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FOLIATIONS BY SPHERES WITH CONSTANT
EXPANSION FOR ISOLATED SYSTEMS WITHOUT

ASYMPTOTIC SYMMETRY

Christopher Nerz

Abstract

Motivated by the foliation by stable spheres with constant mean
curvature constructed by Huisken–Yau, Metzger proved that ev-
ery initial data set can be foliated by spheres with constant expan-
sion (CE) if the manifold is asymptotically equal to the standard
[t= 0]-timeslice of the Schwarzschild solution. In this paper, we
generalize his result to asymptotically flat initial data sets and
weaken additional smallness assumptions made by Metzger. Fur-
thermore, we prove that the CE-surfaces are in a well-defined sense
(asymptotically) independent of time if the linear momentum van-
ishes.

Introduction

Motivated by an idea of Christodoulou and Yau [CY88], Huisken–
Yau proved that every Riemannian manifold is (near infinity) uniquely
foliated by stable surfaces with constant mean curvature (CMC) if it is
asymptotically equal to the (spatial) Schwarzschild solution and has pos-
itive mass [HY96]. Their decay assumptions were subsequently weak-
ened by Metzger, Huang, Eichmair–Metzger, and the author [Met07,
Hua10, EM12, Ner15]. Furthermore, the author proved that asymp-
totic flatness is characterized by the existence of such a CMC-foliation
[Ner14]. Huisken–Yau’s idea to use foliations by ‘good’ hypersurfaces
was picked up by Metzger who proved that every initial data set, which
is asymptotically to the standard [t= 0]-timeslice in the Schwarzschild
solution, can (near infinity) be foliated by spheres of constant expan-
sion (CE) and that these CE-surfaces are unique within a well-defined
class of surfaces [Met07]. He motivated the CE-foliation among other
things as foliation adapted to the apparent horizons which have zero
expansion and that CE-surfaces are the non-time symmetric analog of
CMC-surfaces.
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Note that the CMC- and the CE-foliation are not the only folia-
tions used in the mathematical general relativity: For example, Lamm–
Metzger–Schulze achieved corresponding existence and uniqueness re-
sults for a foliation by spheres of Willmore type [LMS11] and (in the
static case) Cederbaum proved that the level-sets of the static lapse
function foliate the timeslices (near infinity) [Ced12]. However, we will
only use the CMC- and the CE-foliations in this paper.

To explain Metzger’s assumptions for his existence theorem for the
CE-foliation, let us recall that an initial data set is a tuple (M, g , k,J,%)
satisfying the Einstein constraint equations

(1) 2% = S −
∣∣∣k∣∣∣2

g
+H 2, J = div

(
H g − k

)
.

Here, (M, g) is a Riemannian manifold, k is a symmetric (0, 2)-tensor,
J a (0, 1)-tensor, and % a function on M. This is motivated by a three-
dimensional spacelike hypersurface (M, g) within a Lorentzian mani-
fold (M̂, ĝ) with Einstein tensor G, the second fundamental form k of
(M, g) ↪→ (M̂, ĝ), its energy density % ..= G(ϑ,ϑ), and the momentum
density J ..= G(ϑ, ·), where ϑ is the future pointing unit normal of
(M, g) ↪→ (M̂, ĝ). If the surrounding Lorentzian manifold satisfies the
Einstein equations G = R̂ic − 1

2 Ŝ ĝ , then the Gauß–Codazzi equations
of M ↪→ (M̂, ĝ) are equivalent to the constraint equations (1). Note that
we dropped the physical factor 8π for notational convenience.

In this notation, Metzger assumed asymptotic to the standard [t= 0]-
timeslice of the Schwarzschild solution, i.e., the existence a coordinate
system x : M \ L→ R3 \ B1(0) mapping the manifold (outside of some
compact set L) to the Euclidean space (outside of a closed unit ball),
such that the push forward of the metric g is asymptotically equal to
the Schwarzschild metric Sg as |x| → ∞. More precisely, he assumed
that the k-th derivatives of the difference g ij − Sg ij of the metric g and
the Schwarzschild metric Sg decays in these coordinates like |x|−1−ε−k

for k ≤ 2.1 This is abbreviated with g − Sg = O2(|x|−1−ε). He, further-
more, assumed that the second fundamental form k decays sufficiently
fast, i.e., k = O1(|x|−2), and that the corresponding constant is suf-
ficiently small, i.e., |kij | ≤ η/|x|2 for some small constant η � 1 and
correspondingly for the first derivative. He motivated this point-wise
assumption by the fact that at least in a specific example this foliation
only exists for sufficiently small second fundamental form. However,
this example of a second fundamental form is solely controlled by an
integral quantity: the ADM-linear momentum defined by Arnowitt–

1In fact, he assumed this decay in a more geometric way: g − Sg = O0(|x|−1−ε),
Γijk − SΓijk = O0(|x|−2−ε), and Ricij − SRicij = O0(|x|−3−ε) for some ε > 0, where
we used the notation explained in Section 1. Actually, he also allowed ε = 0 if the
corresponding constant is sufficiently small.
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Deser–Misner [ADM61]. In the last paragraph of [Met07], Metzger
clarifies that (in the general setting) this foliation is, nevertheless, not
characterized by the ADM-linear momentum (or the ADM-mass), i.e.,
smallness of the linear momentum is (in general) not sufficient to ensure
existence of the CE-foliation.

The first main result of this paper is the existence of the CE-foliations
under weaker decay assumptions on the metric. Furthermore, we only
assume that the second fundamental form is of order |x|−2, has asymp-
totically vanishing divergence J = div(H g − k) = O0(|x|−3−ε), and need
only additionally ‘smallness’ for some integral-quantities of k.2 Here,
we only state a simpler, less general version – see Theorem 3.1 for the
more general version.

Corollary 1 (Existence of CE-foliation – special case of Theorem 3.1).
Let (M, g , k,J,%) be a C 2

1
2 +ε-asymptotically flat, asymptotically maximal

initial data set with non-vanishing mass m 6= 0. Assume that k is C 0
2+ε-

asymptotically anti-symmetric and vanishes C 1
2 -asymptotically. If the

(ADM-)linear momentum is sufficiently small, then there exist closed
CE-surfaces σΣ smoothly foliating M outside a compact set.

The definition of a ‘C 2
1
2 +ε-asymptotically flat initial data set’ is ex-

plained in Definition 1.3, while the other assumptions are explained
in Theorem 3.1. We note that the corresponding theorem is true for
a temporal foliation (see Definition 1.4) instead of an initial data set,
i.e., every asymptotically flat temporal foliation of a four-dimension-
al Lorentzian-manifold can be foliated (near infinity) by surfaces with
constant expansion with respect to the corresponding timeslice (Theo-
rem 3.3).

Note that if the so called Regge–Teitelboim conditions are satisfied,
see [RT74, Hua09], then the ADM-linear momentum characterizes the
Euclidean coordinate center of the surfaces, see Remark 3.16. This
generalizes Metzger’s interpretation from [Met07, Sect. 7] for a special
case of the second fundamental form.

As Metzger, we also get a uniqueness result for the CE-spheres (The-
orem 3.4). Again, we give a simple version – see Theorem 3.4 for the
general version.

Corollary 2 (Uniqueness – special case of Theorem 3.4). Let (M, g ,
x, k,J,%) satisfy the assumptions of Corollary 1. Let Σ1,Σ2 ↪→ M be
CE-surfaces satisfying (specific) estimates. If Σ1 and Σ2 have the same,
sufficiently small expansion, then they coincide.

The precise formulation of the ‘(specific) estimates’ can be found in
Theorem 3.4. Furthermore, we can again reduce the assumptions on the
initial data set – see Theorem 3.4.

2Note that we can alter the assumptions on k, see Remark 3.2.
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Finally, we study how these CE-surfaces evolve in time under the
Einstein equations (Theorem 4.1): We prove that the CE-spheres are in
a well-defined sense (asymptotically) independent of time if the ADM-
linear momentum vanishes. This is to be expected as the author proved
that the CMC-leaves (asymptotically) evolve in time by translating in
direction of the fraction of the (ADM) linear momentum and the (ADM)
mass [Ner13, Theorem 4.1] and the CE-spheres are asymptotically just
shifts of the CMC spheres (due to the results in Section 3) – and it seems
appropriate to assume that this shift is (asymptotically) independent of
time. To the best knowledge of the author, this is the first time that
any evolution result is proven for the CE-leaves. Theorem 4.1 implies
the following (more descriptive) corollary:

Corollary 3 (Time invariance – special case of Theorem 4.1). Let
(tM, tg , tk, t%, tJ)t be a (orthogonal) C 2

1
2 +ε-asymptotically flat temporal

foliation solving the Einstein equations in asymptotic vacuum. As-
sume that each of these initial data sets satisfies the assumptions of
Corollary 1. If the time-lapse function is C 2

1
2 +ε-asymptotic to one and

(asymptotically) symmetric, then the leaves of the CE-foliation evolve
(asymptotically) in time by a shift in time direction (orthogonal to each
timeslice tM).
Acknowledgment. The author wishes to express gratitude to Ger-
hard Huisken for suggesting this topic and many inspiring discussions.
Further thanks is owed to Lan-Hsuan Huang for suggesting the use of
the Bochner–Lichnerowicz formula in this setting (see Proposition 3.9).
Finally, thanks goes to Carla Cederbaum for exchanging interesting
thoughts about CMC- and CE-foliations and about the interpretation
of the integral quantities (see (16a), (16c), and Proposition 3.15).

Structure of the paper and main proof structure

In Section 1, we fix the notations and basic assumptions made in
this paper. Note that our assumptions on the decay of the second fun-
damental form is more restrictive than the one used in parts of the
literature, e.g., [Ner13, Hua10], but less restrictive than other others,
e.g., [CK93, Met07]. In Section 2, we characterize the linearization
of the map mapping a function to the expansion of its graph. Further-
more, we explain one of the main ideas of the following proofs. The
existence and uniqueness theorems are stated in full detail and proven
in Section 3. In the last main section (Section 4), we state and prove
the evolution theorem.

As our main proof structure for the existence and uniqueness theo-
rems is the same as the one used by Metzger in [Met07], we briefly
explain his proof. He defines an interval I ⊆ [0 ; 1] to be the set of all
artificial times s ∈ [0 ; 1] such that there exists a foliation by CE-surfaces
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for (M, sg , s k, sJ, s%) instead of (M, g , k,J,%) and proves by an open–
closed argument that it is equal to [0 ; 1]. Here, sg denotes the artificial
metric defined by

sg ij ..= Sg ij + s
(

g ij − Sg ij
)
, Sg ij ..=

(
1 + m

2 |x|

)4
eg ij ,

and 2 s% ..= sS−|s k|2sg +s2 H 2 is an artificial energy-density. As it is well-
known that there is a CMC-foliation of the Schwarzschild standard-slice,
he gets 0 ∈ I. Hence, I is non-empty. He proves with a convergence
argument that I is also closed. In order to prove that I is open, he
uses the implicit function theorem: Let, therefore, be {s0rΣ}r>r0 be the
CE-foliation of (M, s0g , s0 k, s0 J,

s0%) with s0 ∈ I and define the map

(·H± ·P)ν : [0 ; 1]×W2,p(s0rΣ)→ Lp(s0rΣ)

: (s, f) 7→
(
sH ± s str k

)
(graphνf),

for every r > r0 and any p > 2, where (sH ±s str k)( graphνf) denotes the
expansion of graphνf with respect to sg and s k (see Section 2 for more
detailed information). Assume for a moment that the Fréchet derivative
of this map with respect to the second component at (s0, 0) is invertible.
The implicit function theorem then implies that s0

rΣ can be deformed
to a surface s

rΣ which is a CE-surface with respect to (M, sg , s k, sJ, s%)
if |s − s0| is small enough. This proves the openness of I under the
assumption of invertibility of the Fréchet derivative of the above map.
To deduce this invertibility, he proves multiple estimates for the distance
of such a CE-surface to the origin and the trace free part srk

◦ of the second
fundamental form s

rk of the surface s
rΣ ↪→ (M, sg). Here, he uses the

concrete form of the Ricci-curvature of the Schwarzschild metric and
the assumed smallness of k.

We use the same approach, but replace three main arguments:
• as we know that the CMC-foliation of (M, g , x) exists [Ner15,

Thm 3.1], we can fix the metric g instead of using above metrics
τg ;3
• we get the crucial estimate for the distance of τσΣ to the coordinate

origin by estimating its τ -derivative (see Lemmas 3.11 and 3.12);
• to conclude the invertibility of the Fréchet derivative explained

above, we use the Bochner–Lichnerowicz formula and smallness
of specific integral quantities of k instead of the concrete form of
the Ricci-curvature of the Schwarzschild metric and the pointwise
smallness of k (see Proposition 3.9).

3Note that the proof of [Ner15, Thm 3.1] uses the explained method including
the family of metric {τg}τ .



262 C. NERZ

1. Assumptions and notation

In this section, we describe the notations and decay assumptions used
in this paper. The notations used are the same as used by the author
in [Ner13, Ner15]. The assumptions on the Riemannian manifold are
identical to the one, e.g., described in [Ner15, Sec. 1]. The assump-
tions made on the other quantities of the initial data set (respectively
temporal foliation) are described in Definition 1.3 (respectively Defini-
tion 1.4).

In order to study temporal foliations of four-dimensional spacetimes
by three-dimensional spacelike slices and foliations (near infinity) of
those slices by two-dimensional spheres, we will have to deal with dif-
ferent manifolds (of different or the same dimension) and different met-
rics on these manifolds, simultaneously. To distinguish between them,
all four-dimensional quantities like the Lorentzian spacetime (M̂, ĝ), its
Ricci and scalar curvatures R̂ic and Ŝ , and all other derived quantities
will carry a hat. In contrast, all three-dimensional quantities like the
spacelike slices (M, g), its second fundamental form k, its Ricci, scalar,
and mean curvature Ric, S , and H ..= tr k, its future-pointing unit nor-
mal ϑ, and all other derived quantities carry a bar, while all two-dimen-
sional quantities like the CMC leaf (Σ, g), its second fundamental form
k, the trace-free part of its second fundamental form k◦ = k − 1

2(trk)g ,
its Ricci, scalar, and mean curvature Ric, S , and H = trk, its outer unit
normal ν, and all other derived quantities carry neither.

In Sections 2 and 4, the upper left index denotes the time-index t of
the ‘current’ timeslice. In Section 3, it denotes the weight b. The only
exceptions are the upper left indices e and S which refer to Euclidean
and Schwarzschild quantities, respectively.

If different two-dimensional manifolds in one three-dimensional ini-
tial data set (M, g , k,J,%) are involved, then the lower left index always
denotes the radius R or curvature index σ of the current leaf σΣ, i.e.,
the leaf with expansion σH ± σtrk = −2/σ, where ± ∈ {−1,+1} always
denotes a fixed sign. Furthermore, the two-dimensional manifolds and
metrics (and other quantities) ‘inherit’ the upper left index of the corre-
sponding three-dimensional manifold. We abuse notation and suppress
these indices, whenever it is clear from the context which metric we
refer to.

Here, we interpret the second fundamental form and the normal vec-
tor of a hypersurface as quantities of the surface (and thus as ‘lower’-di-
mensional). For example, if tM is a hypersurface in M̂, then tϑ denotes
its unit normal (and not tϑ̂). The same is true for the ‘lapse function’
and the ‘shift vector’ of a hypersurfaces arising as a leaf of a given
deformation or foliation.
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Finally, we use upper case Latin indices I, J , K, and L for the two-di-
mensional range {2, 3} and lower case Latin indices i, j, k, and l for the
three-dimensional range {1, 2, 3}. The Einstein summation convention
is used accordingly.

As mentioned, we frequently use foliations and evolutions. These
are infinitesimally characterized by their lapse functions and their shift
vectors.

Definition 1.1 (Lapse functions, shift vectors). Let θ > 0, σ0 ∈ R
be constants, I ⊇ (σ0 − θ σ ;σ0 + θ σ) be an interval, and (M, g) be
a Riemannian manifold. A smooth map Φ : I × Σ → M is called
deformation of the closed hypersurface Σ = σ0Σ = Φ(σ0,Σ) ⊆ M, if
σΦ(·) ..= Φ(σ, ·) is a diffeomorphism onto its image σΣ ..= σΦ(Σ) and
σ0Φ ≡ idΣ. The decomposition of ∂σΦ into its normal and tangential
parts can be written as

∂Φ
∂σ

= σu σν + σβ,

where σν is the outer unit normal to σΣ, and σβ ∈ X(σΣ) is a vector
field. The function σu : σΣ → R is called the lapse function and σβ
is called the shift of Φ. If Φ is a diffeomorphism (resp. diffeomorphism
onto its image), then it is called a foliation (resp. a local foliation).

In the setting of a Lorentzian manifold (M̂, ĝ) and a non-compact,
spacelike hypersurface M ⊆ M̂, the notions of deformation, foliation,
lapse α, and shift β are defined correspondingly.

As there are different definitions of ‘asymptotically flat’ in the lit-
erature, we now give the decay assumptions used in this paper. To
rigorously define these and to shorten the statements in the following,
we distinguish between the case of a Riemannian manifold, the one of
a initial data set, and the one of a temporal foliation.

Definition 1.2 (C 2
1
2 +ε-asymptotically flat Riemannian manifolds).

Let ε ∈ (0 ; 1/2] be a constant and let (M, g) be a smooth Riemann-
ian manifold. The tuple (M, g , x) is called C 2

1
2 +ε-asymptotically flat Rie-

mannian manifold if x : M \ L → R3 \ B1(0) is a smooth chart of M
outside a compact set L ⊆M such that

(2)
∣∣∣g ij − eg ij

∣∣∣+ |x| ∣∣∣Γijk∣∣∣+ |x|2 ∣∣∣Ricij
∣∣∣+ |x| 52 |S | ≤ c

|x|
1
2 +ε

holds for some fixed constant c ≥ 0 and every i, j, k ∈ {1, 2, 3}, where
eg denotes the Euclidean metric. Arnowitt–Deser–Misner defined the
(ADM-)mass of such a manifold (M, g , x) by

mADM ..= lim
R→∞

1
16π

3∑
j=1

ˆ
S2
R(0)

(
∂g ij
∂xj

−
∂g jj
∂xi

)
Rν

i dRµ,
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where Rν and Rµ denote the outer unit normal and the area measure of
S2
R(0) ↪→ (M, g) [ADM61].

In the literature, the ADM-mass is characterized using the curvature
of g :

(3) m ..= lim
R→∞

−R
8π

ˆ
S2
R(0)

Ric(Rν,Rν)− S
2 dRµ,

see the articles of Ashtekar–Hansen, Chruściel, and Schoen [AH78,
Sch88, Chr86]. Miao–Tam recently gave a proof of this characteriza-
tion, mADM = m, in the setting of a C 2

1
2 +ε-asymptotically flat manifold

[MT14].4 We recall that this mass is also characterized by

(3’) m = lim
R→∞

mH
(
S2
R(0)

)
.

This can be seen by a direct calculation using the Gauß equation, the
Gauß–Codazzi equation, and the decay assumptions on metric and cur-
vatures. Here, mH(S2

R(0)) denotes the Hawking-mass which is for any
closed hypersurface Σ ↪→ (M, g) defined by

mH(Σ) ..=

√
|Σ|
16π

(
1− 1

16π

ˆ
Σ

H 2 dµ
)
,

where H and µ denote the mean curvature and measure induced on Σ,
respectively [Haw03].

Definition 1.3 (C 2
1
2 +ε-asymptotically flat initial data sets). Let ε ∈

(0 ; 1/2] be a constant and let (M, g , k,J,%) be an initial data set, i.e.,
(M, g) is a Riemannian manifold, k a symmetric (0, 2)-tensor, % a func-
tion, and J a one-form on M, respectively, satisfying the Einstein con-
straint equations (1). The tuple (M, g , x, k,J,%) is called C 2

1
2 +ε-asympto-

tically flat if (M, g , x) is a C 2
1
2 +ε-asymptotically flat Riemannian manifold

and

(4) |x|
∣∣∣kij∣∣∣+ |x|2

∣∣∣∣∣∂kij
∂xk

∣∣∣∣∣+ |x| 52 ∣∣∣J i∣∣∣ ≤ c

|x|
1
2 +ε

∀ i, j, k ∈ {1, 2, 3}

holds in the coordinate system x. In this setting, the second funda-
mental form k vanishes C 1

2 -asymptotically and C 0
2+ε-asymptotically anti-

symmetric if additionally∣∣∣kij∣∣∣+ |x|
∣∣∣∣∣∂kij
∂xk

∣∣∣∣∣ ≤ c

|x|2
and

∣∣kij(x) + kij(−x)
∣∣ ≤ c

|x|2+ε ,

respectively.
4The author thank Carla Cederbaum for bringing his attention to Miao–Tam’s

article [MT14].
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Definition 1.4 (C 2-asymptotically flat temporal foliations). Let ε >
0. The level sets tM ..= t−1(t) of a smooth function t on a four-di-
mensional smooth Lorentzian manifold (M̂, ĝ) are called a (orthogonal)
C 2

1
2 +ε-asymptotically flat temporal foliation, if the gradient of t is ev-

erywhere time-like, i.e., ĝ(∇̂t,∇̂t) < 0, and there is a chart (t, x̂) :
Û ⊆ M̂ → R × R3 of M̂, such that (tM, tg , tx ..= x̂|tM,

tk, t%, tJ) is a
C 2

1
2 +ε-asymptotically flat initial data set for all t (with not necessarily

uniform constants tc), ∂t|tM is orthogonal to tM for every t,5 and the
time-lapse function tα ..= |ĝ(∂t, ∂t)|1/2 ∈ C 1(tM) satisfies

(5)
∣∣∣tα− 1

∣∣∣+ |x| ∣∣∣∣∣∂ tα∂xi
∣∣∣∣∣ ≤ tc

|x|
1
2 +ε

, ∀ i ∈ {1, 2, 3}.

Here, the corresponding second fundamental form tk, the energy-density
t%, and the momentum density tJ are defined by

tkij ..= −1
2 tα

∂ tg ij
∂t

, t% ..= R̂ic
(
tϑ, tϑ

)
+ Ŝ

2 ,

tJ ..= R̂ic
(
tϑ, ·

)
, ∂t|tM = tα tϑ,

respectively, where tϑ is the future-pointing unit normal to tM. If
the constants tc of the above decay assumptions can be chosen inde-
pendently of t, then the temporal foliation is called uniformly C 2

1
2 +ε-

asymptotically flat.
Remark 1.5 (Weaker decay assumptions). We note that all the fol-

lowing results remain true in the case that the above decay assumptions
are only satisfied for |x| f(|x|) instead of |x|−ε, i.e., if we replace the
right hand side of (2), (4), and (5) by |x|

1
2 f(|x|), where f ∈ L1((1 ;∞))

is some smooth function with |x| f(|x|) → 0 for |x| → ∞.6 Fur-
thermore, we can replace our pointwise assumptions by Sobolev as-
sumptions, namely g − eg ∈ W3,p

− 1
2
(R3 \ B1(0)), S ∈ W1,1

−3(M), and
k ∈ W2,p

− 3
2
(R3 \ B1(0)), where p > 2 and where we used Bartnik’s def-

inition of weighted Sobolev spaces [Bar86] – compare with [Ner15,
Rem. 1.2].

Using one of DeLellis–Müller’s results [DLM05, Thm 1.1], the author
proved in [Ner15, Prop. 2.4] (see Proposition 3.7) that every closed hy-
persurface which is ‘almost’ concentric and has ‘almost’ constant mean

5Here, the orthogonality of ∂t|tM to tM is in fact not an additional assumption, as
any coordinate system (t, x) can be deformed (using flows in direction of ∇̂t) such
that this orthogonality holds for the new coordinate system.

6Furthermore, we have to assume 0 ≥ f ′(|x|) ≥ −1/|x|, but if the above assump-
tions are satisfied for some f , then there exists a f̃ satisfying the above assumptions
and this additional assumptions.
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curvature is ‘almost’ umbilic, see Proposition 3.7. Here, we call a surface
‘almost concentric’ if it is an element of the following class of surfaces.

Definition 1.6 (Cη(c~z)-asymptotically concentric surfaces). Let (M,
g , x) be a C 2

1
2 +ε-asymptotically flat three-dimensional Riemannian man-

ifold and η ∈ (0 ; 1], c~z ∈ [0 ; 1), and c1 ≥ 0 be constants. A closed,
oriented hypersurfaces (Σ, g) ↪→ (M, g) of genus g is called Cη(c~z)-
asymptotically concentric with area radius r =

√
|Σ|/4π (and positive

constant c1), in symbols Σ ∈ Aε,η
r (c~z, c1) if

|~z | ≤ c~z r + c1 r
1−η, r4+η ≤ min

Σ
|x|5+2ε ,ˆ

Σ
H 2 dµ− 16π (1− g) ≤ c1

rη
,

where ~z = (zi)3
i=1 ∈ R3 denotes the Euclidean coordinate center defined

by
zi ..=

 
Σ
xi deµ ..= 1

|Σ|

ˆ
Σ
xi deµ,

where eµ denotes the measure induced on Σ by the Euclidean metric eg
(with respect to x).

As it results in additional technical difficulties, we note that we can-
not restrict ourselves to ‘really’ asymptotically concentric surfaces, i.e.,
C1(0)-asymptotically concentric surfaces, as the CMC-surfaces used in
this work are not necessarily within this class [CN15].

Finally, we specify the definitions of Lebesgue and Sobolev norms, we
will use throughout this article.

Definition 1.7 (Lebesgue and Sobolev norms). If (Σ, g) is a com-
pact two-dimensional Riemannian manifold without boundary, then the
Lebesgue norms are defined by

‖T‖Lp(Σ)
..=
(ˆ

Σ
|T |pg dµ

) 1
p

∀ p ∈ [1 ;∞), ‖T‖L∞(Σ)
..= ess sup

Σ
|T |g ,

where T is any measurable function (or tensor field) on Σ and µ denotes
the measure induced by g . Correspondingly, Lp(Σ) is defined to be the
set of all measurable functions (or tensor fields) on Σ for which the Lp-
norm is finite. If r ..=

√
|Σ|/4π denotes the area radius of Σ, then the

Sobolev norms are defined by
‖T‖Wk+1,p(Σ)

..= ‖T‖Lp(Σ) + r ‖∇T‖Wk,p(Σ), ‖T‖W0,p(Σ)
..= ‖T‖Lp(Σ),

where k ∈ N≥0, p ∈ [1 ;∞], and T is any measurable function (or tensor
field) on Σ for which the k-th (weak) derivative exists. Correspond-
ingly, Wk,p(Σ) is the set of all functions (or tensors fields) for which the
Wk,p(Σ)-norm is finite. Furthermore, Hk(Σ) denotes Wk,2(Σ) for any
k ≥ 1 and H(Σ) ..= H1(Σ).
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2. Pseudo stability operators of the expansion

In this section, we assume that (M̂, ĝ) is a Lorentzian manifold and
that t is a smooth regular function on M̂ such that its level sets tM ..=
t−1(t) form a C 2

1
2 +ε-asymptotically flat temporal foliation (for some strict

positive ε) – with respect to a fixed chart x̂.7 In particular, every level
set (tM, tg , tx, tk, t%, tJ) is a three-dimensional initial data set, where we
used the same notation as in Definition 1.4. Furthermore, let Σ ↪→ M
be a smooth, closed hypersurface in one of the timeslices M ..= t0M.

The (conventional) stability operator L of Σ ↪→M is well-understood.
It can be defined as the linearization of the mean curvature map
(6) H : C 2(Σ)→ C 0(Σ) : f 7→ H (graphνf),
at f ≡ 0, where H ( graphνf) is the mean curvature of

(7) graphνf ..=
{

expp(f(p)ν)
∣∣∣ p ∈ Σ

}
,

with respect to the surrounding metric g . Here, expp denotes the ex-
ponential map of M at a point p ∈ Σ. This graph is a well-defined
closed hypersurface if Σ is smooth and f lays in some well-defined
L2(Σ)-neighborhood of zero (depending on Σ and M). In particular,
the (conventional) stability operator is well-defined for every smooth,
closed hypersurface Σ ↪→M and it is well-known that it is characterized
by

Lf = ∆f +
(
Ric(ν,ν) + |k|2g

)
f ∀ f ∈ C 2(Σ).

As we want to construct surfaces with constant expansion H ± trk
(and not with constant mean curvature), it is intuitive to replace the
mean curvature map by the ‘expansion map’

(8) H±P : C 2(Σ)→ C 0(Σ) : f 7→
(

H ± trk
)(

graph?f
)
,

as it was already done by Metzger [Met07]8, where ± denotes a fixed
sign and (H ± trk)( graph?f) denotes the expansion of the graph of
f in ‘some direction’ – in the mean curvature case (6), this direction
was the spatial direction ν. We recall that the expansion is the mean
curvature of this graph within its future (or past) expanding light-cone
and that it is given by the mean curvature H of this graph within (the
corresponding) timeslice M plus (or minus) the two-dimensional trace
of the second fundamental form k of (the corresponding) timeslice M
in M̂. In this case, there are multiple ‘intuitive directions’ in which the
graph can be constructed. In this section, we characterize two of these
(by linear combination this is sufficient for any direction):

7In fact, we do not need asymptotically flatness in this section, but only that tM
are spacelike hypersurfaces foliating M̂ smoothly.

8Note that Metzger considered graphνf , i.e., the graph in spatial direction.
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First, we linearize this map ‘within M’, i.e., linearize the spatial ex-
pansion map

(H±P)ν : C 2(Σ)→ C 0(Σ) : f 7→
(

H ± trk
)
(graphνf),

where graphνf is as defined in (7), i.e., the same graph as used in the
above case of the (conventional) stability operator. To the best knowl-
edge of the author, this was first done by Metzger [Met07]. We denote
this pseudo stability operator by L±. It should be noted that L± does
not arise as a second variation of the area operator f 7→ | graphνf | as the
(conventional) stability operator does. The reason for this is that the
first the variation is done in null-direction (resulting in H±P) and the
second one in spatial-direction. This operator has been studied in more
detail by Andersson–Mars–Simon, Andersson–Metzger, Andersson–
Eichmair–Metzger, and others, see [AMS05, AM09, AEM11] and
the citations therein.

Second, we linearize the corresponding map in time direction, i.e.,
linearize the temporal expansion map

(9) (H±P)ϑ : C 2
(
M
)
→ C 0(Σ) : f̄ 7→

(
H ± trk

)(
graphϑf̄

)
,

where graphϑf ..= {êxpp(f(p)ϑ) : p ∈ Σ} ↪→ f̄M ..= {êxpp̄(f̄(p̄)ϑ) :
p̄ ∈ M} is the graph in ‘future direction’. Here, êxpp and êxpp̄ denote
the exponential map of M̂ at a point p ∈ Σ and at a point p̄ ∈ M,
respectively. This means in particular that the mean curvature and
second fundamental form k of (H±P)(f) at a point p ∈ Σ are calculated
with respect to the metric and second fundamental form of f̄M.9

The linearization of (H ± P)ϑ is denoted by Lt±. For notation con-
venience, we only calculate Lt±α, where α denotes the temporal lapse
function of the temporal foliation {tM}t, i.e., we only look at functions
f̄ with graphϑf̄ = tM for some t.

As first step, we calculate some identities for the Ricci curvature of M̂
on a two-dimensional deformation Φ : (t0 − η ; t0 + η)×(−η ; η)×Σ→M
of a closed, two-dimensional surface Σ = Φ(t0, 0,Σ) ↪→ t0M. Again, we
restrict ourselves to the case of deformations compatible with the tem-
poral foliation {tM}t, i.e., Φ(t, σ, p) ∈ tM for every t ∈ (t0 − η ; t0 + η),
σ ∈ (−η ; η), and p ∈ Σ. Furthermore, we assume that it is orthogo-
nal, i.e., ∂tΦ =.. tα tϑ and ∂σΦ =.. t

σu
t
σν for some smooth function t

σu
on t

σΣ ..= Φ(t, σ,Σ) and the temporal lapse function tα on tM, where tϑ

again denotes the future pointing unit normal of tM ↪→ M̂ and t
σν is the

outer unit normal of t
σΣ ↪→ tM. Finally, we denote the time derivative

9Note that (H±P)ϑ(f̄) depends not only on the values of f̄ on Σ, i.e., on f ..= f̄ |Σ,
but also on its M-gradient ∇f̄ |Σ and its M-hessian Hessf̄ |Σ.
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∂t(Φ∗T ) and the spatial derivative ∂σ(Φ∗T ) of any quantity T by Ṫ and
T ′, respectively.

Proposition 2.1 (Curvature identities). Let (M̂, ĝ) be a smooth Lo-
rentzian manifold, {tM}t be a smooth temporal foliation with respect to
a smooth time function t on M̂. Additionally, let

Φ : (−θ + t0 ; θ + t0)× (−θ ; θ)×Σ→ M̂ : (t, σ, p) 7→ Φ(t, σ, p)
be a smooth, orthogonal foliation-compatible deformation of a closed hy-
persurface Σ ↪→ t0M =.. M (see above). Suppressing the indices t0 and
σ = 0, the tensor identities

R̂ic(∂t, ν) = Ḣ +α
(
div kν −tr

(
k� k

))
−α′ trk + 2 kν(∇α),(10)

R̂ic
(
∂t,ϑ

)
=
(
trk + kνν

)̇
−α

(∣∣∣k∣∣∣2
g

+ 4
∣∣∣kν ∣∣∣2

g
+ kνν2

)
+ ∆α(11)

+
(
Hessα

)
(ν,ν),

R̂ic
(
ϑ, ∂σ

)
=
(
trk
)
′ − 2kν(∇u) + u

(
H kνν − div kν −tr

(
k� k

))
,(12)

R̂ic(ν,ν) = Ric(ν,ν)− 2
∣∣∣kν ∣∣∣2

g
+ kνν2 + trk kνν −α−1

(
kνν
)̇

(13)

−
(
Hessα

)
(ν,ν)

hold on Σ, where (k � k)IJ ..= kIK gKL kJL, kν ..= k(ν, ·), and kνν ..=
k(ν,ν).

Proof. The first identity (10) was proven by the author in [Ner13,
Prop. 3.7]. By the well-known identity for the (conventional) stability
operator in the Lorentzian case, we know

R̂ic
(
ϑ, ∂t

)
= Ḣ + ∆α−α

∣∣∣k∣∣∣2
g

=
(
trk + kνν

)̇
+ ∆α+

(
Hessα

)
(ν,ν)

−α
(∣∣∣k∣∣∣2

g
+ 2

∣∣∣kν ∣∣∣2
g

+ kνν2
)
.

Thus, the identity (11) is proven. Furthermore, the Codazzi equations

R̂ic
(
ϑ, ∂σ

)
=
(
DH − divk

)
(∂σ) =

(
DH − divk

)
(uν)

implies

R̂ic
(
ϑ, ∂σ

)
=
(
trk + kνν

)
′ − u−2

((
u2kνν

)
′ − 2k

(
u′ ν − ug IJ DIu eJ , ∂σ

))
− g IJ

∂
(
u kνJ

)
∂xI

− k
(
Dpuν − u gKL kIK eL, eJ

)
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+ g IJ k(∂σ, kIJν +∇eIeJ)

=
(
trk
)
′ − 2g IJDIu kνJ − udiv kν −g IJ

(
ugKL kIK kJL − ukIJ kνν

)
.

This proves (12). It is well-known that for any hypersurface M ↪→ M̂
the identity

α R̂ic(ν,ν) = α

(
Ric(ν,ν)− 2

∣∣∣kν ∣∣∣2
g

+H kνν
)
−
(
Hessα

)
(ν,ν)−

(
k̇
)
νν

holds and this is equivalent to (13). q.e.d.

As a direct corollary, we get the desired characterizations of the
pseudo stability operators (see below). As explained, we are only inter-
ested how the expansion change within the given temporal foliation – in
particular, we only calculate the linearization of the temporal expansion
map for the lapse function α of the temporal foliation. Furthermore, we
replace the sign ± in the expansion map (8) for technical reasons by a
factor b ∈ [−1 ; 1] – this means, we are concerning the expansion not only
in null-direction, but also in the spacelike direction ν+b ϑ (b ∈ (−1 ; 1)).
The reason for this is an open–closed argument in Section 3.

Corollary 2.2 (Pseudo stability operators). Let Σ ↪→ t0M be a closed
hypersurface and b ∈ [−1 ; 1] be a constant. The spatial (weighted) ex-
pansion pseudo stability operator t0L± is defined as linearization of the
spatial (weighted) expansion map

(H + b P)ν : C 2(Σ)→ C 0(Σ) : f 7→
(

H + b trk
)
(graphνf),

in f ≡ 0 and the (signed) temporal pseudo stability operator t0Lt± defined
as linearization of the temporal expansion map (9) in f ≡ 0, respectively.
Suppressing the index t0, these are characterized by

L±f = Lf + 2b kν(∇f) + b
(
div kν +tr

(
k� k

)
+ J(ν)−H kνν

)
f,(14)

Lt±α = ∓∆α+ uDνα trk− 2 kν(∇α)(15)

+
(
J(ν)− div kν +tr

(
k� k

))
α

±
(
%+ G(ν,ν) +

∣∣∣k∣∣∣2
g

+ 6
∣∣∣kν ∣∣∣2

g
− trk kνν − Ric(ν,ν)

)
α,

for the temporal lapse function α ..= |ĝ(∇̂t,∇̂t)|−1/2 of {tM}t at t = t0
and any smooth function f ∈ C 2(Σ), where G ..= R̂ic − 1

2 Ŝ ĝ , J ..=
G(ϑ, ·), and % ..= G(ϑ,ϑ) denote the Einstein tensor of M̂, the momen-
tum density of M, and the energy-density of M, respectively.

In particular, we note that the spatial (weighted) stability operators
depends only on quantities of the initial data set t0M (as to be suspected)
while the temporal (signed) stability operator depends on the quantity
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G(ν,ν) and the lapse function α, i.e., on quantities of the Lorentzian
manifold M̂ and the temporal foliation (as to be suspected), respectively.

3. Existence and uniqueness of CE-spheres

In this section, we prove existence of a (unique) smooth sphere ±σΣ
with constant expansion (CE) H ± trk ≡ −2/σ for every three-dimen-
sional C 2

1
2 +ε-asymptotically flat initial data set (M, g , x, k,J,%,α) with

sufficiently fast vanishing second fundamental form if some additional
integral assumptions on k are satisfied. Here, ± denotes a (fixed) sign
and we assume that σ is large enough (depending on the decay constants
of the initial data set). Furthermore, we prove that these CE-spheres
foliate M outside some compact set K. More precisely, we prove the
following existence and uniqueness theorems:

Theorem 3.1 (Existence of the CE-foliation). Let ε > 0, R0 >
0, c k ≥ 0 be constants and (M, g , x, k,J,%) be a C 2

1
2 +ε-asymptotically

flat initial data set with C 1
2 -asymptotically vanishing second fundamental

form k and non-vanishing mass m 6= 0. There exists a positive constant
c k = c k(m, ε, c) > 0 with the following property: if

∣∣∣∣∣
ˆ
S2
R(0)

kkl
xk

R

(
xj eg il − xi eg jl

R

)
dµ
∣∣∣∣∣ ≤ c k,

∣∣∣∣∣
ˆ
S2
R(0)

trk dµ
∣∣∣∣∣ ≤ c k,

(16a)

∣∣∣∣∣
ˆ
S2
R(0)

H
xi

R

xj

R
dµ
∣∣∣∣∣ ≤ c k,(16b) ∣∣∣∣∣

ˆ
S2
R(0)

trk x
i

R
dµ
∣∣∣∣∣ ≤ c k,

∣∣∣∣∣
ˆ
S2
R(0)

H
xi

R
dµ
∣∣∣∣∣ ≤ c k(16c)

hold for every i, j, k ∈ {1, 2, 3} and R > R0 for some R0 > 0, then there
exist a constant σ0 = σ0(m, ε, c, R0) and two C 1-maps ±Φ : (σ0 ;∞) ×
S2 →M such that ±σΣ ..= ±Φ(σ, S2) has constant expansion ±σH ±±σtrk ≡
−2/σ for any σ > σ0. Furthermore, these CE-surfaces foliate M near
infinity, i.e., the maps ±Φ are diffeomorphisms onto their images and
M \ ±Φ((σ0 ;∞)× S2) are both compact.

We see that the integrals in (16a) and in (16b) vanish asymptotically
if k is asymptotically anti-symmetric, i.e., |k(x) + k(−x)| ≤ c/|x|2+ε im-
plies that the integral inequalities in (16a) and in (16b) are satisfied
for every c k > 0 (if R0 = R0(c k, ε) is sufficiently large). In particular,
these integrals vanish asymptotically if the Regge–Teitelboim conditions
are satisfied, for more information about these conditions see for exam-
ple [RT74, Hua09]. Equally, the second inequality in (16c) vanishes
asymptotically if the initial data set is asymptotically maximal, i.e.,
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|H | ≤ c/|x|2+ε. We prove in Proposition 3.15 that the first integral in
(16c) asymptotically corresponds to the linear momentum.

Remark 3.2 (Alternative assumptions). We can alter the assump-
tions in Theorem 3.1 on the second fundamental form k: if (16) is
satisfied for c k/σδ instead of c k, where δ ∈ (0 ; ε], then we can replace
the assumption ‘C 1

2 -asymptotically vanishing second fundamental form
k’, i.e., |k|g + |x| |∇k|g ≤ c/|x|2, by ‘|k|g + |x| |∇k|g ≤ c/|x|2−δ’. However,
as this does not need any additional argument, we use the assumptions
explained in Theorem 3.1.

The corresponding result is also true for a temporal foliation instead
of a single timeslice:

Theorem 3.3 (Regularity of the CE-surfaces in time). Let (tM, tg , tx,
tk, t%, tJ, tα)t∈I be a uniformly C 2

1
2 +ε-asymptotically flat temporal foliation

(for some ε > 0) such that (tM, tg , tx, tk, t%, tJ, tα) satisfies for any time t
the assumptions of Theorem 3.1 including (16). There are two C 1-maps
±Φ̂ : I × (σ0 ;∞) × S2 → M̂ such that t,±Φ ..= ±Φ̂(t, ·, ·) are the maps
±Φ from Theorem 3.1 for (tM, tg , tx, tk, t%, tJ) and every t ∈ I.

We also get the corresponding uniqueness result.

Theorem 3.4 (Uniqueness of the CE-surfaces). Let (M, g , x, k,J,%)
satisfy the assumptions of Theorem 3.1 including (16), η ∈ (0 ; 1] and
c1 ≥ 0 be constants, and ± be a fixed sign. There are constants c~z =
c~z(ε, c, η) ∈ (0 ; 1), σ0 = σ0(ε, c, η, c1) such that every closed hypersurface
Σ ∈ Aε,η

r (c~z, c1) with constant expansion H ± trk ≡ −2/σ and σ > σ0 is
the leaf ±σΣ of the CE-foliation constructed in Theorem 3.1.

We see that these existence and uniqueness theorems imply the de-
scriptive versions (Corollaries 1 and 2), if the second inequality in (16c)
holds under the assumptions made in these corollaries. We prove this
in Proposition 3.15.

As explained in the introduction, Huisken–Yau proved that every
asymptotically Schwarzschildean three-dimensional manifold can be fo-
liated (near infinity) by hypersurfaces with constant mean curvature
(CMC) and that these CMC-surfaces satisfy strong decay assumptions
[HY96]. Later, these results were generalized by Metzger, Huang,
Eichmair–Metzger, and other assuming asymptotically flatness and dif-
ferent asymptotically symmetry conditions on the components g ij of the
metric g [Met07, Hua10, EM12].10 The author proved in [Ner15,

10In fact, Metzger and Eichmair–Metzger assumed that the manifold is asymptot-
ically equal to the (spatial) Schwarzschild solution and Huang assumed the Regge–
Teitelboim conditions, i.e., asymptotic symmetry with respect to the coordinate
origin.
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Thm 3.1] that these results remain true for C 2
1
2 +ε-asymptotically flat

manifolds.

Theorem 3.5 (Exist. of the CMC-surfaces, [Ner15, Thms 3.1, 3.2]).
Let (M, g , x) be a C 2

1
2 +ε-asymptotically flat, three-dimensional Riemann-

ian manifold and non-vanishing mass m 6= 0 (for some ε > 0). There
exist constants σ0 = σ0(m, ε, c) and c = c(m, ε, c), a compact set K ⊆
M, and a C 1-diffeomorphism Φ : (σ0 ;∞)× S2 →M \K such that each
σΣ ..= Φ(σ, S2) has constant mean curvature σH ≡ −2/σ and satisfies
σΣ ∈ Aε,ε

r(σ)(0, c) for every σ > σ0, where r(σ) ..=
√
|σΣ|/4π.

Furthermore, there is a corresponding uniqueness theorem for the
CMC-surfaces.

Theorem 3.6 (Uniqueness of the CMC-surfaces, [Ner15, Thm 3.3]).
Let (M, g , x) be a C 2

1
2 +ε-asymptotically flat, three-dimensional Riemann-

ian manifold with non-vanishing mass m 6= 0 (for some ε > 0). For ev-
ery constants η ∈ (0 ; 1], c~z ∈ [0 ; 1), and c1 > 0, there is a constant r1 =
r1(m, ε, c, η, c~z, c1) such that every closed hypersurface Σ ∈ Aε,η

r (c~z, c1)
with radius r =

√
|Σ|/4π > r1 and constant mean curvature H ≡: −2/σ

coincides with the CMC surface σΣ constructed in Theorem 3.5.

Again, we note that these results were also proven by Huisken–Yau,
Metzger, Huang, Eichmair–Metzger, and others for the corresponding
decay assumptions on the metric [HY96, Met07, Hua10, EM12].

We will use the following regularity result proven by the author in
[Ner15, Prop. 2.4] – we again note that a similar result was proven by
Metzger in the setting that the surrounding manifold (M, g) is asymp-
totically equal to the (spatial) Schwarzschild solution.

Proposition 3.7 (Regularity of surfaces, [Ner15, Prop. 2.4]). Let
(Σ, g) be a closed, oriented hypersurface in a C 2

1
2 +ε-asymptotically flat

three-dimensional Riemannian manifold (M, g) and let η ∈ (0 ; ε], c~z ∈
[0 ; 1), c1 ≥ 0, and p ∈ (2 ;∞) be constants. If Σ ∈ Aε,η

r (c~z, c1) is a
closed hypersurface with

∃ =H (Σ) ∈ R : ‖H − =H (Σ)‖W1,p(Σ) ≤ c1 r
2
p
− 3

2−ε,

then there exist two finite constants r1 = r1(ε, c, c~z, c1, η, p) and C =
C(ε, c, c~z, c1, η, p) such that Σ is a sphere and

r−1
∥∥∥k◦∥∥∥

H(Σ)
+
∥∥∥k◦∥∥∥

L∞(Σ)
≤ C

r
3
2 +ε

,

if r > r1.11 In particular, [DLM05, Thm 1.1] implies that there is a
center point ~z ∈ R3 and a function f ∈ C 2(S2;R) such that

Σ = graph f, ‖f‖W2,∞(S2
r(~z )) ≤ C r

1
2−ε, |~z | ≤ c~z r + C r1−η.

11In fact, we get ‖k
◦
‖W1,p(Σ) ≤ C r

2
p
− 3

2−ε for any p ∈ [1 ;∞).
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From now on, we assume that the assumptions of Theorem 3.1 are
satisfied, including (16) (for some c k which we will fix later). Now, we
can rigorously define the interval I.

Notation 3.8 (Interval I). Let c~z ∈ [0 ; 1), c ≥ 0, and σ0 < ∞ be
constants, let I = I(c~z, c, σ0) ⊆ [−1 ; 1] be an interval, and {σΦ : I×S2 →
M}σ>σ0 be a family of maps satisfying for every σ > σ0:
(I-1) σΦ ∈ C 1(I; W1,p(S2; M)) for some p ∈ (2 ;∞), i.e., x ◦ σΦ is

continuously differentiable as map from I to the Banach space
W1,p(S2;R3) ..= {(fi)3

i=1 | fi ∈W1,p(S2)};12

(I-2) 0 ∈ I and σΦ(0, ·) is continuously differentiable;
(I-3) ∂b (σΦ) is orthogonal to b

σΣ ..= σΦ(b, S2);
(I-4) b

σΣ has constant b-weighted expansion, i.e., b
σH +b b

σtrk ≡ −2/σ for
every b ∈ I;

(I-5) b
σΣ ∈ Aε,ε(c~z, c) for every b ∈ I;

(I-6) I is maximal, i.e., if the assumptions (I-1)–(I-5) hold for all σ >
σ0, an interval I ′ ⊆ [−1 ; 1], and maps {σΦ′ : I ′ × S2 → M}σ>σ0,
then I ′ ⊆ I.

The metric and derived quantities of such a sphere b
σΣ are denoted by

b
σg etc.

In particular, I is (for sufficiently large c and σ0) non-empty as 0 ∈ I
due to Theorem 3.5 and σΦ(0,S2) is a CMC-surface from Theorem 3.5.
We note that σΦ is a priori not uniquely defined, but its ‘start value’
σΦ(0,S2) is uniquely determined due to Theorem 3.6 – see Lemma 3.13
for uniqueness of Φ. Furthermore, I depends on the choice of σ0, c, and
c~z. In the following, we suppress this dependency and the index σ. Addi-
tionally, we will always assume that σ > σ0, where σ0 = σ0(m, ε, c, c~z, c)
is assumed to be ‘sufficiently’ large. We will choose σ0, c, and c~z after
Lemma 3.13.

As explained in the introduction, we use the same proof structure
as Metzger [Met07], i.e., prove that I is open by using the implicit
function theorem on the map

(H + ·P)ν : [−1 ; 1]×W2,p(Σ)→ Lp(Σ) : (b, f) 7→ (H + b P)ν(graphνf).

We note that b0Lb0 is the Fréchet derivative of this map in the second
component at (b0, 0), if p > 2. If L± is invertible, we can thus use
the implicit function theorem to extend ψ to a neighborhood of I such
that assumptions (I-1)–(I-4) are satisfied. Hence, we prove that this
pseudo stability operator is invertible. This proof is analog to the one
of [Ner15, Lemma 2.5, Prop. 2.7], but we repeat it nevertheless for
readers convenience.

12Note that σΦ can be chosen (at least) continuously differentiable as map from
I × S2 to M, but this will not matter in the following.
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Proposition 3.9 (Pseudo stability operator is invertible). There are
constants c k0 = c k0(m, ε, c) > 0, c~z0 = c~z0(m, ε, c, c) > 0, and σ0 =
σ0(m, ε, c, c) such that the b-weighted pseudo stability operator bLb of
b Σ is invertible for every b ∈ I if c k ≤ c k0, c~z ≤ c~z0, and σ > σ0. In
this case, there exists a constant C = C(m, ε, c) such that∣∣∣∣ˆ Lbg

t ht dµ− 6mH
σ3

ˆ
gt ht dµ

∣∣∣∣ ≤ D

σ3

∥∥∥gt
∥∥∥

L2(Σ)

∥∥∥ht
∥∥∥

L2(Σ)
,(17)

1
σ2

∥∥∥h− ht
∥∥∥

L2(Σ)
≤
∥∥∥L±(h− ht

)∥∥∥
L2(Σ)

,(18)

6 |mH| −D
σ3 ‖h‖L2(Σ) ≤ ‖L±h‖L2(Σ)(19)

hold for all functions g, h ∈ H2(Σ), where mH = mH(Σ) denotes the
Hawking mass of Σ and D ..= C(c~z + c k + σ−ε). Here, the translative
part ht of any function h ∈ L2(Σ) is defined as the L2(Σ)-orthogonal
project of h onto the linear span of the Eigenfunctions fi of the (negative)
Laplace operator for which the corresponding eigenvalues λi satisfy |λi−
2/σ2| ≤ 1/σ2.

We note that we characterized the mass m by the limit of the Hawking
masses of the Euclidean spheres S2

R(0). This implies that the Hawking
mass of a (sufficiently large) Euclidean sphere S2

R(0) with respect to the
surrounding metric g is non-vanishing. We see that this implies that any
surfaces satisfying the assumptions of Proposition 3.7 (for sufficiently
large σ) has non-vanishing Hawking mass. This is explained in more
detail for example in [Ner15, Appendix B].

Proof of Proposition 3.9. We suppress the index b ∈ I and write D for
any constant as in the claim of the proposition. By Proposition 3.7,
there exists a function f : S2

σ(~z )→ Σ such that

Σ = graph f, ‖f‖H3(S2
σ(~z )) ≤ C σ

3
2−ε,

where we can assume that ~z is the Euclidean coordinate center defined
by

zi ..=
 

Σ
xi dµ,

and that it satisfies |~z | ≤ c~z σ + C σ1−ε. In particular, the eigenvalues
of the (negative) Laplace operator λi (λi ≤ λi+1) satisfy

(20)
∣∣∣∣λi − 2

σ2

∣∣∣∣ ≤ C

σ
5
2 +ε

∀ i ∈ {1, 2, 3}, λj ≥
5
σ2 ∀ j > 3,

and the corresponding orthogonal eigenfunctions fi satisfy

(21)
∥∥∥Hes◦sfi

∥∥∥
L2(Σ)

≤ C

σ
5
2 +ε

,

∥∥∥∥∇fi − Xi − fi ν
σ

∥∥∥∥
L2(Σ)

≤ C

σ
3
2 +ε

,
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for every i ∈ {1, 2, 3}, where Xi ∈ R3 is a constant vector field (depend-
ing on i ∈ {1, 2, 3} and σ) satisfying

(22) Xi ·Xj = δij ‖fi‖2L∞(Σ),
∥∥g(Xi, ν)− fi

∥∥
L2(Σ) ≤

C

σ
1
2 +ε

,

for every i, j ∈ {1, 2, 3}. By the Bochner–Lichnerowicz Formel, we know
∆g(∇fi,∇fj)

2 = tr
(
Hes◦sfi �Hes◦sfj

)
+ λiλj

2 fi fj

− λi + λj − S
2 g(∇fi,∇fj),

where we used 2 Ric = S g as Σ is two-dimensional. Hence, we get by
integration and integration by parts∣∣∣∣∣λ2

i

2 δij −
ˆ

S
2 g(∇fi,∇fj) dµ

∣∣∣∣∣ ≤ C

σ5+ε ∀ i, j ∈ {1, 2, 3}.

Plugging in the (pointwise) assumption on k as well as H +b trk ≡ −2/σ,
we conclude using the Gauß equation∣∣∣∣λ2

i δij −
ˆ (

S − 2Ric(ν,ν)
)

g(∇fi,∇fj) dµ

−
ˆ ( 2

σ2 −
2b
σ

trk
)

g(∇fi,∇fj) dµ
∣∣∣∣ ≤ C

σ5+ε .

Thus, (21) and (22) imply∣∣∣∣∣∣λi
(
λi −

2
σ2

)
δij

−
ˆ (

S − 2Ric(ν,ν) + 2b
σ

trk
) ‖fi‖2L∞(Σ) δij − fi fj

σ2 dµ

∣∣∣∣∣∣ ≤ C

σ5+ε .

We know ∣∣∣∣mH −
σ

16π

ˆ
S − 2Ric(ν,ν) dµ

∣∣∣∣ ≤ C

σε
,

due to the Gauß–Bonnet theorem, the Gauß equation, and the inequal-
ities on k◦ proven in Proposition 3.7. Comparing fi with its analog on
the Euclidean sphere, we see∣∣∣∣‖fi‖2L∞(Σ) −

3
4πσ2

∣∣∣∣ ≤ C

σ2+ε ,

and we, therefore, get∣∣∣∣(λi (λi − 2
σ2

)
− 12mH

σ5

)
δij

+
ˆ (

S − 2Ric(ν,ν) + 2b
σ

trk
)
fi fj
σ2 dµ

∣∣∣∣ ≤ D

σ5 ,
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where we used the last integral inequality in (16a). By solving this
inequality for λi and keeping λi ≈ 2/σ2 in mind, we see∣∣∣∣∣λi − 2

σ2 −
6mH
σ3 +

ˆ (
S
2 − Ric(ν,ν) + b trk

σ

)
f2
i dµ

∣∣∣∣∣ ≤ D

σ3 ,

for every i ∈ {1, 2, 3} and∣∣∣∣ˆ (S − 2Ric(ν,ν) + 2b
σ

trk
)
fi fj dµ

∣∣∣∣ ≤ D

σ3 ∀ i 6= j ∈ {1, 2, 3}.

Thus, (14) implies for i 6= j ∈ {1, 2, 3}∣∣∣∣ˆ L±fi fj dµ
∣∣∣∣ ≤

∣∣∣∣∣
ˆ (

Ric(ν,ν) + b

(
trk
σ

+ 2
σ

kνν

))
fi fj dµ

∣∣∣∣∣
+
∣∣∣∣b ˆ kν(∇fi)fj − kν(∇fj)fi dµ

∣∣∣∣+ C

σ3+ε

≤
∣∣∣∣2b
σ

ˆ
H fi fj dµ

∣∣∣∣
+
∣∣∣∣ b
σ

ˆ
k(ν,Xi)fj − k(ν,Xj)fi dµ

∣∣∣∣+ D

σ3 .

Now, we want to plug in the assumptions (16). But, they are formu-
lated on the Euclidean coordinate spheres and the Euclidean normals
xi/|x| instead of bΣ and fi. However, we can, nevertheless, use these
assumptions: By Proposition 3.7 and using the decay assumptions on
the derivative of k, the inequalities in (16) are also satisfied for Σ, D,
and νi instead of S2

σ(0), c k, and xi/|x|, respectively. Furthermore, we
can replace νi by fi. To see this, we first note that in the model case
(Σ, g) = (S2, σΩ), where σΩ is the standard metric on the Euclidean
sphere with radius σ, we could choose fi = νi/‖νi‖L2(Σ) =

√
3/4πσ2 νi. By

Proposition 3.7, this implies the comparability of {νi}3i=1 and {fi}3i=1,
i.e.,∥∥∥∥∥∥fi −

3∑
j=1

ν ′j

ˆ
fi ν
′
j dµ

∥∥∥∥∥∥
L2(Σ)

≤ C

σε
,

∥∥∥∥∥∥ν ′i −
3∑
j=1

fj

ˆ
ν ′i fj dµ

∥∥∥∥∥∥
L2(Σ)

≤ C

σε
,

where ν ′i ..= νi/‖νi‖L2(Σ). Thus, we get∣∣∣∣∣
ˆ

b
σΣ

k(ν,fj Xi − fiXj) dµ
∣∣∣∣∣ ≤ D

σ2 ,

∣∣∣∣∣
ˆ

b
σΣ

trk dµ
∣∣∣∣∣ ≤ D,(23) ∣∣∣∣∣

ˆ
b
σΣ

H fi fj dµ
∣∣∣∣∣ ≤ D

σ2 ,

∣∣∣∣∣
ˆ

b
σΣ

H fi dµ
∣∣∣∣∣ ≤ D

σ
,

∣∣∣∣∣
ˆ

b
σΣ

trkfi dµ
∣∣∣∣∣ ≤ D

σ
.(24)

Using the first inequalities in (23) and (24), we get (17) for g = fi and
h = fj with i 6= j ∈ {1, 2, 3}. By the corresponding calculation for
i = j ∈ {1, 2, 3}, (17) holds for g = h = fi with i ∈ {1, 2, 3}. As it is
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sufficient to prove (17) for g = gt and h = ht , this proves (17) for every
g, h ∈ L2(Σ).

Furthermore, we know∥∥∥∥L±g −∆g − 2
σ2 g

∥∥∥∥
Lp(Σ)

≤ Cp

σ
5
2 +ε
‖g‖W1,p(Σ) ∀ p ∈ [1 ;∞],

for every g ∈W2,p(Σ) and (20), therefore, implies∥∥∥gd
∥∥∥

L2(Σ)
≤ 2σ2

3

∥∥∥L±gd
∥∥∥

L2(Σ)
∀ g ∈ H2(Σ), gd ..= g − gt.

In particular, (18) and (19) are true for any g ∈ H2(Σ) with gt = 0.
We get for every g ∈ H2(Σ) with ‖gd‖2L2(Σ) ≥ 1/σ

1
2 +ε ‖g‖2L2(Σ), where

gd ..= g − gt,∣∣∣∣ˆ L±g g dµ
∣∣∣∣ ≥ −6m−D

σ3

∥∥∥gt
∥∥∥2

L2(Σ)
+ 3

2σ2

∥∥∥gd
∥∥∥2

L2(Σ)

− C

σ
5
2 +ε

∥∥∥gt
∥∥∥

L2(Σ)

∥∥∥gd
∥∥∥

L2(Σ)

≥ −6m−D
σ3

∥∥∥gt
∥∥∥2

L2(Σ)
+ 1
σ2

∥∥∥gd
∥∥∥2

L2(Σ)
≥ 1

2σ2 ‖g‖
2
L2(Σ),

i.e., (19) is satisfied for every function g ∈ H2(Σ) satisfying ‖gd‖2L2(Σ) ≥

σ−
1
2−ε ‖g‖2L2(Σ). On the other hand, if ‖gd‖2L2(Σ) ≤ σ−

1
2−ε ‖g‖2L2(Σ),

then the regularity of the Laplace operator implies

‖L±g‖L2(Σ) ‖g‖L2(Σ) ≥
∣∣∣∣ˆ L±g g dµ

∣∣∣∣
≥ 6m−D

σ3

∥∥∥gt
∥∥∥2

L2(M)
− C

σ
5
2 +ε

∥∥∥gd
∥∥∥

L2(Σ)

∥∥∥gt
∥∥∥

L2(Σ)

− C

σ2

∥∥∥gd
∥∥∥

H2(Σ)

∥∥∥gt
∥∥∥

L2(Σ)

≥ 6m−D
σ3

∥∥∥gt
∥∥∥2

L2(M)
− C

σ
5
2 +ε

(
σ2
∥∥∥L± gd

∥∥∥
L2(Σ)

+
∥∥∥gd

∥∥∥
L2(Σ)

)
‖g‖L2(Σ),

and, therefore, (19) is true for these functions, too. Thus, (19) is proven.
Because L± is an elliptic operator, this proves all claims of this propo-
sition. q.e.d.

Using the implicit function theorem, we now deduce that ψ can be
extended on a larger interval.

Lemma 3.10 (Φ is extendable on a neighborhood of I). Assume that
c k ≤ c k0, c~z ≤ c~z0 and σ > σ0 is satisfied for the finite constants c k0 =
c k0(m, ε, c), c~z0 = c~z0(m, ε, c, c, cS , δ), and σ0 = σ0(m, ε, c, κ, c, cS , δ) of
Proposition 3.9. For any b ∈ I with |b| < 1 there is a κ > 0 and a
C 1 map Ψ : I ∪ (b − κ ; b + κ) → M which satisfies assumptions (I-1)–
(I-4) of Notation 3.8. Furthermore, all maps Φ′ satisfying (I-1)–(I-6)
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and Φ′(0, ·) = Φ(0, )̇ coincide, i.e., Φ is uniquely determined by Φ(0, ·) :
S2 → 0

σΣ.

Proof. Let b0 ∈ I with |b0| < 1 and p > 2 be arbitrary and suppress
the index b0. The operator b0Lb0 : W2,p(Σ) → Lp(Σ) is the Fréchet
derivative of

(H + ·P)ν : [−1 ; 1]×W2,p(Σ)→ Lp(Σ) : (b, f) 7→ b0(H + b P)ν(f),
with respect to the second component in (b0, 0). In particular, this
linearization is well-defined and invertible due to Proposition 3.9. By
the implicit function theorem, there is a constant κ > 0 and a C 1-
map γ : (b0 − κ ; b0 + κ) → W2,p(Σ) such that (H + ·P)ν(b, γ(b)) ≡
(H + ·P)ν(b0, 0) for every weight b ∈ (b0 − κ ; b0 + κ) and this map is
unique within a neighborhood of 0 ∈W2,p(Σ). This implies that Φ can
be C 1-extended to I ∪ (b0 − κ ; b0 + κ) and is uniquely defined by b0Φ.
In particular, we conclude by the continuity of Φ that Φ is uniquely
defined on I by Φ(0, ·). q.e.d.

Thus, I is open if the extension Ψ of Φ satisfies the regularity as-
sumption (I-5) of Notation 3.8. Hence, it is sufficient to prove estimates
for the derivatives of minb Σ |x| and |b Σ| in order to conclude that I is
open. We will control the second of these derivatives by proving ψ is (in
highest order) a pure shift and the first of these derivative by sufficiently
bounding the derivative of this shift.

Lemma 3.11 (Decay properties of u and u⊥). For every p ∈ [2 ;∞),
there exist four constants σ0 = σ0(m, ε, c, c), c k0 = c k0(m, ε, c) > 0,
c~z0 = c~z0(m, ε, c, c) > 0, and C = C(m, ε, c, c, p) with σ0 <∞ such that

(25) ‖u‖W2,p(Σ) ≤ Dσ
1+ 2

p ,
∥∥∥u⊥∥∥∥

W2,p(Σ)
≤ C σ

1
2−ε+

2
p ,

if c~z ≤ c~z0, c k ≤ c k0, and σ > σ0, where u ..= g(ν, ∂bΨ) denotes the lapse
function of Ψ (see Lemma 3.10) and D ..= C(c k + c~z + σ−ε), where the
index b ∈ I was suppressed. Furthermore, Φ is in this setting continu-
ously differentiable as map from I × S2 to M.

Proof. Per definition of u and Φ, we know for any b ∈ I

(26) 0 ≡
∂
(

bH + b btrk
)
◦ Φ

∂b
= bL±bu+ btrk,

i.e., L±u = −btrk. This derivative is well-defined on I by replacing Φ
with its extension Ψ (see Lemma 3.13). We conclude∥∥∥u⊥∥∥∥

W2,p(Σ)
≤ σ2

(
‖L±u‖Lp(Σ) +

∥∥∥L±(uT)∥∥∥Lp(Σ)

)
(27)

≤ Cσ
1
2−ε+

2
p + C

σ
1
2 +ε

∥∥∥uT ∥∥∥
Lp(Σ)

,
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due to Proposition 3.9. Suppressing the index b ∈ I, we define

Aij
..=

ˆ
L±fi fj dµ ∀ i, j ∈ {1, 2, 3},

where {fi}i∈N is a complete orthonormal system of L2(Σ) by eigenfunc-
tions of the (negative) Laplace operator with corresponding eigenvalues
λi (λi ≤ λi+1). We recall that by Proposition 3.9

(28)
∣∣∣∣bAij + 6m

σ3
eg ij

∣∣∣∣ ≤ D

σ3 .

Thus, (27) implies∣∣∣∣∣
ˆ
ufi dµ− σ3

6mH

ˆ
uLfi dµ

∣∣∣∣∣ ≤ C ∥∥∥u⊥∥∥∥L2(Σ)
+D

∥∥∥uT ∥∥∥
L2(Σ)

≤ σ1−ε +D
∥∥∥uT ∥∥∥

L2(Σ)
.

On the other hand, the identity (14) for L± and L±u = trk lead toˆ
u Lfi dµ = −

ˆ
trk fi dµ+ 2

ˆ
k(ν,∇fi)u− k(ν,∇u)fi dµ.

Taking all together, the (asymptotic) characterization (21) of ∇fi and
∇ut implies∣∣∣∣∣∣
ˆ
u fi dµ+ σ3

6mH

ˆ
trk fi dµ

− σ
2

3m

3∑
j=1

ˆ
k(ν,Xi fj −Xj fi) dµ

ˆ
ufj dµ

∣∣∣∣∣∣ ≤ σ1−ε +D
∥∥∥uT ∥∥∥

L2(Σ)
.

Thus, (25) is satisfied due to the first inequality in (23) and the third
inequality in (24). Finally, we see that ∂bΦ = uν and the above regular-
ity of u imply that Φ is continuously differentiable as map from I × S2

to M. q.e.d.

As explained above, we can now control the derivatives of the minimal
distance from the origin minb Σ |x| and the area |b Σ|.

Lemma 3.12 (b-derivatives of minb Σ |x| and |b Σ|). There are con-
stants c k0 = c k0(m, ε, c) > 0, c~z0 = c~z0(m, ε, c, c) > 0,
σ0 = σ0(m, ε, c, c, c~z), and C = C(m, ε, c, c) such that

∣∣∣∣∂(|x| ◦ ϕ)
∂b

∣∣∣∣ ≤ Dσ,
∂
∣∣∣b Σ

∣∣∣
∂b

≤ C σ
3
2−ε,

if c~z ≤ c~z0, c k ≤ c k0, σ > σ0, and b ∈ I, where D ..= C(c k + c~z + σ−ε).
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Proof. The first inequality holds due to the inequalities (25) of u.
Further, it is well-known that ∂b( dbµ) = −Hudµ. In particular, the
inequalities (25) of u and u⊥ imply∣∣∣∣∣∣

∂
∣∣∣b Σ

∣∣∣
∂b

∣∣∣∣∣∣ =
∣∣∣∣ˆ Hu dµ

∣∣∣∣ ≤ C∥∥∥u⊥∥∥∥L2(Σ)
+ C

σ
1
2 +ε

∥∥∥uT ∥∥∥
L2(Σ)

≤ Cσ
3
2−ε.

Thus, the second inequality holds, too. q.e.d.

Finally, we can prove that the interval I is open in [0 ; 1].

Lemma 3.13 (I is open). Let κ > 0 be arbitrary. There exist con-
stants c k0 = c k0(m, ε, c, κ) > 0, c~z0 = c~z0(m, ε, c) ≤ κ, c0 = c0(m, ε, c),
and σ′0 = σ′0(m, ε, c, κ) such that for any c k ≤ c k0, c~z ∈ [c~z0 ;κ],
c ≥ c0, and σ0 > σ′0 the interval I is open in [−1 ; 1]. In particular,
bΣ ∈ Aε,ε(c~z0, c0) for every b ∈ I.

Proof. By Proposition 3.7 and Lemma 3.12, the estimates on bk◦ and
|b Σ| only depend on minb Σ |x|. Let bc~z and bc denote constants such that
b Σ ∈ Aε,ε(bc~z,

bc). By Lemma 3.12, we can assume∣∣∣∣∣∂ bc~z
∂b

∣∣∣∣∣ ≤ C(bc~z + σ−ε + c k

)
, i.e.

∣∣∣bc~z∣∣∣ ≤ C(c k + σ−ε + 0c~z
)
.

As 0c~z = 0 due to Theorem 3.513 , we can, therefore, assume bc~z ≤
c~z ≤ C(c k + σ−ε) ≤ κ if c k is sufficiently small and σ is sufficiently
large. Furthermore, we directly see that bc can equally be uniformly
bounded by some constant c0. All in all, we get b Σ ∈ Aε,ε(c~z, c0) for
every b for which Ψ(b, ·) is well-defined, where c k and c do not depend
on sup{|b| : b ∈ J}. The maximality of I, therefore, implies Φ = Ψ and
thus Lemma 3.10 ensure that I is open in [−1 ; 1]. q.e.d.

From now on, we assume that c~z = c~z0, c = c0, and σ0 = σ′0, where
we use the notation of Lemma 3.13.

Lemma 3.14 (I is closed). The interval I is closed in [−1 ; 1].

Proof. By the regularity of the lapse function u due to (25) and
the regularity of the unit normal – due to the definition of the sec-
ond fundamental form and Proposition 3.7 – we conclude that x ◦ Φ ∈
C 0,1(I; C 1(S2;R3)), i.e., this map is Lipschitz continuous on I with values
in C 1(S2;R3) ..= {(fi)3

i=1 : fi ∈ C 1(S2)}. Thus, we can extend Φ contin-
uously to a map Ψ on the closed interval J ..= closure(I), i.e., x ◦ Ψ ∈
C 0,1(J ; C 1(S2;R3)). Let us assume that bΣ ..= Φ(b,S2) ∈ Aε,ε(c~z, c) for
every b ∈ J and the constants c~z and c from Lemma 3.13 – we prove this

13If we look at the alternative assumptions mentioned between Definitions 1.4 and
1.6, we can choose 0c~z > 0 arbitrary small (depending on σ0 but not on σ > σ0).
This is also sufficient for this argument.
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later. Proposition 3.9 ensures in this case that the pseudo stability op-
erator b0Lb0 on b0Σ is invertible. The same argument as in Lemma 3.10
and the uniqueness of Φ (again due to Lemma 3.10) ensures that Ψ is
in fact not only Lipschitz continuously but continuously differentiable,
i.e., x ◦ C 1(J ; C 1(S2;R3)). The maximality of I ensures that Φ = Ψ,
thus I = closure(I), i.e., I is closed.

Left to prove is bΣ ∈ Aε,ε(c~z, c), where c~z and c are as in Lemma 3.13.
This is a direct implication of Allard’s compactness theorem [All72].
However, we give a more elementary proof for the readers convenience:
bΣ ..= Ψ(b,S2) is a C 1-submanifold of M due to the continuity of Ψ
and, therefore, the metric g induced a well-defined metric bg on bΣ. As
we know that ∂b

bg = −2 bu bk, the estimates (25) on u and the ones
on k from Proposition 3.7 imply that bg ∈W1,p(S2) depends Lipschitz-
continuously on b ∈ J (for every p ∈ (2 ;∞)). Here (and in the fol-
lowing), we suppress the pullback along Ψ. Thus, btrk ∈ W1,p(S2) and
the second fundamental form bk ∈ L2(S2) also depend continuously on
b ∈ J . This implies that bH ≡ −2/σ − b btrk ∈ W1,p(S2) does so, too.
Hence, we get bΣ ∈ Aε,ε(c~z, c) for every b ∈ J . By the above argument,
this proves the lemma. q.e.d.

Proof of Theorem 3.1 – without foliation property. The interval I of all
weights b such that there exists a surface b Σ with constant b-weighted
expansion bH + b btrk ≡ −2/σ is non-empty (Thm 3.5), as well as open
(Lemma 3.13) and closed (Lemma 3.14) in and thus equal to [−1 ; 1]. In
particular, the surfaces ±σΣ ..= ±1

σΣ exist for every σ > σ0. q.e.d.

Proof of Theorem 3.4. Let ±Σ be such a CE-surfaces – where ± is a
fixed sign. We define the interval I ⊆ [−1 ; 1] equally to the one in
Notation 3.8 replacing the assumption (I-2) by ‘±1 ∈ I, σΦ(±1, ·) is
continuously differentiable, and σΦ(±1,S2) = ±Σ’. Repeating the argu-
ments of Section 3, we conclude that I is open and closed in [−1 ; 1]. In
particular, there is a CMC-surface Σ ..= 0Σ satisfying the assumptions
of Proposition 3.7 and, therefore, the ones of Theorem 3.6. Thus, Σ is a
leaf of the CMC-foliation. By the uniqueness of the deformation Φ due
to Lemma 3.10, we conclude that ±Σ is the CE-sphere constructed in
Theorem 3.1. q.e.d.

To prove that the CE-surfaces foliate the space, we will need to control
the (ADM-)linear momentum.

Proposition 3.15 (Linear momentum is small). Let ε > 0 be a
constant and (M, g , x, k,J,%) be a C 2

1
2 +ε-asymptotically flat initial data

set. If

c2 ≥
∣∣∣∣∣
ˆ
S2
R(0)

kjk
xi x

j xk

|x|3
dµ
∣∣∣∣∣ ∀R > R0
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holds for some constants c2 > 0 and R0 > 0, then

(29) lim inf
R→∞

ˆ
S2
R(0)

trk xi
|x|

dµ ≤ P i ≤ lim sup
R→∞

ˆ
S2
R(0)

trk xi
|x|

dµ,

and the implication∣∣∣∣∣
ˆ
S2
R(0)

H
xi
|x|

dµ
∣∣∣∣∣ ≤ c2

Rε
=⇒

ˆ
S2
R(0)

trk xi
|x|

dµ R→∞−−−−→ P i

holds for each i ∈ {1, 2, 3}. Here, ~P = (P 1, P 2, P 3) ∈ R3 denotes the
(ADM) linear momentum defined by

P i : R→∞←−−−− RP i ..= 1
8π

3∑
j=1

ˆ
S2
R(0)

Πij
xj
R

deµ with Π ..= H g − k.

Note that we can apply this proposition to every C 2
1
2 +ε-asymptotically

flat initial data set with C 0
2 -asymptotically vanishing second fundamen-

tal form.

Remark 3.16 (Linear momentum and the CE-fol.). If the Regge–
Teitelboim conditions hold and the mean curvature satisfies the decay
property |H | ≤ c |x|−2−ε, then this proposition and Theorem 3.1 implies
that ‘smallness’ of the linear momentum is equivalent to the existence
of the CE-foliation. Using [Ner15, Prop. 6.5], (14), (25), and (26), we
get for the Euclidean coordinate center | 1σ~z − ~P σ| ≤ C(|~P |2 σ + σ1−ε).
Thus, the CE-foliation characterizes the linear momentum in this setting
just like the CMC-foliation characterizes the center of mass, if it exists
[HY96, Hua09, CN15, Ner13, Ner15]. This was already mentioned
by Metzger in a special case, [Met07, Sect. 7].

Proof. First, we note that for every R′ ≥ R > R0∣∣∣RP i − R′P i
∣∣∣ ≤ ˆ

R3\BR(0)

∣∣∣div
(
Πi

)∣∣∣ dµ ≤ C

Rε
,

where we used the Gauß theorem and where µ denotes the three-di-
mensional volume measure with respect to g . In particular, the linear
momentum ~P is well-defined and |~P − R

~P | ≤ C/Rε. We see that for
every R′ ≥ R > R0

2 c2 ≥
∣∣∣∣∣
ˆ
S2
R′ (0)

(
H − trk

) xi
R′

dµ−
ˆ
S2
R(0)

(
H − trk

) xi
R

dµ
∣∣∣∣∣

≥
∣∣∣∣∣
ˆ
BR,R′

k
(
ek,

e∇
(
xixk

|x|2

))
dvol

∣∣∣∣∣− C

Rε
,

where BR,R′ ..= {x ∈ R3 : R < |x| < R′} and where vol and e∇ denotes
the measure and the Levi-Civita connection on BR′,R with respect to
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the Euclidean metric eg . Thus, we conclude by the Fubini-Theorem

2 c2 ≥
∣∣∣∣∣
ˆ R′

R

ˆ
S2
r(0)

1
r2 k

(
ek,

e∇
(
xix

k
))
− 2
r3 kkl

(
xix

kxl
)

deµdr
∣∣∣∣∣− C

Rε

≥
∣∣∣∣∣
ˆ R′

R
r−2

ˆ
S2
r(0)

kkixk + H xi − 2kνν xi deµdr
∣∣∣∣∣− C

Rε

≥
∣∣∣∣∣
ˆ R′

R

2
r

(ˆ
S2
r(0)

trk xi
r

deµ− P i

)
dr
∣∣∣∣∣− C

Rε
.

If one of the inequalities in (29) did not hold, then there would be a κ > 0
such that

´
S2
r(0) trk xi/r deµ−P i > κ or

´
S2
r(0) trk xi/r deµ−P i < −κ. In

both cases, we would get

2 c2 ≥
∣∣∣∣∣
ˆ R′

R

κ

r
dr
∣∣∣∣∣− C

Rε
= κ

(
ln
(
R′
)
− ln(R)

)
− C

Rε
R′→∞−−−−→∞

contradicting c2 <∞. Thus, both inequalities in (29) hold.
Define fi(R) ..=

´
S2
R(0) (H − trk) xi/|x| dµ. A calculation as the one

above implies

f
(
R′
)
− f(R) + 2

r

ˆ R′

R

(ˆ
S2
r(0)

trk xi
r

dµ− P i

)
dr =

ˆ R′

R
eri(r) dr,

where eri(r) is some error term with |eri(r)| ≤ C/r−1−ε. Thus, we get∣∣∣∣∣f ′i(R) + 2 fi(R)
R

− 2P i
R

∣∣∣∣∣ ≤ C

R1+ε ∀R > R0.

Solving this ordinary differential (asymptotic) equation (see [Ner15,
Prop. C.1] for more information), we conclude |fi(R) − P i| ≤
C R−ε. q.e.d.

Proof of the foliation property in Theorem 3.1. Fix a sign ± and some
(large) constant σ1. Denote by Σ ..= σ1Σ the CE-surfaces with constant
expansion H ± trk ≡ −2/σ1 which exists due to the already proven part
of Theorem 3.1. By Proposition 3.9, the pseudo stability operator is
invertible. Thus, there exists a map Φ : (σ1 − ε ;σ1 + ε) × S2 → M
such that for every σ ∈ (σ1 − ε ;σ1 + ε) the surface σΣ ..= Φ(σ, S2) is
a CE-surface with H ± trk = −2/σ. We see that the lapse function
u ..= g(σν, ∂σΦ) satisfies

L±1u ≡
∂

∂σ

(−2
σ

)
≡ 2
σ2 .

Therefore, we conclude for u′ ..= u− 1 and u′d ..= u− 1− ut∥∥∥u′⊥∥∥∥
H2(Σ)

≤ C σ
1
2−ε due to

∣∣L±1
(
u′
)∣∣ ≤ C

σ
5
2 +ε

.
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Repeating the arguments of Lemma 3.11, we conclude using Proposi-
tion 3.15

∥∥u′∥∥H2(Σ) ≤ C σ
∣∣∣∣∣
ˆ (

div kν −
3trk− 2H

σ
− 2
σ

k
(
ν,Xu′T

))
νi + 2

σ
kνiu′ dµ

∣∣∣∣∣
(30)

+ C
∥∥u′∥∥L2(Σ)

≤ D
(
σ +

∥∥u′∥∥L2(Σ)

)
,

where D ..= C(c k + σ−ε) and C = C(m, ε, c). We conclude that σΣ
satisfies the assumptions of Proposition 3.7 by repeating the argument
of Lemma 3.12. Using Theorem 3.4, we see that σΣ is the surface con-
structed in Theorem 3.1. As σ was arbitrary (sufficiently large), we can
assume that Φ : (σ1 ;∞)×S2 →M satisfies the assumption made above.
By (30), we know that u is (strictly) positive for sufficiently large σ and
sufficiently small c k. In particular, Φ is a foliation. q.e.d.

Proof of the time-regularity Theorem 3.3. Denote by t,±Φ : (σ1 ;∞) ×
S2 → tM the CE-foliation due to Theorem 3.1. Note that σ1 can be
chosen independently of t as the temporal foliation is assumed to be
uniformly C 2

1
2 +ε-asymptotically flat. Now, we define the maps ±Φ : I ×

(σ1 ;∞) × S2 → M̂ : (t, σ, p) 7→ t,±Φ(σ, p). We suppress the sign index
± in the following.

Fix a time t0 ∈ I and a σ > σ1 and suppress the corresponding
indexes. We see that L± is the linearization of the map

H±P : I ×W2,p(Σ)→ Lp(Σ) : (t, f) 7→
(
tH ± ttrtk

)
(graphνt f),

in the second component at (t0, 0). Here, (tH ± ttrtk)( graphνt f) denotes
the expansion of the graph of f at time t ∈ I, where

graphνt f ..= {x̂−1
(
t, t0x(p) + f Dν

t0x
)
∈ tM : p ∈ Σ}.

By Proposition 3.9, we know that L± is invertible, thus the implicit
function theorem ensures that there is a curve f : (t0 − ε ; t0 + ε) →
H2(Σ) such that (H ± P)(t, f(t)) ≡ (H ± P)(0, 0). By the uniqueness
Theorem 3.4, this implies graphνt (f(t)) = t

σΣ. Thus, we can choose Φ
to be smooth (at least C 1). q.e.d.

4. Invariance in time

In this section, we prove that the unique CE-surfaces constructed
in Theorem 3.1 are asymptotically independent of time if the linear
momentum vanishes. As explained, this is to be expected, as the CMC
spheres asymptotically evolve in time as given by the fraction of (ADM)
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linear momentum and (ADM) mass [Ner13, Theorem 4.1], the CE-
spheres are asymptotically just shifts of the CMC spheres (due to Sec-
tion 3), and it is appropriate to assume that the last shift is asymptot-
ically independent of time.

Theorem 4.1 (Invariance of the CE-surfaces in time). Assume that
the temporal foliation (tM, tg , tx, tk, t%, tJ, tα)t∈I satisfies the assumptions
of Theorem 3.3 and let ±Φ̂ denote the foliation as defined in Theo-
rem 3.3. If ∣∣∣tα− 1

∣∣∣+ |x| ∣∣∣∇α∣∣∣
g

+ |x|2
∣∣∣Hessα

∣∣∣
g
≤ c |x|−

1
2 ,

then ±Φ̂ is (asymptotically) a shift. If additionally∣∣∣∣∣
ˆ
S2
R(0)

α txi dµ
∣∣∣∣∣ ≤ c kR

2,

∣∣∣∣∣
ˆ
S2
R(0)

tGkl

txk txl txi

|x|2
dµ
∣∣∣∣∣ ≤ c k ∀R > R0

holds for every i ∈ {1, 2, 3} and if the Einstein Tensor G of M̂ satisfies∣∣∣∣∣∣tx∣∣∣ tGkl
txk txl

∣∣∣ ≤ c,
then this shift is small, i.e.,

(31)
∥∥∥∥∥eg
(
∂σΦ̂
∂t

, σν

)∥∥∥∥∥
W1,∞(t,±b Σ)

≤ C
(
c k + σ−ε

)
,

where t
σν denotes the outer unit normal of t

σΣ, σΦ̂ ..= Φ̂(·, σ, ·), C ..=
C(m, ε, c).

We directly see, that the descriptive version, Corollary 3, is a direct
corollary of Theorem 4.1. Let (tM, tg , tx, tk, t%, tJ, tα)t∈I and f satisfy the
assumptions of Theorem 4.1 – in particular, the ADM linear momentum
is small due to Proposition 3.15.

Proposition 4.2 (Characterization of the lapse function u). Assume
that the assumptions of Theorem 4.1 are satisfied and let Φ̂ denote the
foliation as defined in Theorem 3.3. The lapse function t

σu ..= tg( t
σν, ∂tΦ̂)

is uniquely characterized by

(32) t
σL± t

σu = − t
σLt±α,

where t
σν is the normal of t

σΣ ↪→ (tM, tg). There exist two constants
σ1 = σ1(m, ε, c, c k) and C = C(m, ε, c) such that

(33)
∣∣∣∣L±u− div kν −

1
σ

trk∓∆α∓ Ric(ν,ν)
∣∣∣∣ ≤ C

σ3
(
c k + σ−ε

)
.

Here, the indices σ > σ1 and t ∈ I were suppressed.
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Proof. Per construction of Φ̂, we know

0 ≡
∂
(
t
σH ± t

σtrtk
)

∂t
= t

σL± t
σu+ t

σLt±tα.

Thus, (32) holds and is a unique characterization of u due to the invert-
ibility of t

σL±. Using (15) and (32), we conclude the inequalities due to
the assumptions (4) and (5) on k, J , and α, as well as the regularity of
σΣ due to Proposition 3.7. q.e.d.

Proof of Theorem 4.1. We choose an arbitrary t ∈ I and σ > σ0 and
suppress the corresponding indices. For the first part, we see that u
satisfies

‖u‖W2,p(Σ) ≤ C σ
1
2 + 2

p
−ε
,

∥∥∥ud
∥∥∥

W2,p(Σ)
≤ C σ

2
p
− 1

2 ,

due to (33) and the regularity of L± (Proposition 3.9), where p ∈ [1 ;∞)
is arbitrary and again ud ..= u−ut. In particular, Φ is (asymptotically)
a shift.

For the second part, we see that the inequality (31) holds if and only
if

er ..=
∥∥∥ut
∥∥∥

L2(Σ)
≤

3∑
i=1

∣∣∣∣ˆ ufi dµ
∣∣∣∣ ≤ C(c k + σ−ε

)
σ =.. Dσ,

where {fi}i∈N again is a complete orthonormal system of L2(Σ) of eigen-
values of the (negative) Laplace operator with corresponding eigenvalues
λi satisfying λi ≤ λi+1. Using the asymptotic characterization of L± on
L2(Σ)T ..= lin{fi}3i=1, (28), and inequality (17), we conclude

er ≤ C σ3
3∑
i=1

∣∣∣∣ˆ ut L±fi dµ
∣∣∣∣ ≤ C σ3

3∑
i=1

∣∣∣∣ˆ uL±fi dµ
∣∣∣∣+ C σ

1
2−ε

∥∥∥ud
∥∥∥

L2(Σ)

≤ C σ3
3∑
i=1

∣∣∣∣ˆ L±ufi dµ− 2
ˆ

k
(
ν,∇ut

)
f − k(ν,∇fi)ut dµ

∣∣∣∣+Dσ.

Now, we use the asymptotic identity (21) for ∇fT and the characteri-
zation of u due to Proposition 4.2 to get

er ≤ C σ3
3∑
i=1

∣∣∣∣∣∣
ˆ

Lt±α fi dµ+ 2
σ

3∑
j=1

ˆ
k(ν,Xj)f − k(ν,Xi)udµ

ˆ
ufj dµ

∣∣∣∣∣∣
+Dσ +D

∥∥∥ut
∥∥∥

H(Σ)

≤ C σ3
3∑
i=1

∣∣∣∣ˆ (div kν + 1
σ

trk±∆α± Ric(ν,ν)
)
fi dµ

∣∣∣∣+Dσ +D er

≤ C σ3
3∑
i=1

∣∣∣∣∣
ˆ ( 1

σ
H ± Ric(ν,ν)

)
fi −

k(ν,Xi)
σ

∓ λiαfi dµ
∣∣∣∣∣

+Dσ +D er.
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Now we use the asymptotic antisymmetry of fi, the comparability of fi
and νi, the estimates on ~z and Proposition 3.15 to conclude

er ≤ C σ2
3∑
i=1

∣∣∣∣ˆ Ric(ν,ν)νi dµ
∣∣∣∣+Dσ.

However, this last integral is bounded by C |~z | ≤ Dσ due to the Gauß
theorem. This was proven in full detail by the author in [Ner15,
Lemma A.3]. q.e.d.
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