
this proposition, it is sufficient to show that u+ ∈ L∞(B r

4
) and |Ψ| ∈

L∞(B r
4
).

In fact, for the regularity of u, let us set

f1 = 2V 2(x)|x|2αe2u(x) − V (x)|x|αeu(x)|Ψ|2.

Then we have

−∆u = f1.

We consider the following Dirichlet problem

(15)

{
−∆u1 = f1, in Br,

u1 = 0, on ∂Br.

It is clear that f1 ∈ L1(Br). In view of Theorem 1 in [5] we have
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(16) ek|u1| ∈ L1(Br),

for some k > 1 and, in particular, u1 ∈ Lp(Br) for some p > 1.
Let u2 = u−u1 so that ∆u2 = 0 on Br. The mean value theorem for

harmonic functions implies that∥∥u+
2

∥∥
L∞(B r

2
)
≤ C

∥∥u+
2

∥∥
L1(Br)

.

On the other hand, it is clear that for some t > 0,∫
Br(0)

1

|x|2tα
dx ≤ C.

Hence, we can choose s = t
t+1 ∈ (0, 1) when α > 0 and s = 1 when

α = 0 such that

2s

∫
Br

u+dx ≤
∫
Br

e2sudx ≤ (

∫
Br

|x|2αe2udx)s(

∫
Br

|x|−2tαdx)1−s <∞.

Then by using u+
2 ≤ u+ + |u1| we obtain that u+

2 ∈ L1(Br) and, conse-
quently,

(17)
∥∥u+

2

∥∥
L∞(B r

2
)
<∞.

Next we rewrite f1 as

f1 = 2V 2(x)|x|2αe2u2(x)e2u1(x) − V (x)|x|αeu2(x)eu1(x)|Ψ|2.

From (16) and (17) we have f1 ∈ L1+ε(B r
2
) for some ε > 0. Hence, the

standard elliptic estimates imply that∥∥u+
∥∥
L∞(B r

4
)
≤ C

∥∥u+
∥∥
L1(Br)

+ C ‖f1‖L1+ε(B r
2

) <∞.

Since u+ ∈ L∞(B r
4
), then the right hand of the equation

D/ Ψ = −V (x)|x|αeuΨ

is in L4(Γ(ΣB r
4
)). Hence, we have Ψ ∈ C0(Γ(ΣB r

4
)) and especially

|Ψ| ∈ L∞(B r
4
). q.e.d.

Next we discuss the blow-up behavior of a sequence of solutions
(un,Ψn) satisfying (4) and (5). First, we study the small energy regu-
larity, i.e., when the energy

∫
Br
|x|2αne2undx is small enough, un will be

uniformly bounded from above. Our Lemma is:

Lemma 3.2. Let 0 < ε0 < π be a constant. For any sequence of
solutions (un,Ψn) to ( 4) with∫

Br

|x|2αne2undx < ε0,

∫
Br

|Ψn|4 dx < C,

for some fixed constant C > 0, we have that ‖u+
n ‖L∞(B r

4
) is uniformly

bounded.
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Proof. We are in the same situation as in Proposition 3.1. When
αn > 0, we can no longer use the inequality 2

∫
u+
n <

∫
e2un to get the

uniform bound of the L1-integral of u+
n . But notice that there exists a

uniform constant t > 0 such that for all n∫
Br

1

|x|2tαn
dx ≤ C,

since αn → α and α ≥ 0. Consequently, we obtain s = t
t+1 ∈ (0, 1)

2s

∫
Br

u+
n dx≤

∫
Br

e2sundx≤ (

∫
Br

|x|2αne2undx)s(

∫
Br

|x|−2tαndx)1−s<C.

Then by a similar argument as in the proof of Lemma 4.4 in [17] we
can prove this Lemma. q.e.d.

When the energy
∫
Br
|x|2αne2undx is large, the blow-up phenomenon

may occur as in the case of a smooth domain.

Proof of Theorem 1.1. By using Lemma 3.2 and applying a similar
argument as in the proof of Theorem 5.1 in [17], we can easily prove
this theorem. q.e.d.

Remark 3.3. Let vn = un + αn log |x|, then (vn,Ψn) satisfies{
−∆vn(x) = 2V 2(x)e2vn(x) − V (x)evn(x)|Ψn|2 − 2παnδp=0,

D/ Ψn =−V (x)evn(x)Ψn,
in Br,

with the energy condition∫
Br

e2vndx < C, and

∫
Br

|Ψn|4 dx < C.

Then the two blow-up sets of un and vn are the same, by using similar
arguments as in [10].

4. The Pohozaev identity and removability of local
singularities

This section is the heart of our paper. We shall show that a local
singularity is removable if and only if the Pohozaev identity is satisfied.
To express this result in compact form, we start by defining a constant
that is associated to equations (13) with the constraint (14).

Definition 4.1. Let (u,Ψ) ∈ C2(Br\{0}) × C2(Γ(Σ(Br\{0}))) be
a solution of (13) and (14). For 0 < R < r, we define the Pohozaev
constant with respect to equations (13) with the constraint (14)

C(u,Ψ) := R

∫
∂BR(0)

|∂u
∂ν
|2 − 1

2
|∇u|2dσ

−(1 + α)

∫
BR(0)

(2V 2(x)|x|2αe2u − V (x)|x|αeu|Ψ|2)dx
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+R

∫
∂BR(0)

V 2(x)|x|2αe2udσ

−1

2

∫
∂BR(0)

〈∂Ψ

∂ν
, x ·Ψ〉+ 〈x ·Ψ, ∂Ψ

∂ν
〉dσ

−
∫
BR(0)

(|x|2αe2ux · ∇(V 2(x))− |x|αeu|Ψ|2x · ∇V (x))dx,

where ν is the outward normal vector of ∂BR(0).

It is clear that C(u,Ψ) is independent of R for 0 < R < r.
Thus, the vanishing of the Pohozaev constant C(u,Ψ) is equivalent

to the Pohozaev identity

R

∫
∂BR(0)

|∂u
∂ν
|2 − 1

2
|∇u|2dσ

= (1 + α)

∫
BR(0)

(2V 2(x)|x|2αe2u − V (x)|x|αeu|Ψ|2)dx

−R
∫
∂BR(0)

V 2(x)|x|2αe2udσ

+
1

2

∫
∂BR(0)

(〈∂Ψ

∂ν
, x ·Ψ〉+ 〈x ·Ψ, ∂Ψ

∂ν
〉)dσ

+

∫
BR(0)

(|x|2αe2ux · ∇(V 2(x))− |x|αeu|Ψ|2x · ∇V (x))dx,(18)

for a solution (u,Ψ) ∈ C2(Br)× C2(Γ(ΣBr)) of (13) and (14).
We can now formulate the main result of this section. This result

says that a local singularity is removable iff the Pohozaev identity (18)
holds, that is, iff the Pohozaev constant vanishes.

Theorem 4.2. (Removability of a local singularity) Let (u,Ψ) ∈
C2(Br \ {0}) × C2(Γ(Σ(Br \ {0}))) be a solution of ( 13) and ( 14).
Then there is a constant γ < 2π(1 + α) such that

u(x) = − γ

2π
log|x|+ h, near 0,

where h is bounded near 0. The Pohozaev constant C(u,Ψ) and γ sat-
isfy:

C(u,Ψ) =
γ2

4π
.

In particular, (u,Ψ) ∈ C2(Br)× C2(Γ(ΣBr)), i.e., the local singularity
of (u,Ψ) is removable, iff C(u,Ψ) = 0.

In the remainder of this section, we shall prove the two directions
of Theorem 4.2. We shall first show that for smooth solutions, the
Pohozaev identity (18) holds.
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Proposition 4.3. Let (u,Ψ) ∈ C2(Br) × C2(Γ(ΣBr)) be a solution
of ( 13) and ( 14). Then, for any 0 < R < r, the Pohozaev type identity
(18) holds.

The case where α = 0 and V ≡ 1 has already been treated in [19].

Proof. For x ∈ R2, we put x = x1e1 + x2e2. We multiply all terms in
(13) by x · ∇u and integrate over BR(0). We obtain∫

BR(0)
∆ux · ∇udx = R

∫
∂BR(0)

|∂u
∂ν
|2 − 1

2
|∇u|2dσ,

and ∫
BR(0)

2V 2(x)|x|2αe2ux · ∇udx

= R

∫
∂BR(0)

V 2(x)|x|2αe2udσ − (2 + 2α)

∫
BR(0)

V 2(x)|x|2αe2udx

−
∫
BR(0)

x · ∇(V 2(x))|x|2αe2udx,

and ∫
BR(0)

V (x)|x|αeu|Ψ|2x · ∇udx

= R

∫
∂BR(0)

V (x)|x|αeu|Ψ|2dσ −
∫
BR(0)

|x|αeux · ∇(V (x)|Ψ|2)dx

−(2 + α)

∫
BR(0)

V (x)|x|αeu|Ψ|2dx.

Therefore, we get

R

∫
∂BR(0)

|∂u
∂ν
|2 − 1

2
|∇u|2dσ

= (2 + 2α)

∫
BR(0)

V 2(x)|x|2αe2udx− (2 + α)

∫
BR(0)

V (x)|x|αeu|Ψ|2dx

−R
∫
∂BR(0)

V 2(x)|x|2αe2udσ +R

∫
∂BR(0)

V (x)|x|αeu|Ψ|2dσ

+

∫
BR(0)

|x|2αe2ux · ∇(V 2(x))− |x|αeux · ∇(V (x)|Ψ|2)dx.

(19)

On the other hand, by the Schrödinger–Lichnerowicz formula D/ 2 =
−∆ on R2, we have

(20) ∆Ψ =
2∑

α=1

∇eα(V (x)|x|αeu)eα ·Ψ− V 2(x)|x|2αe2uΨ.
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Here · is the Clifford multiplication and {e1, e2} is the local orthonormal
basis on R2. Using the Clifford multiplication relation

ei · ej + ej · ei = −2δij , for 1 ≤ i, j ≤ 2,

and

〈Ψ, ϕ〉 = 〈ei ·Ψ, ei · ϕ〉 ,
for any spinors Ψ, ϕ ∈ Γ(ΣM), we know that

(21) 〈Ψ, ei ·Ψ〉+ 〈ei ·Ψ,Ψ〉 = 0,

for any i = 1, 2. Then we multiply (20) by x · Ψ and integrate over
BR(0) to obtain∫

BR(0)
〈∆Ψ, x ·Ψ〉dx

=

∫
BR(0)

2∑
α,β=1

〈∇eα(V (x)|x|αeu)eα ·Ψ, eβ ·Ψ〉xβ

− V 2(x)|x|2αe2u〈Ψ, x ·Ψ〉dx,

and ∫
BR(0)

〈x ·Ψ,∆Ψ〉dx

=

∫
BR(0)

2∑
α,β=1

〈eβ ·Ψ,∇eα(V (x)|x|αeu)eα ·Ψ〉xβ

− V 2(x)|x|2αe2u〈x ·Ψ,Ψ〉dx.

By integration by parts, we get∫
BR(0)

〈∆Ψ, x ·Ψ〉dx

=

∫
∂BR(0)

〈∂Ψ

∂ν
, x ·Ψ〉dσ −

∫
BR(0)

V (x)|x|αeu|Ψ|2dx

−
∫
BR(0)

〈∇Ψ, x · ∇Ψ〉dx,

and, similarly, we have∫
BR(0)

〈x ·Ψ,∆Ψ〉dx

=

∫
∂BR(0)

〈x ·Ψ, ∂Ψ

∂ν
〉dσ −

∫
BR(0)

V (x)|x|αeu|Ψ|2dx

−
∫
BR(0)

〈x · ∇Ψ,∇Ψ〉dx.
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Furthermore, we also have∫
BR(0)

2∑
α,β=1

〈∇eα(V (x)|x|αeu)eα ·Ψ, eβ ·Ψ〉xβdx

+

∫
BR(0)

2∑
α,β=1

〈eβ ·Ψ,∇eα(V (x)|x|αeu)eα ·Ψ〉xβdx

= 2

∫
BR(0)

2∑
α=1

〈∇eα(V (x)|x|αeu)eα ·Ψ, eα ·Ψ〉xαdx

= 2

∫
BR(0)

x · ∇(V (x)|x|αeu)|Ψ|2dx

= −2

∫
BR(0)

V (x)|x|αeux · ∇(|Ψ|2)dx− 4

∫
BR(0)

V (x)|x|αeu|Ψ|2dx

+2R

∫
∂BR(0)

V (x)|x|αeu|Ψ|2dx.

Therefore, we obtain

R

∫
∂BR(0)

V (x)|x|αeu|Ψ|2dσ −
∫
BR(0)

V (x)|x|αeux · ∇(|Ψ|2)dx

=
1

2

∫
∂BR(0)

〈∂Ψ

∂ν
, x ·Ψ〉dσ +

1

2

∫
∂BR(0)

〈x ·Ψ, ∂Ψ

∂ν
〉dσ

+

∫
BR(0)

V (x)|x|αeu|Ψ|2dx.(22)

Combining (19) and (22), we obtain our Pohozaev identity (18). q.e.d.

Proposition 4.3 also shows that C(u,Ψ) = 0 if (u, ψ) is classical solu-
tion of (13) with the condition (14) in Br. For the converse, let us start
with a lemma.

Lemma 4.4. There exists 0 < ε0 < π such that if (v, φ) is a solution
of{

−∆v = 2h2(x)|x|2αe2v − h(x)|x|αev 〈φ, φ〉 ,
D/ φ = −h(x)|x|αevφ, x ∈ Br0\{0},

where h(x) is a C1,β function satisfying 0 < a ≤ h(x) ≤ b in Br0 and it
satisfies ∫

Br0

|x|2αe2vdx < ε0,

∫
Br0

|φ|4dx < C,

then for any x ∈ B r0
2

we have

|φ(x)||x|
1
2 + |∇φ(x)||x|

3
2 ≤ C(

∫
B2|x|

|φ|4dx)
1
4 .
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Furthermore, if we assume that e2v = O( 1
|x|2+2α−ε ), then, for any x ∈

B r0
2

, we have

|φ(x)||x|
1
2 + |∇φ(x)||x|

3
2 ≤ C|x|

1
4C (

∫
Br0

|φ|4dx)
1
4 ,

for some positive constant C. Here ε is any sufficiently small positive
number.

Proof. Set w(x) = v(x) + α ln |x|. Then (w, φ) satisfies{
−∆w = 2h2(x)e2w − h(x)ew 〈φ, φ〉 ,
D/ φ = −h(x)evφ,

x ∈ Br0\{0},

with the energy conditions∫
Br0

e2wdx ≤ ε0,

∫
Br0

|φ|4(x)dx ≤ C.

Since h(x) is a C1,β function satisfying 0 < a ≤ h(x) ≤ b in Br0 , we can
obtain the conclusion of this lemma by applying similar arguments as
in the proof of Lemma 6.2 in [17]. q.e.d.

We shall now show the removability of a local singularity when the Po-
hozaev constant vanishes, thereby completing the proof of Theorem 4.2.

Proposition 4.5. (Removability of a local singularity) Let (u,Ψ) ∈
C2(Br \{0})×C2(Γ(Σ(Br \{0}))) be a solution of ( 13) and ( 14). Then
there is a constant γ < 2π(1 + α) such that

u(x) = − γ

2π
log|x|+ h, near 0,

where h is bounded near 0. Moreover, the Pohozaev constant C(u,Ψ)
and γ are related by

C(u,Ψ) =
γ2

4π
.

In particular, if C(u,Ψ) = 0, then (u,Ψ) ∈ C2(Br)×C2(Γ(ΣBr)), i.e.,
the local singularity of (u,Ψ) is removable.

Proof. Since
∫
B1
|x|2αe2udx =

∫
Br
|x|2αe2ũdx under the following scal-

ing transformation

ũ(x) = u(rx)− (1 + α) ln r,

Ψ̃(x) = r−
1
2 Ψ(rx),

we assume for convenience that
∫
Br
|x|2αe2udx < ε0, where ε0 is as in

Lemma 4.4. By standard potential analysis, it follows that there is a
constant γ such that

lim
|x|→0

u

− log |x|
=

γ

2π
.
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By
∫
Br
|x|2αe2u + |Ψ|4dx < C we obtain that γ ≤ 2π(1 + α). Further-

more, by using Lemma 4.4 and by a similar argument as in the proof
of Proposition 2.6 of [19], we can improve this to the strict inequality
γ < 2π(1 + α).

Define v(x) by

v(x) = − 1

2π

∫
Br

log |x− y|(2V 2(y)|y|2αe2u − V (y)|y|αeu|Ψ|2)dy,

and set w = u − v. It is clear that −∆v = 2V 2(x)|x|2αe2u −
V (x)|x|αeu|Ψ|2 in Br and ∆w = 0 in Br\{0}. One can check that

lim
|x|→0

v(x)

− log |x|
= 0,

which implies that

lim
|x|→0

w(x)

− log |x|
= lim
|x|→0

u− v
− log |x|

=
γ

2π
.

Since w is harmonic in B1\{0} we have

w = − γ

2π
log |x|+ w0,

with a smooth harmonic function w0 in Br. Therefore, we have

u = − γ

2π
log |x|+ v + w0 near 0.

Next we will compute the Pohozaev constant for (u,Ψ). For this pur-
pose, we want to estimate the decay of (v,Ψ) near the zero. Since

−∆v = 2V 2(x)|x|2αe2u − V (x)|x|αeu|Ψ|2,

and the two terms on the right hand f1(x) := 2V 2(x)|x|2αe2u(x) and

f2(x) := −V (x)|x|αeu(x)|Ψ|2(x) are L1 integrable, we can obtain e|v(x)| ∈
Lp(Br) for any p ≥ 1. Since

f1(x) = |x|−
γ
π

+2α(2V 2(x)e2w0(x)+2v(x)),

and

f2(x) = −|x|−
γ
2π

+α−1(V (x)ew0(x)+v(x)|x||Ψ|2(x)),

we set s1 = γ
π − 2α and s2 = γ

2π − α + 1. Then max{s1, s2} < 2.

Since |Ψ| ≤ C|x|−
1
2 near 0 and w0(x) is smooth in Br, we have by

Hölder’s inequality that f1 ∈ Lt(Br) for any t ∈ (1, 2
s1

) if s1 > 0, and

f1 ∈ Lt(Br) for any t > 1 if s1 ≤ 0. For f2, we also have f2 ∈ Lt(Br)
for any t ∈ (1, 2

s2
) if s2 > 0, and f2 ∈ Lt(Br) for any t > 1 if s2 ≤ 0.

Altogether, there exists some t > 1 such that f ∈ Lt(Br). In turn, we
get that v(x) is in L∞(Br). On the other hand, since v(x) is in L∞(Br),
it follows from Lemma 4.4 that there exists a small δ0 > 0 such that

|Ψ| ≤ C|x|δ0−
1
2 , near 0,
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and

|∇Ψ| ≤ C|x|δ0−
3
2 , near 0.

Next we estimate ∇v(x). If s1 < 0 and s2 < 0, then v(x) is in C1(Br).
If s1 > 0 or s2 > 0, ∇v(x) will have a decay when |x| → 0. Without
loss of generality, we assume that s1 > 0 and s1 > 0. Denote

v1(x) = − 1

2π

∫
Br

(log |x− y|)(2V 2(y)|y|2αe2u(y))dy,

and

v2(x) =
1

2π

∫
Br

(log |x− y|)(V (y)|y|αeu(y)|Ψ|2(y))dy.

Note that

|∇v1(x)| ≤ 1

2π

∫
Br

1

|x− y|
|f1(y)|dy

=
1

2π

∫
{|x−y|≥ |x|

2
}∩Br

1

|x− y|
|f1(y)|dy

+
1

2π

∫
{|x−y|≤ |x|

2
}∩Br

1

|x− y|
|f1(y)|dy

= I1 + I2.

Fix t ∈ (1, 2
s1

) and choose 0 < τ1 < 1 such that τ1t
t−1 < 2. Hence, we

have 0 < τ1 < 2− s1. Then by Hölder’s inequality we obtain

I1 ≤ (

∫
{|x−y|≥ |x|

2
}∩Br

1

|x− y|
τ1t
t−1

dy)
t−1
t

× (

∫
{|x−y|≥ |x|

2
}∩Br

1

|x− y|(1−τ1)t
|f1|tdy)

1
t

≤ C

|x|1−τ1
.

For I2, since y ∈ {y||x− y| ≤ |x|2 } implies that |y| ≥ |x|2 , we can get that

I2 ≤ C

∫
{|x−y|≤ |x|

2
}∩Br

1

|x− y||y|s1
dy

≤ C|x|1−s1 .

Hence, we have

|∇v1(x)| ≤ C(
1

|x|1−τ1
+ |x|1−s1),

for suitable τ1 ∈ (0, 2− s1). Similarly, we also can get that

|∇v2(x)| ≤ C(
1

|x|1−τ2
+ |x|1−s2),
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for suitable τ2 ∈ (0, 2− s2). In conclusion, we have

|∇v(x)| ≤ C(
1

|x|1−τ
+ |x|1−s),

for suitable τ = min{τ1, τ2} and s = max{s1, s2}.
Now, we can compute the Pohozaev constant C(u,Ψ). Since

∇u = − γ

2π

x

|x|2
+∇(w0 + v(x)),

we have for any 0 < R < r

R

∫
∂BR

|∂u
∂ν
|2 − 1

2
|∇u|2dσ

= R

∫
∂BR

(
x

|x|
· ∇(w0 + v)− γ

2π

1

|x|
)2dσ

−R
∫
∂BR

1

2
(
γ2

4π2

1

|x|2
− 2

γ

2π

x

|x|2
· ∇(w0 + v) + |∇(w0 + v)|2)dσ

=
1

4π
γ2 − γ

2π
R

∫
∂BR

x

|x|2
· ∇(w0 + v)dσ

−
∫
∂BR

R

2
|∇(w0 + v)|2 −R(

x

|x|
· ∇(w0 + v))2dσ

=
1

4π
γ2 + oR(1),

where oR(1)→ 0 as R→ 0. We also have

(1 + α)

∫
BR

2V 2(x)|x|2αe2u − V (x)|x|αeu|Ψ|2dx = oR(1),

and

R

∫
∂BR

V 2(x)|x|2αe2udσ = oR(1),

and ∫
BR

(|x|2αe2ux · ∇(V 2(x))− |x|αeu|Ψ|2x · ∇V (x))dx = oR(1),

and ∫
∂BR

〈∂Ψ

∂ν
, x · ∇Ψ〉dσ +

∫
∂BR

〈x · ∇Ψ,
∂Ψ

∂ν
〉dσ = oR(1).

Putting all together and letting R→ 0, we get

C(u,Ψ) = lim
R→0

C(u,Ψ, R) =
γ2

4π
.

Since C(u,Ψ) = 0 for (u,Ψ), therefore, we get γ = 0. Then from the
proof of Proposition 3.1 we have (u,Ψ) ∈ C2(Br) × C2(Γ(ΣBr)), i.e.,
the local singularity of (u,Ψ) is removable. q.e.d.



114 J. JOST, C. ZHOU & M. ZHU

5. Bubble energy

In this section, we shall analyze some properties of a “bubble”, i.e.,
an entire solution of (13) with finite energy and with constant coefficient
function, which can be obtained after a suitable rescaling at a blow-up
point. We shall obtain the asymptotic behavior of an entire solution
with finite energy and show the global singularity removability. The
latter means that an entire solution on R2 can be conformally extended
to S2.

Without loss of generality, we assume that V (x) ≡ 1 and, hence, the
considered equations are

(23)

{
−∆u = 2|x|2αe2u − |x|αeu|Ψ|2,
D/ Ψ = −|x|αeuΨ,

in R2,

with α ≥ 0. The energy condition is

(24) I(u,Ψ) =

∫
R2

(|x|2αe2u + |Ψ|4)dx <∞.

First, let (u,Ψ) ∈ H1,2
loc (R2) × W

1, 4
3

loc (Γ(ΣR2)) be a weak solution
of (23) and (24), then applying similar arguments as in the proof of
Proposition 3.1, we get u+ ∈ L∞(R2) and, hence, (u,Ψ) ∈ C2(R2) ×
C2(Γ(ΣR2)).

Next, we denote by (v,Φ) the Kelvin transformation of (u,Ψ), i.e.,

v(x) = u(
x

|x|2
)− (2 + 2α) ln |x|,

Φ(x) = |x|−1Ψ(
x

|x|2
).

Then (v,Φ) satisfies

(25)

{
−∆v = 2|x|2αe2v − |x|αev|Φ|2,
D/ Φ = −|x|αevΦ, x ∈ R2\{0}.

Now we define the energy of the entire solution, i.e., the bubble en-
ergy, by

d =

∫
R2

2|x|2αe2u − |x|αeu|Ψ|2dx,

and define a constant spinor ξ0 =
∫
R2 |x|αeuΨdx. It will turn out that

the constant spinor ξ0 is well defined. Then we have

Proposition 5.1. Let (u,Ψ) be a solution of ( 23) and ( 24). Then
u satisfies

(26) u(x) = − d

2π
ln |x|+ C +O(|x|−1) for |x| near ∞,

(27) Ψ(x) = − 1

2π

x

|x|2
· ξ0 + o(|x|−1) for |x| near ∞,
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where · is the Clifford multiplication, C ∈ R is some constant, and
d = 4π(1 + α).

Proof. The proof of this proposition is standard, see [17, 13, 18]
and the references therein. The essential facts used in this case are
the Pohozaev identity (Proposition 4.3) and the decay estimate for the
spinor of (25) (see Lemma 4.4). For readers’ convenience, we sketch the
proof here.

First, let us define

w(x) = − 1

2π

∫
R2

(ln |x− y| − ln (|y|+ 1))(2|y|2αe2u − |y|αeu|Ψ|2)dy.

Since ∫
R2

(2|x|2αe2u − |x|αeu|Ψ|2)dx < C,

it follows from the standard potential argument that

u(x)

ln |x|
→ − d

2π
as |x| → +∞.

Since
∫
R2 |x|2αe2udx < +∞, the above result implies

d ≥ 2π(1 + α).

Furthermore, similarly, as in the case of the usual Liouville or super-
Liouville equation [17], we can show that d > 2π(1 + α).

Secondly, from d > 2π(1 +α), we can improve the estimate for e2u to

(28) e2u ≤ C|x|−2−2α−ε for |x| near ∞.

Therefore, from Lemma 4.4 and the Kelvin transformation, we obtain
the following asymptotic estimates of the spinor Ψ(x):

(29) |Ψ(x)| ≤ C|x|−
1
2
−δ0 for |x| near ∞,

and

(30) |∇Ψ(x)| ≤ C|x|−
3
2
−δ0 for |x| near ∞,

for some positive number δ0.
Then, from (28), (29) and (30) and by some standard potential anal-

ysis in [13] and [14], we can obtain firstly

− d

2π
ln |x| − C ≤ u(x) ≤ − d

2π
ln |x|+ C,

and, furthermore, we can get

u(x) = − d

2π
ln |x|+ C +O(|x|−1) for |x| near ∞,

for some constant C > 0. Thus, we get the proof of (26).
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Next, we want to show that d = 4π(1 + α). For sufficiently large
R > 0, the Pohozaev identity for the solution (u,Ψ) gives

R

∫
∂BR(0)

|∂u
∂ν
|2 − 1

2
|∇u|2dσ

= (1 + α)

∫
BR(0)

(2|x|2αe2u − |x|αeu|Ψ|2)dx

−R
∫
∂BR(0)

|x|2αe2udσ +
1

2

∫
∂BR(0)

〈∂Ψ

∂ν
, x ·Ψ〉+ 〈x ·Ψ, ∂Ψ

∂ν
〉dσ,(31)

where ν is the outward normal vector to ∂BR(0). By (26), (29) and (30)
we have

lim
R→+∞

R

∫
∂BR(0)

|∂u
∂ν
|2 − 1

2
|∇u|2dσ =

1

4π
d2,

and

lim
R→+∞

R

∫
∂BR(0)

|x|2αe2udσ = 0,

and

lim
R→+∞

∫
∂BR

|∂Ψ

∂ν
||x ·Ψ|dσ = 0.

Let R→∞ in (31), we get that

1

4π
d2 = (1 + α)d.

It follows that d = 4π(1 + α).
Finally, we show (27). Noting that d = 4π(1 + α), we have

(32) e2u ≤ C|x|−(4+4α) for |x| near ∞.
This implies that the constant spinor ξ0 is well defined. By using the
Green function of the Dirac operator in R2,

G(x, y) =
1

2π

x− y
|x− y|2

·,

see [2], if we set

ξ(x) = − 1

2π

∫
R2

x− y
|x− y|2

· |x|αeuΨdy,

then we have D/ ξ = −|x|αeuΨ.
Since

|x · ξ(x)− 1

2π
ξ0| =

1

2π
|
∫
R2

(
x · (x− y)

|x− y|2
+ 1) · |y|αeuΨ(y)dy|

=
1

2π
|
∫
R2

(x− y) · y
|x− y|2

· |y|αeuΨ(y)dy|

≤ 1

2π

∫
R2

|y|
|x− y|

|y|αeu|Ψ|dy,(33)
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and by (32),

(34) |x|α|Ψ|eu ≤ C|x|−2−α−ε for |x| near ∞,

for some positive constants C and ε, we can follow the derivation of
gradient estimates in [14] to get

(35) |x · ξ(x)− 1

2π
ξ0| ≤ C|x|−ε for |x| near ∞.

Set η(x) = Ψ(x) − ξ(x). Then D/ η(x) = 0. It follows from (29) and
(35) that η(x) = 0, i.e., Ψ(x) = ξ(x). Furthermore,

|Ψ(x) +
1

2π

x

|x|2
· ξ0| = | x

|x|2
· (x ·Ψ(x)− 1

2π
ξ0)|

≤ 1

|x|
|x ·Ψ(x)− 1

2π
ξ0|

≤ C|x|−1−ε,

for |x| near ∞. This proves (27). q.e.d.

Finally, we show that an entire solution can be conformally extended
to S2.

Theorem 5.2. (Removability of a global singularity) Let (u,Ψ) be a
C2(R2) × C2(Γ(ΣR2)) solution of ( 23) and ( 24). Then (u,Ψ) extends
conformally to a solution on S2.

Proof. Let (v,Φ) be the Kelvin transformation of (u,Ψ). Then (v,Φ)
satisfies (25) on R2\{0}. To prove this theorem, it is sufficient to show
that (v,Φ) is smooth on R2. Applying Proposition 5.1, we have

(36) v(x) = (
d

2π
− (2 + 2α)) ln |x|+O(1) for |x| near 0.

Since d = 4π(1 + α), we get that v is bounded near 0. By recalling
that Φ is also bounded near 0, standard elliptic theory implies that
(v,Φ) ∈ C2(R2)× C2(Γ(ΣR2)). q.e.d.

6. Energy identity for spinors

In this section, which is the technically most demanding one, we shall
show an energy identity for the spinors. Firstly, analogously to the case
of super-Liouville equations on closed Riemann surfaces (see Lemma
3.4, [19]), we shall derive the following local estimate for the spinor
part on an annulus:

Lemma 6.1. Let (u,Ψ) be a solution of ( 13) and ( 14) on the annulus
Ar1,r2 = {x ∈ R2|r1 ≤ |x| ≤ r2}, where 0 < r1 < 2r1 <

r2
2 < r2 < 1.
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Then we have

(

∫
A

2r1,
r2
2

|∇Ψ|
4
3 )

3
4 + (

∫
A

2r1,
r2
2

|Ψ|4)
1
4

≤ Λ(

∫
Ar1,r2

|x|2αe2u)
1
2 (

∫
Ar1,r2

|Ψ|4)
1
4 + C(

∫
Ar1,2r1

|Ψ|4)
1
4(37)

+C(

∫
A r2

2 ,r2

|Ψ|4)
1
4 ,

for a positive constant Λ and some universal positive constant C.

Proof. In view of the second equation in (13), one can apply the Lp

estimates for the Dirac operator D/ and use similar arguments as in the
proof of Lemma 3.4 of [19] to prove the lemma. q.e.d.

Then, we can show the energy identity for the spinors – Theorem 1.2.

Proof of Theorem 1.2. We shall follow closely the arguments for the
case of super-Liouville equations on closed Riemann surfaces [19]. One
crucial step here is to use the local singularity removability to get a
contradiction.

We assume that Dδi be a small ball which is centered at a blow-up
point xi ∈ Σ1 such that D2δi

⋂
D2δj = ∅ for i 6= j, i, j = 1, 2, · · · , l, and

on Br(0)\
⋃l
i=1Dδi , Ψn converges strongly to some limit Ψ in L4 and∫

Br(0) |Ψ|
4 < ∞. Then, it suffices to prove that for each fixed blow-up

point xi ∈ Σ1, there are solutions (uk, ξk) of (13) and (14) on S2 with
α ≥ 0 and V being a constant function, k = 1, 2, · · · ,K such that

lim
δi→0

lim
n→∞

∫
Dδi

|Ψn|4dx =

K∑
k=1

∫
S2

|ξk|4dx.

Without loss of generality, we assume that there is only one bubble
at each blow-up point p (the general case of multiple bubbles at p can
be handled by induction). Furthermore, we may assume that p = 0.
The case of p 6= 0 can be handled in an analogous way and, in fact, this
case is simpler, as |x|2αn is a smooth function near p 6= 0. Then what
we need to prove is that there exists a bubble (u, ξ) such that

(38) lim
δ→0

lim
n→∞

∫
Dδ

|Ψn|4dx =

∫
S2

|ξ|4dx,

where Dδ is a disc of radius δ > 0 centered at the blow-up point p = 0.
We rescale each (un,Ψn) near the blow-up point p. Choose xn ∈ Dδ

such that un(xn) = maxDδ un(x). Then we have xn → p = 0 and

un(xn)→ +∞. Let λn = e
−un(xn)
αn+1 → 0 and define tn = max{λn, |xn|} →

0. Now there are two cases: (i) tn
λn

= O(1) as n → +∞ and (ii)
tn
λn
→ +∞ as n→ +∞.
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Case I: tn
λn

= O(1) as n→ +∞.
In this case, we define{

ũn(x) = un(tnx) + (αn + 1) ln tn,

Ψ̃n(x) = t
1
2
nΨn(tnx),

for any x ∈ D δ
2tn

. Then (ũn(x), Ψ̃n(x)) satisfies
−∆ũn(x) = 2V 2(tnx)|x|2αne2ũn(x)

−V (tnx)|x|αneũn(x)|Ψ̃n(x)|2,

D/ Ψ̃n(x) = −V (tnx)|x|αneũn(x)Ψ̃n(x),

in D δ
2tn

,

with energy conditions∫
D δ

2tn

(
|x|2αne2ũn(x) + |Ψ̃n(x)|4

)
dx < C.

Notice that

0 ≤ max
D δ

2tn

ũn(x) = ũn(
xn
tn

) = un(xn) + (αn + 1) ln tn

= −(αn + 1) lnλn + (αn + 1) ln tn ≤ C.
Moreover, since the maximum point of ũn(x), i.e., xn

tn
, is bounded,

namely |xntn | ≤ 1. So by taking a subsequence, we can assume that xn
tn
→

x0 ∈ R2 with |x0| ≤ 1. Therefore, it follows from Theorem 1.1 that, by

passing to a subsequence, (ũn, Ψ̃n) converges in C2
loc(R2)×C2

loc(Γ(ΣR2))

to some (ũ, Ψ̃) satisfying

(39)

{
−∆ũ = 2V 2(0)|x|2αe2ũ − V (0)|x|αeũ|Ψ̃|2,
D/ Ψ̃ = −V (0)|x|αeũΨ̃,

in R2,

with the energy condition
∫
R2(|x|2αe2ũ + |Ψ̃|4)dx < ∞. By Proposi-

tion 5.1, there holds∫
R2

(2V 2(0)|x|2αe2ũ − V (0)|x|αeũ|Ψ̃|2)dx = 4π(1 + α),

and by the removability of a global singularity (Theorem 5.2), we get a
bubbling solution of (13) and (14) on S2.

Case II: tn
λn
→ +∞ as n→ +∞.

In this case, necessarily tn = |xn| and, hence, |xn|λn
→ +∞ as n→ +∞.

Set τn = e−un(xn)

|xn|αn = λn( λn
|xn|)

αn . Then τn → 0 and |xn|
τn
→ +∞, as

n→ +∞. Now define{
ũn(x) = un(xn + τnx)− un(xn),

Ψ̃n(x) = τ
1
2
n Ψn(xn + τnx),
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for any x ∈ D tnδ
2τn

(xn). Then (ũn(x), Ψ̃n(x)) satisfies
−∆ũn(x) = 2V 2(xn + τnx)| xn|xn| + τn

|xn|x|
2αne2ũn(x)

−V (xn + τnx)| xn|xn| + τn
|xn|x|

αneũn(x)|Ψ̃n(x)|2,
D/ Ψ̃n(x) = −V (xn + τnx)| xn|xn| + τn

|xn|x|
αneũn(x)Ψ̃n(x),

in D tnδ
2τn

(xn) and with energy conditions∫
D tnδ

2τn

(
| xn
|xn|

+
τn
|xn|

x|2αne2ũn(x) + |Ψ̃n(x)|4
)
dx < C.

It is clear that ũn(x) ≤ maxD tnδ
2τn

(xn) ũn(x) = ũn(0) = 0, and | xn|xn| +

τn
|xn|x|

2αn → 1 uniformly in C0
loc(R2). Then from Theorem 1.1, by pass-

ing to a subsequence, (ũn, Ψ̃n) converges in C2
loc(R2)×C2

loc(Γ(ΣR2)) to

some (ũ, Ψ̃) satisfying{
−∆ũ = 2V 2(0)e2ũ − V (0)eũ|Ψ̃|2,
D/ Ψ̃ = −V (0)eũΨ̃,

in R2,

with the energy condition
∫
R2(e2ũ + |Ψ̃|4)dx <∞. By the removability

of a global singularity (see Proposition 6.3 and Theorem 6.4 in [17]),
there holds ∫

R2

(2V 2(0)e2ũ − V (0)eũ|Ψ̃|2)dx = 4π,

and we get a bubbling solution of (13) and (14) on S2.
In order to prove (38) we need to estimate the energy of Ψn in the

neck domain. We shall proceed separately for Case I and for Case II.
For Case I, the neck domain is

Aδ,R,n = {x ∈ R2|tnR ≤ |x| ≤ δ}.

Then to prove (38), it suffices to prove the following

(40) lim
δ→0

lim
R→+∞

lim
n→∞

∫
Aδ,R,n

|Ψn|4dx = 0.

Next we shall show two claims.

Claim I.1: For any ε > 0, there is an N > 1 such that for any
n ≥ N , we have∫

Dr\De−1r

(|x|2αne2un + |Ψn|4)dx < ε, ∀r ∈ [etnR, δ].

To show this claim, we firstly note the following two facts:
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Fact I.1: For any ε > 0 and any T > 0, there exists some N(T ) > 0
such that for any n ≥ N(T ), we have

(41)

∫
Dδ\Dδe−T

(|x|2αne2un + |Ψn|4)dx < ε.

Actually, since (un,Ψn) has no blow-up point in D2δ\{p}, we know
that Ψn converges strongly to Ψ in L4

loc(D2δ\{p}), and un will either

be uniformly bounded on any compact subset of D2δ\{p} or uniformly
tend to −∞ on any compact subset of D2δ\{p}.

If un uniformly tends to −∞ on any compact subset of D2δ\{p}, it is
clear that, for any given T > 0, there is an N(T ) > 0 big enough such
that when n ≥ N(T ), we have∫

Dδ\Dδe−T
|x|2αne2undx <

ε

2
.

Moreover, since Ψn converges to Ψ in L4
loc(D2δ\{p}) and, hence,∫

Dδ\Dδe−T
|Ψn|4 →

∫
Dδ\Dδe−T

|Ψ|4.

For any given ε > 0 small, we can choose δ > 0 small enough such that∫
Dδ
|Ψ|4 < ε

4 , then for any given T > 0, there is an N(T ) > 0 big enough

such that when n ≥ N(T )∫
Dδ\Dδe−T

|Ψn|4 <
ε

2
.

Consequently, we get (41).
If (un,Ψn) is uniformly bounded on any compact subset of D2δ\{p},

then (un,Ψn) converges to a limit solution (u,Ψ) with bounded energy∫
D2δ

(|x|2αe2u + |Ψ|4) < ∞ strongly on any compact subset of D2δ\{p}
and, hence,∫

Dδ\Dδe−T
(|x|2αne2un + |Ψn|4)→

∫
Dδ\Dδe−T

(|x|2αe2u + |Ψ|4).

Therefore, we can choose δ > 0 small enough such that, for any given
ε > 0 and any given T > 0, there exists an N(T ) > 0 big enough so
that, when n ≥ N(T ), (41) holds.

Fact I.2: For any small ε > 0, and T > 0, we may choose an
N(T ) > 0 such that when n ≥ N(T )∫

D
tnReT

\DtnR
(|x|2αne2un + |Ψn|4)

=

∫
D
ReT
\DR

(|x|2αne2ũn + |Ψ̃n|4)
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→
∫
D
ReT
\DR

(|x|2αe2ũ + |Ψ̃|4)

< ε,

if R is big enough.
Now we can deal with Claim I.1. We argue by contradiction by using

the above two facts. Suppose that there exists ε0 > 0 and a sequence
rn ∈ [etnR, δ] such that∫

Drn\De−1rn

(|x|2αne2un + |Ψn|4) ≥ ε0.

Then, by the above two facts, we know that δ
rn
→ +∞ and tnR

rn
→ 0, in

particular, rn → 0 and tn
rn
→ 0 as n→ +∞.

Scaling again, we set

(42)

{
vn(x) = un(rnx) + (αn + 1) ln rn,

ϕn(x) = r
1
2
nΨn(rnx).

It is clear that

(43)

∫
(D1\De−1 )

(|x|2αne2vn + |ϕn|4) ≥ ε0,

and (vn, ϕn) satisfies{
−∆vn(x) = 2V 2(rnx)|x|2αne2vn(x) − V (rnx)|x|αnevn(x)|ϕn(x)|2,
D/ ϕn(x) = −V (rnx)|x|αnevn(x)ϕn(x),

in D δ
rn

\D tnR
rn

. By Theorem 1.1, there are three possible cases:

(1). There exists some R > 0, some point q ∈ DR \D 1
R

and energy

concentration occurs near q, namely along some subsequence

lim
n→∞

∫
Dr(q)

(|x|2αne2vn + |ϕn|4) ≥ ε0 > 0,

for any small r > 0. In such a case, we still obtain a second bubble
on S2 by the rescaling argument. Thus, we get a contradiction to the
assumption that there is only one bubble at the blow-up point p.

(2). For any R > 0, there is no blow-up point in DR\D 1
R

and vn tends

to −∞ uniformly in DR \D 1
R

. Then, there is a solution ϕ satisfying

D/ ϕ = 0, in R2 \ {0},
with bounded energy ||ϕ||L4(R2) <∞, such that

lim
n→∞

||ϕn − ϕ||L4(DR\D 1
R

) = 0, for any R > 0.

By the same arguments as in the case of super-Liouville equations [19],
we know that ϕ can be conformally extended to a harmonic spinor on
S2, which has to be identically 0. This will contradict (43).
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(3). For any R > 0, there is no blow-up point in DR \ D 1
R

and

(vn, ϕn) is uniformly bounded in DR \D 1
R

. Then, there is a solution

(v, ϕ) satisfying

(44)

{
−∆v = 2V 2(0)|x|2αe2v − V (0)|x|αev|ϕ|2, in R2 \ {0},
D/ ϕ = −V (0)|x|αevϕ, in R2 \ {0},

with finite energy
∫
R2(|x|2αe2v + |ϕ|4)dx <∞, such that

lim
n→∞

(
||vn − v||C2(DR\D 1

R
) + ||ϕn − ϕ||C2(DR\D 1

R
)

)
= 0,

for any R > 0.
In this case, we shall show that the local singularities at 0 and at ∞

of (v, ϕ) are removable. Firstly, since (un,Ψn) satisfies (4) and (5) in
D2δ, the following Pohozaev identity holds for any ρ > 0 with rnρ < 2δ,

rnρ

∫
∂Drnρ

|∂un
∂ν
|2 − 1

2
|∇un|2dσ

= (1 + αn)

∫
Drnρ

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

−rnρ
∫
∂Drnρ

V 2(x)|x|2αne2undσ

+
1

2

∫
∂Drnρ

〈∂Ψn

∂ν
, x ·Ψn〉+ 〈x ·Ψn,

∂Ψn

∂ν
〉dσ

+

∫
Drnρ

(|x|2αne2unx · ∇(V 2(x))− |x|αneun |Ψn|2x · ∇V (x))dx.

It follows that the associated Pohozaev constant of (vn(x), ϕn(x)) (see
(42)) satisfies

C(vn, ϕn)

= C(vn, ϕn, ρ)

= ρ

∫
∂Dρ

|∂vn
∂ν
|2 − 1

2
|∇vn|2dσ

− (1 + αn)

∫
Dρ

(2V 2(rnx)|x|2αne2vn − V (rnx)|x|αnevn |ϕn|2)dx

+ ρ

∫
∂Dρ

V 2(rnx)|x|2αne2vndσ

− 1

2

∫
∂Dρ

〈∂ϕn
∂ν

, x · ϕn〉+ 〈x · ϕn,
∂ϕn
∂ν
〉dσ

−
∫
Dρ

(
|x|2αne2vnx · ∇(V 2(rnx))− |x|αnevn |ϕn|2x · ∇(V (rnx))

)
dx

= 0.
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It is easy to verify that

lim
ρ→0

lim
n→∞

∫
Dρ

(
|x|2αne2vnx · ∇(V 2(rnx))

− |x|αnevn |ϕn|2x · ∇(V (rnx))
)
dx = 0.

Since (vn, ϕn) converges to (v, ϕ) in C2
loc(R2 \{0})×C2

loc(Γ(ΣR2 \{0})),
we have

0 = lim
ρ→0

lim
n→∞

C(vn, ϕn, ρ)

= lim
ρ→0

C(v, ϕ, ρ)

− (1 + α) lim
δ→0

lim
n→∞

∫
Dδ

(2V 2(rnx)|x|2αne2vn −V (rnx)|x|αnevn |ϕn|2)dx

= C(v, ϕ)− (1 + α)β.

Here

β = lim
δ→0

lim
n→∞

∫
Dδ

(2V 2(rnx)|x|2αne2vn − V (rnx)|x|αnevn |ϕn|2)dx,

and C(v, ϕ) = C(v, ϕ, ρ) is the Pohozaev constant with respect to equa-
tion (44), i.e.,

C(v, ϕ)

= C(v, ϕ, ρ)

= ρ

∫
∂Dρ

|∂v
∂ν
|2 − 1

2
|∇v|2dσ

−(1 + α)

∫
Dρ

(2V 2(0)|x|2αe2v − V (0)|x|αev|ϕ|2)dx

+ρ

∫
∂Dρ

V 2(0)|x|2αe2vdσ − 1

2

∫
∂Dρ

〈∂ϕ
∂ν
, x · ϕ〉+ 〈x · ϕ, ∂ϕ

∂ν
〉dσ.

On the other hand, since (vn, ϕn) converges to (v, ϕ) in C2
loc(R2 \

{0})× C2
loc(Γ(ΣR2 \ {0})), we have

2V 2(rnx)|x|2αne2vn − V (rnx)|x|αnevn |ϕn|2

→ ν = 2V 2(0)|x|2αe2v − V (0)|x|αev|ϕ|2 + βδp=0

weakly in the sense of measures in BR for any small R > 0. Using
Green’s representation formula for (vn, ϕn) in BR, we derive that

v(x) = − β

2π
log |x|+ w(x) + h(x),

with

w(x) = − 1

2π

∫
BR

(log |x−y|)(2V 2(0)|y|2αe2v(y)−V (0)|y|αev(y)|ϕ|2(y))dy,
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and

h(x) =
1

2π

∫
∂BR

(log |x− y|)∂v(y)

∂ν
dy − 1

2π

∫
∂BR

(x− y) · ν
|x− y|2

v(y)dy.

It is clear that h(x) is a regular term and h(x) ∈ C1(BR) and that w(x)
satisfies

−∆(w(x) + h(x)) = 2V 2(0)|x|2αe2v(x) − V (0)|x|αev(x)|ϕ|2(x), in BR.

Therefore, applying similar arguments as in the proof of Proposition
4.5, we know that w(x) is bounded in BR, and, furthermore, we obtain

C(v, ϕ) =
β2

4π
.

Thus, there holds

β2

4π
= (1 + α)β.

Since
∫
BR
|x|2αe2vdx < ∞, we have β ≤ 2π(1 + α). Therefore, we

conclude that β = 0 and, hence, C(v, ϕ) = 0. Then, by Proposition 4.5,
the singularity at 0 can be removed. Furthermore, the singularity at
∞ can be removed by applying the removability of a global singularity
(see Theorem 5.2). Then we get another bubble on S2. Thus, we get a
contradiction and complete the proof of Claim I.1.

Claim I.2: We can separate Aδ,R,n into finitely many parts

Aδ,R,n =

Nk⋃
k=1

Ak,

such that on each part

(45)

∫
Ak

|x|2αne2undx ≤ 1

4Λ2
, k = 1, 2, · · · , Nk.

Where Nk ≤ N0 with N0 being a uniform integer for all n large enough,
Ak = Drk−1 \ Drk , r0 = δ, rNk = tnR, rk < rk−1 for k = 1, 2, · · · , Nk,
and Λ is the constant as in Lemma 6.1.

The proof of the above claim is standard, see the case of super-
Liouville equations in [19, 21] as well as the cases of other Dirac equa-
tions in [35, 36]. Here we omit it.

Now using Claim I.1 and Claim I.2, we can show (40). The argu-
ments are similar to the case of super-Liouville equations in [19, 21].
For the sake of completeness, we provide the details here.

Let 0 < ε < 1 be small, δ be small enough, and let R and n be large
enough. We apply Lemma 6.1 to each part Al and use (45) to calculate

(

∫
Al

|Ψn|4)
1
4 ≤ Λ(

∫
D
erl−1\De−1rl

|x|2αne2un)
1
2 (

∫
D
erl−1\De−1rl

|Ψn|4)
1
4
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+ C(

∫
D
erl−1\Drl−1

|Ψn|4)
1
4 + C(

∫
D
rl
\D

e−1rl

|Ψn|4)
1
4

≤ Λ((

∫
Al

|x|2αne2un)
1
2 + ε

1
2 + ε

1
2 )((

∫
Al

|Ψn|4)
1
4 + ε

1
4 + ε

1
4 )

+ Cε
1
4

≤ Λ(

∫
Al

|x|2αne2un)
1
2 (

∫
Al

|Ψn|4)
1
4 + C(ε

1
4 + ε

1
2 + ε

3
4 )

≤ 1

2
(

∫
Al

|Ψn|4)
1
4 + Cε

1
4 ,

which gives

(46) (

∫
Al

|Ψn|4)
1
4 ≤ Cε

1
4 .

Then, using Lemma 6.1, (45), (46) and applying similar arguments, we
obtain

(47) (

∫
Al

|∇Ψn|
4
3 )

3
4 ≤ Cε

1
4 .

Summing up (46) and (47) on Al, we conclude that

(48)

∫
Aδ,R,n

|Ψn|4 +

∫
Aδ,R,n

|∇Ψn|
4
3 =

N0∑
l=1

∫
Al

|Ψn|4 + |∇Ψn|
4
3 ≤ Cε

1
3 .

This proves (40) and finishes the proof of theorem in this case.
For Case II, the neck domain is different from Case I and it is

AS,R,n(xn) = {x ∈ R2|τnR ≤ |x− xn| ≤ tnS}.

In fact, in this case, we can rescale twice to get the bubble. First, since
tn = |xn|, we define the rescaling functions{

ūn(x) = un(tnx) + (αn + 1) ln tn,

Ψ̄n(x) = t
1
2
nΨn(tnx),

for any x ∈ D δ
2tn

. Then (ūn(x), Ψ̄n(x)) satisfies
−∆ūn(x) = 2V 2(tnx)|x|2αne2ūn(x)

−V (tnx)|x|αneūn(x)|Ψ̄n(x)|2,
D/ Ψ̄n(x) = −V (tnx)|x|αneūn(x)Ψ̄n(x),

in D δ
2tn

,

with energy conditions∫
D δ

2tn

(
|x|2αne2ūn(x) + |Ψ̄n(x)|4

)
dx < C.
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Set that yn = xn
tn

. Noticing that ūn(yn) = un(xn) + (αn + 1) ln tn =

(αn + 1) ln tn − (αn + 1) lnλn → +∞, we set that δn = e−ūn(yn) and
define the rescaling function{

ũn(x) = ūn(δnx+ yn) + ln δn,

Ψ̃n(x) = δ
1
2
n Ψ̄n(δnx+ yn),

for any δnx + yn ∈ D δ
2tn

. We can see that (ũn, Ψ̃n) is exactly the

same as that defined before. Without loss of generality, we assume that
y0 = limn→∞

xn
tn

. Notice that∫
Dδ

|Ψn|4dx =

∫
D δ
tn

|Ψ̄n|4dx

=

∫
D δ
tn
\DR1

(yn)
|Ψ̄n|4dx+

∫
DR1

(yn)\DδnR2
(yn)
|Ψ̄n|4dx

+

∫
DδnR2

(yn)
|Ψ̄n|4dx

=

∫
D δ
tn
\DR1

(yn)
|Ψ̄n|4dx

+

∫
DtnR1

(xn)\DtnδnR2
(xn)
|Ψn|4dx+

∫
DδnR2

(yn)
|Ψ̄n|4dx.

Since we have assumed that (un,Ψn) has only one bubble at the blow-
up point p = 0, (ūn, Ψ̄n) also has only one bubble at the blow-up point
p = y0. Therefore, we have

lim
R1→+∞

lim
n→∞

∫
D δ
tn
\DR1

(yn)
|Ψ̄n|4dx = 0,

uniformly for any small δ, and since DδnR2(yn) is a bubble domain, we
know AS,R,n is the neck domain for sufficiently large S,R > 0, and it is
sufficient to prove

(49) lim
S→+∞

lim
R→+∞

lim
n→∞

∫
AS,R,n(xn)

|Ψn|4dv = 0.

For this purpose, we shall prove two claims.

Claim II.1: for any ε > 0, there is an N > 1 such that for any
n ≥ N , we have

(50)

∫
Dr(xn)\De−1r(xn)

(|x|2αne2un + |Ψn|4)dx < ε, ∀r ∈ [eτnR, tnS].

To get (50), similarly, to the Case I, we firstly note the following two
facts:
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Fact II.1: For any ε > 0 and any T > 0, there exists some N(T ) > 0
such that for any n ≥ N(T ), we have∫

DtnS(xn)\D
tnSe−T (xn)

(|x|2αne2un + |Ψn|4)dx < ε,

if S is large enough.

Fact II.2: For any small ε > 0, and T > 0, we may choose an
N(T ) > 0 such that when n ≥ N(T )∫

D
τnReT

(xn)\DτnR(xn)
(|x|2αne2un + |Ψn|4)

=

∫
D
ReT
\DR

(| xn
|xn|

+
τn
|xn|

x|2αne2ũn + |Ψ̃n|4)

→
∫
D
ReT
\DR

(e2ũ + |Ψ̃|4)

< ε,

if R is large enough.
Now we argue by contradiction to show (50) by using the above

two facts. We assume that there exists ε0 > 0 and a sequence rn ∈
[eτnR, tnS] such that∫

Drn (xn)\De−1rn
(xn)

(|x|2αne2un + |Ψn|4) ≥ ε0.

Then, by the above two facts, we know that tnS
rn
→ +∞ and τnR

rn
→ 0,

in particular, rn → 0 as n → +∞. Note that |xnrn | = | tnrn | → +∞ as
n→∞. We define

(51)

{
vn(x) = un(rnx+ xn) + ln(rn|xn|αn),

ϕn(x) = r
1
2
nΨn(rnx+ xn).

Then (vn, ϕn) satisfies
−∆vn(x) = 2V 2(rnx+ xn)| xn|xn| + rnx

|xn| |
2αne2vn(x)

−V (rnx+ xn)| xn|xn| + rnx
|xn| |

αnevn(x)|ϕn|2,
D/ ϕn(x) = −V (rnx+ xn)| xn|xn| + rn

|xn|x|
αnevn(x)ϕn(x),

in D tnS
rn

\D τnR
rn

, and∫
e−1≤|x|≤1

(| xn
|xn|

+
rn
|xn|

x|2αne2vn + |ϕn|4) ≥ ε0.

By Theorem 1.1, there are three possible cases. However, similarly, to
the Case I, we can rule out the first and the second possible cases. If
the third case happens, then for any R > 0, there is no blow-up point in
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DR \D 1
R

and (vn, ϕn) is uniformly bounded in DR \D 1
R

. Then, there

is a solution (v, ϕ) satisfying

(52)

{
−∆v = 2V 2(0)e2v − V (0)ev|ϕ|2, in R2 \ {0},
D/ ϕ = −V (0)evϕ, in R2 \ {0},

with finite energy
∫
R2(e2v + |ϕ|4)dx <∞, such that

lim
n→∞

(
||vn − v||C2(DR\D 1

R
) + ||ϕn − ϕ||C2(DR\D 1

R
)

)
= 0,

for any R > 0.
Next we shall use the Pohozaev identity to remove the two singular-

ities to get another bubble.
Firstly, since (un,Ψn) satisfies (4) and (5) in D2δ, the following Po-

hozaev identity holds for any ρ > 0 with rnρ < tn,

rnρ

∫
∂Drnρ(xn)

|∂un
∂ν
|2 − 1

2
|∇un|2dσ

=

∫
Drnρ(xn)

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

−rnρ
∫
∂Drnρ(xn)

V 2(x)|x|2αne2undσ

+
1

2

∫
∂Drnρ(xn)

〈∂Ψn

∂ν
, (x− xn) ·Ψn〉+ 〈(x− xn) ·Ψn,

∂Ψn

∂ν
〉dσ

+

∫
Drnρ(xn)

e2un(x− xn) · ∇(V 2(x)|x|2αn)dx

−
∫
Drnρ(xn)

eun |Ψn|2(x− xn) · ∇(V (x)|x|αn)dx.

Here we have used the fact that |x|2αn is smooth in Drnρ(xn) ⊂ R2\{0}.
Noticing again that{

vn(x) = un(rnx+ xn) + ln(rn|xn|αn),

ϕn(x) = r
1
2
nΨn(rnx+ xn).

Hence, the Pohozaev constant associated with (vn, ϕn) (see definition
(51)) satisfies

C(vn, ϕn)

= C(vn, ϕn, ρ)

= ρ

∫
∂Dρ

|∂vn
∂ν
|2 − 1

2
|∇vn|2dσ

−
∫
Dρ

2V 2(rnx+ xn)| xn
|xn|

+
rn
|xn|

x|2αne2vndx
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+

∫
Dρ

V (rnx+ xn)| xn
|xn|

+
rn
|xn|

x|αnevn |ϕn|2dx

+ρ

∫
∂Dρ

V 2(rnx+ xn)| xn
|xn|

+
rn
|xn|

x|2αne2vndσ

−1

2

∫
∂Dρ

〈∂ϕn
∂ν

, x · ϕn〉+ 〈x · ϕn,
∂ϕn
∂ν
〉dσ

−
∫
Dρ

e2vnx · ∇(V 2(rnx+ xn)| xn
|xn|

+
rnx

|xn|
|2αn)dx

+

∫
Dρ

evn |ϕn|2x · ∇(V (rnx+ xn)| xn
|xn|

+
rnx

|xn|
|αn)dx

= 0.

Note that (vn, ϕn) converges to (v, ϕ) in C2
loc(R2 \ {0})× C2

loc(Γ(ΣR2 \
{0})) and | xn|xn| + rn

|xn|x|
αn is a smooth function in Dδ for δ > 0 small

enough. Therefore, we have

0 = lim
ρ→0

lim
n→∞

C(vn, ϕn, ρ)

= lim
ρ→0

C(v, ϕ, ρ)

− lim
δ→0

lim
n→∞

∫
Dδ

(
2V 2(rnx+ xn)| xn

|xn|
+
rnx

|xn|
|2αne2vn

−V (rnx+ xn)| xn
|xn|

+
rnx

|xn|
|αnevn |ϕn|2

)
dx

= C(v, ϕ)− β.

Here

β = lim
δ→0

lim
n→∞

∫
Dδ

(
2V 2(rnx+ xn)| xn

|xn|
+

rn
|xn|

x|2αne2vn

−V (rnx+ xn)| xn
|xn|

+
rn
|xn|

x|αnevn |ϕn|2
)
dx,

and C(v, ϕ) is the Pohozaev constant with respect to (52), i.e.,

C(v, ϕ) = ρ

∫
∂Dρ

|∂v
∂ν
|2 − 1

2
|∇v|2dσ

−
∫
Dρ

(2V 2(0)e2v − V (0)ev|ϕ|2)dx

+ρ

∫
∂Dρ

V 2(0)e2vdσ − 1

2

∫
∂Dρ

〈∂ϕ
∂ν
, x · ϕ〉+ 〈x · ϕ, ∂ϕ

∂ν
〉dσ.

On the other hand, since (vn, ϕn) converges to (v, ϕ) in C2
loc(R2 \

{0})× C2
loc(Γ(ΣR2 \ {0})), we have
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2V 2(rnx+ xn)| xn
|xn|

+
rn
|xn|

x|2αne2vn

−V (rnx+ xn)| xn
|xn|

+
rn
|xn|

x|αnevn |ϕn|2

→ ν = 2V 2(0)e2v − V (0)ev|ϕ|2 + βδp=0

weakly in the sense of measures in BR for any sufficient small R > 0.
Then, applying similar arguments as in Case I, we can show that

v(x) = − β

2π
log |x|+ w(x) + h(x),

with w(x) being a bounded term and h(x) being a regular term and,
furthermore, we have

C(v, ϕ) =
β2

4π
.

Hence, there holds
β2

4π
= β.

Since
∫
BR

e2vdx < ∞, we have β ≤ 2π. Therefore, we deduce that

C(v, ϕ) = 0, β = 0 and, hence, the singularities at 0 and ∞ of (52)
can be removed. Then we get another bubble on S2. Thus, we get a
contradiction and complete the proof of (50).

Next, similarly, to Case I, we can prove the following:

Claim II.2: We can separate Aδ,R,n(xn) into finitely many parts

Aδ,R,n(xn) =

Nk⋃
k=1

Ak,

such that on each part

(53)

∫
Ak

|x|2αne2undx ≤ 1

4Λ2
, k = 1, 2, · · · , Nk,

where Nk ≤ N0 with N0 being an uniform integer for all n large enough,
Ak = Drk−1(xn) \ Drk(xn), r0 = tnS, r

Nk = τnR, rk < rk−1 for k =
1, 2, · · · , Nk, and Λ > 0 is the constant as in Lemma 6.1.

Then, we can use Claim II.1 and Claim II.2 to show (49). This
finishes the proof of the theorem in the second case. q.e.d.

7. Blow-up behavior

With the energy identity for spinors in place, we can now rule out the
possibility that un is uniformly bounded in L∞loc(Br \Σ1) in Theorem 1.1
and, hence, the result can be improved.

Proof of Theorem 1.3. We shall prove this by contradiction. Assume
that the conclusion of the theorem is false. Then by Theorem 1.1,
un is uniformly bounded in L∞ on any compact subset of Br(0)\Σ1.



132 J. JOST, C. ZHOU & M. ZHU

Since (un,Ψn) is a sequence of solutions to (4) with uniformly bounded
energy (5), by classical elliptic estimates for both the Laplacian ∆ and
the Dirac operator D/ , we know that (un,Ψn) converges in C2 on any
compact subset of Br(0) \Σ1 to some limit solution (u,Ψ) of (13) with
bounded energy

∫
Br(0)(|x|

2αe2u + |Ψ|4) < +∞.

Since the blow-up set Σ1 is not empty, we can take a point p ∈ Σ1.
Choose a small δ0 > 0 such that p is the only point of Σ1 in B2δ0(p) ⊂
Br(0). Without loss of generality, we assume that p = 0. The case of
p 6= 0 can be handled in an analogous way.

We shall first show that the limit (u,Ψ) is C2 at the isolated singu-
larity p = 0. In fact, since (un,Ψn) satisfies the Pohozaev identity on
Dρ for 0 < ρ < δ0, the Pohozaev constant C(un,Ψn) = C(un,Ψn, ρ)
satisfies

0 = C(un,Ψn)

= C(un,Ψn, ρ)

= ρ

∫
∂Dρ

|∂un
∂ν
|2 − 1

2
|∇un|2dσ

− (1 + αn)

∫
Dρ

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

+ ρ

∫
∂Dρ

V 2(x)|x|2αne2undσ

− 1

2

∫
∂Dρ

〈∂Ψn

∂ν
, x ·Ψn〉+ 〈x ·Ψn,

∂Ψn

∂ν
〉dσ

−
∫
Dρ

(|x|2αne2unx · ∇(V 2(x))− |x|αneun |Ψn|2x · ∇V (x))dx.

Since (un,Ψn) converges to (u,Ψ) in C2 on any compact subset of B2δ0 \
{0}, we have

0 = lim
ρ→0

lim
n→∞

C(un,Ψn, ρ)

= lim
ρ→0

C(u,Ψ, ρ)

−(1 + α) lim
δ→0

lim
n→∞

∫
Dδ

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

= C(u,Ψ)− (1 + α)β,

where

C(u,Ψ) = C(u,Ψ, ρ)

= ρ

∫
∂Dρ

|∂u
∂ν
|2 − 1

2
|∇u|2dσ
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− (1 + α)

∫
Dρ

(2V 2(x)|x|2αe2u − V (x)|x|αeu|Ψ|2)dx

+ ρ

∫
∂Dρ

V 2(x)|x|2αe2udσ

− 1

2

∫
∂Dρ

〈∂Ψ

∂ν
, x ·Ψ〉+ 〈x ·Ψ, ∂Ψ

∂ν
〉dσ

−
∫
Dρ

(|x|2αe2ux · ∇(V 2(x))− |x|αeu|Ψ|2x · ∇V (x))dx,

and

β = lim
δ→0

lim
n→∞

∫
Dδ

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx.

Moreover, we can also assume that

2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2

→ ν = 2V 2(x)|x|2αe2u − V (x)|x|αeu|Ψ|2 + βδp=0,

in the sense of distributions in BR for any small R > 0. Then, applying
similar arguments as in the proof of the local singularity removability
in Claim I.1, Theorem 1.2, we can show that C(u,Ψ) = 0, β = 0 and,
hence, (u,Ψ) is a C2 solution of (13) on B2δ0 with bounded energy∫

B2δ0

(|x|2αe2u + |Ψ|4) < +∞.

Now we can choose some small δ1 ∈ (0, δ0) such that for any δ ∈
(0, δ1),

(54)

∫
Bδ

(2V 2(x)|x|2αe2u − V (x)|x|αeu|Ψ|2)dx < min{1 + α

10
,

1

10
}.

Next, as in the proof of Theorem 1.2, we rescale (un,Ψn) near p =
0. Choose xn ∈ Bδ1 with un(xn) = maxB̄δ1

un(x). Then we have

xn → p and un(xn) → +∞. Let λn = e
−un(xn)
αn+1 → 0 and denote

tn = max{λn, |xn|} → 0. We distinguish the following two cases:

Case I: tn
λn

= O(1), as n→ +∞.
In this case, the rescaling functions are{

ũn(x) = un(tnx) + (αn + 1) ln tn,

Ψ̃n(x) = t
1
2
nΨn(tnx),

for any x ∈ D δ1
2tn

. And by passing to a subsequence, (ũn, Ψ̃n) converges

in C2
loc(R2) to some (ũ, Ψ̃) satisfying{

−∆ũ = 2V 2(0)|x|2αe2ũ − V (0)|x|αeũ|Ψ|2,
D/ Ψ̃ = −V (0)|x|αeũΨ̃,

in R2,
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with

(55)

∫
R2

(2V 2(0)|x|2αe2ũ − V (0)|x|αeũ|Ψ̃|2)dx = 4π(1 + α).

Then for δ ∈ (0, δ1) small enough, R > 0 large enough and n large
enough, we have∫

Bδ

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

=

∫
BtnR

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

+

∫
Bδ\BtnR

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

≥
∫
BR

(2V 2(tnx)|x|2αne2ũn − V (tnx)|x|αneũn |Ψ̃n|2)

−
∫
Bδ\BtnR

V (x)|x|αneun |Ψn|2

≥ 4π(1 + α)− 1 + α

10
.(56)

Here in the last step, we have used (55) and the fact from Theorem 1.2
that the neck energy of the spinor field Ψn is converging to zero. We
remark that in the above estimate, if there are multiple bubbles then
we need to decompose Bδ\BtnR further into bubble domains and neck
domains and then apply the no neck energy result in Theorem 1.2 to
each of these neck domains.

On the other hand, we fix some δ ∈ (0, δ1) small such that (56) holds
and then let n→∞ to conclude that

4π(1 + α)− 1 + α

10
≤
∫
Bδ

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

= −
∫
Bδ

∆un = −
∫
∂Bδ

∂un
∂n

→ −
∫
∂Bδ

∂u

∂n
= −

∫
Bδ

∆u

=

∫
Bδ

(2V 2(x)|x|2αe2u−V (x)|x|αeu|Ψ|2)dx <
1 + α

10
.

Here in the last step, we have used (54). Thus, we get a contradiction
and finish the proof of the Theorem in this case.

Case II: tn
λn
→ +∞, as n→∞.

In this case, we should rescale twice to get the bubble. First, since
tn = |xn|, we define the rescaling functions
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ūn(x) = un(tnx) + (αn + 1) ln tn,

Ψ̄n(x) = t
1
2
nΨn(tnx),

for any x ∈ D δ
2tn

. Set yn := xn
tn

. Noticing that ūn(yn) → +∞, we set

that δn = e−ūn(yn) and define the rescaling function{
ũn(x) = ūn(δnx+ yn) + ln δn,

Ψ̃n(x) = δ
1
2
n Ψ̄n(δnx+ yn),

for any δnx + yn ∈ D δ
2tn

. Without loss of generality, we assume that

y0 = limn→∞
xn
tn

. Then by also passing to a subsequence, (ũn, Ψ̃n)

converges in C2
loc(R2) to some (ũ, Ψ̃) satisfying{
−∆ũ = 2V 2(0)e2ũ − V (0)eũ|Ψ|2,
D/ Ψ̃ = −V (0)eũΨ̃,

in R2,

with

(57)

∫
R2

(2V 2(0)e2ũ − V (0)eũ|Ψ̃|2)dx = 4π.

Now fixing δ ∈ (0, δ1) small enough, S,R > 0 large enough and n large
enough, by using (57) and the fact that the neck energy of the spinor
field Ψn is converging to zero, we have∫

Bδ

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx

=

∫
B δ
tn

(2V 2(tnx)|x|2αne2ūn − V (tnx)|x|αneūn |Ψ̄n|2)dx

=

∫
B δ
tn
\BS(yn)

(2V 2(tnx)|x|2αne2ūn − V (tnx)|x|αneūn |Ψ̄n|2)dx

+

∫
BS(yn)\B τn

tn
R(yn)

(2V 2(tnx)|x|2αne2ūn − V (tnx)|x|αneūn |Ψ̄n|2)dx

+

∫
B τn
tn
R(yn)

(2V 2(tnx)|x|2αne2ūn − V (tnx)|x|αneūn |Ψ̄n|2)dx

≥
∫
BR

(
2V 2(xn + τnx)| xn

|xn|
+

τn
|xn|

x|2αne2ũn(x)

−V (xn + τnx)| xn
|xn|

+
τn
|xn|

x|αneũn(x)|Ψ̃n|2
)
dx

−
∫
BtnS\BτnR(xn)

V (x)|x|αneun |Ψn|2
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−
∫
B δ
tn
\BS(yn)

V (tnx)|x|αneūn |Ψ̄n|2

≥ 4π − 1

10
.

Then, applying similar arguments as in Case I we get a contradiction.
Thus, we finish the proof of the Theorem. q.e.d.

8. Blow-up value

In this section, we shall further investigate the blow-up behavior of a
sequence of solutions of (4) and (5). Let m(p) be the blow-up value at
a blow-up point p ∈ Σ1 defined as in (7). It is clear from the result in
Theorem 1.3 that m(p) ≥ 4π. Now we shall determine the precise value
of m(p) under a boundary condition.

Proof of Theorem 1.4. Without loss of generality, we assume p = 0.
The case of p 6= 0 can be handled analogously. It follows from the
boundary condition in (8) that 0 ≤ un−min∂Bρ0 (p) un ≤ C on ∂Bρ0(p).
Define wn as the unique solution of the following Dirichlet problem{

−∆wn = 0, in Bρ0(p),
wn = un −min∂Bρ0 un, on ∂Bρ0(p).

By the maximum principle, wn is uniformly bounded in Bρ0(p) and,
consequently, wn is C2 in Bρ0(p). Furthermore, the function vn = un −
min∂Bρ0 (p) un − wn solves the Dirichlet problem{

−∆vn = 2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2, in Bρ0(p),
vn = 0, on ∂Bρ0(p),

with the energy condition∫
Bρ0 (p)

(2V 2(x)|x|2αne2un − V (x)|x|αneun |Ψn|2)dx ≤ C.

By Green’s representation formula, we have

vn(x) =
1

2π

∫
Bρ0 (p)

log
1

|x− y|
(2V 2(y)|y|2αne2un

− V (y)|y|αneun |Ψn|2)dy +Rn(x),

where Rn(x) ∈ C1(Bρ0(p)) is a regular term. Since p = 0 is the only
blow-up point in Bρ0(p), from Theorem 1.3, we know

(58) vn(x)→ m(p)

2π
ln

1

|x|
+R(x), in C1

loc(Bρ0(p) \ {0}),
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for R(x) ∈ C1(Bρ0(p)). On the other hand, we observe that (vn,Ψn)
satisfies{
−∆vn = 2K2

n(x)|x|2αne2vn −Kn(x)|x|αnevn |Ψn|2,
D/ Ψn = −Kn(x)evnΨn,

in Bρ0(p),

where Kn = V (x)e
min∂Bρ0 (p) un+wn . Noticing that p = 0, the Pohozaev

identity of (vn,Ψn) in Bρ(p) for 0 < ρ < ρ0 is

ρ

∫
∂Bρ(0)

|∂vn
∂ν
|2 − 1

2
|∇vn|2dσ

= (1 + αn)

∫
Bρ(0)

(2K2
n(x)|x|2αne2vn −Kn(x)|x|αnevn |Ψn|2)dx

−ρ
∫
∂Bρ(0)

K2
n(x)|x|2αne2vndσ

+
1

2

∫
∂Bρ(0)

〈∂Ψn

∂ν
, x ·Ψn〉+ 〈x ·Ψn,

∂Ψn

∂ν
〉dσ

+

∫
Bρ(0)

(|x|2αne2vnx · ∇(K2
n(x))− |x|αnevn |Ψn|2x · ∇Kn(x))dx.(59)

By (58), we have

lim
ρ→0

lim
n→∞

ρ

∫
∂Bρ(0)

|∂vn
∂ν
|2 − 1

2
|∇vn|2dσ

= lim
ρ→0

ρ

∫
∂Bρ(0)

1

2
|
∂(m(p)

2π ln 1
|x|)

∂ν
|2dσ

=
1

4π
m2(p).

Since un → −∞ uniformly on ∂Bρ(0), we also have

lim
ρ→0

lim
n→∞

ρ

∫
∂Bρ(0)

K2
n(x)|x|2αne2vndσ

= lim
ρ→0

lim
n→∞

ρ

∫
∂Bρ(0)

V 2(x)|x|2αne2undσ

= 0.

Noticing that
∫
Bρ0 (0)(|x|

2αne2un + Ψn|4)dx ≤ C, we can obtain that

lim
ρ→0

lim
n→∞

∫
Bρ(0)

(|x|2αne2vnx·∇(K2
n(x))−|x|αnevn |Ψn|2x·∇Kn(x))dx = 0.

Since un → −∞ uniformly in B2ρ(0)\B ρ
4
(0), and |Ψn| is uniformly

bounded in B2ρ(0)\B ρ
4
(0) for any ρ > 0, we know

D/ Ψ = 0, in Bρ0 \ {0}.
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Since the local singularity of a harmonic spinor with finite energy is
removable, we have

D/ Ψ = 0, in Bρ0 .

It follows that Ψ is smooth in Bρ0 . Therefore, we obtain that

lim
ρ→0

lim
n→∞

∫
∂Bρ(0)

|Ψn||x · ∇Ψn|dσ = 0.

Let n→∞ and then ρ→ 0 in (59), we get that

1

4π
m2(p) = (1 + α)m(p).

It follows that m(p) = 4π(1 + α). Thus, we finish the proof of Theo-
rem 1.4. q.e.d.

9. The global super-Liouville system on a singular Riemann
surface

In this section, we study the blow-up behavior of a sequence of solu-
tions of the global super-Liouville system on a singular Riemann surface
and prove Theorem 1.5 and Theorem 1.6.

Proof of Theorem 1.5. Since g = e2φg0 with g0 being smooth, then
by the well known properties of φ (see, e.g., [32] or [8], p. 5639), we
know that (un, ψn) satisfies
−∆g0(un + φ) = 2e2(un+φ)− eun+φ

〈
e
φ
2ψn, e

φ
2ψn

〉
−Kg0 −

m∑
j=1

2παjδqj ,

D/ g0(e
φ
2ψn) =−eun+φ(e

φ
2ψn),

in M and with the energy conditions:∫
M
e2(un+φ)dg0 < C,

∫
M
|e
φ
2ψn|4dg0 < C.

If we define the blow-up set of un + φ as

Σ′1 =
{
x ∈M, there is a sequence yn → x

such that (un + φ)(yn)→ +∞
}
,

then by Remark 3.3, we have Σ1 = Σ′1. By the blow-up results of the
local system, it follows that one of the following alternatives holds:

i) un is bounded in L∞(M).
ii) un → −∞ uniformly on M .
iii) Σ1 is finite, nonempty and

un → −∞ uniformly on compact subsets of M\Σ1.
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Furthermore,

2e2(un+φ) − eun+φ|e
φ
2ψn|2 ⇀

∑
pi∈Σ1

m(pi)δpi ,

in the sense of distributions.

Now let p = q
q−1 > 2. We have

||∇(un + φ)||Lq(M,g0)

≤ sup

{
|
∫
M
∇(un + φ)∇ϕdg0||ϕ ∈W 1,p(M, g0),∫

M
ϕdg0 = 0, ||ϕ||W 1,p(M,g0) = 1

}
.

By the Sobolev embedding theorem, we get

||ϕ||L∞(M,g0)≤C .

It is clear that

|
∫
M
∇(un + φ)∇ϕdg0|

= |
∫
M

∆g0(un + φ)ϕdg0|

≤
∫
M

(2e2(un+φ) + eun+φ|e
φ
2ψn|2 + |Kg0 |)|ϕ|dg0

+
m∑
j=1

|
∫
M

2παjδqjϕdg0| ≤ C.

Therefore, un + φ − 1
|M |
∫
M (un + φ)dg0 is uniformly bounded in

W 1,q(M, g0).
Next, we define the Green function G by{

−∆g0G =
∑

p∈Σ1
m(p)δp −Kg0 −

∑m
j=1 2παjδqj ,∫

M Gdg0 = 0.

Then G satisfies (9). We have for any ϕ ∈ C∞(M)∫
M
∇(un + φ−G)∇ϕdg0 = −

∫
M

∆g0(un + φ−G)ϕdg0

=

∫
M

(2e2(un+φ) − eun+φ
〈
e
φ
2ψn, e

φ
2ψn

〉
−
∑
p∈Σ1

m(p)δp)ϕdg0

→ 0, as n→∞.
Combining this with the fact that un+φ− 1

|M |
∫
M (un+φ)dg0 is uniformly

bounded in W 1,q(M, g0), we get the conclusion of the lemma. q.e.d.

Proof of Theorem 1.6. The result follows from Theorem 1.5 and the
Gauss–Bonnet formula. q.e.d.
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10. The local super-Liouville equations with two coefficient
functions

In this section, we discuss the following local super-Liouville type
equations with two different coefficient functions:
(60){
−∆u(x) = 2V 2(x)|x|2αe2u(x) −W (x)|x|αeu(x)|Ψ|2,

D/ Ψ = −W (x)|x|αeu(x)Ψ,
in Br(0),

and with the energy condition

(61)

∫
Br(0)

|x|2αe2u + |Ψ|4dx < +∞,

where α > −1 and V (x),W (x) ∈W 1,∞(Br(0)) satisfying

0 < a ≤ V (x),W (x) ≤ b < +∞.

In analogy to the case considered in Section 3, we can define the notion

of weak solutions (u,Ψ) ∈W 1,2(Br(0))×W 1, 4
3 (Γ(ΣBr(0))) of (60) and

(61) and show that any such weak solution (u,Ψ) is regular in the sense
that (u,Ψ) ∈W 1,p(Br(0))×W 1,q(Γ(ΣBr(0))) for some p > 2 and some
q > 2 and (u,Ψ) is C2

loc × C2
loc in Br(0) \ {0}.

Firstly, it is easy to check that the following Pohozaev type identity
holds:

R

∫
∂BR(0)

|∂u
∂ν
|2 − 1

2
|∇u|2dσ

= (1 + α)

∫
BR(0)

(2V 2(x)|x|2αe2u −W (x)|x|αeu|Ψ|2)dx

−R
∫
∂BR(0)

V 2(x)|x|2αe2udσ

+
1

2

∫
∂BR(0)

(〈∂Ψ

∂ν
, x ·Ψ〉+ 〈x ·Ψ, ∂Ψ

∂ν
〉)dσ

+

∫
BR(0)

(|x|2αe2ux · ∇(V 2(x))− |x|αeu|Ψ|2x · ∇W (x))dx,

for any regular solution (u,Ψ) of (60) and (61) on Br(0) and for any
0 < R < r.

Secondly, when (u,Ψ) is a regular solution of (60) and (61) in Br(0)\
{0}, we define the Pohozaev constant associated to (u,Ψ) as follows

C(u,Ψ) = R

∫
∂BR(0)

|∂u
∂ν
|2 − 1

2
|∇u|2dσ

− (1 + α)

∫
BR(0)

(2V 2(x)|x|2αe2u −W (x)|x|αeu|Ψ|2)dx
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+R

∫
∂BR(0)

V 2(x)|x|2αe2udσ

−1

2

∫
∂BR(0)

〈∂Ψ

∂ν
, x ·Ψ〉+ 〈x ·Ψ, ∂Ψ

∂ν
〉dσ

−
∫
BR(0)

(|x|2αe2ux · ∇(V 2(x))− |x|αeu|Ψ|2x · ∇W (x))dx.

Then the local singularity removability as in Proposition 4.5 holds.
Thirdly, for a bubble, namely an entire regular solution on R2 with

bounded energy, we consider the following equation:{
−∆u = 2a|x|2αe2u − b|x|αeu|Ψ|2,
D/ Ψ = −b|x|αeuΨ,

in R2,

with α > −1 and for two real numbers a > 0 and b > 0. The energy
condition is

I(u,Ψ) =

∫
R2

(|x|2αe2u + |Ψ|4)dx <∞.

By using its corresponding Pohozaev type identity, we can prove the
same results as in Proposition 5.1 and Theorem 5.2. In particular, we
have

d =

∫
R2

2a|x|2αe2u − b|x|αeu|Ψ|2dx = 4π(1 + α).

Finally, for a sequence of regular solutions (un,Ψn) to (10) and (11),
we define the blow-up value m(p) at a blow-up point p as

m(p) = lim
ρ→0

lim
n→∞

∫
Bρ(p)

(2V 2
n (x)|x|2αne2un −Wn(x)|x|αneun |Ψn|2)dx,

and we can show that the blow-up behaviors for (un,Ψn) as in The-
orem 1.1, Theorem 1.2, Theorem 1.3, Theorem 1.4 and Theorem 1.5
hold.
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