
j. differential geometry

104 (2016) 239-273

PSEUDONORMS AND THEOREMS OF TORELLI TYPE
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Abstract

We show that for every positive integer n, there exists an ex-
plicit positive integer cn that only depends on n such that if M
and M ′ are canonically polarized complex projective manifolds of
dimension n and if H0(M,mKM ) and H0(M ′,mKM ′) are linearly
isometric with respect to the pseudonorm 〈〈 〉〉 for some m � cn,
thenM andM ′ are isomorphic. This generalizes a result of Royden
for compact Riemann surfaces of genus greater than or equal to 2.
The same approach is used to prove similar and weaker results
for projective manifolds with nonnegative Kodaira dimension. We
also introduce a kind of singular index for singularities of pairs
that refines the traditional log canonical threshold.

1. Introduction

Global birational geometry investigates the classification of algebraic
varieties of arbitrary dimensions. For a complex projective variety M ,
the m-pluricanonical spaces H0(M,mKM ) form a typical set of bira-
tional invariants of M and play an essential role in understanding its
global geometry. If the Kodaira dimension κ(M) � 0, the linear systems
|mKM | provide rational maps

ϕ|mKM | : M ��� PH0(M,mKM )∗,

the closure of whose images stablizes birationally to Proj R(M,KM )
when m is sufficiently large and sufficiently divisible [17], which is the
canonical model ifM is of general type [2]. Therefore, given two complex
projective manifolds of general type, a necessary and sufficient condi-
tion for them to be birational is that their canonical rings are isomorphic
as graded C-algebras. The canonical ring of M is known to be finitely
generated and it is its multiplicative structure that governs the bira-
tional geometry of M . This work studies the following natural question:
Given two complex projective manifolds of general type, what kind of
isomorphisms between their m-canonical spaces manage to give back a
birational map between them? More specifically, we look for more an-
alytic or geometric conditions on pluricanonical spaces instead of the
multiplicative structure of canonical rings.
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A good solution to the above question will be of fundamental im-
portance in classifying projective varieties of general type. In [4], S.-T.
Yau has initiated a program of establishing a correspondence between
birational equivalence classes of complex projective varieties and some
special type of (possibly singular) pseudoconvex hypersurfaces in finite-
dimensional complex vector spaces. This paper is actually the first step
to realize Yau’s program. We study a particular kind of norm-like func-
tions defined on the pluricanonical spaces, called pseudonorms (to be
defined below). The unit level sets of these functions will appear to
be those pseudoconvex hypersurfaces in Yau’s program. The next steps
in realizing the program will be to study (affine) differential geometric
invariants of these hypersurfaces and to give characterizations of the
pseudonorms. We plan to treat these issues in separate works. After
all these steps are achieved, classifying projective varieties birationally
will be equivalent to classifying real pseudoconvex hypersurfaces of cer-
tain type in finite-dimensional vector spaces using (affine) differential
geometric invariants. We expect our results to shed new light on the
classification of projective algebraic manifolds, especially surfaces, of
general type.

The origin of our approach dates back to the study of Teichmüller
spaces by H. L. Royden. In 1971, he proved the following theorem:

Theorem 1.1. ([18]) Let C and C ′ be compact Riemann surfaces of
genus g � 2. If H0(C, 2KC ) is isometric to H0(C ′, 2KC′) with respect to
the canonical norm || ||2 (〈〈 〉〉2 in Definition 1.1), then C is isomorphic
to C ′.

For a complex projective manifold M of dimension n, we consider
analogues of || ||2 that are pseudonorms 〈〈 〉〉m defined on its mth pluri-
canonical spaces H0(M,mKM ):

Definition 1.1. (1) For any Lebesgue measurable section s of K⊗m
M

we define a top form 〈s〉m as follows. On each coordinate chart (U ; {zj =
xj + iyj}

n
j=1), s = f(z1, . . . , zn)(dz1 ∧ · · · ∧ dzn)

⊗m for some measurable

function f . We define 〈s〉m by setting

〈s〉m|U = |f(z1, . . . , zn)|
2
m dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

It is clear that 〈s〉m is a well-defined real measurable (n, n)-form that is
nonnegative with respect to the canonical orientation associated to the
complex structure on M . (2) The pseudonorm of s is defined to be

〈〈s〉〉m =

∫
M

〈s〉m ∈ R�0 ∪ {∞}.

If M is compact, the restriction to holomorphic sections gives a map
〈〈 〉〉m : H0(M,mKM ) → R�0.
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Note that 〈〈 〉〉m possesses all the properties of a norm except that it
has different positive homogeneity. It defines a translation invariant dis-
tance structure on H0(M,mKM ) in the usual way, and we can speak of
isometries with respect to it. A birational map ψ : M ��� M ′ uniquely
determines an isomorphism ψ∗ : H0(M ′,mKM ′) → H0(M,mKM ) for
all m. It is a consequence of the change of variable formula for in-
tegration that ψ∗ is a linear isometry with respect to 〈〈s〉〉m, i.e., the
pseudonormed pluricanonical spaces

(
H0(M,mKM ), 〈〈 〉〉m

)
form a set

of birational invariants of M . Note that 〈〈 〉〉1 is the square of the norm
associated to a hermitian product on H0(M,KM ) (the Bergman pair-
ing), and hence its unit level set is the round hermitian sphere, which
carries no interesting birational geometric information. Therefore, when
talking about pluricanonical spaces H0(M,mKM ) in the following, we
always assume that m � 2.

Inspired by Royden’s result, S.-T. Yau proposed to consider the fol-
lowing statement, which we denote as (∗)m for any two projective man-
ifolds of general type M and M ′ and each m ∈ N:

If ι : H0(M ′,mKM ′) → H0(M,mKM ) is a linear isome-
try with respect to 〈〈 〉〉m, then there exists a birational

map M
ψ
��� M ′ and a unit complex number c such that

cι = ψ∗.

Royden’s result says that (∗)2 holds if M and M ′ are algebraic curves.
One should note that there are no obvious implications between the
(∗)m’s for differentm, even for the case of curves. To study the statement
(∗)m, we first note that if ψ maps M birationally to M ′, then we have
the following commutative diagram of rational maps:

M
ψ

������������

φ|mKM |

��
�
�
� M ′

φ|mK
M′ |

��
�
�
�

PH0(M,mKM )∗ ∼

P(ψ∗)∗
�� PH0(M ′,mKM ′)∗.

Now suppose M and M ′ are both of general type, but are not as-
sumed to be birational to each other. Suppose ι : H0(M ′,mKM ′) →
H0(M,mKM ) is an isomorphism. Consider the diagram below, where
I is the isomorphism induced by ι. If m is sufficiently large the vertical
pluricanonical maps map M and M ′ birationally to their images (cf.
[9] and [19]). If I maps im φ|mKM | into the closure of im φ|mKM′ |, then

there exists a rational map M ��� M ′ that factorizes the diagram

(1.1) M
?

��

φ|mKM |

��
�
�
� M ′

φ|mK
M′ |

��
�
�
�

PH0(M,mKM )∗ ∼
I

�� PH0(M ′,mKM ′)∗.
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For manifolds M and M ′ that are not necessarily of general type, one
can consider a similar statement (∗′)m:

If ι : H0(M ′,mKM ′) → H0(M,mKM ) is a linear isome-
try with respect to 〈〈 〉〉m, then the map

I = P(ι)∗ : PH0(M,mKM )∗ → PH0(M ′,mKM ′)∗

identifies the closure of im ϕ|mKM | with that of im ϕ|mKM′ |.

The following are our main results, which can be viewed as theorems of
Torelli type for birational or biregular equivalence.

Theorem 1.2. For any pair of projective manifolds M and M ′ both
of nonnegative Kodaira dimension, there exists a positive integer
C(M,M ′) depending on M and M ′ such that (∗′)mC(M,M ′) holds for

positive integers m > 2max{dimM,dimM ′}+ 2.

The Cartier index of a projective variety with Q-Cartier canonical
divisor is defined to be the smallest positive integer j such that the
jth multiple of the canonical divisor is Cartier. It is a consequence of
[2] that every complex manifold of general type has a minimal model,
which is Q-factorial, and any two birational minimal models have the
same Cartier index. We define the Cartier index of a complex manifold
M of general type, denoted by jM , to be that of any of its minimal
model. The first part of the following result was conjectured by Yau
and clearly follows from the above theorem and the assumption that
KM and KM ′ are big:

Theorem 1.3. (1) For any pair of projective manifolds of general
type M and M ′ of dimension n, there exists a positive integer c(jM , jM ′)
that only depends on the Cartier indices jM and jM ′ of M and M ′ such
that (∗)mc(jM ,jM′) holds for positive integers m > 2n+ 1.

The form of c(jM , jM ′) will be given in Section 4. Note that the state-
ment “ψ∗ and ι differ from each other by a constant factor” is obvious
since the images of ϕ|mKM | and ϕ|mKM′ | generate their respective am-
bient projective spaces.

For every n ∈ N, it is known that there exists cn ∈ N that depends
only on n such that, for any canonically polarized manifold M of di-
mension n, mKM is very ample if m � cn. For example, cn can be taken
to be

⌈
1
2(n

3 + 2n2 + 5n+ 8)
⌉
by [1] (see also [5]). We fix such a cn � 2.

Our technique coupled with effective very ampleness gives a uniform
result that directly generalizes Theorem 1.1:

Theorem 1.4. If M and M ′ are canonically polarized manifolds of
dimension n with isometric m-pluricanonical spaces with respect to 〈〈 〉〉m
for some m ∈ {ab|a � (2n+1), b � cn}, then M and M ′ are isomorphic
(and the induced isometry between their m-pluricanonical spaces equals
to the given one up to the multiplication by a unit complex number).
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Now we explain the main idea of the proof of Theorem 1.2. Roughly
speaking, we connect the original global problem with local geometry
of singularities of pairs via pseudonorms. On the side of local geometry,
for a complex manifold M , a point x ∈ M , and hypersurfaces F ⊂ D
in M , we introduce the relative characteristic index χF,r(M,D, x) to
measure how singular D is in M at x with respect to F , which refines
the traditional log canonical threshold lctx(M,D). According to this
singularity index, the points at which D is the most singular in M with
respect to F form a nonempty locally analytically Zariski closed subset
CF,r(M,D) of M , called the relative characteristic indicatrix of D in M
with respect to F . Now for each m, let Fm = Fix|mKM | and let sFm be
a canonical section of OM (Fm). For η0 ∈ H0(M,mKM ), let Dη0 be the
divisor defined by the vanishing of η0. When Dη0 is sufficiently singular,
for all η ∈ H0(M,mKM ), the function

t �−→ 〈〈η0 + tη〉〉m − 〈〈η0〉〉m

has an asymptotic expansion as t −→ 0, whose leading coefficient van-
ishes exactly when η⊗s−1

Fm
vanishes along CFm,m(M,Dη0). On the global

side, we consider the diagram (1.1). If the images of vertical maps can
be described in terms of 〈〈 〉〉m, the bottom map I will identify one
with another since ι preserves 〈〈 〉〉m. By definition, for any generic
x ∈ M , ϕ|mKM |(x) is represented by the hyperplane {η|η(x) = 0} in

H0(M,mKM ). If there exists an m-canonical form η0 for each generic
x such that Dη0 is sufficiently singular and CFm,m(M,Dη0) = {x}, then
the condition “η(x) = 0” is equivalent to “the leading coefficient of the
asymptotic expansion of 〈〈η0 + tη〉〉m − 〈〈η0〉〉m as t −→ 0 vanishes,” a
condition in terms of 〈〈 〉〉m. Such η0 always exists if m is sufficiently
large and sufficiently divisible.

It should be mentioned that in the case of a compact Riemann sur-
face C of genus at least 2 the same asymptotic result for || ||2 has been
obtained by Royden [18]. He took a different viewpoint: instead of the
image of the bicanonical map ϕ|2KC |, he considered its dual curve in

PH0(C, 2KC ). He found a characterization of the dual curve purely in
terms of (the asymptotic behavior of) || ||2 on H0(C, 2KC ). Therefore,
the projectivization of a linear isometry between bicanonical spaces of
two such Riemann surfaces identifies the dual curves of the images of
their bicanonical maps, which are isomorphic to themselves. In higher
dimensions we have not found a practical way to generalize along the
same line. Instead, we use the pluricanonical maps, which are more natu-
ral in birational geometry, and replace Royden’s characterization of dual
bicanonical curves by Lemma 3.1. In dimension 1, singularities of pairs
are much easier to understand, because the multiplicity covers all infor-
mation. In higher dimensions the situation is much more complicated,
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and that is why we need to introduce some new singularity indices. See
Definition 2.1.

In Section 2 the local asymptotic expansion of certain types of inte-
grals (Theorem 2.1) is introduced, which is the technical core of this pa-
per and whose proof will be postponed to Section 5. Then we apply this
local formula to justify the definition of several new singularity indices
and to deduce the asymptotic expansion of pseudonorms (Theorem 2.3).
In Section 3 we give a general result linking pseudonorms with the im-
ages of rational maps associated to sublinear systems of pluricanonical
systems, and prove Theorem 1.4 as an application. Finally, we discuss
Theorems 1.2 and 1.3 in Section 4.

Theorems 1.3 and 2.1 have been announced in [4] without proof.
Assuming certain base point free conditions on pluricanonical systems,
stronger versions of some special cases of Theorem 1.3 were proven there.
A nice uniform result among them is the following theorem, whose proof
will not be repeated here:

Theorem 1.5. ([4], Theorem 4.2) (∗)m holds for every m � 75 if M
and M ′ are compact complex surfaces of general type.

Acknowledgments. I am indebted to Professor Shing-Tung Yau for
introducing this subject to me and sharing with me many of his bold and
imaginative ideas. I am grateful to James McKernan, Mircea Mustaţă,
and Chin-Lung Wang for their many valuable suggestions. I would also
like to thank Michael Viscardi for reading through a draft of this work
carefully and largely improving the writing. Finally, I would like to thank
the referee for many helpful suggestions and enormous efforts to point
out many errors and to make the expression largely improved.

2. Singularities of pairs and asymptotics of pseudonorms

2.1. A local asymptotic expansion. We will state the main local
asymptotic result here, and will deduce from it the global asymptotic
property of 〈〈 〉〉 in 2.3. We use the following notation:

n ∈ N, 0 < p � 1/2,Δ = {(z1, . . . , zn) ∈ Cn| |zj | < 1, j = 1, . . . , n},

g ∈ C∞(Δ), φ ∈ O(Δ),

A = (a1, . . . , an) ∈ Rn
�0, B = (b1, . . . , bn) ∈ Rn,

lj =
bj + 1

aj
if aj 
= 0 and = ∞ otherwise, j = 1, . . . , n,

l(A,B) = inf {lj | j = 1, . . . , n}.

We assume that A and B are chosen so that

l(A,B) = l1 = · · · = lμ(A,B) < lμ(A,B)+1 � · · · � ln
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for some 1 � μ(A,B) � n. Notice that l(A,B) and μ(A,B) depend only
on the multi-indices A and B. Let

xj = Re zj and yj = Im zj ,

j = 1, . . . , n. We abbreviate (x1, y1, . . . , xn, yn), (z1, . . . , zn), z
a1
1 · · · zann ,

|z1|
b1 · · · |zn|

bn , and dx1dy1 · · · dxndyn as (X,Y ), Z, ZA, |Z|B , and dX dY ,
respectively.

Theorem 2.1. Suppose A ∈ Z�0 and B ∈ Rn
�0. Let l = l(A,B) and

μ = μ(A,B). For t ∈ C, we let

Ψ(t) =

∫
Δ
g(X,Y )

∣∣ZA + tφ(Z)
∣∣2p∣∣Z∣∣2BdXdY .

Then

Ψ(t)−Ψ(0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O
(
|t|
(
ln 1

|t|

)μ)
if 2l + 2p � 1;

c(A,B, φ) |t|2l+2p
(
ln 1

|t|

)μ−1

+o

(
|t|2l+2p

(
ln 1

|t|

)μ−1
) if 2l + 2p < 1

as t −→ 0, where c(A,B, φ) is a real number depending on φ. In the
second case we have c(A,B, φ) � 0, and if g(0) 
= 0 then

c(A,B, φ) = 0 ⇐⇒ φ(0, . . . , 0, zμ+1, . . . , zn) ≡ 0.

The proof consists of a long computation and will be given in Sec-
tion 5.

2.2. The relative characteristic index and indicatrix. We intro-
duce several quantities measuring how singular a divisor is at a point in
the ambient manifold.

Fix a complex manifold M , effective divisors D and F on M such
that D − F is also an effective divisor, and r > 0. We first choose a

common log resolution π : M̃ → M for (M,D) and (M,F ) and write

π∗D =
∑
E

dEE,

π∗F =
∑
E

fEE,

and
K

M̃
= π∗KM +

∑
E

jEE,

where E runs over all irreducible subvarieties of M̃ of codimension 1.
For every x ∈ M , we let

l(D,F ),r;π(x) := inf
{E|x∈π(E)}

jE + fE
r
+ 1

dE − fE
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and

μ(D,F ),r;π(x) := max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩q

∣∣∣∣∣∣∣∣∣∣
∃ distinct irreducible divisors

E1, . . . , Eq in M̃ such that

jEk
+

fEk
r

+1

dEk
−fEk

= l(D,F ),r;π(x)

for 1 � k � q and x ∈ π
(⋂q

k=1Ek

)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

These quantities are essential in the proof of Theorems 2.1, 3.1, and
1.2. In most of the cases in which we are interested, r will be a positive
integer m > 1, D will be the divisor associated to some section of mKM

or related line bundles, and F will be the fixed divisor of |mKM | or
some of its sub-linear systems.

Lemma 2.1. l(D,F ),r;π(x) and μ(D,F ),r;π(x) are independent of the
choice of π.

Proof. First note that l(D,F ),r;π(x) = ∞ if and only if x /∈ supp(D −
F ). Therefore, we only need to consider the case that l(D,F ),r;π(x) < ∞.
Let λ be any positive integer such that λr � 2 and l(D,F ),r;π(x)/λ < 1.
Suppose x ∈ M and the local defining functions of D and F are fD and

fF , respectively. For any log resolution π : M̃ → M , we first choose a
coordinate neighborhood (U, {wα = uα + ivα}

n
α=1) of x with compact

closure such that π−1(U) is disjoint from any prime divisor disjoint
from π−1(x). We can cover π−1(U) by finitely many coordinate charts
(V, {zβ = xβ + iyβ}

n
β=1), each biholomorphic to the unit polydisc Δ, in

any of which

(fD ◦ π)(z1, . . . , zn), (fE ◦ π)(z1, . . . , zn),

and

π∗dw1 ∧ · · · ∧ dwn

are of the form

d(z1, . . . , zn)z
d1
1 · · · zdnn , f(z1, . . . , zn)z

f1
1 · · · zfnn ,

and

j(z1, . . . , zn)z
j1
1 · · · zjnn dz1 ∧ · · · ∧ dzn,

respectively, where d, f , and j are nonvanishing holomorphic functions.
Let D = (d1, . . . , dn), F = (f1, . . . , fn), and J = (j1, . . . , jn) ∈ Zn

�0.
Finally, we choose smooth functions ρV on V with compact support
such that the restriction of

∑
V ρV to π−1(U ) is identically 1 (a partial

partition of unity). For any t ∈ C and any smooth function ρ on U with
compact support, we consider the integral

Iλ,ρ(t) :=

∫
U

ρ
∣∣fλ

D + tfλ
E

∣∣ 2
λr du1dv1 · · · dundvn,
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which is independent of the choice of π. By the change of variable for-
mula for integration, it is equal to∑

V

∫
V

(ρ ◦ π)(X,Y )ρV (X,Y )
∣∣d(Z)λZλD + tf(Z)λZλF

∣∣ 2
λr |Z|2JdXdY.

Here we have adopted the convention of abbreviation in 2.1. Applying

Theorem 2.1 by setting g = (ρ◦π)ρ| d
f
|
1
r , φ = fλ

dλ
, p = 1

λr
, A = λ(D−F ),

and B = J + 1
r
F for each V , we see that

(
l(D,F ),r;π(x), μ(D,F ),r;π(x)

)
is

characterized as the unique pair (l, μ) ∈ R2 such that

Iλ,ρ(t)

|t|
2l+(2/r)

λ

(
ln 1

|t|

)μ
tends to a nonzero limit as t −→ 0. For any two log resolutions there
exist common λ ∈ N and ρ ∈ C∞

c (U) working for both. This completes
the proof. q.e.d.

As a consequence we have justified the following definition:

Definition 2.1. Suppose 0 < r. The log canonical threshold lF,r
(M,D, x), the log canonical multiplicity μF,r(M,D, x), and the char-
acteristic index χF,r(M,D, x) of (M,D) with respect to F of expo-
nent r at x ∈ M are defined to be l(D,F ),r;π(x), μ(D,F ),r;π(x), and(
l(D,F ),r;π(x), μ(D,F ),r;π(x)

)
, respectively. If M is compact, we define the

global characteristic index χF,r(M,D) and the characteristic indicatrix
CF,r(M,D) of (M,D) with respect to F of exponent r by

χF,r(M,D) := sup
y∈M

χF,r(M,D, y)

with respect to the total order

(l1, μ1) > (l2, μ2) ⇐⇒

⎧⎨⎩
l1 = l2 and μ1 > μ2

or
l1 < l2

and
CF,r(M,D) := {x ∈ M |χF,r(M,D, x) = χF,r(M,D)} .

It is clear that the first component of χF,r(M,D) is infx∈M lF,r(M,D, x).
We call it the global log canonical threshold of (M,D) with respect to
F of exponent r and denote it by lF,r(M,D).

By Lemma 2.1 we can easily see that lF,r(M,D, ·) is lower semicon-
tinuous and χF,r(M,D, ·) is upper semicontinuous (with respect to the
above order) in the local analytically Zariski sense. Therefore, CF,r(M,D)
is a nonempty locally analytically Zariski closed subset ofM . lF,r(M,D, x)
is related to the usual log canonical threshold lct in that we have the
following inequality:

(2.1) lF,r(M,D, x) � l0,r(M,D − F, x)(= lctx(M,D − F )).
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If x /∈ suppF (in particular, if F = 0),

(2.2) lF,r(M,D, x) = lctx(M,D − F ).

In general, we have the following lemma.

Lemma 2.2. Suppose x ∈ suppF . Then

lF,r(M,D, x) = l0,r(M,D−F, x) =⇒ μF,r(M,D, x) � μ0,r(M,D−F, x).

Proof. Recall the definition of l(D,F ),r;π and μ(D,F ),r;π right before
Lemma 2.1. Let μ = μ0,r(M,D − F, x). If μF,r(M,D, x) > μ, then
there exist irreducible subvarieties E1, . . . , Eμ+1 of codimension 1 in the

resolution M̃ such that x ∈ π
(
∩μ+1
k=1Ek

)
and

jEk
+

fEk
r

+ 1

dEk
− fEk

= lF,r(M,D, x) = l0,r(M,D − F, x) �
jEk

+ 1

dEk
− fEk

,

k = 1, . . . , μ + 1. This implies fEk
= 0 and

l0,r(M,D − F, x) =
jEk

+ 1

dEk
− fEk

, k = 1, . . . , μ + 1,

and hence μ0,r(M,D − F, x) � μ+ 1, a contradiction. q.e.d.

Taking an admissible log resolution of Blx(M) to compute lF,r(M,D, x),
we obtain that

(2.3) lF,r(M,D, x) �
dimM

multx(D − F )
.

Remark 2.1. (1) The “F = 0” version of both lct and μ have been
used in [4] to prove base point free cases of our main theorems. They
are generalized to the current version in order to prove our main theo-
rems in full generality. The proof of their well-definedness given here is
basically the one used in the author’s thesis. During the Workshop on
Higher Dimensional Algebraic Geometry 2010 in Taiwan I asked Mircea
Mustaţă if one can show that μ0,r(M,D, x) is well defined in the alge-
braic setting, and later he informed me of a technique using arc spaces.
His method possibly also works for the general (F not necessarily 0)
algebraic situation. (2) One can formulate Definition 2.1 in more gen-
eral situations such as when D and F are analytic subsets of M with
ID ⊂ IF . The generalized definition is justified by another analytic
method and we prefer to discuss it in a separate article.

2.3. The asymptotic property of 〈〈 〉〉m. Throughout 2.3 we assume
M to be compact and fix η0, η ∈ H0(M,mKM ) and an effective divisor
F such that Dη0 − F and Dη − F are both effective, where Dη0 and
Dη are the divisors defined by the vanishing of η0 and η, respectively.
We study the asymptotic behavior of the function t �−→ 〈〈η0 + tη〉〉m as
t −→ 0.
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We basically follow the local setup in the proof of Lemma 2.1. Let

U =
{(

U, (wj
U )

n
j=1

)}
be a finite open cover of coordinate charts on

M . We choose a log resolution π : M̃ → M for (M,Dη0) and a finite
refinement V = {(V,ZV = XV + iYV )} of π−1U = {π−1U} formed

by charts in M̃ , where ZV and (XV , YV ) abbreviate (z1V , . . . , z
n
V ) and

(x1V , y
1
V . . . , xnV , y

n
V ) respectively. Let τ : V → U be such that π(V ) ⊂

τ(V ). Finally, we choose a partition of unity {ρV (XV , YV )} subordinate
to V. V and {ρV } can be chosen so that

(i) the image of ZV : V → Cn is the unit polydisc Δ in C;

(ii) if U = τ(V ), then

π∗(dw1
U ∧ · · · ∧ dwn

U ) =
(
jV (ZV )

)
ZJV
V dz1V ∧ · · · ∧ dznV

for some nonvanishing jV ∈ O(Δ) and JV = (j1V , . . . , j
n
V ) ∈ Zn

�0;

(iii) for sF , a canonical section ofOM (F ) defining F , π∗sF = fV (ZV )Z
FV
V

on V for some nonvanishing fV ∈ O(Δ) and FV = (f1
V , . . . , f

n
V ) ∈

Zn
�0;

(iv) following the notation in (ii), on V we have

π∗η0 = cV (ZV )
(
jV (ZV )

)m
ZAV +FV +mJV
V (dz1V ∧ · · · ∧ dznV )

⊗m

and

π∗η = cV (ZV )
(
jV (ZV )

)m
φV (ZV )Z

FV +mJV
V (dz1V ∧ · · · ∧ dznV )

⊗m,

where φV , cV ∈ O(Δ), cV is nonvanishing, and AV = (a1V , . . . , a
n
V ) ∈

Zn
�0;

(v) for each V we have l1V = · · · = lμV
V < lμV +1

V � · · · � lnV , where

lkV =
jkV +

fkV
m

+1

h
j
V −fk

V

, k = 1, . . . , n;

(vi) ρV (0, 0) > 0 for every V .

In the following proof of Theorem 2.2 we will have to consider two dif-

ferent kinds of pullbacks via π : M̃ → M of elements in H0(M,mKM ),
and it is important not to mix them up. The first one is

π∗ : H0(M,mKM ) → H0(M̃ ,mK
M̃
),

which acts on KM as the usual pullback of differential forms via the

map π. The second one is π∗∗ : H0(M,mKM ) → H0
(
M̃, π∗(mKM )

)
,

the usual pullback map from the space of sections of a vector bundle to
that of its pullback bundle via a map.
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Theorem 2.2. Set r = m in Definition 2.1. Write

χF,m(M,Dη0) =
(
l = lF,m(M,Dη0), μ

)
.

Then

〈〈η0+tη〉〉m−〈〈η0〉〉m =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O
(
|t|
(
ln 1

|t|

)μ)
if l � m−2

2m ;

cF,m(η0, η) |t|
2l+ 2

m

(
ln 1

|t|

)μ−1

+o

(
|t|2l+

2
m

(
ln 1

|t|

)μ−1
) if l < m−2

2m

as t → 0, where cF,m(η0, η) is a nonnegative number. Moreover, in the
second case,

cF,m(η0, η) = 0 ⇐⇒ η ⊗ s−1
F vanishes on CF,m(M,Dη0).

Proof. In terms of V and gV chosen above, we can write

〈〈η0 + tη〉〉m =
∑
V ∈V

∫
Δ0

(
ρV |cV |

2
m |jV |

2
)∣∣ZAV

V + tφV

∣∣ 2
m
∣∣ZV

∣∣ 2
m

FV +2JV
dXV dYV .

Following the notation of 2.1, for every V ∈ V we obtain a corre-
sponding pair (lV , μV ) =

(
l(AV ,

2
m
FV + 2JV ), μ(AV ,

2
m
FV + 2JV )

)
. It

is clear that (l, μ) = supV (lV , μV ). Applying Theorem 2.1 by setting

g = ρV |cV |
2
m |jV |

2, φ = φV , p = 1
m
, A = AV , and B = 2

m
FV + 2JV for

each V yields the stated asymptotics. Comparing the coefficient of the
leading term of each summand shows that

cF,m(η0, η) =
∑

{V |(lV ,μV )=(l,μ)}

c(AV , BV , φV ).

Theorem 2.1 shows that cF,m(η0, η) � 0, and that cF,m(η0, η) = 0

⇐⇒ c(AV ,
2

m
FV + 2JV , φV ) = 0 for all V such that (lV , μV ) = (l, μ)

⇐⇒ φV (0, . . . , 0, z
μ+1
V , . . . , znV ) ≡ 0 for all V such that (lV , μV ) = (l, μ).

Consider those prime divisors E on M̃ whose corresponding ratios (see
Section 2.2) give lF,m(M,Dη0). The union S of intersections of any dis-
tinct μ of them is described by z1V = · · · = zμV = 0 in every V . Because of
the conditions (ii) and (iii) satisfied by V, the last equivalent condition
above is the same as saying that π∗∗η⊗π∗s−1

F vanishes on S. This is the

same as saying that η ⊗ s−1
F vanishes on π(S) = CF,m(M,Dη0). q.e.d.

Remark 2.2. Definition 1.1 can be generalized to hermitian line
bundles. Let (L, h) be a pair of a holomorphic line bundle on M with
a smooth hermitian h, and let η be a Lebesgue measurable section of
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K⊗m
M ⊗L. Locally η = f(w)(dw1∧· · ·∧dwn)⊗m, where f is a local section

of L. We can define a Lebesgue measurable (n, n)-form by setting locally

〈η〉m,h = ||f(w)||
2
m
h du1 ∧ dv1 · · · ∧ dun ∧ dvn.

Then we can define the pseudonorm of η by 〈〈η〉〉n,h =
∫
M
〈η〉n,h. This

notion has already been used in [3]. Theorem 2.2 obviously generalizes
to this situation. It will be interesting to see if one can obtain asymptotic
results for line bundles with singular hermitian metrics.

3. The Image of Rational Maps ϕ|V |

Again we assumeM to be a compact complex manifold. In this section
we consider linear subspaces V ⊂ H0(M,mKM ) and use Theorem 2.2
to study the image of the rational map ϕ = ϕ|V | associated to V . We
will view PV ∗ as the set of linear subspaces of V of codimension 1
(which will be called hyperplanes in the following). The rational map
ϕ : M ��� PV ∗ is given by

x �−→
[{

η ∈ V
∣∣ η(x) = 0

}]
,

where [{η ∈ V
∣∣ η(x) = 0

}
] is the point corresponding to the hyperplane

{η ∈ V
∣∣ η(x) = 0

}
in V . The domain of ϕ (as a set theoretical map)

is M\Bs|V |. Throughout this section we assume that Bs(|V | − F ) = ∅,
where F = Fix|V |. Therefore,

Bs|V | = suppF.

Then ϕ can be extended to a regular map ϕ|V |−F by identifying PV ∗

with P(V ⊗ s−1
F )∗, where sF is a canonical section of OM (F ). However,

we prefer to distinguish between ϕ and the regular map extending it,
especially in the proof of Lemma 3.1. Note that for a hyperplane H in
V , [H] lies in the image of ϕ if and only if Bs|H| is not contained in
Bs|V |. If this is the case, ϕ(x) = [H] for all x ∈ Bs|H|\Bs|V |.

Definition 3.1. We say that V concentrates singularities if for a
generic x ∈ M\Bs|V | there exists ηx ∈ V such that

(3.1) lF,m(M,Dηx) <
m− 2

2m
and

(3.2) CF,m(M,Dηx) = ϕ−1
|V |−F

(
ϕ|V |−F (x)

)
,

where Dηx is the divisor associated to the section ηx.

Lemma 3.1. Let M and M ′ be compact complex manifolds. Let V ⊂
H0(M,mKM ) and V ′ ⊂ H0(M ′,m′KM ′) be linear subspaces such that
Bs(|V | − F ) = Bs(|V ′| − F ′) = ∅, where F = Fix|V| and F ′ = Fix|V′|.
If V concentrates singularities and there exists a surjective linear map

ι : (V ′, 〈〈 〉〉m′) → (V, 〈〈 〉〉m)
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and a number T > 0 such that∣∣〈〈ιη′0〉〉m − 〈〈ιη′〉〉m
∣∣ = T

∣∣〈〈η′0〉〉m′ − 〈〈η′〉〉m′

∣∣
for any η′0, η

′ ∈ V ′, then

I := P(ι)∗ : PV ∗ → PV ′∗

maps the image of ϕ|V | into that of (the regular extension of) ϕ|V ′|.

Proof. For a generic point x ∈ M \ suppF we have

(1) suppF does not contain any connected component
of ϕ−1

|V |−F

(
ϕ|V |−F (x)

)
;

(2) ϕ−1
|V |−F

(
ϕ|V |−F (x)

)
is nonsingular.

Let sF be a canonical section of OM (F ). Note that, for η ∈ V , the
condition

(3.3) η|CF,m(M,Dηx )
≡ 0

is equivalent to the condition

(3.4) η ⊗ s−1
F |CF,m(M,Dηx )

≡ 0.

Since V concentrates singularities, (3.1) holds. By Theorem 2.2, (3.4) is
further equivalent to the condition

(3.5) cF,m(ηx, η) = 0.

For any η ∈ V , we have

〈〈ηx + tη〉〉m − 〈〈ηx〉〉m

= cF,m(ηx, η) |t|
2l+ 2

m

(
ln

1

|t|

)μ−1

+ o

(
|t|2l+

2
m

(
ln

1

|t|

)μ−1
)

as t −→ 0. Since ι is surjective, we can find η′0 ∈ V ′ such that ιη′0 = ηx.
By substituting ιη′ for η in the above equality, we see that for all η′ ∈ V ′,

(3.6) |〈〈η′0 + tη′〉〉m′ − 〈〈η′0〉〉m′ |

= T
∣∣cF,m(ηx, ιη

′)
∣∣ |t|2l+

2
m

(
ln

1

|t|

)μ−1

+ o

(
|t|2l+

2
m

(
ln

1

|t|

)μ−1
)

as t −→ 0. Since x /∈ Bs|V |, by (3.2), there exists some η1 ∈ V that
violates condition (3.3), and hence violates (3.5). That is to say

cF,m(ηx, η1) 
= 0.

Choose any η′1 ∈ V ′ such that ιη′1 = η1. (3.6) implies that

(3.7) |〈〈η′0 + tη′1〉〉m′ − 〈〈η′0〉〉m′ |

= T |cF,m(ηx, η1)| |t|2l+
2
m

(
ln

1

|t|

)μ−1

+ o

(
|t|2l+

2
m

(
ln

1

|t|

)μ−1
)
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as t −→ 0 with the leading coefficient

(3.8) T |cF,m(ηx, η1)| 
= 0.

We have

(3.9) 2lF ′,m′(M ′,Dη′0
) +

2

m′
< 1,

otherwise, by Theorem 2.2, there is an integer μ′ such that∣∣〈〈η′0 + tη′1〉〉m′ − 〈〈η′0〉〉m′

∣∣ = O

(
|t|

(
ln

1

|t|

)μ′
)

as t −→ 0. This together with (3.7) and (3.8) imply that

2l +
2

m
≥ 1,

a contradiction to the choice of ηx (3.1). By (3.7), (3.9), and Theorem
2.2, we have

(3.10) cF ′,m′(η′0, η
′)| = T |cF,m(ηx, ιη

′)| for all η′ ∈ V ′.

By the definition of I : PV ∗ → PV ′∗,

I
(
ϕ|V |(x)

)
= I

([{
η ∈ V

∣∣ cF,m(ηx, η) = 0
}])

=
[
ι−1

{
η ∈ V

∣∣ cF,m(ηx, η) = 0
}]

=
[{

η′ ∈ V ′
∣∣ cF ′,m′(η′0, η

′) = 0
}]

by (3.10)

=
[{

η′ ∈ V ′
∣∣∣ η′ ⊗ s−1

F ′ vanishes along CF ′,m′(M ′,Dη′0
)
}]

,

where the last equality comes from the equivalence between conditions
(3.4) and (3.5) for the situation of M ′ and V ′. Note that{

η′ ∈ V ′
∣∣∣ η′ ⊗ s−1

F ′ vanishes along CF ′,m′(M ′,Dη′0
)
}

is the image of

H :=
{
η′′ ∈ V ′ ⊗ s−1

F ′

∣∣∣ η′′ vanishes along CF ′,m′(M ′,Dη′0
)
}

under the isomorphism ⊗sF ′ between V ′ ⊗ s−1
F ′ ⊂ H0(M ′,m′KM ′ − F ′)

and V ′ ⊂ H0(M ′,m′KM ′). We have the following commutative diagram
of rational maps:

PV ′∗

�

��

M

ϕ|V ′|

�����������

ϕ|V ′|−F ′ ����
���

���
���

���
�

P(V ′ ⊗ s−1
F ′ )∗.
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Bs|H|\Bs(|V ′|−F ′) = Bs|H| contains CF ′,m′(M ′,Dη′0
) by the definition

of H. Therefore, [H] lies in the image of ϕ|V ′|−F ′ . More precisely, be-
ing a hyperplane in V ′ whose elements vanish (as sections of m′KM ′)
along CF ′,m′(M ′,Dη′0

), [H] is the image of all points in CF ′,m′(M ′,Dη′0
).

Therefore, I
(
ϕ|V |(x)

)
lies in the closure of the image of ϕ|V ′|. This com-

pletes the proof. q.e.d.

As an application we obtain the following theorem:

Theorem 1.4. If M and M ′ are canonically polarized manifolds of
dimension n with isometric m-pluricanonical spaces with respect to 〈〈 〉〉m
for some m ∈ {ab|a � (2n+1), b � cn}, then M and M ′ are isomorphic
(and the induced isometry between their m-pluricanonical spaces equals
the given one up to multiplication by a unit complex number).

Proof. ϕ|mKM | and ϕ|mKM′ | are embeddings if m = ab for some a �

(2n + 1) and b � cn � 2. We will apply Lemma 3.1 by taking V and
V ′ to be full pluricanonical spaces, m = m′, and T = 1. Note that in
this case F = F ′ = 0. By symmetry, it suffices to show that |mKM |
concentrates singularities. For a generic x ∈ M , we consider

Wx =

{
η ∈ H0(M,mKM )

∣∣∣∣multxη >
2mn

m− 2

}
.

Bs|Wx| = {x}, since for each y 
= x in M there exists η̃ ∈ H0(M, bKM )
such that η̃(x) = 0 but η̃(y) 
= 0, and a direct computation shows that
η̃⊗a ∈ Wx. Bertini’s theorem yields an ηx ∈ Wx whose divisor Dηx

is smooth away from x. We have l0,m(M,Dηx , x) < m−2
2m by (2.3) and

l0,m(M,Dηx , y) <
m−2
2m by (2.1). Therefore, C0,m(M,Dηx) = {x}. q.e.d.

4. Birational Torelli Type Theorems

In this section we turn to birational geometry. The proof of Theorem
1.4 provides a good guideline for proving Theorem 1.2.

Theorem 1.2. For any pair of projective manifolds M and M ′ both
of nonnegative Kodaira dimension, there exists a positive integer
C(M,M ′) depending on M and M ′ such that (∗′)mC(M,M ′) holds for
positive integers m > 2max{dimM,dimM ′}+ 2.

Proof. We first illustrate how to choose C(M,M ′). For any positive
integer r, we let Fr denote Fix|rKM | and let ϕr denote ϕ|rKM−Fr|. We

may choose a positive integer k such that the kth truncationR(M,KM )(k)

of R(M,KM ) is generated by H0(M,kKM ) by [2]. This implies that
Fmk = mFk for all positive integers m. By replacing M by a nonsingu-
lar birational model, we may further assume that Bs|kKM−Fk| = ∅ (and
hence Bs|m(kKM − Fk)| = ∅ and ϕmk is a morphism for every positive
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integer m). We have the following commutative diagram of morphisms

M
ϕmk

����
��
��
��
�

ϕk

���
��

��
��

��

im ϕmk
νm

�� im ϕk,

where νm is the morphism induced by the map

SymmH0(M,kKM − Fk) −→ H0(M,m(kKM − Fk))

and the mth Veronese embedding

PH0(M,kKM − Fk)
∗ −→ PSymmH0(M,kKM − Fk)

∗.

νm is not just a rational map but a morphism, because∣∣im (
SymmH0(M,kKM − Fk) → H0

(
M,m(kKM − Fk)

))∣∣
is base point free. We may take k sufficiently large such that νm is an iso-
morphism and ϕk has connected fibers. (For example, see [16, Theorem
2.1.27].) Note that we may choose k such that all properties above hold
for M ′ (possibly after replacement by a suitable nonsingular birational
model) as well. Let k0 be the smallest such positive integer k. We define
C(M,M ′) to be k0. In the following, to avoid unnecessary notational
complication, we will use the notation k0 instead of C(M,M ′).

By symmetry, the proof will be completed if we can apply Lemma
3.1 to the case V = |mk0KM | and V ′ = |mk0KM ′ | for every m >
2dimM+2. It suffices to verify that |mk0KM | concentrates singularities
when m > 2dimM+2. In the argument below m will be a fixed positive
integer greater than 2dimM + 2.

Choose a Zariski open subset U in im ϕmk0 satisfying the following
properties:

(i) U is nonsingular;
(ii) ϕmk0 |ϕ−1

mk0
(U) : ϕ

−1
mk0

(U) −→ U is a submersion.

For x ∈ ϕ−1
mk0

(U) \ suppFmk0 , we consider

Wx =

⎧⎨⎩η ∈ H0
(
M,m(k0KM − Fk0)

) ∣∣∣∣∣∣
multyη > 2mk0 dimM

mk0−2 for

all y ∈ ϕ−1
mk0

(
ϕmk0(x)

)
.

⎫⎬⎭ .

We claim that

Bs|Wx| = ϕ−1
mk0

(
ϕmk0(x)

)
.

To see this, first note that

Bs|Wx| ⊇ ϕ−1
mk0

(
ϕmk0(x)

)
by the definition of Wx. On the other hand, suppose that x′ ∈ M and
ϕmk0(x

′) 
= ϕmk0(x). ϕk0(x
′) 
= ϕk0(x), since νm is an isomorphism. A
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hyperplane which contains ϕk0(x) and does not contain ϕk0(x
′) gives a

section η̃ of H0(M,k0KM − Fk0) such that

multxη̃ > 0, and multx′ η̃ = 0.

It is easy to check that η̃⊗m ∈ Wx if m > 2dimM + 2 and η̃⊗m(x′) 
= 0.
Therefore x′ /∈ Bs|Wx|.

Now we are ready to construct the desired section ηx (see Definition
3.1). By Bertini’s theorem, there exists η̂x ∈ Wx whose multiplicity at
points away from ϕ−1

mk0

(
ϕmk0(x)

)
is lower than 1. We let sFmk0

be a

canonical section of OM (Fmk0) and ηx = η̂x⊗ sFmk0
∈ H0(M,mk0KM ).

Denote the divisors associated to ηx and η̂x byDηx andDη̂x , respectively.
It remains to show that

(4.1) lFmk0
,mk0(M,Dηx) <

mk0 − 2

2mk0

and

(4.2) CFmk0
,mk0(M,Dηx) = ϕ−1

mk0

(
ϕmk0(x)

)
.

Since x /∈ suppFmk0 , we have

lFmk0
,mk0(M,Dηx , x) = lctx(M,Dη̂x) �

dimM

multxDη̂x

<
mk0 − 2

2mk0

by (2.2) and the fact that η̂x ∈ Wx. Therefore, (4.1) holds. In particular,

(4.3) lFmk0
,mk0(M,Dηx , x) < 1.

In order to prove (4.2), we have to compare lFmk0
,mk0(M,Dηx , z) for

all z ∈ M first. There are two cases:

Case 1. z /∈ ϕ−1
mk0

(
ϕmk0(x)

)
.

By (2.1) and the fact that η̂x has order lower than 1 away from ϕ−1
mk0(

ϕmk0(x)
)
, we have

(4.4) lFmk0
,mk0(M,Dηx , z) � lctx(M,Dη̂x) = 1.

Case 2. z ∈ ϕ−1
mk0

(
ϕmk0(x)

)
.

In this case we claim that

χFmk0
,mk0(M,Dηx , z) =

(
lFmk0

,mk0(M,Dηx , z), μFmk0
,mk0(M,Dηx , z)

)
does not depend on z, or equivalently, χFmk0

,mk0(M,Dηx , ·) is constant

on ϕ−1
mk0

(
ϕmk0(x)

)
. It suffices to show that χFmk0

,mk0(M,Dηx , ·) is lo-

cally constant on ϕ−1
mk0

(
ϕmk0(x)

)
since ϕ−1

mk0

(
ϕmk0(x)

)
is connected. Let

n = dimM and p = dimH0
(
M,m(k0KM − Fk0)

)
− 1. Recall that U is

chosen so that properties (i) and (ii) above hold. Therefore, we may
choose a coordinate chart

(P, {t = (t1, . . . , tp)})
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of PH0
(
M,m(k0KM − Fk0)

)∗
centered at ϕmk0(z) = ϕmk0(x) and a

coordinate chart

(Q, {τ = (τ1, . . . , τm)})

of M centered at z with

τ(Q) = {(τ1, . . . , τn) ∈ Cn : |τj | < 1, j = 1, . . . , n}

such that

(1) ϕmk0(Q) ⊆ P ,
(2) imϕmk0 is described locally by tq+1 = · · · = tp = 0, and
(3) the map ϕmk0 is described locally by

(τ1, . . . , τq, . . . , τn) �−→ (τ1, . . . , τq, 0, . . . , 0).

(τq+1, . . . , τn) is then a local coordinate system of ϕ−1
mk0

(ϕmk0(x)). For

any a = (aq+1, . . . , an) with |aj | < 1, j = q + 1, . . . , n, we let Qa be the
subset of Q with

τ(Qa) = {(τ1, . . . , τq, aq+1, . . . , an) ∈ Cn : |τj| < 1, j = 1, . . . , q}

via the coordinate system τ . By the definition of ϕmk0 , there exists a
hyperplane

H ⊂ PH0
(
M,m(k0KM − Fk0)

)∗
such that Dη̂x = ϕ−1

mk0
(H). Choose a defining function f(t1, . . . , tp) of

H in the chart P . Then f(τ1, . . . , τq, 0, . . . , 0) is a defining function of
Dη̂x in the chart Q. This function does not involve coordinates along

the direction of ϕ−1
mk0

(U). This means that Dη̂x ∩ Q is the total space

of an isotrivial deformation of singularity with base ϕ−1
mk0

(ϕmk0(x)) ∩
Q. Therefore, when using log resolutions of (Q,Dη̂x ∩ Q) to compute

χ0,mk0(M,Dη̂x , z) for z ∈ ϕ−1
mk0

(ϕmk0(x)), we may take a log resolution

of (Qz,Dη̂x∩Qz) and then take the product of it with ϕ−1
mk0

(ϕmk0(x))∩Q.

Using this particular kind of log resolution we see that χ0,mk0(M,Dη̂x , ·)

is locally constant, and hence constant along ϕ−1
mk0

(ϕmk0(x)). Next we
show that

(4.5) χFmk0
,mk0(M,Dηx , z) = χ0,mk0(M,Dη̂x , z)

for z ∈ ϕ−1
mk0

(ϕmk0(x)). It is clear from the definition that this holds for z

in the Zariski dense subset ϕ−1
mk0

(ϕmk0(x))−suppFmk0 of ϕ
−1
mk0

(ϕmk0(x)).

Now suppose that z ∈ ϕ−1
mk0

(ϕmk0(x)) ∩ suppFmk0 . By the upper semi-

continuity of χFmk0
,mk0(M,Dηx , ·) and Lemma 2.2, we conclude that

(4.5) holds, and hence χFmk0
,mk0(M,Dηx , ·) is constant on ϕ−1

mk0
(ϕmk0(x)).

Finally, (4.2) holds by (4.1) and (4.4). This completes the proof. q.e.d.

Now we consider projective manifolds of general type. We first recall a
fundamental fact. By [9] and [19], for each n ∈ N, there exists mn ∈ N

such that ϕ|mKM | : M ��� PH0(M,mKM )∗ maps M birationally to its
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image for any n-dimensional projective manifold M of general type and
any m � mn. We fix such an mn greater than n+ 1.

Theorem 1.3. Let M and M ′ be n-dimensional projective manifolds
of general type. For a sufficiently large and sufficiently divisible integer
m, if ι : H0(M ′, rKM ′) → H0(M, rKM ) is a linear isometry with respect
to 〈〈 〉〉m, then one can find a birational map ψ : M ��� M ′ and a unit
complex number c such that cι = ψ∗. Moreover, every number r =
2m(n + 2)!jM,M ′mn will do the job when m > 2n + 2, where jM,M ′ is
the least common multiple of the Cartier indices of M and M ′.

Since the proof is the same as that of Theorem 1.2, we just outline
how it goes. We need to analyze the pair of numbers k and m in the
proof of Theorem 1.2. The key point is to achieve Fmk = mFk. Kollár’s
effective base point freeness theorem ([15], 1.1 Theorem) says that if
a log pair (Y,Δ) is proper and klt of dimension n, L is a nef Cartier
divisor on Y , and a ∈ N is such that aL− (KY +Δ) is nef and big, then
Bs|2(n + 2)!(a + n)L| = ∅. Applying this in the case Δ = 0, a = 2 and
L = jKY , where Y is a minimal model of M (which exists by [2] and [9])
and j = jY , the Cartier index of Y , we have that Bs|2m(n+2)!jKY | = ∅
if m � n + 2. By passing to a birational model of M , we may assume
that we have a morphism π : M → Y . Consider the ramification formula
jKM = π∗(jKY )+E. E is effective since (Y, 0) is a terminal pair. Then
we have F2m(n+2)!j = 2m(n+2)!E if m � n+2 (by possibly passing to a
nonsingular birational model of M). The other parts of the proof of 1.2
work as before. So we reach the same condition m > 2n+2. The factor
mn is necessary to make ϕmKM

and ϕmKM′ map M and M ′ birationally
to their images.

5. The Proof of Theorem 2.1

Finally, we come to the technical core of this paper. In this section
we will give a proof of Theorem 2.1. The proof will be broken into a
sequence of lemmas. We will deal with several integrals in the following.
In most cases the integrand will be a function multiplied with a “vol-
ume element” in the classical sense. In some cases we will use exterior
differential forms to compute the integrands after changing variables,
but when integrating we always go back to the classical setting.

We need some basic estimates for the asymptotic order of some mono-
mial integrals of specific forms. We adopt the same setting and the same
rule of abbreviating notations as in 2.1. Recall that for 0 < p � 1/2,
A ∈ Zn

�0, and B ∈ Rn
�0 the function

Ψ : C −→ R�0
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is defined by setting

Ψ(t) =

∫
Δ
g(X,Y )

∣∣ZA + tφ(Z)
∣∣2p∣∣Z∣∣2BdXdY.

We will assume that A ∈ Zn
�0 and B ∈ Rn

�0 in Lemmas 5.3, 5.4, and
5.5.

Definition 5.1. For (α, β) ∈ R× Z, we define Fα,β : C \ {0} −→ R

by setting for t ∈ C \ {0}

Fα,β(t) =

⎧⎪⎪⎨⎪⎪⎩
|t|α

(
ln 1

|t|

)β−1
if α 
= 0,

|t|α
(
ln 1

|t|

)β
if α = 0.

The following lemma is obvious.

Lemma 5.1. Let (l1, μ1), (l2, μ2) ∈ R× Z. We have

(l1, μ1) > (l2, μ2) ⇐⇒ Fl2,μ2(t) = o
(
Fl1,μ1(t)

)
as t −→ 0,

where > is the order relation introduced in Definition 2.1.

Definition 5.2. For A ∈ Rn
�0, B ∈ Rn, and t ∈ C, we define

I+(A,B, t) =

∫
Δ∩{|Z|A�|t|}

∣∣Z∣∣2B dXdY

(which could be ∞) and

I−(A,B, t) =

∫
Δ∩{|Z|A�|t|}

∣∣Z∣∣2B dXdY .

We state a calculus lemma without proof.

Lemma 5.2. Let l = l(A,B) and μ = μ(A,B) (see 2.1). We have

I−(A,B, t) =

⎧⎨⎩
O(1) if l > 0,

O
(
F2l,μ(t)

)
if l � 0,

and
I+(A,B, t) = O

(
F2l,μ(t)

)
if l > 0

as t −→ 0.

The proof of this lemma is elementary and will be omitted. For readers
who are interested in its proof, we refer them to the changes of variables
used in the proof of Lemma 5.5 below.

There are two types of inequalities that will be used many times
below: for any 0 < p < 1, we fix two constants δ(p) > 0 and C(p) > 0
such that

(5.1)
∣∣|1 + w1|

2p − |1 +w2|
2p
∣∣ � C(p)|w1 − w2|
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for any two complex numbers w1 and w2 with |wj | � δ(p); we also have
the “triangle inequality”

(5.2)
∣∣|a+ b|2p − |a|2p

∣∣ � |b|2p,

for all a, b ∈ C.
Here we make a convention that will be valid throughout the rest of

the paper. By our assumption (Section 2.1) g and φ both admit smooth
extension to a neighborhood of Δ, so we may assume that they and their
first-order partial derivatives are all bounded by a number N > 0, which
will be fixed in the following. We will also have to apply a “mean value
theorem”-type argument at several places. In these arguments, there
will be some positive constants that can usually be chosen to depend
only on N and C(p) but whose precise values do not matter much for our
purpose. If this is the case, we will denote them by N1, N2, . . . without
figuring out their precise dependence in N and C(p).

From now on we assume that A ∈ Zn
�0 and B ∈ Rn

�0.

Lemma 5.3. Let l = l(A,B). If 2l + 2p > 1, then

Ψ(t)−Ψ(0) = O(|t|)

as t −→ 0.

Proof. Fix δ such that 0 < δ < δ(p).

Ψ(t)−Ψ(0) =

∫
Δ

g(X,Y )
(∣∣ZA + tφ(Z)

∣∣2p − ∣∣ZA
∣∣2p) ∣∣Z∣∣2BdXdY

=

∫
Δ∩{|Z|A�

N|t|
δ

}

g(X,Y )
(∣∣ZA + tφ(Z)

∣∣2p − ∣∣ZA
∣∣2p) ∣∣Z∣∣2BdXdY

+

∫
Δ∩{|Z|A�

N|t|
δ

}

g(X,Y )

(∣∣∣∣1 + tφ(Z)

ZA

∣∣∣∣2p − 1

) ∣∣Z∣∣2pA+2B
dXdY .

By (5.2), the first term is bounded in absolute value by

N1+2p |t|2p I+

(
A,B,

N |t|

δ

)
,

which, as t −→ 0, is

O

(
|t|2l+2p

(
ln

1

|t|

)μ−1
)

by Lemma 5.2, and hence is O(1) as t −→ 0.
Note that ∣∣∣∣tφ(Z)

ZA

∣∣∣∣ � |t|N

|Z|A
� δ < δ(p).
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By (5.1), the second term is bounded in absolute value by

C(p)N2 |t| I−

(
A,B +

(
p−

1

2

)
A,

N |t|

δ

)
,

which is O(|t|) as t −→ 0 by Lemma 5.2, since 2l + 2p > 1 implies

l
(
A,B + (p− (1/2))A

)
= l + p−

1

2
> 0.

q.e.d.

To keep notation shorter, we adopt the following abbreviations for
coordinates (recall the definition of μ in 2.1):

Z = (z, z′)

with

z = (z1, . . . , zμ) and z′ = (zμ+1, . . . , zn),

and

(X,Y ) = (x, y, x′, y′)

with

(x, y) = (x1, y1, . . . , xμ, yμ)

and

(x′, y′) = (xμ+1, yμ+1, . . . , xn, yn),

where

xj = Re zj , yj = Im zj ,

j = 1, . . . , n. Let

Δ0 = {z : |zj | � 1, j = 1, . . . , μ},

and

Δ
′
= {z′ : |zj | � 1, j = μ+ 1, . . . , n}.

Lemma 5.4. Let l = l(A,B) and μ = μ(A,B). If 2l + 2p � 1, then

Ψ(t)−Ψ(0)−

∫
Δ

g(0, 0, x′, y′)
(∣∣ZA + tφ(0, z′)

∣∣2p − ∣∣ZA
∣∣2p) ∣∣Z∣∣2BdXdY

= o
(
|t|F2l+2p−1,μ(t)

)
as t −→ 0.

Proof. Write

Ψ(t)−Ψ(0)−

∫
Δ

g(0, 0, x′, y′)
(∣∣ZA + tφ(0, z′)

∣∣2p − ∣∣ZA
∣∣2p) ∣∣Z∣∣2BdXdY

= I1 + I2 + I3 + I4,
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where

I1 =

∫
Δ∩{|Z|A�

N|t|
δ

}

g(X,Y )
(∣∣ZA + tφ(Z)

∣∣2p − ∣∣ZA + tφ(0, z′)
∣∣2p)

∣∣Z∣∣2BdXdY,

I2 =

∫
Δ∩{|Z|A�

N|t|
δ

}

(
g(X,Y )− g(0, 0, x′, y′)

) (∣∣ZA + tφ(0, z′)
∣∣2p − ∣∣ZA

∣∣2p)
∣∣Z∣∣2BdXdY,

I3 =

∫
Δ∩{|Z|A�

N|t|
δ

}

g(X,Y )

(∣∣∣∣1 + tφ(Z)

ZA

∣∣∣∣2p − ∣∣∣∣1 + tφ(0, z′)

ZA

∣∣∣∣2p
)

∣∣Z∣∣2B+2pA
dXdY,

I4 =

∫
Δ∩{|Z|A�

N|t|
δ

}

(
g(X,Y )− g(0, 0, x′, y′)

)(∣∣∣∣1 + tφ(0, z′)

ZA

∣∣∣∣2p − 1

)
∣∣Z∣∣2B+2pA

dXdY .

We let er = (0, . . . , 0,
r−th
1 , 0, . . . , 0) ∈ Rn, r = 1, . . . , n.

Estimate of I1:

By (5.2) and the mean value theorem (applied to the function φ(·, z′)),∣∣|ZA + tφ(Z)|2p − |ZA + tφ(0, z′)|2p
∣∣ � |t|2p

∣∣φ(Z)− φ(0, z′)
∣∣2p

� N1 |t|2p
(

μ∑
r=1

|zr|

)2p

� N2 |t|2p
μ∑

r=1
|zr|

2p

for some N1 and N2 > 0. Therefore,

|I1| � N N2 |t|2p
μ∑

r=1

I+

(
A,B + per,

N |t|

δ

)
.

For r = 1, . . . , μ(= μ(A,B)), we have two possibilities:

(1) μ(A,B) = 1. Then l′ := l(A,B + pe1) > l(A,B) = l.

(2) μ(A,B) > 1. Then l′ := l(A,B + per) = l(A,B) and

μ′ := μ(A,B + per) = μ(A,B)− 1.

According to the order defined in Definition 2.1, we have in both cases

(l, μ) =
(
l(A,B), μ(A,B)

)
>
(
l(A,B + per), μ(A,B + per)

)
= (l′, μ′).
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In particular, l′ � l > 0. By Lemmas 5.1 and 5.2, we have

|t|2pI+
(
A,B + per,

N |t|
δ

)
= O

(
|t|2pF2l′,μ′(t)

)
= o

(
|t|F2l+2p−1,μ(t)

)
as t −→ 0, r = 1, . . . , μ.
Therefore,

I1 = o
(
|t|F2l+2p−1,μ(t)

)
as t −→ 0.

Estimate of I2:

We have

(5.3)
∣∣g(X,Y )− g(0, 0, x′, y′)

∣∣ � N3

μ∑
r=1

|zr|

on Δ for some N3 > 0. By (5.2),∣∣|ZA + tφ(0, z′)|2p − |ZA|2p
∣∣ � |t|2p

∣∣φ(0, z′)∣∣2p � N2p|t|2p.

Therefore, by Lemma 5.2,

|I2| � N2pN3 |t|2p
μ∑

r=1

I+

(
A,B +

1

2
er,

N |t|

δ

)
.

Similarly, for r = 1, . . . , μ(A,B), we have two possibilities:

(1) μ(A,B) = 1. Then l′′ := l(A,B + (1/2)e1) > l.

(2) μ(A,B) > 1. Then l′′ := l(A,B + (1/2)er) = l and

μ′′ := μ(A,B + (1/2)er) = μ− 1.

We have in both cases

(l, μ) > (l′′, μ′′).

In particular, l′′ � l > 0. By Lemmas 5.1 and 5.2, we have

|t|2pI+
(
A,B + 1

2er,
N |t|
δ

)
= O

(
|t|2pF2l′′,μ′′(t)

)
= o

(
|t|F2l+2p−1,μ(t)

)
as t −→ 0, r = 1, . . . , μ. Therefore,

I2 = o
(
|t|F2l+2p−1,μ(t)

)
as t −→ 0.

Estimate of I3:

Note that the domain of integration indicates that∣∣∣∣tφ(Z)

ZA

∣∣∣∣ � δ and

∣∣∣∣tφ(0, z′)ZA

∣∣∣∣ � δ.
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By (5.1) and the mean value theorem, there exists N4 > 0 such that∣∣∣∣∣
∣∣∣∣1 + tφ(Z)

ZA

∣∣∣∣2p − ∣∣∣∣1 + tφ(0, z′)

ZA

∣∣∣∣2p
∣∣∣∣∣ � C(p)

∣∣∣∣ tφ(Z)

ZA
−

tφ(0, z′)

ZA

∣∣∣∣
� N4

|t|

|Z|A

μ∑
r=1

|zr|.

Therefore,

|I3| � N N4 |t|

μ∑
r=1

I−

(
A,B +

(
p−

1

2

)
A+

1

2
er,

N |t|

δ

)
.

Two situations may occur:

(1) l′′′ := l
(
A,B + (p− 1

2)A+ 1
2er

)
> 0. Then, by Lemma 5.2,

|t|I−
(
A,B +

(
p− 1

2

)
A+ 1

2er,
N |t|
δ

)
= |t|O(1) = O(|t|),

which can be shown to be

o
(
|t|F2l+2p−1,μ(t)

)
as t −→ 0 by definition.

(2) l′′′ := l
(
A,B + (p− 1

2)A+ 1
2er

)
� 0. Let

μ′′′ := μ(A,B + (p− (1/2))A + (1/2)er).

Then, by definition,

μ′′′ = μ(A,B + (1/2)er).

(More precisely, μ(A,B + kA) = μ(A,B) for all k ∈ R.) On the
other hand,

l′′′ = l(A,B + (1/2)er) + p− (1/2) � l + p− (1/2),

and the last equality holds only if

μ = μ(A,B) > μ(A,B + (1/2)er),

as in the previous two estimates. In summary, we always have

(l, μ) > (l′′′, μ′′′).

By Lemma 5.2,

|t|I−
(
A,B +

(
p− 1

2

)
A+ 1

2er,
N |t|
δ

)
= |t|O

(
F2l′′′,μ′′′(t)

)
= o

(
|t|F2l+2p−1,μ(t)

)
as t −→ 0, r = 1, . . . , μ.



PSEUDONORMS AND THEOREMS OF TORELLI TYPE 265

Therefore,

I3 = o
(
|t|F2l+2p−1,μ(t)

)
as t −→ 0.

Estimate of I4:

Again, the domain of integration indicates that
∣∣∣ tφ(0,z′)

ZA

∣∣∣ � δ, and hence∣∣∣∣ ∣∣∣1 + tφ(0,z′)
ZA

∣∣∣2p − 1

∣∣∣∣ � C(p)
∣∣∣ tφ(0,z′)

ZA

∣∣∣ � NC(p) |t|
|Z|A

.

By (5.3), ∣∣g(X,Y )− g(0, 0, x′, y′)
∣∣ � N3

μ∑
r=1

|zr|.

Therefore,

|I4| � NC(p)N3 |t|

μ∑
r=1

I−

(
A,B +

(
p−

1

2

)
A+

1

2
er,

N |t|

δ

)
and the remained part is the same as the last part of the estimate of I3.
We get

I4 = o
(
|t|F2l+2p−1,μ(t)

)
as t −→ 0.

This completes the proof. q.e.d.

Lemma 5.5. Let l = l(A,B) and μ = μ(A,B). We have∫
Δ

g(0, 0, x′, y′)
(∣∣ZA + tφ(0, z′)

∣∣2p − ∣∣ZA
∣∣2p) ∣∣Z∣∣2BdXdY

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O
(
|t|
(
ln 1

|t|

)μ)
if 2l + 2p = 1,

c(A,B, φ) |t|2l+2p
(
ln 1

|t|

)μ−1

+o

(
|t|2l+2p

(
ln 1

|t|

)μ−1
) if 2l + 2p < 1

as t −→ 0. If 2l + 2p < 1, then c(A,B, φ) � 0 and

c(A,B, φ) = 0 ⇐⇒ φ(0, . . . , 0, zμ+1, . . . , zn) ≡ 0.

Proof. The first part of the proof will be devoted to showing (5.5), be-
low. For any multi-index A ∈ Zn

�0, we write A = (a, a′), a = (a1, . . . , aμ),
and a′ = (aμ+1, . . . , an). By Fubini’s theorem,∫

Δ

g(0, 0, x′, y′)
(∣∣ZA + tφ(0, z′)

∣∣2p − ∣∣ZA
∣∣2p) ∣∣Z∣∣2BdXdY
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=

∫
Δ

′

g(0, 0, x′, y′)

⎛⎜⎝ ∫
Δ0

(∣∣∣∣1 + tφ(0, z′)

zaz′a′

∣∣∣∣2p − 1

)
|z|2b+2padxdy

⎞⎟⎠
|z′|2b

′+2pa′dx′dy′.

We denote the inner integral by

I(z′) =

∫
Δ0

(∣∣∣∣1 + tφ(0, z′)

zaz′a′

∣∣∣∣2p − 1

)
|z|2b+2padxdy.

Consider the following change of variables:

zj =
(
|t|

1
μ rj

) 1
aj e

iθj
aj , j = 1, . . . , μ.

We have

dzj ∧ dzj
|zj |2

= −
2i

a2j

drj
rj

∧ dθj

and

dxj ∧ dyj =
i

2
dzj ∧ dzj =

1

a2j

(
|t|

1
μ rj

) 2
aj

drj
rj

∧ dθj

for each j. Under this transformation the original region Δ0 is trans-
formed into

0 � rj � |t|−
1
μ and 0 � θj � 2ajπ,

j = 1, . . . , μ. We adopt the following abbreviations:

R = r1 · · · rμ,

dR

R
=

dr1
r1

· · ·
drμ
rμ

,

and

dΘ = dθ1 · · · dθμ.
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We have

I(z′) =

∫ 2ajπ

θj=0

∫ |t|
− 1

μ

rj=0

(∣∣∣∣1 + tφ(0, z′)

|t|Rei(θ1+···+θμ)z′a
′

∣∣∣∣2p − 1

)

|t|2l+2p R2l+2p

a21 · · · a
2
μ

dR

R
dΘ

=
|t|2l+2p

a1 · · · aμ

∫ 2π

θj=0

∫ |t|
− 1

μ

rj=0

(∣∣∣∣1 + tφ(0, z′)

|t|Rei(θ1+···+θμ)z′a
′

∣∣∣∣2p − 1

)

R2l+2p dR

R
dΘ

=
(2π)μ−1|t|2l+2p

a1 · · · aμ

∫ 2π

θ=0

∫ |t|
− 1

μ

rj=0

(∣∣∣∣1 + tφ(0, z′)

|t|Reiθz′a′

∣∣∣∣2p − 1

)

R2l+2p dR

R
dθ.

If μ = 1, then

I(z′) =
|t|2l+2p

a1

∫ 2π

0

∫ |t|−1

0

(∣∣∣∣1 + tφ(0, z′)

|t|ρeiθz′a′

∣∣∣∣2p − 1

)
ρ2l+2p dρ

ρ
dθ.

By setting w = |t|
t
ρeiθz′a

′
= u+ iv, we obtain

I(z′) =
|t|2l+2p|z′|−(2l+2p)a′

a1

∫
|w|� |z′|a

′

|t|

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2dudv.

Now we consider the case μ > 1. Choose a basis {v1, . . . , vμ−1} of Rμ−1

and let vμ = −(v1 + · · ·+ vμ−1). We define linear functions

Lj : τ = (τ1, . . . , τμ−1) ∈ Rμ−1 �−→ vj · τ ∈ R,

where · means the euclidean inner product on Rμ−1. Finally, we let

D =

∣∣∣∣∣∣∣∣∣∣
det

⎛⎜⎜⎜⎜⎝
v1
·
·
·

vμ−1

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
.

Now we make another change of variables for (r1, . . . , rμ) with new vari-
ables (τ1, . . . , τμ−1, ρ) as follows:

rj = ρ
1
μ e

Lj (τ)

μ ,

j = 1, . . . , μ. We have
r1 · · · rμ = ρ
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and
drj
rj

=
1

μ

(
dρ

ρ
+ vj · dτ

)
for j = 1, . . . , μ. Therefore

dr1
r1

∧ · · · ∧
drμ
rμ

= det

⎡⎢⎢⎣ 1

μ

⎛⎜⎜⎝
v1 1

· · ·
vμ−1 1
vμ 1

⎞⎟⎟⎠
⎤⎥⎥⎦ dτ1 ∧ · · · ∧ dτμ−1 ∧

dρ

ρ

and
dr1
r1

· · ·
drμ
rμ

=
D

μμ−1

dρ

ρ
dτ1 · · · dτμ−1.

Under this transformation, the condition

0 � rj � |t|−
1
μ

for j = 1, . . . , μ becomes

τ ∈ Rμ−1 and 0 � ρ �
1

|t|
e−G(τ),

where
G(τ) = max

1�j�μ
Lj(τ).

Let

V0 =
μD

μ− 1
be the volume of the polytope generated by v1, . . . , vμ−1. As in the case
μ = 1, setting

w =
t

|t|
ρeiθz′a

′
= u+ iv,

we obtain

I(z′) =
(2π)μ−1(μ − 1)V0|t|

2l+2p|z′|−(2l+2p)a′

a1 · · · aμμμ
J(z′),

where

J(z′) =

∫
Rμ−1

[∫ 2π

0

∫ 1
|t| e

−G(τ)

0

(∣∣∣∣1 + tφ(0, z′)

|t|ρeiθz′a′

∣∣∣∣2p − 1

)
ρ2l+2p dρ

ρ
dθ

]
dτ

=

∫
Rμ−1

[∫
|w|� |z′|a

′

|t|
e−G(τ)

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2dudv

]
dτ .

By Fubini’s theorem,

J(z′) =

∫
|w|� |z′|a

′

|t|

V

(
ln

(
|z′|a

′

|w||t|

))(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2dudv,

where
V (q) := Vol

{
τ ∈ Rμ−1 |G(τ) � q

}
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for any q > 0. V (q) = V (1)qμ−1 since G is positively homogeneous.
Therefore,

J(z′) = V (1)

∫
|w|� |z′|a

′

|t|

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)

|w|2l+2p−2

(
ln

(
|z′|a

′

|w||t|

))μ−1

dudv

=
∑

α+β+γ=μ−1

V (1)(μ − 1)!

α!β!γ!

(
ln

1

|t|

)α (
ln |z′a

′
|
)β

Kγ

(
|z′|a

′

|t|

)
,

where

(5.4) Kγ(s) =

∫
|w|�s

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2

(
ln

1

|w|

)γ

dudv.

A direct computation shows that V0V (1) = μμ

(μ−1)2 . In summary, if we

let w = u+ iv, then∫
Δ

g(0, 0, x′, y′)
(∣∣ZA + tφ(0, z′)

∣∣2p − ∣∣ZA
∣∣2p) |Z|2B dXdY

=
∑

α+β+γ=μ−1

C ′
μ

α!β!γ!a1 · · · aμ
|t|2l+2p

(
ln

1

|t|

)α

(5.5)

∫
Δ

′

g(0, 0, x′, y′)Kγ

(
|z′a

′
|

|t|

)
|z′|2(b

′−la′)
(
ln |z′a

′
|
)β

dx′dy′,

where

C ′
μ =

⎧⎨⎩ 1 if μ = 1,

(μ − 2)!(2π)μ−1 if μ > 1.

Now it remains to figure out the asymptotic behavior of the terms of
the right-hand side of (5.5). We fix δ such that 0 < δ < min{N, δ(p)}

and decompose

{
w : |w| � |z′|a

′

|t|

}
(which is the domain of integration

in forming

Kγ

(
|z′a

′
|

|t|

)
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from (5.4)) into two parts:

Ω1(t) =

{
w : |w| �

N

δ

}
and Ω2(t) =

{
w :

N

δ
� |w| �

|z′|a
′

|t|

}
.

On Δ
′
× Ω1(t), by (5.2), we have∣∣∣∣∣

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2

(
ln

1

|w|

)γ

|z′|2(b
′−la′)

(
ln |z′a

′
|
)β∣∣∣∣∣

� N2p|w|2l−2

∣∣∣∣(ln 1

|w|

)γ∣∣∣∣ ∣∣∣∣|z′|2(b′−la′)
(
ln |z′a

′
|
)β∣∣∣∣ .(5.6)

The right-hand side of (5.6) is integrable since l > 0 and b′ − la′ > −1
(by the definition of l = l(A,B)). It is also independent of t. Therefore,
the left-hand side of (5.6) contributes an O(1) (as t −→ 0) to the integral
factor of the right-hand side of (5.5).

On Δ
′
× Ω2(t), by (5.1), we have∣∣∣∣∣

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2

(
ln

1

|w|

)γ

|z′|2(b
′−la′)

(
ln |z′a

′
|
)β∣∣∣∣∣

� C(p)|w|2l+2p−3

∣∣∣∣(ln 1

|w|

)γ∣∣∣∣ |z′|2(b′−la′)

∣∣∣∣(ln |z′a′ |)β∣∣∣∣ .(5.7)

There are two situations:

(i) 2l + 2p = 1.

∫
Δ

′

∫
Ω2(t)

∣∣∣∣∣
(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|−1

(
ln

1

|w|

)γ
∣∣∣∣∣

(5.8)

∣∣∣∣g(0, 0, x′, y′)(ln |z′a′ |)β |z′|2(b′−la′)

∣∣∣∣ dudvdx′dy′
� C(p)N

∫
Δ

′

∫
Ω2(t)

|w|−2

∣∣∣∣(ln 1

|w|

)γ∣∣∣∣ dudv |z′|2(b
′−la′)

∣∣∣∣(ln |z′a′ |)β∣∣∣∣ dx′dy′.
The inner integral can be evaluated explicitly by using polar coordinate
system on Ω2(t): write w = reiψ. Then the inner integral becomes
(5.9)

2π

∫ |z′|a
′

|t|

N
δ

∣∣∣∣(ln 1

r

)γ∣∣∣∣ drr =
2π(−1)γ

γ + 1

⎡⎣(ln
|z′|a

′

|t|

)γ+1

−

(
ln

N

δ

)γ+1
⎤⎦ .
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which can be written as a sum each of whose terms is either a constant
or a constant multiple of(

ln(|z′|a
′
)
)κ(

ln
1

|t|

)λ

for some nonnegative integers κ and λ with κ+ λ = γ +1. Substituting
(5.9) back into (5.8) and using that fact that b′ − la′ > −1, we see that
the right-hand side of (5.8) contributes

O

(
|t|

(
ln

1

|t|

)μ)
(as t −→ 0)

to the right-hand side of (5.5).

(ii) 2l + 2p < 1.

b′ − la′ > −1 by the definition of l = l(A,B), and hence in (5.7),

N |w|2l+2p−3

∣∣∣∣(ln 1

|w|

)γ∣∣∣∣ |z′|2(b′−la′)

∣∣∣∣(ln |z′a′ |)β∣∣∣∣
is integrable on Δ

′
×
{
w : |w| � N

δ

}
. By Lebesgue’s dominated conver-

gence theorem, as t −→ 0,∫
Δ

′

∫
Ω1(t)

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2

(
ln

1

|w|

)γ

g(0, 0, x′, y′)|z′|2(b
′−la′)

(
ln |z′a

′
|
)β

dudvdx′dy′

converges to∫
Δ

′

∫
C

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2

(
ln

1

|w|

)γ

g(0, 0, x′, y′)
(
ln |z′a

′
|
)β

|z′|2(b
′−la′)dudv dx′dy′.

Therefore, among the terms of the right-hand side of (5.5), the leading
term is the one with γ = μ− 1. Consequently,∫

Δ0

g(0, 0, x′, y′)
(∣∣ZA + tφ(0, z′)

∣∣2p − ∣∣ZA
∣∣2p) |Z|2B dXdY

= c(A,B, φ)|t|2l+2p

(
ln

1

|t|

)μ−1

+ o

(
|t|2l+2p

(
ln

1

|t|

)μ−1
)
,

where c(A,B, φ) =

Cμ

∫
Δ

′

∫
C

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2g(0, 0, x′, y′)|z′|2(b

′−la′)dudv dx′dy′,
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where

Cμ =

⎧⎪⎨⎪⎩
1
a1

if μ = 1,

(2π)μ−1

a1···aμ(μ−1) if μ > 1.

Taking (when φ(0, z′) 
= 0)

ζ =
w

φ(0, z′)
= ξ + iη,

we have ∫
Δ

′

∫
C

(∣∣∣∣1 + φ(0, z′)

w

∣∣∣∣2p − 1

)
|w|2l+2p−2g(0, 0, x′, y′)|z′|2(b

′−la′)dudv dx′dy′

=

∫
Δ

′

∫
C

(∣∣∣∣1 + 1

ζ

∣∣∣∣2p − 1

)
|ζ|2l+2p−2|φ(0, z′)|2pg(0, 0, x′, y′)|z′|2(b

′−la′)dξdη dx′dy′

=

∫
C

(∣∣∣∣1 + 1

ζ

∣∣∣∣2p − 1

)

|ζ|2l+2p idζdζ

2|ζ|2

∫
Δ

′
|φ(0, z′)|2pg(0, 0, x′, y′)|z′|2(b

′−la′)dx′dy′.

It is an easy exercise to see that the first factor is positive. The second
factor is obviously nonnegative, and is 0 if and only if

φ(0, . . . , 0, zμ+1, . . . , zn) ≡ 0.

This completes the proof. q.e.d.

Combining Lemmas 5.3, 5.4, and 5.5, we see that Theorem 2.1 holds.

Note added in proof: V. Markovic generalizes Royden’s theorem for
more general classes of Riemann surfaces than compact ones, whose
approach simply applies Rudin’s work on isometries between Lp spaces.
Markovic’s argument can be carried out verbatim to higher dimensions
and provides a direct way of completely achieving Yau’s proposal men-
tioned in the introduction. This was relayed to us by S. Antonakoudis
after the current paper had been finished.
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