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AN OPTIMAL L2 EXTENSION THEOREM ON
WEAKLY PSEUDOCONVEX KAHLER MANIFOLDS
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Abstract

In this paper, we prove an L? extension theorem for holomor-
phic sections of holomorphic line bundles equipped with singular
metrics on weakly pseudoconvex Kéhler manifolds. Furthermore,
in our L? estimate, optimal constants corresponding to variable
denominators are obtained. As applications, we prove an LY ex-
tension theorem with an optimal estimate on weakly pseudoconvex
Kahler manifolds and the log-plurisubharmonicity of the fiberwise
Bergman kernel in the Kahler case.

1. Introduction and main results

L? extension theorems with uniform constant L? estimates on Stein
manifolds are very useful in several complex variables and complex ge-
ometry (see [25], [22], [23], [27], [28], [1], [11], [21], etc). A recent
progress is about the optimal L? extension and the applications. It turns
out that L? extension theorems with optimal constant L? estimates are
also quite interesting. For example, one may find some unexpected ap-
plications of the optimal L? extension in [16]. To optimize the uniform
constants in the L? estimates is now an interesting aspect in studying
L? extension theorems (see [32], [14], [15], [18], [6], [7], [2], [24], etc).

Another interesting aspect in studying L? extension theorems is to
consider the singular metrics of holomorphic line bundles on weakly
pseudoconvex Kéahler manifolds. In this case, a difficulty arose, be-
cause, unlike the case of Stein or projective manifolds, there is a loss
of positivity in the regularization process of singular weights on such
manifolds.

In the present paper, we establish a method to obtain an optimal
L? extension theorem for holomorphic sections of holomorphic line bun-
dles with singular Hermitian metrics on weakly pseudoconvex Kéahler
manifolds.
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In order to overcome the difficulty in dealing with singular weights
on such manifolds, not only the error term method of solving 0 equa-
tions (see Lemma 3.2) is needed, but also a limit problem about L?
integrals with singular weights needs to be solved. In this paper, by
replacing a fixed holomorphic function with a family of holomorphic
functions, we solve the limit problem (see Proposition 5.2). Then by
using Proposition 5.1, Proposition 5.2 and the strong openness conjec-
ture (see Lemma 3.8) as the key tools, we construct a family of special
smooth extensions (see Step 1 in Section 6) and overcome the difficulty
in dealing with singular weights.

We began our work several years ago and partial results were an-
nounced at the Abel Symposium in 2013 by the first author (see [31],
where the optimal constant L? estimate was obtained on weakly pseu-
doconvex Kéhler manifolds for the smooth weights) and reported in
several domestic conferences in China by the second author.

Our main theorem is stated below.

Let R be the class of functions defined by

0
{R e C®(—00,0]: R>0, R <0, / L < 400
—oo R(1)

and e'R(t) is bounded above on (—00,0]}.

We will denote ff)oo %dt by Cr. The function R(t) is equal to the

%t)et defined just before the main theorems in [16] when

function
cal(

A=0.

Theorem 1.1. (main theorem) Let (X,w) be a weakly pseudoconvex
complex n-dimensional manifold possessing a Kdhler metric w, ¢ be a
plurisubharmonic function on X, E be a holomorphic vector bundle of
rank m over X equipped with a smooth Hermitian metric (1 < m <mn),
and s be a global holomorphic section of E. Assume that s is transverse
to the zero section, and let

Y :={reX: s(x) =0}
Let L be a holomorphic line bundle over X equipped with a singular
Hermitian metric hy,, which is written locally as e~ %L for some function
pr € LllOC with respect to a local holomorphic frame of L. Assume
that o1, + ¥ is quasi-plurisubharmonic and ¢y, is locally bounded above.
Moreover, assume that

(i) V=101 + V=190 + mv/—1901og |s|% > 0 holds on X \'Y,

and that there is a continuous function o > 0 on X such that the fol-
lowing two inequalities hold on X \'Y:

(i) V=101 + /109y + mv/—1901og |s|% >

(iii) 9 +mlog|s|% < —2ma.

{V/—10gs,s}p

als|g
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Then for every holomorphic section f on'Y with values in the line bundle
Kx ® L (restricted to Y ), such that

/ MR e < oo
y [ A™ (ds)|%
there exists a holomorphic section F' on X with values in Kx ® L, such
that F = f on'Y and
(1.1)

2 m —
/ 7R POty T, Cadty

Y

X e¢+m10g|3‘2ER(w + mlog ’8’2E) m! | AT (dS)PE

REMARK 1.1. We will explain some notations. Let {e;}7"; be a
local holomorphic frame of E which intersects with {s = 0}. Then s
can be written locally as Z;nzl sjej, where s7 (1 < j < m) are local
holomorphic functions. A™(ds) is defined locally by (ds' A--- Ads™) ®
(e1 A -+ Aep), which is a local section of A™T% ® det E (however, ds
is globally defined only on Y'). The notation {e, e} will be explained
in Lemma 3.9. The norm | A™ (ds)|g is computed here with respect to
the metrics on A"™T% and det E induced by the Kahler metric w and
the Hermitian metric on E. Similarly, the norms |f|2 and |F|? are
computed here with respect to the metrics on Kx = A"T5 and L. The
submanifold Y is equipped with the Kéahler metric wy induced from
w. dVx = ‘;’L—? and dVy := (71’”77:), are the volume forms on X and Y
respectively, where we regard w and wy as the associated Kéhler forms.
Then we have |F|%dVX = c,{F, F}r and |f]%dVy = cp—m{f, f} 1, where

en = (V=1)"" and cp_p, 1= (v/—=1)(n=m?*,
REMARK 1.2. By slight modifications of our proof, we can, in fact,

replace the curvature assumption (i7) in Theorem 1.1 with the following
weaker one: assume that there exists a nonnegative number o such that

(i) VIO + V100w + my/ 100 log s} > TV 1088 5p

X(—2ma)|s|3;

holds on X \'Y, where

0
a [, (R% (tl))dtl +ft (ft2 R(t) dtl)dt2
ORI

X(t) == ap +

(2;?!m in (1.1) should be replaced by ( roy T

CR) (2m)™

m!
It is not hard to see that X is a smooth strictly decreasing function

from (—o0,0) to (ap, +00). It is also not hard to verify that x(¢) > —%

when a9 = 0. Furthermore, we can prove that ( a(o) + CR) (2”)! is the
optimal constant corresponding to the assumption (i7)’.
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REMARK 1.3. Theorem 1.1 is a generalization of the L? extension
theorem on Stein manifolds with a negligible weight (see [22]) to the
weakly pseudoconvex Kéahler case with weaker curvature assumptions
and an optimal estimate. In fact, if we take R = e~%, then Cr = 1 and
(1.1) becomes

m 2
/ FlRavy < &0 / I vayy.
X Y

ml Jy TAm (ds)[

REMARK 1.4. Theorem 1.1 is also a generalization of Demailly’s result
in [11], where L is equipped with a smooth metric, & > 1 and ¢ = 0. In

fact, if we take R = (55)? on (—oco, —2m], then (1.1) implies Demailly’s
L? estimate
F 2
/ _- ‘ ’L C/ ‘f‘L VY7
x |s[g"(— log|s|p)? | A (d

where C is a positive constant depending only on m.

REMARK 1.5. The idea of considering variable denominators in (1.1)
has been introduced in [21], where the optimal constant problem is not
discussed. Theorem 1.1 gives an optimal version in some sense.

REMARK 1.6. In [29] and [30], Yi proved two L? extension theorems
for holomorphic sections of holomorphic line bundles equipped with sin-
gular metrics on compact Kéhler manifolds. Our result is stronger than
hers since some strong additional hypotheses were assumed in her re-
sults.

REMARK 1.7. Recently, in [8] Cao also obtains a similar result as ours
with different curvature assumptions and an additional assumption that
there exists a sequence of analytic approximations of the singular metric.
His proof seems also to be different from ours.

In [4] (see also [5]), a local L? extension theorem was obtained by
using a L? extension theorem and an iterated method, where p is a
positive integer. Using Theorem 1.1 and the similar method as in [4],
we get the following L? extension theorem (0 < ¢ < 2) with optimal
constants on weakly pseudoconvex Kahler manifolds. Write dVx locally
as cpe”Pwdz A dZ with respect to local coordinates z = (21, 22, .-+ | 2"),

where ¢, := (\/—1)"2. Denote 1 + mlog|s|% by o.

Theorem 1.2. Let R, (X,w), ¢, E, s, Y, L, hy and ¢r be the
same as in Theorem 1.1. Assume that 2o + (1 — 2)p, + 1 is quasi-
plurisubharmonic and py, is locally bounded above. Moreover, assume
that

(1) %\/jagtpL +(1- %)\/ja&pw ++v/=19090 > 0 holds on X \ Y,
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and that there is a continuous function a > 0 on X such that the fol-
lowing two inequalities hold on X \'Y:

(i) LV TT0Bes + (1 - v T0dg, + VTode > W 1OEssE

‘S‘E

(7i1) o < —2ma.

Assume that f is a holomorphic section on Y with values in the line
bundle Kx ® L (restricted to 'Y ), such that

Q=%

Wlere
y | A™ (ds)|3
Furthermore, assume that there exists a holomorphic section Fy on X
with values in Kx ® L such that F1 = f on'Y and

(IF1])?
Cp, = dVv. .
F /X " R(o) x < 400
Then there exists a holomorphic section F' on X with values in Kx ® L,
such that F'= f onY and

(|F|L)? (2m)™
/X e’R(o) dVx < Cr m! Cr-

Let p be a positive integer. If we take ¢ = 12) and replace L by

Cyp =

Kg{l ® L, which is equipped with the metric e®~D?«~%L then we can
get from Theorem 1.2 the following corollary.

Corollary 1.1. Assume that ‘%L + ¢ is quasi-plurisubharmonic and
pr 18 locally bounded above. Moreover, assume that

NERVASTC))
() B

and that there is a continuous function a > 0 on X such that the fol-
lowing two inequalities hold on X \'Y:

(i4) F L /1060 >{F@ES S}E

als|;
(tit) o S —2ma.

+v/=1900 > 0 holds on X \ 'Y,

Assume that f is a holomorphic section on Y with values in the line
bundle K%, @ L (restricted to'Y ), such that

2
(1f]L)re
Cr:= = __dVy < +o0.

! /Y|Am<ds>|% e

Furthermore, assume that there exists a holomorphic section Fy on X
with values in K% ® L such that F1 = f on'Y and
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Then there exists a holomorphic section F on X with values in K5 ® L,
such that F'= f onY and

2

()" (2m)™

< .
/X e’R(0) dVx < Cr m! Cs

The log-plurisubharmonicity of the fiberwise Bergman kernel was
proved in [3] in the projective case (see also [4], [5], [26]). In [16],
Guan and Zhou discovered its relation with the L? extension theorem
with the optimal constant and gave another proof of it by their optimal
L? extension theorem. Using Theorem 1.1 and a similar method as in
[16], we can prove the log-plurisubharmonicity of the fiberwise Bergman
kernel in the Kéahler case as stated in the following theorem.

Theorem 1.3. Let II : X — Y be a surjective proper holomorphic
map from a Kdahler manifold X of dimension n to a complex manifold Y
of dimension m. Denote by Y° the set of points which are not critical
values of I1 in Y. Set X° = I=1(Y"). Let L be a holomorphic line
bundle on X equipped with a singular Hermitian metric hy, such that

(i) the curvature current of (L,hr) is semipositive on X,

(ii) HO(XyO,KXyO ® L|x,, ® Z(he|x,,)) # 0 for some point yo € YO,
Then the logarithm of the fiberwise Bergman kernel of the line bundle
(Kx/y ®L)|xo is plurisubharmonic on XY, Hence, it defines a singular
Hermitian metric on (K x/y®L)|xo with semipositive curvature current,
which is called the fiberwise Bergman kernel metric. Furthermore, this
metric extends across X\X" to a metric with semipositive curvature
current on all of X.

The rest sections of this paper are organized as follows. First, Sec-
tion 2 is devoted to explain why the uniform constant in (1.1) is opti-
mal. Next, some results are listed in Section 3, which will be used in the
proof of Theorem 1.1. Then, we will prove a proposition in Section 4,
which is a special case of Theorem 1.1. After that, two key proposi-
tions used to deal with singular metrics of holomorphic line bundles will
be proved in Section 5. Then, we will prove Theorem 1.1 in Section 6
by using the results in Section 3, Section 4 and Section 5. Finally, we
will prove Theorem 1.2 and Theorem 1.3 in Section 7 and Section 8
respectively.
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No. 11431013). The second author was partially supported by the Na-
tional Natural Science Foundation of China (No. 11201347 and No.
11271291), the China Postdoctoral Science Foundation funded project
(No. 2012M511650) and the Fundamental Research Funds for the Cen-
tral Universities.
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2. The optimal constant

In this section, we will prove the constant Cr0™ in (1.1) is optimal

|
by the following example. "
Let (B™,w1) be the unit ball in C™ equipped with the Euclidean met-
ric wy, and (Y, w2) be an (n —m)-dimensional compact Kéhler manifold
equipped with a Kéhler metric wo such that H(Y, Ky) # 0. Then

X:=B"xY

is a weakly pseudoconvex Kahler manifold equipped with the natural
Kahler metric w := wy + ws.

Assume that L and E are trivial Hermitian holomorphic bundles
equipped with trivial metrics. Take ¢ = 0 and take

s=2:= (2 -, 2™,
with respect to a global orthonormal holomorphic frame of E, where
2t ..., 2™ are coordinates of B™ and can be regarded as global functions
on X. Let
m=dz" A ANd2™,
Ny i=dz" A A dRT,
and
Z// — (Zerl7 L ’Zn)7
where 2™T1 ... 2" are local coordinates of Y. We will write {0} x Y

as Y for simplicity. Then Ky is isomorphic to K X‘Y by the operator
ANy

It’s obvious that the inequality (i) in Theorem 1.1 holds, and that
there is a continuous function o > 0 on X such that the inequalities (i)
and (i7i) hold.

Write the factor )

emloglsl” R(mlog |s|2)’

in (1.1) as e~¥ and denote by A%(X, V) the weighted Bergman space

1
{u: u € HY(X,Kx) and |uly := (/ u|26_‘1’dVX> ’ < —l—oo},
X

where [u[2dVx = cpu At = cp{u,u} and ¢, := (v—1)"" as explained in
Remark 1.1.

Let Bx w(2',2") - cum Am2 ATL ATz be the weighted Bergman kernel
form on X with respect to the local coordinates (2, 2”) of X. Similarly,
we can define A%2(B™, W), A%2(Y), Bgm ¢(2') - ¢y A1 and By (2") -
Cn—mN2 N N2. Then the product formula for the Bergman kernel form
(see [20]) implies that

Bx,w(?',2") = Bgm w(2') - By (2").
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Let zj € Y be a point such that By(z)]) # 0. By the extremal
property of the Bergman kernel form, there exists a holomorphic (n—m)-
form f € H(Y, Ky) such that

/ [fPdvy =1,
Y
and
By (z4) = la(z5)[,
where a(2") is a local function defined by f(2") = a(2")ns.

Let S := {F € A2(X,V) : F = f AnonY}. Then any uniform
constant C' for the estimate (1.1) must satisfy

la(z0)I?

-1
> 2d inf |F||3 = inf |F|§ > 5—%—~
o= ([ 1rPave)  me 11 = 11 > 5ot

ie.,
"
BIBmJj(O) . BY(ZO) BBm7‘1;(O)
Since e~V is a function of the variables r1,--- 7, where rp, = |2¥|

(1 <k <m), it is not hard to prove that
{ (Zl)il (Zm)lm 771 }
1Y ) mlle S ) enm

form an orthonormal basis of A%2(B™, ¥), where N denotes the set of
nonnegative integers. Hence,

9

1 om
c>— = g / av,
Bamg(0) Ml vepm |7 R(log [P T

1 om
— s | —=— 4
/S2m—1 S/O rR(log r2m) "

2 0 omd 5
(m—1)! ) . mR(t)

(2m)™

m!

where dV;,, denotes the 2m-dimensional Lebesgue measure on C™, S?™m~1

is the unit sphere in C™ and dS is the surface measure on S?™~1.

Therefore, Cpr (2;;)!m is the optimal constant.

3. Some results used in the proof of Theorem 1.1

In this section, we give some results which will be used in the proof
of Theorem 1.1.
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Lemma 3.1. Let () be a Hermitian vector bundle on a Kdahler man-
ifold X of dimension n with a Kdhler metric w. Assume that 7, A > 0
are smooth functions on X. Then for every form v € D(X, \N"T% ® Q)
with compact support we have

[ preav e+ [ D lavy

N RN N SIVELIL N RPN
X Q

Proof. The proof is almost the same as in [11], where the term
/X(T + A)|D"™v[3dVx,
in the above inequality is written as
/ (VT + VA?|D"0|3dVx.
X

With slightly careful calculations, we can get this more precise inequal-
ity. q.e.d.

Lemma 3.2. Let (X,w) be a complete Kdhler manifold equipped with
a (non-necessarily complete) Kdhler metric w, and let QQ be a Her-
mitian vector bundle over X. Assume that 7 and A are smooth and

bounded positive functions on X and let B := [1/—10¢g — V—1001 —
V—1A7'97 A O1,A]. Assume that § > 0 is a number such that B + 01
is semi-positive definite everywhere on N1T5% ® @) for some g > 1.
Then given a form g € L*(X,A™T% ® Q) such that D"g = 0 and
fX<(B+(5I)_lg,g>QdVX < 400, there exists an approximate solution
uw € L2(X, A" T% ® Q) and a correcting term h € L*(X, N"1T% ® Q)
such that D"u + v/6h = g and

ul2
/ g de+/ |h|gngX§/<(B+5I)_1979>QdVX~
xT+A X X

Proof. By Lemma 3.1, Lemma 3.2 can be obtained by almost the
same arguments as in [11], where the term [y ((B + o0 g, g)odVx in
the above inequality is written as 2 [ (B + 51)_19, 9)odVx. q.e.d.

Lemma 3.3. (see [13]) Let X be a Stein manifold and ¢ be a pluri-
subharmonic function on X. Then there exists a decreasing sequence of
smooth  strictly plurisubharmonic  functions {¢; j:"f such  that
lim; 100 5 = -

Lemma 3.4. Let (X,w) be a complex manifold equipped with a Her-
mitian metric w, and Q@ CC X be an open subset. Assume that T =
T + @35@ is a closed (1,1)-current on X, where T is a smooth real
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(1,1)-form and ¢ is a quasi-plurisubharmonic function. Let v be a con-
tinuous real (1,1)-form such that T > ~. Suppose that the Chern cur-
vature tensor of Tx satisfies

(V=107 + w ® Idr, ) (k1 ® K2, k1 ® Ka) > 0,

V1, ke € Tx with (k1,ke) =0,
for some continuous nonnegative (1,1)-form w on X. Then there is a

family of closed (1,1)-currents T , = T+ @0&0@,,) on X (s € (0,4+00)
and p € (0, p1) for some positive number py) independent of v, such that

(i) @c,p is quasi-plurisubharmonic on a neighborhood of Q, smooth on
X\ E.(T), increasing with respect to s and p on €, and converges
tow onQ as p— 0,
(ii) T, p > v — sw — 0pw on £,
where E((T) :={z € X : v(T,x) > <} (s > 0) is the c-upperlevel set of
Lelong numbers, and {6,} is an increasing family of positive numbers
such that lim 6, = 0.
p—0

Proof. The reader is referred to Theorem 6.1 in [10], where Lemma 3.4
is stated in the case X is compact. Almost the same proof as in [10]
shows that Lemma 3.4 holds in the noncompact case while uniform es-
timates are obtained only on the relatively compact subset 2. One of
the key points in our use is that the construction of Tt , is independent
of ~. q.e.d.

Lemma 3.5. (Theorem 1.5 in [9]) Let X be a Kdhler manifold, and
Z be an analytic subset of X. Assume that Q) is a relatively compact
open subset of X possessing a complete Kdihler metric. Then Q\ Z
carries a complete Kdahler metric.

Lemma 3.6. (Theorem 4.4.2 in [19]) Let Q2 be a pseudoconvex open
set in C", and ¢ be a plurisubharmonic function on Q. For every h €

L%p’qﬂ)(Q,go) with Oh = 0 there is a solution v € L%p,q) (Q,loc) of the

equation Ov = h such that

|'U|2 —@ / 2 —
— e PdV < hl“e”?dV.
/Q<1+|z|2>2 <,

Lemma 3.7. (Lemma 6.9 in [9]) Let 2 be an open subset of C™ and
Z be a complex analytic subset of ). Assume that v is a (p,q—1)-form
with L120c coefficients and h is a (p,q)-form with LllOC coefficients such
that Ov = h on Q\ Z (in the sense of distribution theory). Then v = h
on €.

Lemma 3.8. (strong openness conjecture, see [17]) Let ¢ be a nega-
tive plurisubharmonic function on the unit polydisk A™ C C". Assume
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that F' is a holomorphic function on A™ satisfying
/ |F|2e™%dV;, < 400,

where dV, is the 2n-dimensional Lebesque measure on C™. Then there
exists r € (0,1) and B € (0,+00) such that

/ |F)2e=0+Aeqy, < 400,
Ap

where AT = {(z},--- ,2") € C": |2F| <r,1 <k <n}.

Lemma 3.9. (Lagrange’s inequality) Let X be a complex manifold, E
be a Hermitian vector bundle over X of rankm, and {e, e} : NPPTTL®
E x NP22T% @ B — NPPHR2:0tP2TY be the sesquilinear product which
combines the wedge product (u,v) — u A v on scalar valued forms with
the Hermitian inner product on E. Then for any smooth section s of E
over X and any smooth section w of Ty ® E over X,

(3.1) V—1{w,s}g A{s,w}p < |s|%V—-1{w,w}E.

Proof. Since {e,e}r is a pointwise product, it’s sufficient to prove
(3.1) at every fixed point of X. Hence, we can regard T% and E as
vector spaces. Then s and w are regarded as elements in F and T, ® £/
respectively.

If s =0, (3.1) is trivial. If s # 0, without loss of generality, we

can assume that |s|p = 1. Then we choose eg,--- , e, € E such that
8,e9,+++ , ey form an orthonormal basis of . Then w can be written
as

m
w1®3+2wj®ej,
j=2
for some w; € T% (1 < j <m). Then

V—1{w,s}p AMs,wlp = vV—1wi A0,

and
m
’8’2E \% _1{w7w}E =V _1ij Nwj = \/TIwI A W1 .
j=1
Hence, (3.1) holds. The lemma is, thus, proved. q.e.d.

4. Proof of a special case of Theorem 1.1

In order to prove Theorem 1.1, we prove the following proposition at
first, which is a special case of Theorem 1.1 and will be used in Section 6.
Although the following proposition can be implied by the main theorems
in [16], we give its proof here for the self-contained purpose, which is
also used in the proof of Theorem 1.1.
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Proposition 4.1. Let R be a function in R. Let (X,w) be an n-
dimensional Stein manifold possessing a Kdhler metric w, and E =
X x C™ be the trivial Hermitian holomorphic vector bundle of rank m
equipped with the trivial metric (1 < m <mn). Assume that s is a global
holomorphic section of E (s = (s',---,s™) with respect to the standard
orthonormal global holomorphic frame of E, where s (1 <i < m) are
global holomorphic functions on X ). Assume that s is transverse to the

zero section, and let
Y :={reX: s(x) =0}

Moreover, assume that |s| <1 on X. Let L = X x C be the trivial holo-
morphic line bundle over X equipped with a singular Hermitian metric
hr = e~ %, where @ is a plurisubharmonic function on X. Then for ev-
ery holomorphic section f on 'Y with values in the line bundle Kx ® L
(restricted to 'Y ) satisfying

fPee
—
/Y [Am @)V < too

there exists a holomorphic section F' on X with values in Kx ® L sat-
isfying FF'= f on'Y and

PP ey [l -
dVv < C dVy .
/X emlog\SPR(mlog\s\Q) X >UR m) v |/\m (ds)’Q Y

Proof. Without loss of generality, we can suppose that Cr = 1. Oth-
erwise, we replace R with CrR in the proof.

If f=0o0nY, then F = 0 satisfies the conclusion of Proposition 4.1.
In the following proof, we assume that f is not 0 identically.

Since X is Stein, there exists a smooth strictly plurisubharmonic
exhaustion function P on X. Instead of working on X itself, we will work
rather on the relatively compact subset X \ Y, where X}, = {P < k}
(k=1,2,---, we choose P such that X; # (}). By Lemma 3.5, X3 \' Y
(k=1,2,---) are complete Kéahler.

We will discuss for fixed k until the end of the proof.

Since X is Stein, by Cartan’s Theorem B, there exists a holomorphic
section f on X with values in Kx ® L such that f = f on Y.

Let ¢ : (—00,0) — (0, +00) be a smooth strictly increasing function,
and x : (—00,0) — (0,+00) a smooth strictly decreasing function.
Assume that x(t) > —% for t € (—o0,0). We will find more assumptions
about ¢ and x in the proof, by which we will get explicit { and x in the
end of this section.

Let a € (0,1) and put 0. = mlog(|s|?>+€2) —a and o = mlog|s|> —a.
Since |s| < 1 on X, there exists a positive number ¢, € (0, 1) such that
0. < —% on Xy, for € € (0,e4).

By Lemma 3.3, there exists a decreasing sequence of smooth plurisub-
harmonic functions {¢; j:“f on X such that lim;_, o ¢; = ¢. Let L,
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denote the line bundle L on X} \ Y equipped with the new metric
hjae = e~vi—o—Cloe),

Set 7. = x(0:) and let A, be a smooth positive function on Xy, which
will be determined later. Set B. = [0, A] on X \ Y, where

0. = 7.v/~10y, . —v/—100r. - \/—1%.
&

Set v, = 251545 o want to find suitable ¢, x and A, such that

sPre
mgzr _
(41) ®€’Xk\y 2 W —17/5 A Ve.

Since x(0:) > 0, v/—=199¢; > 0 and /—199c > 0, simple calculations
yield
@E}Xk\Y
= x(0:)(V=180¢; + V—-1890) + (x(02)( (02) — X' (02)) V—1d00-
/ 2
#(o)e"(0) ~ ¥ - (X(j))) V=10, A do.
(X(UE)C/(O-E) - X,(Us))\/jlago'e

"(0.))? _
+ <X(05)CH(O‘5) —xX"(02) — (X(A:))) V=190, A Oo-.

v

If the equalities

(4-2) X(O-E)C/(O-E) - X,(Uz-:) =1,
and

, 2
(43) o))~ (o)~ XD
hold, we obtain that
(4.4) Oc|x\y = V1000

Furthermore, by (4.3) we can assume that A. = n(o.) for some smooth
function 7 : (—00,0) — (0, +00) such that

o
77

Since it follows from Lemma 3.9 that

(4.6) sPV=1) ds' nds' > V=1(D_sds') A (D s'ds),
=1 =1 =1

(4.5) x¢" = X" - =0.
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we have
ﬁaéa€|xk\y
m(ls2 + ) V=1 3 ds' Adst —my/=1(3. 5'ds) A (3 s'd5")
- S (PR -
me?y/—1 i ds* A ds’
2 TRy
maQMTI(i 5lds®) A (f:l stds?)
. z Z

|s2(|s]? + £2)2

2
me _
W V —1V5 AN Ve.

Then (4.1) follows from (4.4).
Hence,

(4.7)

m62

R

2
me
BE Z W\/—]JJE/\DE, A

on X \Y as an operator on (n, 1)-forms, where T_ denotes the operator
ve Ao and T}_ is its Hilbert adjoint operator.

Let ¢ € (0, %) be a positive number. It is easy to construct a smooth
function # : R — [0,1] such that 6 = 0 on (oo, §], ¢ = 1 on [1 —

£, 400) and || < < on R.
Define g, = 5(9(@%)]5), where 0 < € < &,. Then 0g. = 0 and

m . .
9 e2 Y sids’
c ~ _
= -0 . A
e (‘5‘2 +62)(\3\2+€2)2 f
2 2
5 5 <
= N0 :
ve (\3\2+62)|sl2+52f
Then it follows from (4.7) that
s|? €2 e2
B—l , ) < | /
(B2 961 9e) 1 a.c X \Y = e2 (|s’2+52) BE _|_€2f L.

Hence,

/ <B;198796>Lj,a,edVX
Xp\Y

e(1 + ¢)? / 2| f|2e=%idVx
m(1—¢)* Jx,np /s e<isl<y/2ocey (I8I* +€2)2[s]?m =2
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Since s' (1 < i < m) can be viewed as transverse coordinates around
Y, it is not hard to prove that

(V=1)"ds* A--- Ads™ Ads* A --- A d5™

at each point € Y by a certain orthogonalization process on T%|,.
Since |f|?¢=%i and | /\m (ds)|? are continuous around X; NY, using a
partition of unity {fp °, around X; NY and the Fubini theorem, we
get

lim <Bs_1.gsa gE>Lj a stX
e—0 X \Y ”
a(l 2 Po g2 F12,—p;
< & o ip!f\ e BdVy
m(l —¢)? £+ =0 Jx,n /7= ey (Is]* +22)?|sm
_ 0 <1m 52(\51)"12 AT (dz) A N™(dZ)
TS\ eem: 75 ecel<y 520 (|2]? + €2)?[z[2m—2
e’(1+¢)? /éplfl%‘“’j >
X dV5
m(1—c)2 Jy [Am (@ds)2 "
<

(L4 [ |fPem®dVy o / £22m Vv,
im
m(l—c)? Jy [N (ds)]? e=0 Joeem (|21 + €2)%|z[Pm2
2met(14¢)? [ |f]Pe %idVy — [T 2rdr
= dS lim —
m(l—c)? Jy [A™(ds)]? Jsem—1 =0 Jq (1?2 +e?)?
_em+@N%W/ f2e
(1= m! Jy | Am(ds)|?
where z = (2!,---,2™), A™(dz) = dz' A--- Adz™, S?"1 is the unit
sphere in C™, dS is the surface measure on S**~! and dV,, =
27m(/=1)™* A™ (dz) A A™(dZ). Then
- e’(1+0)° @2m)™ [ |f[Pe®
B! LdVx <
e (= v
when ¢ is small enough. Then by Lemma 3.2 with § = 0, there exists
U jace € L2( Xk \ Y, Kx ® Ljq.) such that

(48) Ok jace = Ge
on X \'Y and
(4.9)
|tk jase,e e 7370 C L) e“(L+c)* 2m)™ [ |f[Pe #idVy
aVx < 2 | m 2
A e+ A (L—=c)> ml Jy [A™(ds)|

dVY )

dVY ’

Since ¢j, o, ((0c), 7= + Ac are all bounded above on Xj for each
fixed e, (4.9) implies that uy jqcc € L?(Xy, Kx). Since g. is smooth,
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by Lemma 3.7, we get from (4.8) and (4.9) that

— _ 2 B
(4.10) Bk jace = ge = 3<9< ) f>
holds on X}, and
(4.11)
/ [k jacel?e#7D _et(L4 ) 20" [ |fPe idVy
X Te + 4 Y209 ml Jy [Am(ds)?

Define Fj, jqcec = —Ukjace + (9(‘ ‘2+£2)f Then (4.10) implies that
5Fk.’j’a7076 = 0 on Xj. Hence, F} jqce is holomorphic on Xj. Thus,
Uk jace 15 smooth on Xj. Since ¢;, ((oc), 7= + A are all bounded
above on X}, for each fixed ¢, it follows from (4.11) -
is integrable on Xj. The non-integrability of e~? along Y and the
smoothness of wuy jq .. on X implies that ugjace = 0 on X NY.
Hence, Iy jace = fon X NY.

Since

1
(4.12) (k1 + K2, K1 + k2) < (K1, K1) + (K2, K2) + c(K1, K1) + E<F62,/‘62>,

for any inner product space (H, (o, o>), where k1, ko € H, it follows from
R(o:) < R(o) and (4.11) that

’ijacz-:Peﬂpj
4.13 / Phgacsl © 7 vy
W13) - | 7 R(o)

1
< (1 ———|up jacePe P AV
< 040 [ oy Mhoneele vy

2
e ¥idVx

82

1+¢ 1 ~
9(’3‘2+52)f

T /Xk e R(0)

(Tg + AE)eC(Us)) / |Ukj a CE|26_‘PJ'_U—C(06)
< (1+4+¢)l sup——— 2 dV;
B ( )( X}E) R(Ua) Xy, T + A: X
1+ec / 9
+ ’f’ e L'OJdVX
¢ Jxpn{lsl<y/%e }e”R
(r. +Ae>e<<af>> (1 + ¢)* (2m)™ [ [P
< su dVy
- < X,  R(o.) L—c2 ml Sy [Am(@s)? "
2mloge+Cyo 1
—dt
va f R

when ¢ is small enough, where Cy and Cs are two positive numbers
independent of €.
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Since sup;<( (etR(t)) < 400, applying Montel’s theorem and extract-
ing weak limits of {F} ja.celes0 as € = 0, we get from (4.13) a holo-
morphic n-form Fj ;, . such that Fy ;,.= f on Xy NY and

F 2 —p;
(4.14) / Phand 7y
Xk

e’ R(o)
(1o + A2)ef@) N ea(1 + ¢)* (2m)™ |f|2e %
< (o ™Ry ) At T

In order to get the optimal constant, it’s natural to assume that
(7 + AE)GC(UE) _

4.15
on Xj. Then (4.14) and (4.15) imply that
(4.16)
| Fk j.a 2e ?idVy (14 ¢)* (2m)™ |f|2e%i
1 727 . 2 S 2 ' m 2dVY-
x, e€moglsP R(mlog|s|2 —a) — (1—¢)2 m! Jy |A™ (ds)|

Since R is a continuous decreasing function on (—o0,0],
sup;<q (e'R(t)) < +oo and {p; ;r:o? is a decreasing sequence such that
lim; 4 ¢; = ¢, applying Montel’s theorem and extracting weak limits
of {Fy j.acthjac, first as ¢ = 0, next as a — 0, then as j — 400, and,
finally, as kK — 400, we get from (4.16) a holomorphic section F' on X
with values in Kx ® L such that F' = f on Y and

F|2e=% 2m)™ 2e=¢
J L Y e
X emlog|s| R(m log ‘s|2) m) v | AGE (d8)|

Proposition 4.1 is, thus, proved.

Final step: solving ordinary differential equations.

We have already proved Proposition 4.1, provided that there exists
suitable ¢, x and 7 satisfying some assumptions. Then we will use
those assumptions about ¢, x and n to get their explicit expressions.
Furthermore, we will check all the assumptions about (, x and 7.

(4.2), (4.5) and (4.15) amount to the following system of ordinary
differential equations defined on (—o0,0):

(4.17) X)) = x'(t) =1,
(4.18) (x(®) +n(t)) ™ = R(),

(X'®)*
x(£)¢" () — x"(t)
Moreover, we have assumed that ¢, x and n are all smooth on (—o0,0),
and that ¢ > 0, x > 0,7 >0, ¢ >0, ¥ < 0and x(t) > —% on
(—00,0). In the proof of Proposition 4.1, we have assumed that Cr =

0
[ mpdt = 1.

(4.19)

=n(t).
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By (4 17), (x¢' = x') =0, ie., C” —x" = =x/¢’. Then by (4.19),
n = . Hence, x +n = XCC,X = C’ by (4.17). Then by (4.18), e¢ =
('R, 1.e., (e7¢)’ = —%. Hence, ¢ = —log (b1 — f oo T )dtl) for some
positive number b; > 1 and the assumption ¢’ > 0 on (—o0,0) holds.

The assumption ¢ > 0 on (—o0,0) is equivalent to by — ftoo 0 )dtl <1
on (—o00,0). Hence, by <1 and then

cT s (1‘/ | R(ltnd“)

By (4.17), e=*x¢' — e X' = e ¢, ie, (—e %)) = ¢ =1 —
. Hence,

—t+ 1 (JE o Ty dt1) dtz — by
t
1— [T mimydt
for some real number by. Define \; = —t + f (f o R(tl)dtl)dtg b
on (—o00,0]. Then A\; € C®(—0c0,0], \| = -1 + f_oo R(tl)dtl < 0 on
(—00,0), A = £ >0, A/ = —% > 0 and xy = —i—} on (—o00,0).
The assumption y > 0 on (—o0,0) is equivalent to A\; > 0 on (—00,0).
Since A; € C°(—00,0] and N} < 0 on (—00,0), Ay > 0 on (—00,0)
is equivalent to A(0) = ff’l (ftz dtl)dtg — by > 0, ie., by <

o R
0 to d d S (t )
f—1(f ooR(tl) t1) to. Since
0 AN
YT

the assumption x’ < 0 on (—o00,0) is equivalent to Ay =
—(A\)? + MA] < 0 on (—00,0). Since Ay € C*®(—00,0] and

t
fooR()

I

Ay = =M+ XA > 0 on (—00,0), A2 < 0 on (—00,0) is equiv-
alent to AQ(O) = RO)( S, (S, R(tl)dtl)dtz —by) <0, ie., by >

fi)1(ft2 ( ")

)dtg Hence, by = f ) (ftQOo G )dtl)dtz and

_t_j;f (f ooRt1 dtl)dtz
t
1— [* o miydt

—2‘—,/, X' < 0and ¢’ >0, we get n >0 on (—0c0,0) and

¢ t+f [t " dty dtz
n = (1_/ dh)R()—F e " R(“) )
R(t1) I R(t T

The smoothness on (—o00,0) of {, x and 7 is obvious. It’s easy to
check that the explicit expressions we have obtained are really solutions
of the ordinary differential equations.

Since n =
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Define x(0) = 0. Then it’s easy to check that x is continuous on
(—00,0]. In order to check the assumption x(t) > —% on (—o00,0), it is
sufficient to verify

1 L2 AN

/
X +5= <0
2 (A)?
on (—00,0). Define A3 = —3(A\})? + A;A{. Then A3 € C*(—00,0],
A3(0) = 0 and N5 = A A > 0 on (—o0,0). Hence, A3 < 0 on (—o0,0)
and x'+3 < 0 on (—o0,0). Thus, the assumption x(¢) > —% on (—oc, 0)

holds.
In conclusion, all the previous assumptions about (, x and n are
suitable. q.e.d.

5. Two key propositions used to deal with singular metrics

At first, we define some notations in this section as follows.

Z = (Zla o 7Zn)a

2= (2L 2™,

= (Zm+1, .. ,Zn),

B¥ := the open ball in C* centered at 0 with radius 7,
B* := Bf

w(BF) := the 2k-dimensional Lebesgue measure of B,
dV}, := the 2k-dimensional Lebesgue measure on CF,

where m and n are the same as in Theorem 1.1, k is a positive integer,
and 2" will disappear if m = n.

The aim of this section is to prove two key propositions which will
be used to deal with singular metrics of holomorphic line bundles in the
proof of Theorem 1.1. One of them is a variant of a result in [12] con-
cerning L? extensions for local holomorphic sections or functions, and
the other one is a convergence property for integrals with plurisubhar-
monic weights.

Proposition 5.1. Let R be a function in R, where R is the same
as in Theorem 1.1. Let Q C C" be a pseudoconver domain, ¢ be a
plurisubharmonic function on Q, and w = (w',--- ,w™) be a family of

holomorphic functions on Q (1 <m <n). Let
Yi={zeQ: wx)=0} and U:={zxecQ: |wx)| <1}

Assume that A™(dw) := dw' A --- A dw™ is nonvanishing on Y. Then
for every 51 € LO,l) and every holomorphic n-form f defined on a
neighborhood of U in ) satisfying

/ m%i(ﬁ dV, < 400
v [w?mR(mlog lw|?) """ ’
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there exists a holomorphic n-form F on Q satisfying F = f on'Y,
(5.1)

/ [F[Pe=%dV, <(2+2<m+1>2,83> / fPe?av,
v WP R{mlogwf?) = RO)B1 ) Ju TwPr R{mlog |w]?)’

and
(5.2)

[ At (g LB [Py
o (L+ [P = B2 ) Ju TP R(mlog [wP)

where SR := sup,<q (e'R(t)).

Proof. The proof is a slight modification of the one in [12], where
R(t) is equal to e,

Since 2 is a pseudoconvex domain, there is a sequence of pseudocon-
vex subdomain Q CC Q (k= 1,2,---) such that Uéﬁ?ﬁk = Q. Then
for fixed k, by convolution we can get a decreasing family of smooth
plurisubharmonic functions {¢; ;;OT defined on a neighborhood of €
such that lim; , . ¢; = ¢.

Fix k and j. Let A be the continuous n-form on €2, defined by

(1 —|w™N)f  onUNQ,
0 on Qk\U

Then A = f on Y Ny, and it is easy to check that g := J\ is equal to

m . .

— L =1 S widwt A f on U N Q,
i=1

0 on Qi \ U,

in the sense of distribution theory. Then g € L™ (Q, A™1Tg).

Lemma 3.5 implies that Qf \ Y is a complete Kédhler manifold. Let
Qi \ 'Y be endowed with the Euclidean metric and let @ be the trivial
line bundle on f \ Y equipped with the metric

e~ ®3—mlog [w]?—p1 log(1+|w|?)
Then we want to solve a d equation on €, \ Y by applying Lemma 3.2
to the case 7 =1, A =0 and § = 0 (in fact, the case 7 =1 and A =0

is the non-twisted version of Lemma 3.2). The key step in applying
Lemma 3.2 is to estimate the term

/ (Bg, 9)qdVy,
Qr\Y

where B := [\/—10¢, A].
Set v =37 w'dw’. Then g = =2 |jw|™ 1w A f on U N Q.
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Since

v _1@Q‘Qk\Y
= V=100¢; +mv/—19d1log |w|* + f1v/—18dlog(1 + |w|?)
Br(1+ |w]?)V=13 dw' A diw® — B1v/—1(> widw®) A (3 widw?)
=1 i=1 =1

- (T + [l
Biv—1v A
[wl?(1 + |w]?)?’
by an inequality similar to (4.6), we get
B

B> "' T,T:
T wP A w)?

on Q \'Y, where Ty is defined similarly as in (4.7). Then we get
(B™'g,9)qlg, i = 0 and

-1
(B 9’9>Q‘(Umk)\y

_ m+1 m+ m—1—
= <B1<—i2|w\ bAf>——fzr | 1Af>
Q

2
‘w’2<1 + |w‘2)2 ‘w|m—1f e—¢j—m10g|w\2—ﬁ1 log(1+4|wl|?)
B 631 2
_ PP,
- 461
< D e
51 281

Hence, it follows from Lemma 3.2 that there exists u ; € L2(\Y, Kq®
Q) such that duy j =g =0 on 2, \ 'Y and

/ |uk,j|§2dvng/ B~ tg,9)0dVn.

Thus,

g, j|>e =%
5.3 / 2 dvi,
(5:3) oy [0 (11 [w PP

(m+1)2/ 2 ,—¢;

< At e 5 dV,

S TR Jia, | f

< (m+1)253/ P

- $1251 v [w*R(mlog |w|?)

Hence, we have uy; € {P(Qk \ Y, Kq). Since g € L°(Q, A™ITE),
Lemma 3.7 implies that duy ; = g holds on 2.

dv,,.
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Let F} j := A—wuy, ;. Then 5Fk,j = 0 on €. Thus, F}, ; is holomorphic
on €. Hence, uy ; is continuous on ;. Then the non-integrability of
|w|~#™ along Y implies that ug; = 0 on Y N €. Therefore, Fy,; = f
on Y N Q.

It follows from (5.3) that

20— 05 581 20— 95
/ 2’”’“’3 ¢ v, < 27 / Qluk,;! e SV,
une, WP R(mlog |wl|?) R(0) Juna, [wlP™(1 + [w]?)5
2 2 o
S(m+1) 55%/ i |f]%e v,
B1R(0)  Jy|w[*™R(mlog |w|?)
Since
e | gy, < 2+ 2l < 20 f[2 + 2Jup 7,
we get
Fy. j|?e%
(5.4) / LIS
vne, (WP R(mlog |wl[?)
< 2/ (LF1? + Jug 51)e? av,
= Jung, [wP™R(mlog|wl|?)
2 2 o
< 2+2(m+1) Br / |f]%e av..
B1R(0) v |w[*™R(mlog |w|?)

Since [Fi %[\, = [u|* and

Y

1
e |y, < (F1+ lung)? < (14 [wP™)|F17 + (1 + W)!ww' ?

by (4.12), we get

| Fh gl - [P gl
(T [wP)m P png, (L [wP™) (1 + [w]?)
[

IN

2
I T+ o

and
|F 4| |ug ;1
(L + [w)ym P g\~ Jw]Pm (1 + [w]?)P

Hence, it follows from (5.3) that

| e
5.5 ———dV,
(5:5) t@a+mmM%

2,—0;
< | |f2e*av, + / Juk,s1% av,,
L" o, TP (LT [Py
2 2 —¢
< BRJF(erl) Br / |f|%e 3
Bt ) )y P R(miog )
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The desired holomorphic n-form F on  and the L? estimates (5.1)
and (5.2) can be obtained from (5.4) and (5.5) by applying Montel’s
theorem and extracting weak limits of {F}, ;}x ;, first as j — 400 and
then as k£ — 4o0. q.e.d.

Proposition 5.2. Let ¢(2',2") be a plurisubharmonic function on
B x Br™ (1 <m < n,r > 0) such that SUPpm  n—m ¢ < +0o. Let
f(2") be a holomorphic function on BP~™ and h(z',2") be a nonnegative
continuous function on B x B'~™. Assume that C, 3, 51, c1, co, v/, 1"
and &, are positive numbers such that 31 <1, c; < co, ' < 71" <r and
e < %. Suppose that f- € OB xB'™) (¢ € (0,e,4)) are a family of
holomorphic functions satisfying f-(0,2") = f(2") (V2" € Bl™™, Ve €
(O’ 57")):

(5.6) sup  |f-| < Ce™P, Ve € (0,60),
B, xB, ™
and
(5.7)
1 11
T |fe(2), 2" Pem D90y, < ) Ve € (0,5,).
e (Z/’ZN)GB’QZQSXB:‘Z—’HL
Then
L R TR
e=ou(B™) J m \Br)xBY™ m(|z|? + 2)2|2/[2m—2 n

1 1 "
+ B + h(0, 2" 12,—¢(0,z )an—m
<C% 1 C% 1> /ZNG]B:-L’_m ( ' 2 )|f(2’ )| €

In order to prove Proposition 5.2, we prove the following lemma for
plurisubharmonic functions at first.

Lemma 5.3. Assume that co, v', £, and p are positive numbers such
that €. < %. Let m be a positive integer. Let ¢(z') be a negative

plurisubharmonic function on B} such that QAS(O) > —oo. Put

~

Spe ={w € B : dlew) < (14p)p(0)}, €€ (0,en).
Then
li =
lim pu(Spe) = 0,
where p(Spc) denotes the 2m-dimensional Lebesgue measure of Sp..

Proof. Since ¢(z') is a negative upper semicontinuous function on

B and ¢(0) > —oo, we have that for every ¢ € (0,1), there exists
gq € (0,&,) such that

blew) < (1 - q)9(0),

for all w € B2 whenever € € (0,¢,).
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Since a(sw) is plurisubharmonic on By} with respect to w for any
e € (0,gq), it follows from the mean value inequality that

= (B /weBm d(ew)dVp,, Ve € (0,eq).

Therefore, when e € (0 eq we have

H(0) < < d(ew)dViy, + $(ew)dvm>
B2 \Sp,e Sp,e
_ (1 — 9)9(0)(1(BE) — 1(Spe)) + (14 )H(O)u(Sp.e)
- n(BE)
_ 2 . 11(Sp, a))
¢(0) (1 g+ (+aq) (B )
Since (}5(0) < 0, we get
n(Br)g  p(BY)g
S ) < 2 < 2 ,
1 D, ) < P+q < D
whenever € € (0,¢,4). Hence, lim._,o u(Sp) = 0. q.e.d.

Now we begin to prove Proposition 5.2.

Proof. Let By, := SUPgm o —m h.

Without loss of gene;alitgf, we may suppose that ¢ is negative on
B xBy~™. In fact, ¢1 := ¢ — SUDpm g —m ¢ — 1 is a negative plurisub-
harmonic function on B} x B!~™ and the conclusion of Proposition 5.2
will hold for ¢ if it holds for ¢;.

Now we want to estimate the supremum norms of f. and the partial
derivatives of f..

Since |f-(2, 2")|? is subharmonic with respect to 2’ and 2", applying
the mean value inequality successively to 2" and 2/, we get from (5.7)
that

(5.8) sup |f€|2
B’(’};EXBTL m
1 / / ! "\ 12

: v, (2, 2")2dVi
SBEIHEET) Joeng, " Jpn V2
C J—

< 2:,1 FAR: 1+B)¢an
e oy, B

< 10,

where (] is a positive number independent of €.
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By (5.6) and Cauchy’s estimate for holomorphic functions, we have

0
(5.9) sup fj <Cy sup |f < CoCe™ 1,
By XB™ 9z BT, B,
for any ¢ € (0,e,7) and any j = 1,--- ,n, where C3 is a positive number

independent of ¢.
Let j be a positive integer. Then (5.7) implies that

1
gm/ |f-|?e=%aV,
7 HHo<—iIn®Brn xB,™)

1

coe

’f5‘2€_(1+’8)¢_ﬁjan
{¢§_]}H(Bgs XBflim)

< Ce P,

S EQm

for all € € (0,&,/).
Therefore, for every b € (0, 1), there exists a positive integer jj, such
that

(5.10) 1/ ShifPe™
fo<—inn((

pw(B™) By \Br ) xB" ™) m(|2']? +e2)?|2/[2m=2 7"
1 / 2 —
< - hlfelPe?aV,
m(c? 4 1)2¢3m2 y(Bm)e2m {6<—jp}N(BYL . xB,™) : "
- B, Ce P
= (@ + 12 (B
o b
2?

for all € € (0,&,/).
Set ¢p = max{¢p, —jp}. Let

1 1 17
d " = _ h(0 " "2 ,—dp(0,2")
)= (g = g IO 0
and
I S L P
) - u(Bm) 2 EBT \B m(|2']? + 2)?|2/|Pm—2 e

where 2" € B!, and € € (0,&,).
We claim that

(5.11) lm®.(2") < ®(2"), V2" € B,

e—0

It suffices to prove that (5.11) holds for every fixed z; € B, ™.
Set ¢(2") = ¢p(#, 2(). Let p > 0 be a positive number. Put

~ o~

Spe ={w € B, : ¢(ew) < (14+p)9o(0)}, € € (0,e,).
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Then by the change of variables 2’ = ew, we get
D (27)

_ 1 / h(ew, z5)| fe(ew, g) Pe” S“’)dv
pB") Joerppr  m(lwl? + 1) |w[*m—2 "

2 —d)(sw)
L[ Hem ket
wESp E\Bm

p(B™) m(Jwl? + 1)2|w[>"~2
+ / h(sw,zg)|f5(5w,zo)|2 ew)
WE™) Jucamy@mus,  m(lwl? + 12w

ejbﬁh sup |f€|2

dV,

< 1 / B B o
> /’L(Bm) Sp,e\]E?; (Cl+1) 2m 2 m
e—(1+p)¢(0) sup h(ew, 2{) sup |f5(€w,z(’)’)\2
+
mA\ (B US).c) m(lw|? + 1) w22 pu(B™) "
< JbN(Spa)Clcﬁh
— 2m—2
(e + 122 (B
1 1 -
+ - e~ 12O sup h(ew, 2) sup |fo(ew, 2|2,
<C%+ 1 C%+1> weBg’é ( O)wEIBg;’ 8( 0)’

where we use the inequality (5.8) and the equality

1 1 1 1
5.12 AV, = — ,
( U(Em)fwem\m R e I I

in the last inequality above. We will denote the two terms on the right-
hand side of the last inequality above by 71 . and 72, respectively.

Applying the mean value theorem to f-(2/,2”) on real lines, using
the Cauchy—-Schwarz inequality and then using the Cauchy-Riemann
equation, we obtain from (5.9) that

|fe(ew, 2") — f(") P
= \fe(sw, ZU) - f€(07 ZH) 2
m
(5.13) < \5w|2(22 sup
j=1BgxBL ™

< 2mciCiC2%e2

Ofe
077

)

for any (w, 2”) € B2 x B],"™. Then we have

(5.14) im  swp |falew, ) — F(")| =0,

e=0 (w,2")eB xB","™
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since 81 € (0,1). Hence,

! 1 1
im = -
e—0 V2e C% +1 C% +1

)0, sty P00,

by the continuity of h. Since lim. 071 = 0 by Lemma 5.3, we get

1 1
C%Jr]_ c§+1

lim @ (=) < < )h<07zé’>|f<zg>|2e—<l+p>$<°>.
E—>

Then
liq) " < (p "
S «(20) < ®(2p),
since p is an arbitrary positive number. Thus, we have proved (5.11).

Applying the change of variables 2’ = ew and (5.12) to the definition
of ®.(2"), we get that

e (") = 1/ h(ngz//)\fe(Ew,z")Pe*%(swz”)dv

< eijh sup |fa‘2

n—m
BE - xB

< Clcejbﬁfw

for all 2” € B),”"™ by (5.8). Moreover, it is easy to see that

®(2") < By sup |f]%,

B
for all 2" € B),"™. Hence, by Fatou’s lemma and (5.11), we obtain that

EZh(z/, Z//)‘fe(2/7 Z//)‘Qe—;b(z’,z”)

lim av,
0 Jo>—gn(@Brm B )xBr ™ MUE )PP "
— 2h(2 2 £u(2, 2 [2e— P
< L
=0 S BBy M2+ e2)?]
— u(B™)Tm ®.(2")dV_m
e—0 2B
< e [ eV,
2 EBYT™ e—0
< uE [ eV,
2 EB™
<

1 1 ’
B™ I h0. 2" 12, —¢(0,z )an—m~
W) (25~ 1) [, O
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By combining (5.10) and the above inequality, we get that there exists
ep € (0,&,/) such that

1 / e2h(2!, ") fo(#, 2)|2e ¢ %) av.
B \B

p(B™) moxpm m(|2? 4 e?)?] P2

cie
1 1 "
i B0, )| () 40" v, 1 b,
<C% 1 C% 1> /z”GB:/m ( ' )|f(z )‘ € n—m T

for all € € (0,¢p). Hence,

S €2h(2’/, Z”)|f5(2’/, Z//)|2ef¢>(z/,z”)
(5.15) hn% B™ — 12 & 2\2|[2m—2
==0u(B™) Jmp \Br ) xB"; m(|2'[? 4 £2)|#/|

coe \Pcre

1 1 "
B h 07 " M |2e=¢(0:2 )an—m
<C?+1 c%+1>/z,,€B:,_m (0,2")] (") e

dVy,

Since ¢ is plurisubharmonic,

limg(ew, 2") = ¢(0,2"), V(w,z") € B} x B, ™.
e—0

Then using (5.12), (5.14), Fatou’s lemma and the change of variables
2/ = ew, we obtain that

1 1 "
B™ — h(0, 2")| f(2")|2e= 0= qv,,_,,
B 7 Cgﬂ)/z”emm 0. F( e

B0, )| (") Pe=#0="
= 2 57—z dVn
(w,2"") (B \BZ ) x B, ™ m(|w|* + 1)?|w|
h " 1112 ,—d(ew,2z")
— / him (E'UJ,Z )|f€2(€w722 )|2€7n_2 an
(w,2" )€ (B \By2 ) X B e—0 m(|w|? +1)%|w|
h " 1my|12 ,—p(ew,z"")
S llm (5'[0,2’ )’f;(ew’z )| 26771172 an
=0 J (w,2)e (B \Byn ) x BT m(|w]?* + 1)?|w|
S 2, L, 2Pt
= 111 _ n-
e—0 (Z’,Z”)E(BZZS\B?IE)XB:L,_TH m(‘z/|2 + 62)2‘21’2777, 2

Then the conclusion of Proposition 5.2 follows from (5.15) and the in-
equality above. q.e.d.

6. Proof of Theorem 1.1

Without loss of generality, we can suppose that Cr = 1. Otherwise,
we replace R with CrR in the proof. If f =0 on Y, then F = 0 satisfies
the conclusion of Theorem 1.1. In the following proof, we assume that
f is not 0 identically. Moreover, we will denote |s|g and | A" (ds)|g
simply by |s| and | A™ (ds)| respectively.
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Let hg be any fixed smooth metric of L on X and let Ly denote the
line bundle L equipped with the metric hg. Then hy = hge™% for some
global function ¢ on X. Let

¢ =+
Then ¢ is a quasi-plurisubharmonic function on X by the assumption
in the theorem.
Since X is weakly pseudoconvex, there exists a smooth plurisubhar-
monic exhaustion function P on X. Let X, :={P <k} (k=1,2,---,
we choose P such that X7 # 0).

Our proof consists of several steps. We will discuss for fixed £ until
the end of Step 5.

Step 1: construction of a family of special smooth extensions
f- of f to a neighborhood of X; NY in X.

In order to deal with singular metrics of holomorphic line bundles
on weakly pseudoconvex Kéahler manifolds, we construct in this step a
family of smooth extensions f. of f satisfying some special estimates by
using the results in Section 5.

Let c € (0,3).

For the sake of clearness, we divide this step into four parts.

Part I: construction of local coordinate charts {V;}Y,, {U;}Y,
and a partition of unity {¢; f\il

For any point « € Y, we can find a local coordinate system
(V/ Zl . Zn)7

T Txo 17T

in X centered at z and a local holomorphic frame {e; ;}7*; of E on VJ,
such that s = > | 27e, j on V; and the frame {e; ;}72; is orthonormal
at x.

Moreover, we assume that there exists a local holomorphic frame of
L on V] and that the quasi-plurisubharmonic function ¢ can be written
as a sum of a smooth function and a plurisubharmonic function on V.

Let e € (0,1) be a fixed positive number such that

Ve i={y €V} 1 |2(y)] < eu, [24(y)] < ca}

is relatively compact in V, and the inequalities

(6.1) (1= )zl < s < (1 + o)l
and
1—c< ‘63571/\-”/\6x7m|2 <l+e¢
hold on a neighborhood of V,, where 2. := (zl,---,2") and 2/ :=
(zmH1 .o 27 (2" will disappear if m = n).
Since

| AT (ds)|2 = |alzi1 Ao A d,zzm|2|e@-71 A A e¢7m|2,
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where the norms are explained in Remark 1.1, we have
(6.2) (L= A™ (dz)]? < | A™ (ds)? < (1+ )| A™ (dz)

holds on a neighborhood of V.
Let €/, € (0,e,) be a fixed positive number and set

Ue={y € V;: 2, (y)l <ei |22 (y)] <&}

Since X, NY is compact, there exist points z1,x2, - ,2ny € Xz NY
such that X, NY c UY,U,,.

For simplicity, we will denote V,, z%l (1<j<mn), ey J (1<j<m),
Usz;» €x;» €L, 2, and 2 by Vi, zf, ei, Ui, €i, €, z} and z! respectively.

Choose an open set Uyyq in X such that Xz NY C X \ Uyy1 CC
UN Ui Set U = X \Un41. For fixed k and ¢, we choose a fixed positive
number &g € (0,+/1 — cminj<;<y &}) such that Xz N {z € X : |s(z)| <
g0} CCU.

Let {11! be a partition of unity subordinate to the cover {U;} N 1?

of X. Then suppé& cC U; fori=1,--- , N and Zi]\il&zlon U.

Part II: construction of local holomorphic extensions fi,g (1<
i < N) of f to V;N{|z]| < 3cae}, where ¢, will be defined in this
part.

Since we have assumed that ¢ can be written as a sum of a smooth
function and a plurisubharmonic function on a neighborhood of V; (1 <
i < N), by Lemma 3.8 and (6.2), there exists a positive number 5 €
(0,1) such that

|f|2 —(1+8)¢
(6.3) / —dVy <400 (1<i<N).
viny | AT (dz)?
Let X : (—00,4+00) — [0, +00) be the function

{(fll eﬁdt)_leﬁ if |t <1,

0 if |t > 1.
Then X is smooth on (—o0, +00) with support contained in [—1, 1] and
[reXN@dt = 1.

Set RO() 7’” , t € (—00,+00). Then Ry € R and Cg, =

1. Define R(t) = R(0 ) n (0,+00) and denote by R; the convolution
(min{Ro, R})  A. Then it is easy to see that R; € R and

(6.4) min{Ro(t+1), R(t + 1)} < Ry(t) < min{Ro(t — 1), R(t — 1)}.

Let ¢ : =, /WC(HC) and ¢y 1= 6(21106).
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For each fixed ¢ € (0, 5702), we apply Proposition 4.1 to the function

Ry and to the holomorphic section f on V; NY with the L? condition
(6.3), and then we obtain L? extensions of f from V; NY to

Vi N {]zL] < 3egel,
where we equlp the line bundle L with the singular metric hge™ (1+8)¢
and take s =

3c - in Proposition 4.1. More precisely, there exists a uni-

form positive number C (independent of €) and holomorphic extensions
fie (1 <i<N)of ffromV;NY toV;N{|z]| < 3cae} such that

(1+8)¢
/ . ‘fz E’LO 5 dVX
V;n{|2}|<3cae} ‘ i R1 (m log ’ L )

3cae 3025

R |f|2 —(1+8)¢
cof Vit
o | wm d(k)|

3cae

o A ) mQ —(14+8)¢
= “™C(3cy m/ —dVy.
Be)™ | TAm@DE

Hence,

(6.5) /
Vin{|2}|<2cae} \ Zi

2coE

‘jza‘Lo (1+8)¢

Qle (m log ‘

dVx < Ce?™,

5)

2626

for some positive number CA’l independent of e.

Part III: construction of local holomorphic extensions fm (1<
i<N)of ftoV;

For each fixed ¢ € (0, 4%), applying Proposition 5.1 to the local
extensions ﬁs (1<i< N) with the weight (1 + 5)¢ and to the case
2cst Q =V; and 81 = 5, we obtain from (6.5) holomorphic sections

fie 1<i<N) onVZsatlsfymgﬁgzﬁngon‘/}ﬂY,

w =

|fz€|L (8¢ Oe?
(6-6) / zl 12m - aVx < Cae m’
Vin{lz{|<2c2¢e} ‘ 20;5 Ry (m log ‘ 2628 é)
and
(1+8)¢ ~
(67) / ‘fz 8‘L0 — dVX < CgEQm,
(1+ |ng‘ )

for some positive numbers 62 and 53 independent of ¢.
Since sup,<q (€/R1(t)) < 400, it follows from (6.6) that

© [ el B D avy < Grem,

m n—m
€B5, e X Be;
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for all € € (0, £ ) where Cj is a positive number independent of €.
Since |2} < z-:l on V;, it follows from (6.7) that

(6.9) / Foa(ehs 2R, e~ HI8CLD qyy < Byt
(Zl ”)EB""X]B" m

for all € € (0, ££), where Cs is a positive number independent of ¢.

Let e := @ Then by similar calculation as in (5.8), we get from
(6.9) that
~ 1
(6'10) sSup |f1 8( Ziy % )|L C 4,
Bl xBL, ™
for all e € (0, ) where 06 is a positive number independent of .

(6.8) and (6 10) imply that the assumptions in Proposition 5.2 hold
for f; .. Since it is not hard to prove that
2 — —_
(V=1)""dz} N+ NdZ™ ANdZE A A dED
|dz}t A+ A dz|? ’

dVx = dVy -
at each point € U;NY by a certain orthogonalization process on T% |,
we apply Proposition 5.2 to f;. (1 <i < N) and get

(6.11) lim / €2€""]E"’E@oe_(b
EHOVOI(Bm) Uin{cie<|z}|<cae} m(|2;|2 + 52)2|Z£|2m72

= 2m< — — )/ Glflr,e 7 —dVy,
i+l 3+1) Juny [A™dz

where Vol(B™) is the volume of the unit ball in C™ and the equality
(6.11) will be used in Step 4.

dVx

Part IV: construction of a family of smooth extensions f. of f
to a neighborhood of X;NY in X.

Define fo = >N, & /. for all € € (0, )
i Since for any~j = 11. -+, N, fs|Uj = 21:1 fzfjﬁ—ka\;l Elfie—Ffic) =
fie + N &(fie — fie), we have

€0

1)

(6.12) D" felroly, = Za& A fie = fie)lbes Ve € (0,

For similar reasons as in (5.9) and (5.13), we get from (6.10) and (6.1)
that

(6‘13) |5fz’/\(fia_fja ’%O‘U-OU'
‘551 fzs( Zjs j) fze(o Z”)‘i'fje(oaz;‘,) ij( Zjs ] ’Lo
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IN

C7|Z;-|2(SUP |fi,s|%o —+sup |fj,€|%o)
U; U;

IN

68‘8‘28_%,
for all € € (0, £2), where C7 and Cg are positive numbers independent
of €.

Step 2: the singularity attenuation process for the currents

V/—1900¢ and /—100%.

Part I: the process for the closed almost positive current
V—100¢.

Since the singularities of v/—1091og |s|> and {Jj‘l‘g#‘s’s} obstruct the
application of Lemma 3.4, we will work on the blow-up of X at first
and then go back to X. The idea of using Lemma 3.4 and a blow-up to
regularize curvature currents comes from [30].

Let X together with u : X — X be the blow-up of X with center Y.
Then p is a proper holomorphic map and X is also weakly pseudoconvex.
Let Xjp1 := p~ Y Xpp1), Xp = p~Y(Xp) and Y := p~1(Y). It is not
hard to prove the following lemma and we won’t give its proof.

Lemma 6.1. There exists a positive number ny such that
g1 1= Npptw + V—1081og |s o pu|? — 27 [Y]
1s a Kdhler metric on )?kﬂ.
It is not hard to see that
V—1081og |s o pu|? — 2x[Y]

V—1{Ogs,s}

is a smooth real (1,1)-form on X and w*( 52 is, in fact,

: and o)
smooth on X (not just smooth on X \ Y'). Hence, there exists a smooth
real (1,1)-form 77 on X such that

)

[ V—1{Ogs,s}
"N ‘X\Y = H |s[2
Since 1 : X \'Y — X \ Y is biholomorphic and [37]’5(\17 = 0, the
curvature inequalities (i) and (¢7) in Theorem 1.1 implies that

V=100(9 0 )7 + 2|07 2 0,

and

V—=180(p o M)’)}\{f + 73‘)?\17 >0
hold on X \ Y, where
Yo := v/ —1p*Or, +mr/—1001log |s o u|* — 2m7r[)7], V3 1= y9 — n

aop
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Since 2 and 3 are continuous real (1,1)-forms on X, and ¢ o is
quasi-plurisubharmonic on X, we get that

(6.14) V—=100(p o ) + 2 > 0,
and
(6.15) V—=18d(pop) +73 >0

hold on X. Since there must exist a continuous nonnegative (1,1)-form
wg+1 on the Kéhler manifold (X1, wk+1) such that

(v —1®T§k+1 + gyl ®IdT)~(k+1)(/€1 Rk, k1®@k2) >0 (VKi, k2 € Tk, )

holds on )Afk+1Lby Lemma 3.4, we obtain from (6.14) and (6.15) a family
of functions {¢c¢ p}c~0,pe(0,p1) 0N Xky1 such that

(1) ¢g p Is quasi- plurlsubharmonlc on a neighborhood of the closure of
X, smooth on Xk+1 \ Ec(¢op), increasing with respect to ¢ and
p on X, and converges to ¢ op on X, as s p— 0,
(ii) F@@qﬁgp > —? — QW41 — OpWh41 ON Xk,
(iif) g&%c,p > —2 — Swpy1 — Opky1 on X,
where E(¢pop) :={z € X : v(pop,z) >} (¢ > 0) is the c-upperlevel
set of Lelong numbers of ¢op, and {,} is an increasing family of positive
numbers such that lim, 06, = 0.

Since w1 is a Kéhler metric on )}k_l’_l by Lemma 6.1 and X is
relatively compact in X k41, there exists a positive number ng > 1 such
that nkwkH > Wkt holds on X %~ Take ¢ = 0, and denote ¢5 ,p simply
by qbp Then d)p is quasi- plurlsubharmomc on a neighborhood of the
closure of X &, Smooth on X k1 \ Es, (qﬁ o 1), increasing with respect to

p on X &, and converges to ¢ o u on X r as p — 0. Furthermore,

V=180, + 72 + 2mni6,@k 1 > 0,
and
V=100, + 73 + 2118 ,@p 1 > 0
hold on X k- Since u : X k \)7 — X \ Y is biholomorphic, we get that
V=100(p 0 ™) + (1) Y2 + 2mmd (1) Bhrr > 0,
and
V=100(p 0 ™) + (1) 73 + 278 (1) D1 > 0

hold on X \ Y. Then, replacing 72, 3 and w41 with their definitions,
we obtain that

(6.16) \/—185(@) op 1) + V=101, + (m + 2mnd,)V—190 log |s|?

> =2mnnglpw,
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and

(6.17) \/—7185(510 op ™ h) + V=10, + (m + 2mnd,) V100 log |s|?
V—1{Ogs, s}

als|?

hold on X \ Y.
Since FEj,(¢ o p) is an analytic set in X, Remmert’s proper mapping
theorem implies that

— 27N N0 pw

Yy = ,U«(EE,,((Z) o N))
is an analytic set in X. By Lemma 3.5, X; \ (Y UX,) is a complete
Kahler manifold. _ _

It follows from the properties of ¢, that ¢,opu™" is smooth on X1\
(Y UX,), increasing with respect to p on Xy \ Y, uniformly bounded
above on X} \ Y with respect to p, and converges to ¢ on X \ Y as
p— 0.

In Step 3, we will use gp o u~! to construct a smooth metric of L on
X\ (YUX,).

1

Part II: the process for the closed positive current /—190.

Let [ be a positive integer such that [ > 2m supy,,, @ +
msupy, ., log |s|? and —I < supy,,, ¥. Set ¢y = max{y, —{}. Then
iy is plurisubharmonic on X and

(6.18) P 4+ mlog s> < —2ma

on X1 by the inequality (iii) in Theorem 1.1. Since v is a locally
bounded function on X, the Lelong numbers of ¢; on X are all 0. Since
there must exist a continuous nonnegative (1, 1)-form w on the Kéhler
manifold (X,w) such that

(\/ —1@TX + o IdTX)(FL1 R Ko, K1 &® KZQ) >0 (Vlil, Ko € Tx)

holds on X, Lemma 3.4 implies that there is a family of functions
{¢l7§71)}§>0,p€(0,p2) on X such that
(i) %, p is quasi-plurisubharmonic on X} 1, smooth on X, increasing
with respect to ¢ and p on Xj1, and converges to ¥, on X1 as
p—0,
(ii) @a&pw > —¢w — 0w on Xpy1,

where {§,} is an increasing family of positive numbers such that
lim,_, (5’p = 0. We can assume that (5;) = 0, since we can replace them
by max{d/,d,}.

Since X1 is relatively compact in X, there exists a positive number
nj. > 1 such that njw > @ holds on Xj41. Take ¢ = 0, and denote
15,0 simply by 9 ,. Then v, is quasi-plurisubharmonic on X1,
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smooth on X, increasing with respect to p on Xy, and converges to v
on Xy11 as p — 0. Furthermore,

(6.19) V=100, > —2mn},6pw
holds on Xj41.

Step 3: construction of special weights and twist factors.

Let ¢, x and i be the same functions as in Section 4, whose explicit
expressions are given in the final step there.

Let a € (0,1] and put o, = 9, + mlog(|s|* + €%) — a. Then by
the inequality (6.18), there exists a positive number ¢, € (0,g9) and a
positive number p, € (0,min{p1, p2}) such that o,. < —2ma — § on
X, for any ¢ € (0,&,) and any p € (0, p,), where £g, p1 and py are the
same as in Step 1 and Step 2 respectively.

Let L, . denote the line bundle L on X;, \ (Y UZX,) equipped with the
new metric

hye = hoe™Pon ™ —(mF2mnesy) og ls[2—C(op.e)

Let 7. := x(0p¢) and A. :=1(0,¢). Set B,e = [0,, A] on X\ (YU
¥,), where

Ope =T1-V/—10y, . — V-1807. — \/—71%

_ {D’s;s}
Set v, = a2

(6.20)

We want to prove

2
me _ ~
@P:E{Xk\(YuEp) > W\/—lyE A Dg — (27rnknkx(ap,€)5p + 27m;€5p)w

It follows from (4.17) and (4.19) that

(621) Opc|x\ (vus,)
= X(0pe)(V=101, + vV=100(dp 0 p~")
+(m + 2mnkd,)V/—190 log | s|?)
+(X(0p,)¢ (0p6) = X (e ))\/78(90’,)5
2

+ <X(0P,€)C”(Up,e) - X”(Up,s) - m) \/—71(90,,,6 A 5ap7€
= X(0,0)(V=1Or, +V—198(¢p 0 ")

+(m + 27nkd,)V/—1001og |s|*) + V=100, ..

By Lemma 3.9, we have

|s|?v/—1{D's,D’s} > /—1{D’s, s} A {s,D's}.
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Hence, (6.19) implies that

\ /_1850,)75 ‘Xk\(YUEP)
my/—1{D's,D's} m\/—1{D’s,s} A{s,D's} m\/—1{Ogs, s}

[ (LR A
+V—1ag¢l7p
- me? /—1{D’s, s} A {5,D's} m+/—1{Ogs, s} ol
— — 27,0 w
- \3\2 (Is]* +¢2)? |s]? + €2 e
myv/—1{Ogs, s}
= ‘ ‘2 \/ lv. AN, — SE &2 — 27n},6 pw.

Then it follows from (6.21) that

Opelxvus,)

> x(0,:)(V=10r, + \/_7185(5,0 o)

_ —1{Ops,
+(m + 2mn1.0,)V/—109 log |s|*) — m@i 525 ot

| ’2 \/ lv: AN — 27m;€(5pw.

Since x(0,c) > —%%= > ma by the assumption x(t) > —%, it follows

from (6.16) and (6.17) that ’
X(05,e) (V=101 + V=100(¢, 0 ")
my/—1{Ogs, s}

|s]2 + &2

+(m + 27nkd,)V/ 100 log |s|*) —

= (Up, )(V 101, + v _185(5/) © N_l)
+(m + 2mny6,) vV —199 log |s|* + 2mny kS, w)
mals|? /—1{Ogs, s}

=21 X (0pe)dpw —

|s|? + &2 als|?
mals|?
e e
- _ vV—1{Ops,
+(m + 27n16,)v/—100 log |s|* + 2mngnigd,w — (;E|S|§SS}>
=21 X (0 p,e )6 pw
> =2mnpnEX(0pe)0pw
on X\ (Y UZX,). Hence, we get (6.20) as desired.
Let 8 and ¢ be as in Step 1. Define gy = ﬁ Inspired by an

idea of Yi (see [29] or [30]), we choose an increasing family of positive
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numbers {p:}cc(0,c,) such that lime .9 p: =0, p: < pa (Ve € (0,€4)),
(6.22) 2mnngx(2mloge — 1 —1)8,, + 270} 6, < e, Ve € (0,e,),

(6.23) dngd,, < Bo, Ve €(0,¢e4),
and
c 4mngdpe 1
.24 — vV a)-
(6.24) < 2—05) >1+c, e € (0,e4)

Since 0,. > 2mloge — 1 — 1 on X}, and x is decreasing, we have
X(0pe) < x(2mloge —1 — 1) on Xj. Then it follows from (6.20) and
(6.22) that

o > Ry n s — o
peelx\(YUs,,) = g VT A T

Hence,
2
(6.25) B, .+e%1> %\/—1% AT, A | > TVET* >0

on X; \ (YUX,,) as an operator on (n, 1)-forms, where Tj,_ denotes the
operator U: A e and T}_is its Hilbert adjoint operator.

Step 4: construction of suitably truncated forms and solving
0 globally with L? estimates.

In this step and Step 5, we will denote B, ., L,. . and o,, . simply
by B, L. and o, respectively.

Let ¢ be as in Step 1. It is easy to construct a smooth function
6 : R — [0,1] such that # = 0 on (—o0, £], # =1 on [1 — £, +00) and
|0 < Hc on R.

Deﬁne g. = D" (9(‘55%)]?5), where f. is constructed in Step 1 and

0<e< min{1 /2—2050, €a} (o and e, are the same as in Step 1 and
Step 3 respectively). Then D”g. = 0 and

2 2 / 2
B | € {s,D’s} € "
ge = —0 (|s|2—|—52)(|3|2 £2)2 /\fa+9(‘8‘2+€2)D Je
= Jle T 925,
2
where g1 . denotes — 1/5/\9’(| |2+€2)|S|2+52 and g2 . denotes 9(| |2+62)D”f5

It follows from (4.12) and (6.25) that
(6.26) ((Be + 25’801)_1%, 9e)L. X\ (YUZ,,)
(1+0)((Be +26™D) g1, 91) 1.

1+4+c¢ _

+ <(B5 + 25501) 192,&7 92,5>L5

IN

14c¢, 1
<E%g2,57 92,5>LE

< (4B +eD T g1 9100 + —
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By (6.25), we have
<(Bz-: + 5601)_191,& g1 E>L8
BE 2 &2

me2

Xk\(YUEPE)

2f€

9

= <|s|2+s2)\s\2+g

Then ¢ > 0 implies that
I l,e

= / (Be+ ™) g1, 91)1.dVx
Xk\(YUEPE)

(1+¢)? | felf e et dVx

e |
(1= 0)? Jxyn{y /7 e<lsl<y/Zote) m|s|? + £2)2|s[Pm—2Hdmnade.

Since qus opu~!>¢on Xp\Y, it follows from (6.24) that

I
< (1+C)2/ ( 23c5)_4mk6p562|fs|%06_¢d‘/x
(=0 Jxng 2=cgy m(|s|? +&2)?[s|>m—2
o 4o / | felE, e ?dVx
T (= xni= ey m(|s|? +€2)? s
Since

N N N N
FelZoly = 1D V& VETiell, < Q_a)Q_&lficll,) = D&l ficl]
i=1 i=1 i=1 i=1
by the Cauchnychwarz inequality, we have

e%6ilficlF e~ ?dVx
ey m[s|? +€2)?[sPm 2

Il,s >

1—0 /)‘(km{ /256

Then it follows from (6.1), (6.11) and (6.2) that

lim1 .
e—0
- N e (1+¢)? 52§i’ﬁ,51%0€7¢dVX
= M\ 1oz i P 2 2)2|2m—2
— =0\ (1 = ¢)* Jxyn(, /35 e<isl<\/2=2e) m(|s|* +€2)?[s]
1+c _
- S (4 21l PV
= m—1
= =0 Juinfaesii<es m((1 - o)|2)]2 +£2)* (1 = ¢)|21[2)™
(14-c)3 2
< Nm A—m+3 "€ fz\fze’LO ?dVx

i—1 =0 Uin{cie<|z}|<cae} (’Zi‘Z +€2) |Zi’2m 2
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M1+ efVolB™) [ 1 1\ / &GIf13 e CdVy
(1—c¢)ym+t3 d+1 a+1) = Junay [A™(d)?

(L+ot @m™ [ |ffie?
= (1—comts ml /Y|/\m(ds)]2dvy’

where ¢; and ¢y are defined as in Step 1. Then

dVy,

(1+¢)°® (2m)™ 17,6
6.27 I - < 0
( ) Le = (1—c)mt3 m!  Jy | A™ (ds)]?

when € is small enough.
Since ((0:) >0 and ¢, o™t > ¢ on X; \ 'Y, by (6.23), we have

1
L, = / (5925 92.)0.dVx
Xk\(YUEPs) €
~ _~ o 1
< 1/ D" felf e
— Bo ¢ 2m4-4nngdp, X
e Jxpnfisl<y/Z2er sl
<

1 D//f 2 e*d)
e Jxynisl<y/Z=cey I[P
Then it follows from (6.12) that I is bounded by the sum of the terms

N ’5@ A (fi,s - sz,e)‘%oeid)
‘S|2m+50

0,J,€

by the Cauchy-Schwarz inequality, where U; ;. = U; N U; N {[s] <

\/27:5}.

Since R; is a positive decreasing function, (6.1) and (6.6) imply that
fori=1,---,N,

|fiel2 e~ (1£B)¢
(6.28)/ Lo dVy
Vin{jsl<\/2=2¢} [s[*™R1(mlog|s|?)
£ 12 o—(1+B)¢
< ‘fz,a’LOe ClVX

-[;kaqu—@maMRmm%vm+mmguw»
< 6952,

for some positive number 5’9 independent of € when ¢ is small enough.
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By the Holder inequality, (6.28), (6.13) and (6.4), we get (note that
Bo = %)

/ |5£Z N (fi,s - fj,sﬂ%oe_d)
U;

P

dVx

2J5€

(/ |5fz A (fi,s - fj,s)|%0€7(1+’8)¢dv >1-1-/3
Ui je |S|2mR1(m log ’5‘2) X
B

U;

|S|2m+ﬁo#

»JH€

IN

~ s_i(Ro(mlog\s\Q - 1))% 280
(] ")
U;

2m—32
Jdse |8| 2

-1 260
~ e 1
< c;;( / e dVX)
2m—=2
Uije |S] 4

< G

)

when ¢ is small enough, where @{j,
independent of . Hence,

(6.29) I < CyeP0,

CY: and C}7 are positive numbers

where (] is a positive number independent of €.
Therefore, it follows from (6.26), (6.27) and (6.29) that

/ ((Be 4+ 261 Y., gV . dVyx
X\ (YUS,..)

14+c¢
c
(1+0° @mm [ |fl7e™? l+c, s
dVy + ——C4e™.
A3 ml Jy Tam @Y+ e ©F
Then by Lemma 3.2, there exists ug g1 € LZ(Xk\(YUEps), Kx®L;)
and hygcre € L2(Xp \ (Y UX,), A"™'T% ® Le) such that

IN

(14+c)ie+

I2,€

IA

(630) D//uk,a,c,l,a + \/ﬁhk,a,c,l,s = Ye
on X\ (YUZX,,) and

[k e |3 € P~ 2mnidp) log s (02)

(6.31) dVx

Xe\(YUS,,) e + Ac
X\(vus,)

< Clo),
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where

C(e) := C1e.

(1+¢)S (27r)m/ |fl7,e? 1+c
Y C

A
A= ml Jy [am (@s)EeY

Since {ngE O/fl}ae(o,aa) are uniformly bounded above on X\ Y with
respect to € as obtained in Step 2, we have

(6.32) et > 0y

on X;\Y for any € € (0,&,), where Cs is a positive number independent
of e. Since 2mloge — 1l —a < 0. < —% on X}, and log |s|? is upper
semicontinuous on X, we have that log|s|?, ((o.) and 7. + A. are all
bounded above on X}, for each fixed e. Then it follows from (6.31) that
Upa,ele € L?(Xpy, Kx ® Lo) and hg g1 € L*(Xg, A™'T% @ Ly). Hence,
it follows from (6.30) and Lemma 3.7 that

2

" / " € ;
(633) D Uk,a,c,l,e + 25ﬁ0hk,a,c,l,€ =D <9(|8|2—|—€2)f5>
holds on Xj. Furthermore, (6.31) and (4.18) imply that

2L €7¢p5 O,U«_I*Qﬂ'nkapg As
0

(6.34) / [ukaci.e v
. X
X |s|>™R(o.)

Y —1_ 2 .
+ / ‘hk,a,c,l,s |%0€ Ppe Ol mlog|s|?—2mnydp. As C(Us)dVX
Xk

< Cle),
where A, := supy, log|s|?.
Define Flg.cic = —Uhacie + 0(55rz) = Then (6.33) implies that
D”F;i,a,c’l,g = \/ﬁhkﬂ,c,l’e on X}. Since R(o.) < R(¢; +mlog|s|? —a)
and ¢, op~t > ¢ on X; \ Y, it follows from (4.12) and (6.34) that

3 —1
/ ’Fk,a,c,lﬁ&oe Pz o
X, 18P R(¢r + mlog|s[* — a)

(6.35) dVy

|ukacl€|% e—qugo,u_l
S 1 +C / Pt g i) 0 dVX
o) | PRy
() e e P
1—|—C/ [s2+e2 /) /e Loe
X, |s]?™R(¢; + mlog|s|? — a)
< (14 e)e?™mdeedO(e) 4 Oe),

when ¢ is small enough, where

dVx
C

|f5|%0€_¢

~ _ 1 +c/
¢ Jxpn{isi<\/2=ey 18P R(Y + mlog|s]® — a)

C(e):

dVx.
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Now we want to prove

lim C(e) = 0.

e—0

As in (6.28), we have
| fielf e 092

6.36 / dVyx < Cio,
O30 ntiiey/ey TSP Ba(mlog [SE —a + 1+ )

for some positive number 610 independent of € when ¢ is small enough,
where Ay, 1= Supx, ., .
For similar reasons as in (5.8), we get from (6.8) that

(6.37) sup |ficl?, < Cn,
U;N{|s|< 2—;%}

for some positive number 611 independent of € when ¢ is small enough.
By (6.4), (6.36), (6.37) and the Holder inequality, for ¢ = 1,--- | N,
we have that

(6.38) / Ficltye™® v
' e
UinXn{jsl<y/2Z2e} 82" R(¥r + mlog|sf? — a)
: oy
iell €
s / o il . dVy
Uiﬂ{|5|<\/2%7ca} |s|?m Ry (Ay + mlog|s|? —a+1)
Fo2 ,—( 1
= </ e L°ez( o de) -
Uin{|s|<y/2<e} |s|*mRy(mlog|s|? —a+1+ Ay)
% (/ 2m |f’€|2LO dVX)
Uiﬂ{|8|<\/?e} |s|?mRi(mlog|s|? —a+1+ Ay)
1 T
= 612(/ dVX>
vin{jsl<y/Z=e) [P Ru(mlog s —a + 1+ Ay)

R 2m10g6+614 1 %
< / dt> ,
13( . Ri(t)

when ¢ is small enough, where 612, 613 and 614 are positive numbers
independent of e. .
Since f. := fo\i1 & fie and supp§; CC U, we get from (6.38) that
lim C(e) = 0.
e—0
Since
|s|*™R(vp; + mlog |s|* — a) emloglslzR(mlog Is|> =1 —a)

et sup (e"R(1)),
t<0

IN A
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it follows from (6.32) and (6.35) that

(639) / ‘Fk,a,c,l,sl%odVX < 6'157
Xk

for some positive number 615 independent of € when ¢ is small enough.
Since ¢, © p~ ! is increasing with respect to e and converges to ¢
on X; \'Y as ¢ = 0, by extracting weak limits of {Fj qcic}e>0 as
e — 0, we get from (6.39) and (6.35) a sequence {5]};;0‘; and Fj g1 €
LQ(Xk, Kx ® Lg) such that 1imj*>+oo g; =0, Fk,a,c,l,ej — Fracl weakly
in L?(Xy, Kx ® Lg) as j — +oo and
/ Fracili e ®dVx — _ (1+q" @mm [ |[fE,edVy
X, [5PMR(Y; +mlog|s|? —a) = (1—c)™+t3 m!  Jy |A™ (ds)|? '
Since iY; > 1 and R is decreasing, we get
‘Fk a,c,l |% e ¥
6.40 0 dV;
( ) /Xk evtmloglsl® R(y) + mlog|s|2 — a) X
(+o7 @0m [ 1B
(1—c)mt3 m!l Jy | A™ (ds)|?

Since 0. < —§ on X and ( is increasing, we get

dVy.

(6.41) e6(02) > o=C(=3)
on Xj. Then (6.34), (6.32) and (6.41) imply that

/ |hk,a,c,l,6|%0dVX < 6((—%)+(m+27mk5p6))\scglc(e)'
Xk

Hence, \/QEthk’a7c7l,€j — 0 in L*(Xg, A" T% ® Lg) as j — +oo. Since

D" Fracie = V2Phy gcre on Xi, we get D"F g7 = 0 on Xj. Then
F}, a.¢; is a holomorphic section of Ky ® L on Xj. In Step 5, we will
prove that Fy ,.; = f on Y N X} by solving d locally.

Step 5: solving 0 locally with L? estimates and the end of the
proof.

For any z € Y N Xy, let (Vy, 21, 27), 2, 2 and ¢, € (0,1) be as
in Step 1. Assume that &, € (0,e,) is a positive number such that

Wy = {y € Vo : [2,(y)] < &, |23 (y)] < &} CC X

Since the bundle L is trivial on V., Uk g1, and hy 4. can be regarded
as forms on V, with values in C and the metric of Ly on V, can be
regarded as a positive smooth function. Obviously, the Kahler metric
w on W, is bounded below and above by C5 Ly and Csw’ respectively,
where w’ is the Euclidean metric on W, and C3 > 1 is some positive
number independent of . In the following, we will denote the 2n-
dimensional Lebesgue measure on W, by dV,,.
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It is easy to see that C'(g) < Cp for some positive number Cj inde-
pendent of € when ¢ is small enough. Then it follows from (6.34), (6.1),
(6.41) and (6.32) that

(6.42) / |heaen.e2e ™81 av, < €4 C,
Wa

for some positive number Cy independent of € when ¢ is small enough.
Since Ohy g1 = 0 on W, by (6.33), applying Lemma 3.6 to the
(n, 1)-form

V2eBohy g cre € L( 1y (W, mlog |z, %),

we get an (n,0)-form vy g € L%n,o)(Ww’ mlog|z.|?) such that

arUk,a,c,l,e =V 2650 hk,a,c,l,s
on W, and

2 _ 1 /‘ 2
[Vk,actel”e™™ o8z dV. < V2:Bo}, 2,—mlog |2, |? v/
5 n > ‘ € k,a,c,l,5| € n-
xT xr

(1412512 + [21%)
Since |2 |2 + |2"|? < 2 on Wy, by (6.42), we get

(6.43) / [0 e 2610812 qV;, < 18C4Coe.
W

Since e~™1o8 121" > 1 on W, (6.43) implies that

(6.44) / kgt 2 dVy, < 18C4Coe™.

Now define Gk,a,c,l,s = —Uka,cle —vk,a,c,l75+9( s|2+62)f5 on W,. Then

Gk,a,c,l,a = Fk,a,c,l,a — Vk,a,c,le and éGk,a,c,l,a = 0. Hence, Gk,a,c,l,s is
holomorphic in W,. Therefore, ujqcie + Vka,cie is smooth in Wi,
Furthermore, we get from (6.39) and (6.44) that

(6.45)

/ |Gk,a,c,l,a|2dvn < 2/ |Fk:,a7c,l,a|2dvn + 2/ |Uk:,a,c,l,a|2dvn < 057
e Wy W

for some positive number C5 independent of € when ¢ is small enough.
By (6.1) and (6.32), we get from (6.34) that

2 —m10g|21|2
/ ’Uk,a,c,l,éj‘Rl(eo- ) dV, < CsC(e) < C4C,
= €

for some positive number Cg independent of € when ¢ is small enough.
Since R(o:) < R(2mloge — 1 — a) on W, we have

/ |t q.00.27e ™08 aV, < CsCoR(2mloge — 1 — a).

Therefore, combining the last inequality and (6.43), we obtain that

+ 2
/ ‘ukyaycyl)f - ’2/1::,ll707l,€| an S 20600R(2m IOgE S G/) 4 3604005’80.
T z$



180 X. ZHOU & L. ZHU

Then the non-integrability of |z/,|~2™ along W, NY and the smoothness
of Up g,cle + Vkaele i Wy show that ug ¢ ¢ 0 + Vkaeie =00on W,NY.
Hence, G g, = fon W, NY.

Since Vg g1, — 0 in wao)(WI) by (6.44) and Fygcie; — Fraey

weakly in L%n,o)(Wﬂf) as j — +00, we get Gracie; — Fracl wWeakly

in L%n,o)(Wx) as j — +oo. Hence, it follows from (6.45) and rou-
tine arguments with applying Montel’s theorem that a subsequence of
{G kacle; };Lzof converges to F}, 4 .; uniformly on compact subsets of W,.
Then Fy 4.7 = f on W, NY and thereby on ¥ N Xj.

Since R is a continuous decreasing function on (—oo,0], ¢ is locally
bounded above and sup,< (¢'R(t)) < +o0, applying Montel’s theorem
and extracting weak limits of {Fracithaci first as I — 400, next as
¢ — 0, then as a — 0, and, finally, as k — 400, we get from (6.40) a
holomorphic section F' on X with values in Kx ® L such that F' = f on
Y and

a7 (2m)™ [fl7e
/ +mlog s[? 5 dVx = — / m (d 5dVy
xe R(¢ +mlog |s]?) ml Jy [ A" (ds)|

Theorem 1.1 is, thus, proved.

7. Proof of Theorem 1.2

Kx is naturally equipped with the smooth metric e¥~ with respect
to the dual frame of dz. Let L’ be the line bundle L equipped with
the new metric e~%z’, where ¢/ := (2 — ¢)log|Fi|r + ¢r. Then the
assumptions in the theorem imply that

(i) V=10 ++V-199c > 0,
(i) V10, 1 v 1000 > WY 1OEs e

als|

Since the holomorphic section f € HO(Y, Kx|y ® L|y) satisfies

/‘f|%’e_¢ AVy = Oy < +o0
y [Am (ds)[3, ! ’

by Theorem 1.1, there exists a holomorphic section F» on X with values
in Kx ® L, such that Fo, = f on Y and

|3 / |7,
dVxy = dV-
/X (Fil)?> 9% R(a) x ¢R(0)" ¥

(277)’”/ |f\2L/e_w
d
Crl Jy Tam @™

IN

(2m)™
m!

— Cp Cy.
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Then Hélder’s inequality gives that

. (| F2[1)?
Cp, = /Xe"R(U)dVX

- </ <|F11L>|52EJR<J> dVX) % (/X gf&'@; dvx)
: <CR(2W> Cf>g(CF1)1_

We can then repeat the same argument with F; replaced by F3, etc, and
get a sequence of holomorphic extensions {F; k};ﬁ‘{ of f and a sequence
{Cp,};25 such that

N

(2m)™

q
(7'1) CFk+1 - (CR Cf>2(CFk)1_gﬂ k=1,2,---

If Cp, < Cr— (ZW) Oy for some Cf,, then we finish the proof since Fj,
can be regarded as the desired holomorphic extension F in the conclu-
sion.

If Cr, 2 ) Cy for any k, then Cpk+1 < CF, for any k. Since
pr, is locally bounded above and e? R(0) is bounded above, applying
Montel’s theorem and extracting weak limits of {Fk}k 1, we can get

from (7.1) a holomorphic section F' on X with values in Kx ® L, such
that F'= f on Y and

(1F]z)? (2m)™
< .
/X e’ R(0) dVx < Or m! Cs

Theorem 1.2 is, thus, proved.

8. Proof of Theorem 1.3

The fiberwise Bergman kernel B(z) of (Kx/y ® L)|xo at a point
x € X" is defined by
Zuy & uy

for any choice of orthonormal basis {u,} of the Hilbert space

H(X,,Kx, ® L|x, ® Z(hr|x,)),

1

2

lugllx, = ( / m{uu}) ,
Xy

where y := Il(z), X, := I-1(y), (Kx)y®L)|x, ~ Kx,®L|x,, ch—m =
(v=1)("=™?* and {e, e}, is defined as in Lemma 3.9.

with the norm
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The assumption (i7) in Theorem 1.3 implies that B is not equal to
zero identically on X°. If log B is proved to be plurisubharmonic on
XY then log B € L{ _(X°) and the fiberwise Bergman kernel metric of
(Kx/y ® L)|xo is defined to be B~".

We will divide the proof into two parts.

Part I. We will prove that log B is plurisubharmonic on X°. Then
the fiberwise Bergman kernel metric of the bundle (Kx/y ® L)|xo has
semipositive curvature current on X0°.

Since it is not hard to prove the upper semicontinuity of log B by
using global regularization results of the singular metric of L, we will
only prove that for a coordinate chart U cC X which is small enough,
log B satisfies the mean value inequality on every complex line contained
in U.

Without loss of generality, we can assume that m =1, U ~B" ! x A
and |y is the projection from B"~1 x A to A, where A is the unit disc
in C. For any t € A, denote the compact fiber II71(¢) by X;. Let 1 be a
local frame of L on U and let (z,t) be the coordinates on U ~ B"~! x A.
We will write the Bergman kernel of Kx, ® L|x,(~ Kx/y|x, ® L|x,) as
Bi(z)dz®@n®dz®@n on X, NU.

Since log By(z) is always plurisubharmonic with respect to z, we need
only check that log B;(z) satisfies the mean value inequality with respect
to t for fixed z.

Fix z = z9. For any given ty € A, if By (20) = 0, then log B:(z0)
satisfies the mean value inequality at to. If By, (z0) # 0, by the extremal
property of the Bergman kernel, there exists a holomorphic section vy, €
HO(XtO, KXtO ® L’Xto & I(hL|Xt0)) such that
2

v, (20)
(81) Bto (ZO) thO Cn—l{vtoa UtO}L 5
where vy, [y = v}, (2)dz @ 1.

Applying Theorem 1.1 to the holomorphic section vy, in the case
R(t1) =e™ m=1,5 =t —tg and ®p = —logr?, we can obtain a
holomorphic section 7 € HY(IT71(A,(t9)), Kx ® L ® Z(hz)) such that
U]x,, = vty A dt and

(8.2) / cn{v,0}r < 27r7"2/ en—1{vty, Uiy } 1,
I=1(Ar(to))

to
where A, (tg) := {t € C: |t —to| < r} and r is an arbitrary positive
number which is small enough.
Since [y, cn_l{i‘xt, %|Xt}L # 0 for a.e. t € Ap(tp), the extremal
property of the Bergman kernel implies that

) >
th Cn—l{%‘xy%}xth
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for a.e. t € A(to), where U]y = V'(t, 2)dz A dt ® n. Then we have
Vv—1dt A dt
5 log By(20) ————
mr Ar(to) 2

1 - V—1dt A dt
2/ log [t/ (t, z0)[*——F——
mwr Ar(to) 2

(ol
-5 n—1
7'("[’2 Ar(to) X dt

Since the mean value inequality for subharmonic functions and Jensen’s
inequality for the convex function — log imply that

(8.3)

v

v

Tdt| 2

} )x/—ildt/\dt.

1 _ V—=1dt A dt N
p— log [0/ (t, 20)[*~———— > log [t/ (to, 20)|* = log [v}, (20)|?,
™r Ar(to) 2
and
1 o / ‘o v v \/—1dt/\df
7 Ja g UOE at|ydtly f,) T 2
v v —1dt A dt
> —log — Cn—1
r ~(to) J X: dt dt 2

= —lo / v, >
g<7”“2 T-1(A, (t0)) 2{ e

2 - log/ Cn—l{vtou UtO}L’
X

to

by Fubini’s theorem and (8.2), we obtain from (8.3) and (8.1) that

1 V—1dt A dt
— log Bi(z0) ——————
T2 JA, (to) 2
> g i (c0)* ~log [ enr{vm i)
to
= log By, (20)-

Hence, log B;(zg) satisfies the mean value inequality with respect to ¢.
Thus, we finish the proof of Part I.

Part II. Let ; CC Q5 be two small coordinate balls in X such that
I1(22) is contained in a coordinate ball in Y, whose coordinates will
be still denoted by t = (t1,#2,--- ,#™). Let ¥ := X\ Xo. We will prove
that the fiberwise Bergman kernel is uniformly bounded on ©;\X. Then
the fiberwise Bergman kernel metric on X extends across X\ X? to a
metric with semipositive curvature current on all of X. We will use
similar arguments as in [5] in this part.

Let « be a point in Q;\X and y := II(z). Denote II"*(y) by X,,. Let
u € HY(X,, Kx, ® L|x, ® Z(hr|x,)). Then uAdt € H(X,, Kx|x, ®
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L|x,®Z(hr|x,)). Denote the coordinates on 2 by w = (w!, w?,--- ,w")
and denote the local holomorphic frame of L on 29 by 1. Then we can
write u A dt as u/dw ® n on Qs N X,. Hence, with respect to the local
coordinates w and the local frame 7, the fiberwise Bergman kernel at
x is given by the supremum of |u/(x)|?> when u is normalized by the
condition

/ Cn—m{u,ulp < 1.

)
By Theorem 1.1, we can obtain a holomorphic section

u € HO(QQ,KX ® L ®I(hL)),
such that u|g,nx, = u A dt = v'dw ® n and

(8.4) / e i} < Ci / enm{u,u}r < Ci,
Qo

QQﬂXy
where C is a positive number depending only on m and the diameter
of QQ.
The mean value inequality applied to (8.4) shows that

[/ (2)[* < Ca,

where (s is a positive number depending only on n, m, the diameter of
Q1, the diameter of {29 and the upper bound on s of the local weight
of hL.
Since x is an arbitrary point in 7\, the fiberwise Bergman kernel is
uniformly bounded on Q;\X. Therefore, we finish the proof of Part II.
Theorem 1.3 is, thus, proved.
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