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GENERALIZED SHEAR COORDINATES
ON THE MODULI SPACES OF
THREE-DIMENSIONAL SPACETIMES

CATHERINE MEUSBURGER & CARLOS SCARINCI

Abstract

We introduce coordinates on the moduli spaces of maximal
globally hyperbolic constant curvature 3d spacetimes with cusped
Cauchy surfaces S. They are derived from the parametrization of
the moduli spaces by the bundle of measured geodesic laminations
over Teichmiiller space of S and can be viewed as analytic contin-
uations of the shear coordinates on Teichmiiller space. In terms
of these coordinates, the gravitational symplectic structure takes
a particularly simple form, which resembles the Weil-Petersson
symplectic structure in shear coordinates, and is closely related
to the cotangent bundle of Teichmiiller space. We then consider
the mapping class group action on the moduli spaces and show
that it preserves the gravitational symplectic structure. This de-
fines three distinct mapping class group actions on the cotangent
bundle of Teichmiiller space, corresponding to different values of
the curvature.

1. Introduction

Moduli spaces of constant curvature spacetimes. Moduli spaces
of three-dimensional constant curvature spacetimes classify the diffeo-
morphism classes of solutions of the Einstein equations on three-
dimensional manifolds. As the Ricci curvature of a three-dimensional
manifold determines its Riemann curvature tensor, all solutions of the
Einstein equations with vanishing stress-energy tensor have constant
curvature A, where A is the cosmological constant. This implies in
particular that three-dimensional Einstein spacetimes, that is, Ricci
constant spacetimes, are all locally isometric to one of three model
Lorentzian geometries: three-dimensional Minkowski space, anti-de Sit-
ter space, or de Sitter space for, respectively, A = 0, A = —1, and
A=1.

As a consequence, three-dimensional Einstein spacetimes can be clas-
sified completely under certain additional assumptions on their causal-
ity structure. This yields a classification of maximal globally hyperbolic
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(MGH) three-dimensional Einstein spacetimes of topology R x S, where
S is an orientable surface, possibly with punctures. Remarkably, these
three-dimensional structures are completely characterized in terms of
two-dimensional structures and their associated moduli spaces—in par-
ticular, those related to hyperbolic geometry and Teichmiiller theory.

Important results in this respect are the work by Mess [30] and Scan-
nell [40], where the diffeomorphism classes of MGH Einstein spacetimes
with a compact Cauchy surface S are classified by the cotangent bundle
over Teichmiiller space T*7(S) for A = 0, two copies of Teichmiiller
space T(S) x T(S) for A = —1, and the space of complex projective
structures CP(S) for A = 1. An explicit geometric construction of such
spacetimes in terms of domains of dependence in the corresponding
model spacetimes was later given by Benedetti and Bonsante [8]. These
domains of dependence are described in terms of earthquakes and graft-
ing along measured laminations, and the solutions for different values of
curvature are related via so-called canonical Wick rotations and rescal-
ings. This allows for a clear geometrical description of the moduli space
of three-dimensional MGH Einstein spacetimes as the bundle ML(S)
of measured geodesic laminations over Teichmiiller space and general-
izes the well-known description of the moduli space of three-dimensional
hyperbolic manifolds by Thurston [43]. Recently, the relation between
Einstein spacetimes for different values of the cosmological constant
was explored in [12, 13, 26, 27, 42] from the perspective of hyperbolic
geometry and Teichmiiller theory, which resulted in a more detailed
understanding of the geometry and their symplectic structure.

The fact that any three-dimensional MGH Einstein spacetime is lo-
cally isometric to one of the model Lorentzian geometries also gives rise
to a classification of such spacetimes in terms of conjugacy classes of
group homomorphism m1(S) — G, where Gy is the isometry group of
the model spacetime. This identifies their moduli spaces with a certain
subspace of the corresponding representation variety Hom(m(S), Gp)/
G or, equivalently, of the moduli space of flat G-connections on S.
This can be viewed as a direct generalisation of the realization of Te-
ichmiiller space T(S) as a connected component of the representation
variety Hom(m(S), PSL(2,R))/PSL(2,R).

From a physics perspective, this is related to the Chern—
Simons formulation of 3d gravity developed by Achucarro-Townsend
[1] and Witten [46] which describes three-dimensional gravity as a G-
Chern—Simons theory on R x S. The representation variety Hom (7 (.5),
G))/Gp then corresponds to the gauge invariant phase space of this
Chern—Simons theory. The fact that only a certain subset of this phase
space corresponds to gravity follows from the non-degeneracy of the
metric, which imposes restrictions on the Chern—Simons connection.
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3d spacetimes, Teichmiiller theory, and quantization. This re-
lation between three-dimensional Einstein geometry, two-dimensional
hyperbolic geometry, and flat connections makes the moduli spaces of
MGH Einstein spacetimes an interesting research topic from different
perspectives. On one hand, Teichmiiller theory is a very rich and well-
developed theory with deep connections with complex analysis, alge-
braic topology, low-dimensional topology, and geometry and also sym-
plectic geometry, to cite but a few; see [34, 21]|. The study of general-
izations of Teichmiiller space and its structures may thus lead to new
insights and techniques for a wide variety of topics in mathematics.

From a physics viewpoint, moduli spaces of MGH Einstein spacetimes
are interesting since they are the diffeomorphism invariant phase space
of gravity in three dimensions. Three-dimensional gravity plays an im-
portant role as a toy model for the quantization of general relativity
that allows one to investigate conceptual questions of quantum gravity
and to develop new approaches to quantization; see [11] and references
therein for an overview. Moreover, the quantization of moduli spaces of
MGH Einstein spacetimes is also of mathematical interest due to their
relation with the moduli spaces of flat connections and Chern—Simons
gauge theory, which connects it directly to the construction of quantum
invariants of three-manifolds and three-dimensional topological quan-
tum field theory [47, 39, 45, 4].

While quantization techniques for Chern—Simons theory are well es-
tablished for compact, semisimple gauge groups, the case of non-compact
groups remains a challenge due to their more complicated represen-
tation theory. A first step in the generalization of the definition of
quantum invariants associated with non-compact Lie groups such as
the group PSL(2,C) are the hyperbolic invariants of Baseilhac and
Benedetti [5, 6], which in turn are closely related with the theory of
quantum Teichmiiller spaces [22, 17] via the quantum dilogarithm of
Faddeev and Kashaev [15]; see also [3, 10].

The challenges in the quantization of moduli spaces of flat connections
for non-compact groups and the close relation with Teichmiiller theory
thus suggest to approach the quantization of the gravitational moduli
spaces by applying or generalizing results from quantum Teichmiiller
theory. In particular, this provides a strong motivation to generalize the
description of Teichmiiller space in terms of Thurston’s shear coordi-
nates [44, 9, 16] to the context of the gravitational moduli spaces.

3d Einstein spacetimes in terms of generalized shear coordi-
nates. The shear coordinate parametrisation of Teichmiiller space has
a direct geometrical interpretation and yields a simple description of
the Weil-Petersson symplectic structure and the action of the mapping
class group, which play a central role in the derivation of quantum Te-
ichmiiller theory. The present article introduces a set of coordinates on
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the moduli spaces GHa (R x S) of MGH Einstein spacetimes that can be
viewed as a natural generalization of Thurston’s shear coordinates to the
three-dimensional Lorentzian context. Similarly to the two-dimensional
case, these generalized shear coordinates are defined by means of an
ideal triangulation of a cusped surface and are obtained via the iden-
tification of the moduli space of MGH Einstein spacetimes with the
bundle of measured geodesic laminations over Teichmiiller space. They
have a direct geometrical interpretation in terms of shearing and bend-
ing of hyperbolic structures along the ideal edges of the triangulation
and allow one to directly determine the associated group homomor-
phisms 71 (S) — Ga. This should also be compared with the work of
Bonahon [9], where complex measured laminations are used to define
complex-valued shear coordinates on the moduli space of hyperbolic
3-manifold.

From a more algebraic perspective, the coordinates introduced in this
article can be understood as analytic continuations of the shear coor-
dinates in Teichmiiller space with values in a two-dimensional commu-
tative real algebra R,, which coincides with the complex numbers for
A = 1, with the dual numbers for A = 0, and with the split complex
numbers for A = —1. This algebra also provides a unified description
of the isometry groups G and their Lie algebras in terms of matrices
with entries in . The Ra-valued shear coordinates then arise from the
generalization of the shear coordinate parametrisation of the holonomy
representations.

The gravitational symplectic structure on GHa (R x S), which is the
restriction of Goldman’s symplectic form [18] on Hom(m(S),Ga)/Gx,
takes a particularly simple form in terms of these generalized shear co-
ordinates. It is purely combinatorial and resembles the Weil-Petersson
symplectic structure on Teichmiiller space in shear coordinates. More-
over, for all values of A, it is also closely related to the cotangent bundle
T*T(S) of Teichmiiller space. In fact, the spaces GHA(R x S), for dif-
ferent values of A, are shown to be isomorphic as symplectic manifolds
to T*T(S).

The second part of the article investigates the action of the mapping
class group Mod(S) on the moduli spaces of MGH Einstein spacetimes.
Concrete expressions for mapping class group action on the general-
ized shear coordinates are derived in terms of Whitehead moves, which
can be viewed as an analytic continuation of the corresponding expres-
sions for shear coordinates on 7(S). The Whitehead moves are shown
to preserve the gravitational symplectic structure and thus induce a
symplectic Mod(S)-action on GHA (R x S), for all values of A. This, in
turn, induces three distinct symplectic actions on the cotangent bun-
dle T*T(S). These results are achieved via a simple decomposition of
the Whitehead moves into terms generated via the symplectic structure
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and linear terms that implement the combinatorial transformation of
the Poisson structure under Whitehead moves.

The Hamiltonians generating the non-linear part of the Whitehead
moves are related to the “imaginary part” of the dilogarithm of the as-
sociated edge coordinate, which is known to be related to the hyperbolic
volume of ideal tetrahedra. We show that this is a direct generalization
of a corresponding result for Teichmiiller space, in which the relevant
Hamiltonian is the real dilogarithm. This gives a clear motivation for
the appearance of the quantum dilogarithm in the quantum theory and
suggests that a quantization of these moduli spaces could be used to

define three-manifold invariants similar to those in [5, 6].
Acknowledgments. The authors thank Jean-Marc Schlenker for help-

ful discussions. This work was supported by the Emmy Noether research
grant ME 3425/1-2 of the German Research Foundation (DFG).

2. Teichmiiller theory and shear coordinates

In this section, we summarize the relevant background on Teichmiiller
theory and Thurston’s shear coordinates. We refer the reader to [34] for
a general introductory overview, but discuss the aspects relevant to this
article in detail to make it self-contained. In the following, S denotes
an orientable surface of genus g with s punctures. We assume that the
surface contains at least one puncture (s > 0) and that its universal

cover is isometric to the hyperbolic plane (29 — 2+ s > 0).
2.1. Teichmiiller space.
The Riemann moduli space and Teichmiiller space. The Rie-

mann moduli space R(S) parametrizes diffeomorphism classes of both
hyperbolic and conformal structures on a given topological surface S.
In the case of punctured Riemann surfaces (s > 0), there are different
versions of this space, depending on the boundary conditions imposed
on the hyperbolic metrics near each puncture [16, 37]. In this article,
we consider the Riemann moduli space of cusped hyperbolic structures.
We thus define the orbifold R(S) as the space of finite-area complete
hyperbolic metrics on S modulo orientation-preserving diffeomorphisms

R(S) = Hyp(S)/Diff " (S).

The orbifold universal cover of the Riemann moduli space R(S) is the
Teichmiiller space T (S), which is the space of finite-area complete hy-
perbolic metrics on S modulo diffeomorphisms isotopic to the identity

T(S) = Hyp(5)/Diffo(S).

The group of deck transformations of the covering 7(S) — R(S) is the
mapping class group of S, which is given as the quotient of the group
Diff () of orientation-preserving diffeomorphisms of S by its normal
subgroup Diff((.5) of diffeomorphisms isotopic to the identity

Mod(S) = Diff *(9)/Diff((9).
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Symplectic structure. Teichmiiller space T (S) carries a canonical
symplectic structure. This can be understood via its relation to the
PSL(2, R)-representation variety, which consists of conjugacy classes of
group homomorphisms 7;(S) — PSL(2,R)

Rep(S, PSL(2,R)) = Hom(m(S), PSL(2,R))/PSL(2, R).

Via the uniformization theorem, points h € T(S) are in one-to-one
correspondence with Fuchsian representations p € Rep(S,PSL(2,R))
with fixed parabolic conjugacy classes around each puncture. Thus Te-
ichmiiller space can be viewed as a connected component of the repre-
sentation variety Repe(S,PSL(2,R)), where the index C indicates the
restriction to fixed parabolic conjugacy classes at the punctures.

For any Lie group G, the representation variety Rep(S,G) coincides
with the moduli space of flat G-connections on S and carries a canoni-
cal non-degenerate closed 2-form, the Atiyah—Bott—Goldman symplectic
form [2, 18], which is determined by the choice of an Ad-invariant sym-
metric bilinear form on g = Lie G. From a physics viewpoint, this moduli
space is the (gauge invariant) phase space of Chern—Simons theory on
the 3-manifold R x S. The Ad-invariant symmetric bilinear form that
characterizes the Atiyah-Bott—Goldman symplectic structure enters in
the definition of the Chern—Simons action and this symplectic structure
can be seen as the associated physical symplectic structure on the phase
space [2].

For the group G = PSL(2,R), the choice of an Ad-invariant sym-
metric bilinear form is unique up to rescaling, and it was shown by
Goldman [18] that the restriction of the associated symplectic struc-
ture to Teichmiiller space 7 (S) C Rep(S, PSL(2,R)) coincides with the
Weil-Petersson Poisson structure on 7(.5).

Measured laminations and earthquakes. Measured geodesic lami-
nations on two-dimensional hyperbolic surfaces and the associated oper-
ation of earthquakes play a prominent role in three-dimensional hyper-
bolic geometry [43, 14, 9, 29] as well as in three-dimensional Lorentzian
geometry [30, 40, 8, 31]. Measured geodesic laminations can be viewed
as generalizations of weighted simple closed geodesics, and earthquakes
are defined via cutting and gluing operations along such geodesics. More
precisely, a measured geodesic laminations on S associated to a hyper-
bolic metric h € T(S) is a pair (A, p) formed by

1) a closed subset A C S that is foliated by non-self-intersecting dis-
joint complete geodesics, called the leaves of the lamination, which
cannot be contracted to punctures; and

2) a positive measure p on the set of arcs transverse to the leaves,
which is invariant under homotopy through transverse arcs and
additive under concatenation of arcs.
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We denote by ML(S) the (total space of the) bundle of measured geo-
desic laminations over T (5), considered up to isotopy.

Note that although the definition of a measured geodesic lamination
makes use of a reference hyperbolic metric h € T(S), there is a canon-
ical identification between measured laminations defined with respect
to any pair of hyperbolic metrics h,h’ € T(S). This follows since any
geodesic for a metric h can be smoothly deformed to a geodesic for a
metric A/, which gives a global identification between the fibers of the
(trivial) bundle ML(S). In the following, however, such an identifica-
tion of measured geodesic laminations for different metrics will not be
convenient, and we shall not rely on any choice of trivialization.

An earthquake is an operation Fq : ML(S) — T(S) that asso-
ciates to each point h € 7(S) and each measured geodesic lamination
A € ML,(S) another point Eq*(h) € T(S), called the earthquake of h
along A. If X is a simple closed geodesic with associated weight p € R,
the hyperbolic metric F¢*(h) is obtained by cutting the hyperbolic sur-
face determined by A along A and gluing the pieces back together after
applying a (right) twist by 2wpu.

A more explicit description of the earthquake operation can be given
in terms of the associated Fuchsian representations of the fundamental
group of S. For a point h € T(S), denote by p : m1(S) — PSL(2,R) the
corresponding Fuchsian representation, which is determined uniquely up
to conjugation via the uniformization theorem. The earthquake Eq*(h)
of h along A is then determined from a new Fuchsian representation
p* @ m(S) — PSL(2,R) constructed as follows. First, consider the lift
A € ML(H?) of A to the universal cover of (S, h). Each leaf [ of X is then
a complete geodesic in the hyperbolic plane, and hence for each point
p € [ there is a unique hyperbolic isometry A, € PSL(2,R) mapping the
imaginary axis to [ , the point ¢ to p, and preserving the orientation. This
allows one to associate to the representation p : w1 (S) — PSL(2,R) and
the lamination A a p-cocycle Zp : m1(S) — PSL(2,R) defined by

(1) Zp(a) = [] Ada,E(wy)  Vaem(S),
pPEANa
where
w/2 0
) B = (% e ) €PSLER

is the hyperbolic translation of length p along the imaginary axis and
iy = €p(A, a)p is the measure of a at p multiplied by the oriented inter-
section number between A and a. The fact that Z g is a p-cocycle

Zp(ab) = Zp(a)Ad, Zp(b),  Va,b e m(S),
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ensures that one obtains a representation p* : 71(S) — PSL(2,R) by
setting

pMNa) = Zg(a)p(a),  Va € m(S).
This representation is again Fuchsian and therefore it determines a
unique hyperbolic metric E¢*(h) € T(S), the earthquake of h
along \.

It was shown by Thurston (see [24] for the proof) that any two hyper-
bolic metrics are related via an earthquake. More precisely, Thurston’s
earthquake theorem states that for any pair of hyperbolic metrics h, h' €
T (S) there exists a unique measured geodesic lamination A € MLy (S)
such that Eq*(h) = h/. In particular, for a given point h € T(S) there
is a bijection MLp(S) — T(S) between the fiber of measured geodesic
laminations over h and Teichmiiller space.

2.2. Shear coordinates on Teichmiiller space.

Definition of shear coordinates on 7(S). A very effective tool in
Teichmiiller theory, in particular in the study of its Poisson geometry
and subsequent quantization, is a special set of global coordinates on
T (S) associated with ideal triangulations of the punctured surface S.
These coordinates were first introduced by Thurston [44] and further
developed by Bonahon [9] and Fock [16] and have a direct geometrical
interpretation. They measure the hyperbolic displacement, or shear, of
adjacent ideal triangles — see also [35] for a related interpretation in
terms of distances between horocycles at each puncture.

Let 7 be an ideal triangulation of the surface .S, that is, a triangulation
of S whose set of vertices coincides with the set of punctures of the
surface. Note that being ideal is a rather restrictive condition on the
triangulation, which determines the number of its vertices, edges, and
faces uniquely. From the formula v — e + f = 2 — 2g for the Euler
characteristic of S together with the relations 2¢ = 3f and v = s, it
follows that the number of edges and faces of the ideal triangulation are
given by e = 6g — 6 + 3s and f =49 — 4 + 2s.

In the following we will also consider the dual graph I' of an ideal
triangulation 7. Note that for a general combinatorial graph the notion
of face is not defined a priori. However, graphs dual to a triangulation
of an oriented surface S carry additional structure—namely, a cyclic
ordering of the incident edges at each vertex induced by the orientation
of the underlying surface. A graph with such a cyclic ordering of the
incident edges at each vertex is called a fat graph. The notion of face
can then be defined as certain closed edge paths on I'. In the case of a
trivalent fat graph dual to a triangulation, a face is a closed edge path of
the graph that takes the “same turn,” either left or right, at each vertex
and which does not pass through an edge twice in the same direction.
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An ideal triangulation 7 of a surface S thus determines uniquely (up
to isotopy) an embedded trivalent dual fat graph I". While different ideal
triangulations of S lead to different embedded fat graphs, the associated
fat graphs are always related by sequences of Whitehead moves (see
Section 2.3). Conversely, for a trivalent fat graph I' there is a unique
(up to diffeomorphism) oriented surface with an ideal triangulation,
which is obtained by gluing punctured discs along the faces of the graph.
Graphs related by a sequence of Whitehead moves give rise to the same
topological surface, and punctured surfaces are therefore in one-to-one
correspondence with trivalent fat graphs modulo Whitehead moves.

Given a surface .S and a corresponding embedded trivalent fat graph
I, one defines Thurston’s shear coordinates on Teichmiiller space T (S)
as follows. Denote by V(I'), E(T"), and F(T"), respectively, the sets of ver-
tices, edges, and faces of I'. A point h € T(S) corresponds to an equiv-
alence class of hyperbolic structures on S and determines an ideal geo-
desic triangulation of S dual to I'. Each edge o € E(I") corresponds to
an ideal hyperbolic square on S or, equivalently, to a m(.S)-equivalence
class of hyperbolic squares in the universal cover. The shear coordi-
nate % = x®(h) assigned to « is then defined as the logarithm of the
cross-ratio associate with the ideal square determined by «.

Working with the upper-half plane model of the hyperbolic plane,
we may normalize this ideal square in such a way that one of the two
adjacent triangles has vertices at —1,0,00 and the other at oo,0,% as
shown in Figure 1. The cross-ratio is then given by the coordinate t € R
of the fourth vertex, and the shear coordinate takes the form z®(h) =
logt.

The shear coordinate = has a simple geometric interpretation as the
shear between the two adjacent ideal triangles. This follows from the
fact that the triangle with vertices 00,0, t is obtained from a reference
triangle with vertices 0, 1, oo by applying the hyperbolic transformation
E(z%) in (2). This transformation preserves the imaginary axis, which

o

-1 0 t

'
'
'
b
1
y
1
'
'
'

Figure 1. Ideal square determined by the edge « of the
fat graph dual to an ideal triangulation.
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0. ¢]

=

-1 0 1l—t
E(z*)
Figure 2. Earthquake with weight x® along the imagi-
nary axis.

is the lift of the ideal geodesic dual to the edge «, and the signed hy-
perbolic distance between a point on the imaginary axis and its image
is exactly x®. This allows one to interpret the coordinate x® as the
weight parameter for an earthquake along the imaginary axis, as shown
in Figure 2.

Besides their rather natural interpretation, an important feature of
shear coordinates is their relation to the holonomies of simple closed
curves on S, which are the images of elements of 71(S) under the as-
sociated Fuchsian representation p : m1(S) — PSL(2,R). For a given
vertex v € V(I'), any simple closed curve a on S is homotopic to a
unique closed-edge path along the fat graph I' starting and ending at v.

Such a closed-edge path corresponds to a sequence (o, .. ., ay,) of edges
of I', and the holonomy of a is given by
(3) pla) = PYE(x®") .- PLE(x),

where E(z) is given by (2) and P¢ is either

11 10
L:<0 1) or R:<1 1>

depending on whether «j comes before or after oy with respect to
the ordering of incident edges at their common vertex. The former
corresponds to a left turn and the latter to a right turn at the ver-
tex between ay and ayy1. Note that this prescription determines the
holonomies only up to the choice of a basepoint, and different choices
give rise to holonomies that are related by conjugation. Also note that
our parametrization of the holonomies is equivalent to the one in [17],
although the matrices L and R are different from the matrices L and R
used there.

As they correspond to deck transformations in the universal cover, the
holonomies encode key geometric properties of the hyperbolic surface
S. For instance, any element a € 71(S) is homotopic to a unique closed
geodesic of S, and its geodesic length [(a) is given by the trace of the
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associated holonomy
Trp(a) = 2cosh(l(a)/2).

The parametrization (3) of the holonomies thus gives rise to a simple
description of the geometric properties of the hyperbolic surface in terms
of the shear coordinates x®.

It is also directly apparent from (3) that the shear coordinates z® :
T(S) — R cannot be all independent but must satisfy certain con-
straints associated with the boundary conditions at the punctures. By
definition, each face of the graph I' corresponds to a puncture and the
holonomy of the associated edge path must be parabolic. On the other
hand, for an edge path (aq,...,a,) around a face, the matrices Py in
(3) are necessarily all equal to L or all equal to R. A simple computation
then shows that the parabolicity condition is equivalent to imposing the
constraint that the sum of shear coordinates associated to the edges of
a given face identically vanishes. More explicitly, for each face i € F(I)
we have
(®) da)= Y Olaa” =0,

acE(T)

where 6%, denotes the multiplicity of the edge « in the face i. Note that
these constraints are linear in the coordinates z®. Thus, denoting by V,
FE, and F' the number of vertices, edges, and faces of I', one can interpret
the constraints as a linear map c : R® — R which identifies 7(S) with
a linear subspace of R¥ of codimension F.

Theorem 2.1 (Fock and Chekhov [17]). The functions x® : T(S) —
R define an embedding  : T(S) — RE whose image is the kernel of the
linear map c: RE — RY whose components are given by (4).

Symplectic structure in shear coordinates. Another remarkable
property of the shear coordinates is that they give rise to a very simple
description of the Weil-Petersson symplectic structure on 7(.S) in terms
of a Poisson structure on R¥. This Poisson structure is given in terms of
combinatorial constants associated with the graph I' [16, 36]. Denoting
by 0/0x% € TR¥ the basis of coordinate vector fields on R¥, one can
characterize this Poisson structure by the Poisson bivector

1 0 0 0 0 0
(5) WWP_? EEE%F) E?xa/\<8x5 02 +W_%)’

Here, the sum is taken over all edges € E(I') and f3,7,0,€ are the
incident edges at the source and target vertices of «, ordered as in
Figure 3. Note that this expression is also valid in the case where some
of the edges 3,7, 6, € are equal.

The corresponding Poisson bracket { , }yp on R¥ is given by

{fi, foYwp = (dfi ®df2)(mwp)  Vfi, f2 € CP(RP).
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B Y

€ ]

Figure 3. Edge « in the trivalent fat graph I' and ad-
jacent edges.

In particular, one obtains for the coordinate functions z® : R¥ — R the
following expression:

(2%, 2% Ywp = (dz® @ dz® ) (mwp) = 73fp = 07 — 570 4§ — 5o’

The Poisson bracket between the components ¢! of the linear constraint
defined in (4) and a general function f € C*(RF) is also easily com-
puted and takes the form

(6)
{f, Ci}Wp = Z aax];{ﬂja,ci}wp = Z 88:1;); <9i5 — 91'«, + 9% — Gie).

a€E(T) acE(T)

This vanishes identically for all f € C*°(R¥), since every face i € F(T")
involves only left or right turns, as can be seen from the fact that a
face containing any of the edges «, 3,7, 0, € in Figure 3 must involve (a
combination of) the edge paths (53,7), (v, @, 9), (J,¢€), or (€, a, 5) or their
inverses. For all of these paths, the corresponding sum of multiplicities
in (6) vanishes and hence the bracket is trivial.

This demonstrates that the components of the linear constraint (4)
are Casimir functions for the Poisson bivector (5) and implies that the
Poisson bivector myy p restricts to a Poisson bivector for the constraint
surface Kerc C R¥. The induced symplectic structure on Teichmiiller
space coincides with the Weil-Petersson symplectic structure as the fol-
lowing theorem states.

Theorem 2.2 (Fock and Chekhov [17], Penner [36, 37]). The linear
constraint ¢ : RE — RF (4) is Casimir with respect to the Poisson bivec-
tor myp on RE and the symplectic quotient determined by ¢ is Poisson
1somorphic to Teichmiiller space with the Weil-Petersson structure.

2.3. The mapping class group action.
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Combinatorial description of the mapping class group. Recall
from the previous subsection that mapping class group Mod(S) is the
orbifold fundamental group of the Riemann moduli space R(S) and is
given as the quotient of the group Diff *(S), of orientation, preserving
diffeomorphisms of S, by its normal subgroup Diff((.S), of diffeomor-
phisms isotopic to the identity. It acts on Teichmiiller space via pull-
back, and a classical result shows this action is properly discontinuous,
although not free.

The choice of an embedded trivalent fat graph I', on S gives rise to a
combinatorial description of the mapping class group and of its action
on Teichmiiller space in terms of shear coordinates. As a first step, we
consider the action of the mapping class group on embedded fat graphs.
Given an element of the mapping class group ¢ € Mod(S) and an
embedded fat graph I' one obtains another, combinatorially equivalent,
embedded fat graph I" = ¢(I') as the image of I' under ¢. Clearly,
if ¢ is a non-trivial element of Mod(S), the isotopy classes of I' and
o(I") are necessarily distinct. Conversely, for any two isotopy classes
I', IV of embeddings of the same combinatorial trivalent fat graph, there
is a unique element of ¢ € Mod(S) such that IV = ¢(I"). Mapping
class group elements can therefore be characterized as pairs of isotopy
classes of embeddings of a given combinatorial trivalent fat graph. In
fact, a result of Penner [36, 37| allows one to decompose elements of the
mapping class group into sequences of elementary graph transformations
between any such a pair.

Two embedded trivalent fat graphs I' and I are said to be related
by a Whitehead move W, : I' — I = T',, along an edge « if T is
obtained from I' by collapsing the edge « into a four-valent vertex and
then expanding it in the opposite direction as shown in Figure 4.

Similarly, two trivalent fat graphs I' and T with ordered edges are
said to be related by a transposition of the edges o and 3 if I is obtained
from I" by exchanging the order of o and 3. Such a transformation will
be denoted by o = (a 3) : I' — I", where (o 8) € Sg is interpreted as
an element of the symmetric group Sg.

B v g

€ ) g’

Figure 4. Whitehead move along a.
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The result in [36, 37] states that any two embeddings I',T" of a
combinatorial edge-ordered trivalent fat graph are related by a sequence
of Whitehead moves and transposition of the edges whose interaction is
characterized by a set of simple relations. In particular, this provides a
presentation of the mapping class group(oid) in terms of generators and
relations.

Theorem 2.3 (Penner [36, 37]). Elements of Mod(S) are in bijec-
tion with finite sequences of elementary graph transformations between
embeddings T, T of a combinatorial edge-ordered trivalent fat graph,
modulo the following relations:

1) (Involutivity) For every edge o € E(T)
W2 = id;
2) (Naturality) For every edge o and every transposition o of edges
oW = Wy(a);

3) (Commutativity) For edges o, B € E(I') that do not share a com-
mon verter
WooWg=WgoWy;
4) (Pentagon) for edges o, f € E(I') sharing exactly one verte,

WqoWgo Wy oWgoW, = (af).

The mapping class group action in shear coordinates. The de-
scription of the mapping class group in terms of elementary graph trans-
formations gives rise to simple and explicit expressions for its action
on Teichmiiller space in terms of shear coordinates. Consider again an
embedded trivalent fat graph I', and denote by z® : 7(S) — R the
coordinate function associated to an edge o € E(T"). For each element
¢ € Mod(S), denote by IV = (') the image of I' under ¢ and by
2'* : T(S) — R the coordinate function for the edge ¢(a) € E(I'). The
mapping class group action Mod(S) x T (S) — T (S) extends to an equi-
variant action Mod(S) x R¥ — R¥. This extended action is determined
uniquely by the condition that the coordinates of ¢*h € T(S) with re-
spect to the embedded graph I' = ¢*(I') agree with the coordinates of
h € T(S) with respect to the embedded graph I"”. In other words, the
coordinate functions 2% : T(S) — R and 2’* : T(S) — R are related by

x/a — (,D(l‘a) = ¢ O(,D*.
From this, it follows that the corresponding group action Mod(S) x
RE — RF is simply given by the change of coordinates z® — 2’® deter-
mined by the two distinct embeddings I',I” of the given combinatorial
fat graph.
As a consequence of Theorem 2.3, it is then sufficient to consider the
transformation of coordinates x¢ — 2/® under Whitehead moves, as
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their transformation under edge transpositions is immediate. Choosing
a point h € T(S) and comparing its shear coordinates before and after
the move, one obtains an expression for the transformation of the shear
coordinates [17]. For the Whitehead move along the edge o« € E(T)
depicted in Figure 4, the relation between the shear coordinates for I'
and those for IV =T, is given by

% /Y = —p®
(7) Wy i { a0 1 289 = 289 log(1 + )
V€ s 2/ = 7€ —log(1 + e7*7),

while all other edge coordinates remain unchanged. This formula allows
one to determine properties of the Whitehead moves via direct com-
putations. In particular, it follows that they satisfy the conditions in
Theorem 2.3; see [17]. It is also straightforward to show that the con-
straints (4) and the Poisson bivector (5) are preserved by (7). More
precisely, the pull-back of the constraint ¢/, defined with respect to the
fat graph IV = I, coincides with the constraint ¢, defined with respect
to I', and the push-forward of the bivector my p, defined with respect
to I, agrees with the bivector i}y, p, defined with respect to I":

c=c oWy, (Wa)smwp = Ty p-

This, therefore, proves that the Whitehead moves induce a symplectic
mapping class group action on Teichmiiller space.

Theorem 2.4 (Fock and Chekhov [17], Penner [36, 37|). The White-
head moves Wy, : RF — RF (7) satisfy the relations of Theorem 2.3.
Furthermore, they preserve the constraints ¢ : R¥ — RY (4) and the
Weil-Petersson Poisson bivector myp (5).

3. Moduli spaces of 3d gravity

In this section, we consider moduli spaces of geometric structures that
arise in the context of 3d gravity—mnamely, the moduli spaces of maximal
globally hyperbolic (MGH) Einstein spacetimes. These moduli spaces
are higher-dimensional generalizations of Teichmiiller space and classify
the diffeomorphism classes of constant curvature Lorentzian metrics on
a three-dimensional manifold M. In the following, M denotes a three-
dimensional manifold of topology R x .S, where S is a compact orientable
genus g surface with s punctures satisfying 2g—2+s > 0. We also restrict
attention to Einstein metrics that are globally hyperbolic with Cauchy
surface S and maximal in the sense that any isometric embedding of M
into another globally hyperbolic spacetime N is a global isometry. See
[7] for details on causality of Lorentzian manifolds.
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3.1. The isometry groups in 3d gravity.

The isometry groups and their Lie algebras. The simplicity of
3d gravity is a consequence of the vanishing of the traceless part of
the Riemann tensor, the Weyl tensor, in three dimensions. It implies
that the Riemann curvature tensor and therefore the sectional curvature
of a three-dimensional manifold are determined uniquely by its Ricci
tensor. It then follows that any Einstein spacetime, a solution of Einstein
equations with vanishing stress—energy tensor, is locally isometric to one
of three model Lorentzian manifolds with sectional curvature given by
the cosmological constant A.

These model spacetimes are three-dimensional Minkowski space M3
for A = 0, anti-de Sitter space AdS3 for A = —1, and de Sitter space
dS3 for A = 1. In the following, we denote these model spacetimes
by Xa, their isometry groups by Ga = Isom(X,), and the associated
Lie algebras by gy = Lie(Gyp). As solutions for different values of the
curvature A can be obtained by simple rescalings of the metrics, we
restrict attention to the cases A =0,—1,1.

The three model spacetimes have a simple description in terms of the
group PSL(2,R), which is outlined in Appendix A, and their isometry
groups are given by

PSL(2,R) x sl(2,R) A=0
Gar = { PSL(2,R) x PSL(2,R) A=-1
PSL(2,C) A=1.
In all cases, the associated Lie algebra ga is a six-dimensional real Lie
algebra and can be described in terms of a common basis for which the
cosmological constant plays the role of a structure constant [46]. This

basis involves a basis {J;}i=0,1,2 of s[(2,R) and three additional basis
vectors {P;}i—0,1,2 such that the Lie bracket is given by

(8)
2 2

2
[T i1 = € Te, [T Pl = €"Pr, [P Pl =—A>_ eiF
k=0 k=0 k=0
where ¢;;; is the totally antisymmetric tensor in three dimensions with
€012 = 1 and indices are raised and lowered with the three-dimensional
Minkowski metric n = diag(—1,1,1). For A = 0, this is simply the
Poincaré algebra in three dimensions. For A = 1 and A = —1, one can
introduce the alternative basis {Jf}izo,m with JZ-lL = % (J,- + Pi/\/j),
in which the Lie bracket of gy reads

[T, T3] = ™ T 755, JF] =0.

This shows that the Lie algebra (8) is isomorphic to sl(2,R) x sl(2,R)
for A =0, to sl(2,R) ®sl(2,R) for A = —1, and to s[(2,C) for A = 1. In
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the following, we also need to consider Ad-invariant symmetric bilinear
forms on gu. In all three cases, the real vector space of such bilinear
forms is two-dimensional, with a basis given by the forms (, ),(, ) :
gA X ga — R defined by

9)  (Ji,Pj) =0, (Ji, J3) = mij, (Pi, Pj) = —Anij,
(Ji, Pj) = nij, (Ji, J;) =0, (P;, Pj) = 0.

A unified description of the Lie algebras. A convenient description
of the isometry groups G and their Lie algebras ga is obtained by
exteding s[(2,R) to a Lie algebra over a commutative real algebra Rj;
see [31]. As a vector space, this algebra Ry is isomorphic to R? and its
multiplication law is given by

(z,y) - (u,v) = (xu — Ayv, xv + yu) Y, y,u,v € R.

Writing 1 = (1,0) and ¢ = (0,1), one obtains a parametrization of
RA analogous to the complex numbers, and consequently we use the
notation Rey(x + ly) = =, Imy(z + ly) = y for all z,y € R. A direct
computation shows that Ry is isomorphic to C with £ =i for A = 1,
to the split-complex numbers for A = —1, and to the dual numbers for
A=0.

Note that, for A = 0, —1, the algebra R has zero divisors. For A =
—1, these are of the form %(1 + /)x with x € R, and one has

S0 - 3(1+0)=1(1=+0), s(1+0)-3(1F0) =0.

This allows one to extend analytic functions f : R — R to analytic
functions f: R_1 — R_q:

fla+ty) =31+ 0Of(x+y)+ 30 =0)f(z—y).
For A = 0, the zero divisors in Ry are of the form £y with y € R. Analytic
functions f : R — R can thus be extended to functions f : Ry — Ry via

fla+ty) = f(z) + Lf (x)y.
Note that these expressions generalize the extension of real analytic
functions f : R — R to complex analytic functions f : C — C and
also give rise to the following generalization of the Cauchy—Riemann
differential equations:

aRegf 8Imgf aRegf almgf
= ) =-\N——".
oz y y ox

The algebra Ry allows one to identify the Lie algebras gp with the Lie
algebra of traceless 2 x 2-matrices with entries in Ry [31]. By considering
a basis {J; }i=0,1,2 of 5[(2, R) with Lie bracket [J;, J;] = e,-ijk and setting
P; = (J;, one obtains the Lie algebras ga with Lie bracket (8). This
description of the Lie algebras gp in terms of Rj also gives rise to a
common description of the bilinear forms (9). They are obtained as the
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real and imaginary parts of the bilinear extension of the Killing form
on s[(2,R) to ga:

(10) (,)=2Rerk (,)=2Imy k,
where k(X,Y) = Tr(XY) for X,Y € ga.

3.2. Einstein spacetimes and their moduli spaces.

Classification of Einstein spacetimes. Generalizing the results sum-
marized in Section 2, we now consider the moduli spaces of maximal
globally hyperbolic (MGH) Einstein metrics of curvature A on M that
induce a complete metric of finite area on the Cauchy surface S modulo
orientation-preserving diffeomorphisms

M (M) = Einp (M) /Diff+(M).

As in the case of the Riemann moduli space, it is convenient to consider
the universal covering space of M (S) by identifying only those metrics
that are related by the subgroup of diffeomorphisms isotopic to the
identity. This leads to the Teichmiiller-like moduli spaces

GHa (M) = Einy (M) /Diffo(M).

One approach to the classification of MGH Einstein spacetimes in
three dimensions is based on their description as quotients of regions in
the model spacetimes by a discrete group of isometries [46, 30, 40, 8].
The resulting classification is analogous to the uniformization theorem
for hyperbolic surfaces in two dimensions and states that MGH Ein-
stein spacetimes are largely determined by their holonomy representa-
tion p : m (M) = m(S) — Ga, which defines the action of 71(S) on
the universal cover of M. More precisely, for A = 0,—1, a MGH FEin-
stein metric g € GHA(M) can be described as follows. First, consider
the universal cover S of the Cauchy surface S. It is shown in [30] that
S isometrically embeds in X, and that the universal cover M of M
is obtained from this embedding. For A = —1, M coincides with the
domain of dependence of S, and for A = 0 it is the chronological future
of this domain of dependence. In other words, the universal cover of
M isometrically embeds in X, and the group of deck transformations
provides a representation of m (M) = 71 (S) into G.

Due to the non-degeneracy of the three-dimensional metric, not all
representations p : m(S) — G arise as holonomy representations of
MGH spacetimes. The allowed representations are also described in [30]
and can be characterized as follows. For A = —1, the allowed holonomy
representations p : m1(S) — PSL(2,R) x PSL(2,R) are the ones that
decompose into two Fuchsian components p;, = pry,0p : m(S) —
PSL(2,R). For A = 0, they are representations p : m1(S) — PSL(2,R) x
s[(2,R) that decompose into a Fuchsian part pg = pry o p : m(S) —
PSL(2,R) and a pp-cocycle 7 = pryo H : m1(S) — sl(2,R) with
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7(ab) = 7(a) + po(a)T(b)po(a)?, Va,b € m1(S).

The moduli spaces for A = —1,0 are thus shown to be in one-to-one
correspondence with certain components of the representation variety
Repe (S, Ga).

For A = 1, the correspondence between holonomy representations
and MGH spacetimes is only locally injective, which means that the
holonomy data is not sufficient to distinguish certain MGH de Sitter
spacetimes. This is a consequence of the fact that the universal cover
of M is in general only immersed in X;. The suitable data for the
classification of such spacetimes is obtained by grafting of hyperbolic
surfaces along measured geodesic laminations, which also provides an
alternative description for the flat and AdS case.

Grafting parametrization. As explained in Appendix A, all three
model spacetimes X are equipped with certain embeddings of the hy-
perbolic plane, either in X, itself (A = —1,0) or in an appropriate
dual space (A = 1). For a spacetime with purely Fuchsian holonomy
po : ™(S) = PSL(2,R) C G, the action of the holonomy group on X,
induces an action on these embedded hyperbolic planes and thus defines
a hyperbolic surface h € T(5). Applying earthquakes along measured
laminations for h, one then obtains a description of all such Fuchsian
spacetimes in terms of the fiber MLj(5).

General MGH spacetimes, whose holonomies are not restricted to the
subgroup PSL(2,R) C G,, are obtained as deformations of these Fuch-
sian spacetimes via grafting. Grafting is an operation Gr : ML(S) —
GHA(M) that associates to each point h € T(S) and each measured
geodesic lamination A € MLy(S) a MGH metric Gr*(h) € GHA(M),
called the grafting of h along A. In terms of representations, the con-
struction is similar to the one of earthquakes on Riemann surfaces and
can be described as follows.

Consider a point h € T(S) with associated Fuchsian representation
po : m(S) — PSL(2,R). Then the grafting of h along A € MLy(S) cor-
responds to another representation p : m1(S) — G, that is the product
p = Zg\; - po of the Fuchsian representation pg and a grafting cocycle
Zé : m1(S) — Ga. Such cocycles are defined in exactly the same way as
the cocycles for earthquakes in (1), only now all measures are multiplied
by the Rp-imaginary unit £. Let A\ € ML(H?) be the lift of A to the
universal cover of (S, h). As the hyperbolic plane is embedded in X, (or
in the associated dual space), there is a well defined notion of rotation
around any leaf [ of X. For any point p € [, this rotation is given by
Ada,E(¢p,), where A, is the hyperbolic isometry mapping the imagi-

nary axis to [, i to p and preserving the orientation, u, is the associated
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oriented weight, as in (1), which determines the angle of rotation and

Gd,uJi) A=0
E(lp) = { (BE(p), E(-p)) A=-1
E(ip) A=1.

Here, J; denotes the generator of hyperbolic translations along the imag-
inary axis on H?; see (39). Note that this rotation is a direct generaliza-
tion of the hyperbolic translation along a geodesic in (2) and that the
cocycle Z2 : 1 (S) — G is obtained as a direct generalization of the
cocycle (1)

(11) Z3(a) = Zi(a) = [[ Ada,E(luy).
PEXNa

In particular, this expression makes it clear that for A = 1 the corre-
spondence between measured laminations and de Sitter holonomy rep-
resentations can only be locally injective, since laminations with the
same support whose measures differ by multiples of 27 give rise to the
same cocycle and hence to the same holonomy representation. This cor-
respondence between MGH Einstein spacetimes and measured lamina-
tions allows one to identify the former with the bundle of measured
geodesic laminations over Teichmiiller space.

Theorem 3.1 (Mess [30], Scannell [40], Benedetti-Bonsante [8]).
Let S be a closed orientable surface of genus g and with s punctures
satisfying 2g — 2 + s > 0. Then the Teichmiiller-like moduli spaces of
MGH Finstein spacetimes on M = R x S are homeomorphic to the
bundle of measured geodesic laminations over Teichmiiller space

GHA(M) = ML(S).

The gravitational symplectic structure. From a physics viewpoint,
the parametrization of MGH spacetimes in terms of holonomies is closely
related to the Chern—Simons formulation of 3d gravity developed in
[1, 46]. In this formulation, the spacetime metric is first decomposed
into a (co-)frame field e and an associated spin connection w, which are
then combined into a G x-connection

A=w'Ji+ P = (W + L)y,
where J; and P; denote the basis of gx introduced in (8). The require-
ments of flatness and vanishing torsion on e and w translate into a
flatness condition /' = dA + AN A = 0 for the Gp-connection. This
allows one to relate the moduli spaces of MGH Einstein spacetimes of
curvature A to the moduli space of flat G on the Cauchy surface S [46].
In particular, the gravitational symplectic structure on GH (M) can be

characterized in terms of the Chern—Simons symplectic structure, which
agrees with the Atiyah-Bott symplectic structure on Repy (S, Ga) [2].
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We start by summarizing the relevant results on this symplectic struc-
ture for a general structure group G. Given an Ad-invariant, non-degen-
erate symmetric bilinear form B : g x g — R on the Lie algebra
g = Lie G, one obtains a canonical symplectic structure on the mod-
uli space Repe(S,G) [2, 18]. It was shown by Goldman [19] that the
corresponding Poisson structure can be expressed in terms of the bilin-
ear form B and the intersection behavior of curves representing elements
of m1(S) as follows. To each class function f € C(G) and each element
a € m(5), one associates a function f, : Repq(S,G) — R defined by
fa(p) = f(p(a)). Then, the Goldman Poisson bracket between two such
functions f,, gp is defined by

(12) {famla(p) = Y epla.b) B(E,(p), Gy, (p)),

pEanb

where the sum is over the intersection points of a,b € 71(S) and €,(a, b)
denotes their oriented intersection number at p. The indices a,,b, on
the right-hand side of (12) stand for representatives of a and b based at
the point p, and the functions I, Gy, : Repe (9, G) — g are defined by

)= o1 Slola)e™),  vXeg
t=0
In the following, it will be convenient to express this Poisson structure
(12) in terms of a basis {T}} of g. Denoting by By = B(T},1;) the
coefficients of the Ad-invariant symmetric bilinear form B with respect
to this basis and by B* the entries of the inverse of the coefficient
matrix, one find that the bracket (12) is given by

B(Fa,(p), X

dim(g)
(13)  B(Fu,(p),Gy,(p)) = > B"B(Fa,,Ti)B(Gs,, T)).
k=1
Note that although the definition of this bracket involves a choice of
paths on S that represent the elements a,b € m1(S), it is shown in [19]
that the bracket does not depend on this choice and induces a symplectic
structure on Rep (5, G).

Theorem 3.2 (Goldman [18, 19]). Formula (12) defines a symplec-
tic structure on Repe(S,G) that coincides with the Atiyah—Bott sym-
plectic structure.

In particular, Goldman’s symplectic structure can be used to describe
the Weil-Petersson structure on Teichmiiller space, by realising the lat-
ter as a connected component of Repe (.S, PSL(2,R)). In other words, for
the structure group PSL(2,R) and the the Killing form ~ on s[(2,R),
the restriction of the Goldman Poisson bracket (12) to the Teichmiiller
component of Repe (S, PSL(2,R)) induces the Weil-Petersson symplec-
tic structure on Teichmiiller space.
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Similarly, the symplectic structures on the moduli spaces of 3d MGH
spacetimes are closely related to the Goldman bracket on Repq (S, Gy ).
However, unlike in the case of PSL(2, R), the space of Ad-invariant sym-
metric bilinear forms on ga is two dimensional, and there are inequiv-
alent versions of the Goldman bracket on these moduli spaces, corre-
sponding to different linear combinations of the bilinear forms (, ) and
(, ) defined in (9). It is shown in [46] that the bilinear forms on gj
that are relevant for 3d gravity are the forms (, ), which according to
equation (10) can be interpreted as the imaginary part of the bilinear
extension of the Killing form « to gx.

Theorem 3.3 (Witten [46]). The gravitational Poisson structure on
the Teichmaller-like moduli spaces of MGH spacetimes agrees with the
restriction of the imaginary part of the Atiyah—Bott—Goldman Poisson
structure on the Gp-representation variety.

Only for this choice of the bilinear form, the Chern—Simons action
agrees with the Finstein—Hilbert action for 3d gravity in Cartan’s for-
mulation. Other choices of the Ad-invariant symmetric bilinear form on
gA yield a different action that gives rise to the same equations of mo-
tion but induces a different symplectic structure on the moduli space.
It should, therefore, be expected that the choice of the correct bilinear
form has important consequences for the resulting quantum theory.

4. Generalized shear coordinates

We are now ready to introduce generalized shear-bending coordinates
on the Teichmiiller-like moduli spaces GHa (M). This will be achieved
by parametrizing the deformation cocycles in terms of analytic shear
coordinates on ML (S), the bundle of Rx-valued measured geodesic
laminations. Using Thurston’s earthquake theorem, we first define shear
coordinates on the bundle ML(S) of measured geodesic laminations
and, using the fact that the earthquake cocycles depend analytically
on the set of measures on a lamination with fixed support, we then
define an analytic extension of these coordinates to MLFA(S). This
construction gives rise to coordinates on the moduli spaces GHa (M)
that have a clear geometric interpretation in terms of grafting along
ideal edges of an ideal triangulation of S. We then derive an expression
for the gravitational symplectic structure on GHa (M) in terms of these
coordinates and describe its relation to the Weil-Petersson symplectic
structure and to the cotangent bundle over Teichmiiller space.

4.1. Definition of shear-bending coordinates.

Shear coordinates for ML(S) via Thurston’s theorem. To con-
struct generalized shear coordinates, we first show how Thurston’s shear
coordinates on Teichmiiller space provide a global parametrization of
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the bundle ML(S) of measured geodesic laminations via Thurston’s
earthquake theorem (see end of Subsection 2.1).

Let h € T(S) be a point in Teichmiiller space, A € MLL(S) a
measured geodesic lamination for h and Eq*(h) € T(S) the earth-
quake of h along A. For an embedded trivalent fat graph I', denote
by 2% = 2%(h) and 2'® = 2%(Eq*(h)) the shear coordinates of h and
Eq*(h) associated to an edge a € E(I'). Comparing the holonomy rep-
resentations (3) of h and Eq¢*(h) in terms of shear coordinates, we ob-
tain the following parametrization of the associated earthquake cocycle
Z3 w1 (S) — PSL(2,R) defined in (1):

(14)
23(a)=p*(@)pla) ! = Ad gy (o B(@ =) -+ Ad g oy E@ = 2).
Here, (aq,...,ay) is the sequence of edges of I" representing a € m1(S)

and Af(z) is the hyperbolic isometry that maps the imaginary axis on
H? to the lift of the ideal geodesic dual to ay,

(15) Aj(z) = PYE(@@ ) Py_y - E(a") Py

This expression for the earthquake cocycle Z g in terms of the difference
between the shear coordinates of Eq¢*(h) and h then allows us to define
coordinates u® : MLy(S) — R parametrizing the fibers of ML(S) via

(16) u*(\) = z(EqM(h)) — z%(h), YA e MLy(S).

Clearly, these coordinates are not all independent but satisfy the same
constraints as the shear coordinates *—mnamely, for each face i € F(I")

(17) du)= > #u*=0.

acE(T)

Interpreting the constraints for the different faces ¢ € F(I') as compo-
nents of a linear map ¢ : R¥ — R¥'| we thus obtain an explicit descrip-
tion of measured geodesic lamination in terms of shear coordinates on
S, which characterizes ML(S) as a linear subspace of RF x R¥.

Proposition 4.1. The coordinate functions z® u® : ML(S) — R
define an embedding (v,u) : ML(S) — RE x RE whose image is the
kernel of the linear map c® c : RE x RF — RF x RF whose components
are given by (4) and (17).

Note also that the coordinate functions u® satisfy certain cocycle con-
ditions reminiscent from the properties of the cocycle (14). For two mea-
sured geodesic laminations A1, Ay € ML,(S), denote by hy = Eg* (h)
and hy = Eq)‘2(h) the images of h under the associated earthquakes,
and let A € MLy, (S) be the measured geodesic lamination with hy =
Eq¥ (h1). Then the definition of u® directly implies the cocycle condi-
tion

u®(N) = u*(N2) — u*(\1).
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Analytic extension to ML%(S). An analogous description of graft-
ing construction is obtained by considering geodesic laminations with /-
imaginary measures and analytic continuation of the coordinates u® de-
fined above. In fact, we may consider more general Rj-valued measured
laminations, defined as pairs (A, u + ¢v) with p and v real transverse
measures supported on A. Given a point h € T(S) and an Rj-valued
measured lamination A € MﬁfA (), we define the (-complexified earth-
quake of h along A in terms of the cocycle ZgG :m1(S) = Ga,

Ziea) = [] Ada,E(up+0ly),  Vaem(S),
pPEAa

with the same notation as in (1) and

(B(n),v1) A=0
(18) E(p+tv)=q(ER+v),BEp-v) A=-1
E(p+iv) A=1.

Note that earthquake and grafting cocycles in (1) and (11) are obtained
as particular cases of this Rx-valued cocycle for purely real or purely
imaginary Rj-measures.

For an embedded trivalent fat graph I" on S, denote by u® : ML(S) —
R the shear coordinates for R-valued measured laminations, as defined
in (16). We now wish to analytically extend the coordinate functions
u® to MLRA(S). This is indeed possible since the earthquake map Eq :
ML(S) — T(S) depends analytically on the measure of laminations
with fixed support [29], and the shear coordinates z¢ : T(S) — R
on Teichmiiller space are also analytic [38]. Together, these imply the
following result.

Proposition 4.2. The coordinates u® : ML(S) — R are analytic
on the measure of laminations with fixed support and therefore admit a
unique analytic extension w® : MLRA(S) — Ry satisfying W pme(s) =

u®.

This allows us to describe the associated shear-bending cocycle Z j\EG :
m1(S) = Gj via

ZEG(CL) = AdA%(x)E(ua” + Eva”) te AdA(f(m)E(ual + Eval),

with the same notation as in (14), u® = Reg(w®), v* = Imy(w®), and

E(u+ (v) as in (18).

Shear-bending coordinates on GH A (M). The analytic extension w®
of the coordinates u® in (16) now allows us to define generalized shear
coordinates on GHa (M) as follows. Consider a point g € GHA(M),
let h € T(S) be the hyperbolic metric determined by the Fuchsian
part of its holonomy representation, and, A\ € MLy(S), the measured
lamination associated with its grafting cocycle. Denoting by xz®(h) the
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shear coordinate of h and by w®(¢)\) the shear coordinate of ¢\ for each
edge a € E(T'), we define the generalized shear coordinate of g as

(19) 2%(g) = 2%(h) + w* (LX) = 2%(g) + ly*(9).

Note that Rey(w®(¢A)) may in general be non-zero and, consequently,
that the real part z%(g) of the generalized shear coordinates does not
necessarily agree with the real part of the corresponding shear coordi-
nates x(h).

As a direct consequence of the definition of generalized shear coordi-
nates, one finds that the holonomy representation of g can be parame-
trized exactly as in (3) by

(20) pla) = PyE(z%")--- PE(z™),

where the real matrices E(z®*) in (3) are replaced by R*-valued matri-
ces E(z?). These terms can be interpreted as a combination of earth-
quakes and grafting along the ideal edges of the triangulation dual to
I". We therefore refer to the generalized shear coordinates z“ as shear-
bending coordinates. Note that these coordinates can also be viewed as
generalizations of the shear-bending coordinates of Bonahon [9] to the
Lorentzian context.

As in the real case, the parametrization (20) of the holonomies in
terms of shear-bending coordinates gives rise to constraints associated
with the faces of I'. A direct computation yields

(21) ci(z) = Z 002 =0,

acE(T)

for each face i € F(I'). These constraints again impose the tracelessness
of the holonomies around the punctures and allow one to realise the
moduli spaces GHA (M) of 3d spacetimes as linear subspaces of Rf ,
thus generalizing Theorem 2.1.

Theorem 4.3. The coordinate functions z% : GHA(S) — Ry in (19)
define an embedding z : GHA(S) — RY whose image agrees with the

kernel of the linear map cy : Rf — Rf whose components are given by
(21).

4.2. The gravitational symplectic structures.

Symplectic structure in terms of shear-bending coordinates.
We now describe how the gravitational symplectic structure on the
moduli space GHA(M) of 3d spacetimes can be expressed in terms of
shear-bending coordinates. First, recall that the gravitational symplectic
structure is given by Goldman’s symplectic structure (12) with structure
group G and the Ad-invariant symmetric bilinear form (,) from (9). As
the latter is the imaginary part Imy(x) of the bilinear extension of the
Killing form on s[(2,R) and that the generalized shear coordinates can
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be interpreted as an Rj-analytic continuation of the shear coordinates
on 7(S), it is natural to expect that Goldman’s symplectic structure
on GHa(M) is given by a Poisson structure on RY that resembles the
Weil-Petersson Poisson structure.

In the following, we shall prove that the gravitational symplectic
structure on GH (M) is induced from the Poisson bivector

0 0
§ : apf
(22) WWP@ A aiyﬁ’
aBEE(F

where the coordinates 2 and y? denote, respectively, the real and imagi-
nary parts of the generalized shear coordinates z% in (19). As the Poisson
bracket of the variables 2%, y? is a combinatorial constant, it is immedi-
ate that the Jacobi identity is satisfied and that this bivector defines a
Poisson structure on R%. Moreover, the bivector wp induces a Poisson
structure on the constraint surface Kercy C RE , where ¢y : RE — RY s
the linear constraint map from Theorem 4.3. This follows directly from
the combinatorics of ma, via its relation to my p, and from the combina-
torics of the constraints. A simple computation shows that the Poisson
bracket of a function f € C°°(R¥) with a component ¢} : RY — Ry of
the constraint map in Theorem 4.3 is given by

{f.hda = (drodeh) (ma) = Ly (eaii + ;f) (001, +85—07).

acE(T)

By an argument similar to the one following equation (6), one finds that
this expression vanishes identically for all f € C*°(RY). This follows
since every face i € F(I") involves only left or right turns, and hence the
linear combinations of the multiplicities #° on the right-hand-side cancel.
Consequently, the constraint cp : RY — Rﬁ is Casimir with respect to
the Poisson structure (22), and the Poisson bivector ma restricts to a
Poisson bivector on Kercy = GHa(M). It is then easy to see that this
Poisson structure is symplectic.

We will now prove that this Poisson structure on GH (M) agrees with
the gravitational symplectic structure, that is, Goldman’s symplectic
structure (12) for the group Gy and the Ad-invariant symmetric bilinear
form (, ) in (9). This yields the following theorem.

Theorem 4.4. The linear constraint cy : RY — RY defined in (21)
1s Casimir with respect to the Poisson bivector mp on RE and induces
a symplectic structure on Kercy = GHp(M). This symplectic structure
coincides with the gravitational Poisson structure on GHa(M).

Proof. The general idea of the proof is to compare the Poisson struc-
ture on RY induced by (22) with Goldman’s symplectic structure (12)
for a pair of class functions f,g : Go — R. Given a,b € m1(95), we
consider the coordinate expressions of the associated functions f,, gy :
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GHA(M) — R, defined by fa(p) = f(p(a)), go(p) = g(p(b)), where
GHA(M) is viewed as a component of Rep(S,Gy) and p : m1(S) — Ga
is a group homomorphism. With the parametrization (20) of this group
homomorphism p in terms of generalized shear coordinates, we are able
compute the Poisson bracket

{fasgtn = (dfa ® dgy)(ma).

The combinatorial structure of the Poisson bivector mp then allows one
to interpret each non-trivial contribution in terms of the essential inter-
section points of closed edge paths representing a and b.

For this, consider an embedded fat graph I' dual to an ideal triangu-
lation of S, and let (a1,...,ap), (B1,...,Bm) be closed edge paths in
I' that are freely homotopic to, respectively, a € m1(S) and b € m(S).
Expression (20) allows one to interpret their holonomies as analytic
functions p(a), p(b) : RY — Gj. The associated functions f,, g, and
F,, Gy in (12) can then be expressed in shear coordinates as

fa(2) = F(PLE(z%") - - PLE(2*))

Imy k(Fy(z),X) = % t_of(P,‘fE(za") - PRE(201)eX).
The conjugation invariance of f then yields the identities
afa - o7 afa . «
TI =3 ot R(FU(:) R, g = D08 Rer w(Fu(2). JE ().

k=1 k=1

where J}! : RE — ga is given by

(23) Ji(2) =Adae(z) 1

with A} defined as in (15) and J; as in (39). This allows us to directly
compute the Poisson bracket of the functions f,, g : RE — R induced
by the bivector mp in (22):

(24) {forgobs =1me( D2 73n(Fa, TG, IP) ).
ap€a,B€bL

To show that this agrees with Goldman’s symplectic structure (12),
note that (24) is obtained as the imaginary part of the contraction of
I, ® Gy € ga ® gp with the bivector

(25) Z ﬂ%ﬁﬂfj ® JP € ga Aga
ap€a,B1€L

with respect to the Ad-invariant bilinear form k on gu. Similarly, Gold-
man’s symplectic structure (12) is obtained by contracting F, ® G}, with
the bivector

2
(26) Z 2¢p(a, b)AdA$®Ag< Z nJ; @ Jj) € ga A ga

pEanb i,7=0
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where J; is given by (39). We now compare the bivectors (26) and (25),
making use of the combinatorial structure of my p.

First, note that ﬂg[}“gl = 0 unless the edges oy and f; are distinct edges
sharing a common vertex. As all vertices of I" are trivalent, this implies
non-zero contributions only arise for either a1 = f;_1, ag_1 = Bi11,
akt1 = Bi—1, or agy1 = Br4+1. We may thus organize the sum in (25) as
a sum over edge path segments in the intersection of edge paths a and b.
Up to cyclic relabeling of the edges and orientation reversal, each con-
tribution involves segments of the form (ag,...,as—1) = (B2,...,Bs—1)
with distinct initial and final edges, ay # 81 and ag # [s.

We thus obtain

> et =3 |k (re B+ e - e )

ap€a,B1€b segm.€anb
s—2
oS e (s s T )
k=2
+ P <J§_1 RIL+JIRI, —J'® Jg)] .

To simplify this expression, we use the following relations between the
coefficients of the Weil-Petersson bivector:

ﬂ_akak+1 _ 1 lf Pk - L,
wr —1 if P, =R,

aton a1 _
s —Twp = Twp fork=1
kPk+1 __ A Q41 o
Twp = Twp , fork=2,...,5 -2
Qs—1Qs QsPs _
—Typ = —Typ fork=s—1,

and the following recursion relation satisfied by the Lie algebra—valued
functions J}

Ji = Jier = Adae (Jo — mypt ),

as well as its counterpart for J]g. These recursion relations are derived
from (23) by direct computation using the commutators

[Py, Ji] = Jo — mkOk+L ]y,
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With these identities, one finds that the Lie algebra—valued bivector
(25) can be expressed as

Z ﬂ_akﬁljk ® Jl

ap€a,Bi€b

- Ad yog a0 J2®J0—JO®J2+7TO‘”32 0 ® Jj
> [Adago(

segm.€anb 1,7=0

F Ay o, (Jo® T Jo @ o+ mipt Z 0 @ ;)

1,j=0
s—2
> Adygey (1@ T = Jo @ Sy + 7 (@ Sy — S @ o)) |
k=2

A simple computation based on the relations

1

1
[Pk‘7 7TOCkyOék:+1 J2] = JlPk) + §(J0 _ ﬂ-akak+1 J2)

yields the identities
Adg oy, (@ d =@ D) = Adyy (28 Jo— Jo @ o)

= Adgyouy (S © T2 = B @S+ 7 (Jy @y = Ty @ )

Ay sar( Z 09 @ J;) = Ay ( 22: 0@ ;).

4,j=0 4,j=0

These identities allow one to rewrite the bivector (25) as

2
N omEiJie ) = Z(7731}16:2+7T3[5P168)AdAgA@A‘;,l(Znij‘]i @ Jj)’

ai€a,B;€b segm.€anb 2,j=0

and the associated Poisson bracket (24) takes the form

2
{far}n = Y (mppt +mipp'™) Imﬁ( > 09k(Fay, Ji)k(Gh,, Jj))-

segm.€anb 1,7=0

It remains to relate the factor my; 215 +7TW Plﬁ * for each edge path segment

in aNb to the oriented intersectlon numbers of each essential intersection
point. For this, note that when 7'('%/1]@2 + 3[/3]3165 0, the edge path
segments (aq,...,as) and (fB,...,5s) do not give rise to an essential
intersection point, as shown in Figure 5 (a). On the other hand, when

5{}16)2 = 773‘;}155, the edge path segments («q,...,as) and (B1,...,5s)
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Figure 5. Edge path segments contributing to the Pois-
son bracket.

correspond to exactly one essential intersection point p, as shown in
Figure 5(b). This proves the identity

7731}@2 + 7731;;3155 = 2¢p(a,b),
and shows that the bivectors (25) and (26) agree. q.e.d.

Note that the proof of Theorem 4.4 is largely combinatorial. It only
makes use of properties of the Weil-Petersson bivector (5) and of the
expression (3) for the holonomies in terms of shear coordinate and the
matrices F, L, and R, defined in Section 2. It therefore directly gener-
alizes the proof that the Weil-Petersson bivector (5) induces the Weil-
Petersson symplectic structure on Teichmiiller space. In fact, this proof
is obtained directly from the proof of Theorem 4.4 by replacing RE with
R¥ | replacing Gy with PSL(2,R), and omitting the expressions Im, and
Rey throughout the proof.

As a final remark on the symplectic structures on the moduli spaces
GHA(M), we consider Goldman’s symplectic structure for the groups
G = G\ and for a general real linear combination B = u(, ) + v(, )
of the Ad-invariant symmetric bilinear forms (, ) and (, ) in (10). A
short computation shows that the bilinear form B is non-degenerate if
and only if Au? + v? # 0. While this condition is satisfied for all non-
vanishing linear combinations if A = 1, it is violated if © = +v and
A = —1or v = A =0. This shows that Goldman’s symplectic structure
(12) is well defined for all values of A if y = 0 and v = 1, which is the
case considered above. In contrast, the choice p = 1 and v = 0 yields
B = (, ) = Rey(k) and is defined only for A # 0. In this case, expression
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(13) becomes

B(Fy, (p)., G, (p) 2AZ I((Faps J) (G J5) + (Fapo P2 (G, ) ).

,7=0

A direct computation along the lines of the proof of Theorem 4.4 shows
that this corresponds to the choice of the following Poisson bivector on

RE:
1 ap [ O 9 10 9,
7o Z Twp <8:170‘ Nows T A oy " 8y5> '
acE(T)

This provides an additional motivation for the choice of the symmetric
bilinear form (, ) = Imy(x) on ga when defining the symplectic structure
on GHa(M). Besides the physical considerations discussed in Section
3.2—in particular, Theorem 3.3—this choice of bilinear form is the only
one that is non-degenerate for all values A € R. This allows one to
interpret the cosmological constant A as a deformation parameter in the
description of the symplectic structure on the moduli spaces GH (M).

Geometrical interpretation in terms of earthquake and graft-
ing. To give a geometrical interpretation to the gravitational symplectic
structure, it is instructive to determine the transformation of the the
edge coordinates z® generated via Poisson brackets by the traces of
the G x-valued holonomies. Thus, let (ayq, ..., a,) be a closed edge path
freely homotopic to a € m1(S), and denote by p(a) the associated holo-
nomy defined as in (20) and interpreted as a Ga-valued function over
GHa(M). Using the identities

Op(a Op(a
(27) 2 eota)
which follow directly from (20) and (23), one obtains the expressions
for the Poisson bracket between the real and imaginary parts of the
holonomies and the shear-bending coordinates

I~ o "
{ReeTrp(a), 27} = 3 D mip Tr(Ef pla)),
k=1

I~ o a
{Im;Trp(a), 2’} = 3 kZ_l Wm}cg Tr(Jp p(a)).

This shows that the flows generated by, respectively, Re;,Trp(a) and
Im,Trp(a), take the form

Ut~ o .
ofte(2F) = 2F + 5 > T (Jipla)) + O(H),
k=1
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m t . af a
Im () = 2F + 5 > wpE T (g p(a)) + O(E).
k=1

Computing the transformation of the holonomies (20) generated by
these Hamiltonian functions then shows that they are related by shear-
bending cocycles along a with measures ¢t and t, respectively. The trans-
formations generated by the real and imaginary part of Trp(a) can there-
fore be interpreted in terms of grafting and earthquake along the unique
geodesic homotopic to a.

The description in terms of shear-bending coordinates thus general-
izes the result in [31], where it was shown that grafting and earthquake
transformations along closed simple geodesics are generated via the
Atiyah-Bott-Goldman symplectic structure (12) by the real and imag-
inary part of the traces of the associated holonomy. This can also be
viewed as a generalization of the well-known fact that the earthquake
map in Teichmiiller space along a closed simple geodesic a € m1(S) is
generated by the geodesic length [(a), which is given by the trace of the
associated holonomy p(a) € PSL(2,R).

4.3. Cotangent bundle over Teichmiiller space.

Shear coordinates description. To relate the symplectic structure
on GHx(M) to the cotangent bundle structure on 7*7(S), we describe
the latter as a constrained submanifold of T*R¥ with the symplectic
structure induced by symplectic reduction. For this, note that the global
parametrization of Teichmiiller space 7 (S) by shear coordinates also
provides a global parametrization of its tangent and cotangent bundles.
Given a trivalent fat graph I' dual to an ideal triangulation S, we may
describe the tangent and cotangent bundles over 7(S) in terms of the
coordinate vector fields 9/0z and coordinate 1-forms dz® on RF. A
tangent vector & =) £* 0/0x“ to R¥ at a point in Ker ¢ determines
a tangent vector to 7(S) if and only if its coefficient functions €% €
C>=(RF) satisfy the constraints (4)

A= Y #a* =0,
acE(T)
for every face i € F(I'). By duality, 1-forms on 7 (S) correspond to

equivalence classes of 1-forms on R¥ modulo translations by linear com-
binations of the differentials of the constraints

(28) p= Z padl'a with p~p+ Z Z piegdwa.
acE(l) acE[T) ieF(T)

This implies that the cotangent bundle T*7(S) = T*Ker ¢ is given as
the direct product of Kerce ¢ R¥, which parametrizes the base space,
and of the quotient (R¥)*/Ann(Ker c), which parametrizes its fibers in
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terms of equivalence classes of 1-forms on R¥. Here and in the follow-
ing, Ann(Ker ¢) = Span{c',...,c"} denotes the annihilator subspace of
Kerc C R”,

From the viewpoint of constrained mechanical systems (see, for in-
stance, [20]), this quotient can be interpreted as a gauge freedom in
the definition of coordinates on the fibers of T*7(S), which may be
then eliminated via an appropriate gauge-fixing condition. This is con-
venient since it allows one to describe the cotangent bundle 77 (S)
as a constrained submanifold of T*R¥. Thus, note that the constraints
d :R¥ — R in (4) are first-class with respect to the cotangent bundle
symplectic structure defined by the Poisson bivector

0 0

acE(T)

This means the constraints satisfy the relations {¢!, ¢/}« = dc! @ dc/
(mp+) = 0 for all 4,j € F(I') and that the equivalence relation in (28) is
generated by these constraints via the cotangent bundle Poisson bracket
Sipitl = {32 pic', pa}r+. This allows one to interpret the equivalence
classes of 1-forms in (28) as gauge orbits generated by the constraint
c:RF - RF.

To fix the arbitrary parameters p;, we may then impose gauge fixing
conditions, which can be chosen as linear constraints on the coordinates
Pat

c: (RE)* — (RF)*7 éz(p) = Z eiapa =0.
acE(T)
The condition that Ker ¢ contains exactly one representative in each

equivalence class is equivalent to the invertibility of the matrix M €
Mat(F,R) with entries

(30) M = {e;, Y- = Y 076),
acE(T)

Note that there is a particularly natural choice for ¢ given by 8 = 67, the
transpose of the matrix 6 in (4). In the following, however, we consider
more general gauge fixings that satisfy this condition and refer to such
gauge fixing conditions as admissible gauge fixings. We thus have the
following statement.

Proposition 4.5. The cotangent bundle T*T(S) is isomorphic to
the quotient

" ~ (RF)*
(31) T*T(S) = Kerc x Ann(Kerd)’

and for any admissible gauge-firing map & : (RF)* — (RF)*, the co-
ordinate functions x®,ps : T*T(S) — R define an embedding (x,p) :
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T*T(S) = RE x (RE)* whose image agrees with the kernel of the linear
map c® é: RE x (RF)* — RF x (RF)*.

We now show that the cotangent bundle symplectic structure on
T*RE = RF x (RF)* induces the cotangent bundle symplectic structure
on T*T(S). In terms of the quotient (31), this follows from symplectic
reduction of R® x (RF)* with respect to the constraint ¢ : R® — RF
and means that (31) inherits a symplectic structure that coincides with
the cotangent bundle symplectic structure on 7%7 (S). Equivalently, in
terms of gauge fixing, the proof amounts to the construction of the Dirac
bracket on R x (RF)*. This is a Poisson structure on R¥ x (R¥)* for
which all components of the constraint ¢ : RF — R and the gauge-
fixing conditions & : (RF)* — (RF)* are Casimir functions and which
coincides with the original Poisson structure (29) for all functions that
Poisson-commute with the constraints and gauge-fixing conditions.

Proposition 4.6.

1) The cotangent bundle symplectic structure on RF x (RF)* induces
a symplectic structure on the quotient (31) that coincides with the
cotangent symplectic structure on T*T (S) = T*Kerc.

2) For any admissible gauge firing é : (RE)* — (RF)*, the lin-
ear constraint ¢ @ ¢ is second-class with respect to the cotangent
bundle symplectic structure on RF x (RF)*, and the associated
Dirac bracket induces the cotangent bundle symplectic structure
on T*T(S) =2 Ker(c @ ¢).

Proof. The first point is a direct consequence of the theory of linear
symplectic reduction; for an accessible overview, see [28]. The linear
subspace Kerc x (RF)* ¢ RF x (RF)* is coisotropic with respect to
the cotangent bundle symplectic structure (29) with symplectic com-
plement Ann(Kerc) = Span{c', ..., cf"} C (R¥)*. Hence, the associated
symplectic quotient is given by (31), and it is immediate from the dis-
cussion above that the induced symplectic structure is the cotangent
bundle symplectic structure on 7%7(.5).

For the second point, a direct computation shows that the Dirac
matrix for the constraint function ¢ @ ¢ in Theorem 4.5 takes the form

. . 0 —MT
@ p=eodncang=(y Ty ),

with M given by (30). If the gauge-fixing condition ¢ is admissible,
the matrix M is invertible, which implies that D is invertible and the

constraint function ¢@®¢é is second-class. This defines a Poisson structure
on RF x (RF)*, the Dirac bracket, that is given by

2F
(gt = {fog¥r + 3 DME (@ &)ibr{g, (¢ @ &) )re,

i,j=1
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for every f,g € C°(REF x (RF)*). All constraint components (¢ @ ¢); :
RZ x (RF)* — R are Casimir functions for this Poisson structure. It
induces a symplectic structure on Ker(c @ ¢) = T*T(S) that coincides
with the symplectic structure (29) if f or g Poisson commute with all
constraint functions (¢@®¢);. Moreover, it is easy to see from the block di-
agonal form of the Dirac matrix that this symplectic structure coincides
with the cotangent bundle symplectic structure on 7%7(S). q.e.d.

Symplectomorphisms between 7%7(S) and GHa(M). For all val-
ues of the cosmological constant A, the realization of the cotangent
bundle 7*7(S) given in Proposition 4.6 allows one to relate the mod-
uli spaces GH A (M) of three-dimensional MGH Einstein spacetimes with
their gravitational symplectic structures to the cotangent bundle 7#7 (S)
with the cotangent bundle structure. From a physics perspective, this is
motivated by another formulation of 3d gravity as a Hamiltonian system
on Teichmiiller space [32, 25| and is quite natural mathematically in
view of the common parametrization of the gravitational moduli spaces
by measured laminations [30, 40] related to the so-called canonical Wick
rotation-rescaling theory [8]. See also [41] for a description of the sym-
plectomorphism T*7(S) — GH_1(M) in the more general context of
universal Teichmiiller theory, and [42] for a geometric description of the
symplectic properties of Wick rotations between the moduli spaces of
three-dimensional geometric structures in relation to earthquakes and
harmonic maps between surfaces.

To construct a symplectomorphism between T*7(S) and GHa(M)
in terms of shear-bending coordinates, note that the expression (22) for
the gravitational Poisson bivector mp on RE can be readily related to
the Poisson bivector mp« given in (29). Thus, we consider the following
map between T*RE and RY:

(33) mhp t RE x (RE)* 5 RE x R,
(% pa) = (%y%) = (xa,ng%/ﬁppg).

It is easy to see that this map is a Poisson map up to a multiplicative
constant

0 0
(miyp)eme = D (W%P)*@A(ngp)*g
aeE(T) @
B ap O 9 _
= Z WWPZ?:U‘J‘ 8y = —27y,
acE((T

and, together with Proposition 4.67 that it descends to a symplectomor-
phism between 77 (S) and GHx(M).

Theorem 4.7. The linear Poisson map 7T1ﬁ/VP : T*RF — RE defined
in (33) induces a symplectomorphism ﬂ%VP cT*T(S) = GHA(M).
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Proof. By Propositions 4.5 and 4.6, the cotangent bundle T*7(S5)
can be identified with the symplectic quotient (31). By Theorem 4.4,
the moduli space GHA(M) is given by the restriction of the Poisson

structure (22) to the kernel constraint ¢y : RY — R in (21). Tt is

therefore sufficient to show that the linear map 7T€V p annihilates the

linear subspace Ann(Kere) = Span{c,...,c""} € (RF)* and maps the
linear subspace Kere x (R”)* ¢ RF x (RF)* to Kercy C RF.

Both statements follow directly from the fact that the constraints on
the shear coordinates for each face i € F/(I') are Casimir functions for
the Weil-Petersson Poisson bivector; see Theorem 2.2 and the preceding
discussion. This proves that the map WIﬁ/V p descends to a symplectomor-

phism 7T1ﬁ/VP cTT(S) = GHA(M). q.e.d.

It is interesting to compare these results to the recent work by Lous-
tau [26, 27], which extends the earlier work by Kawai [23]. These works
relate the symplectic structure of the space of complex projective struc-
tures on a surface S of genus g > 2 to Goldman’s symplectic structure
(13) on the representation variety Repe(S,SL(2,C)), to the cotangent
bundle T*7(S) and to Taubes’ space of hyperbolic germs. In particu-
lar, it is shown in [27] that the canonical symplectic structure on the
latter coincides with the imaginary part of Goldman’s symplectic form
on the space of almost Fuchsian structures, and in [26] that complex
Fenchel-Nielsen coordinates are Darboux coordinates for the canoni-
cal symplectic form on the space of quasi-Fuchsian structures. It seems
plausible that by passing from generalized shear coordinates to complex
Fenchel-Nielsen coordinates, one could relate these results explicitly
and, possibly, extend the description in Fenchel-Nielsen coordinates to
the Gz representation varieties for A = 0, —1.

5. Mapping class group actions

In this section, we investigate the mapping class group action on the
moduli spaces GHp (M). We start by describing the action of Mod(S)
on the space of measured geodesic laminations and its Rj-extensions,
making use of formula (16) and the Whitehead moves (7) for shear
coordinates on 7T (S). We then show that the Whitehead moves take
a particularly simple form in shear-bending coordinates on GHx (M),
which can be viewed as an analytic continuation of formula (7). We then
prove that these Whitehead moves induce three different actions of the
mapping class group on the cotangent bundle T*7(S) of Teichmiiller
space, corresponding to the different values of A. Finally, we prove that
all these mapping class group actions are symplectic, making use of
simple decomposition of the Whitehead move transformation into a non-
linear term generated by the Poisson structure and a linear term that
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implements the combinatorial transformation of the Poisson structure
under the Whitehead move.

5.1. Mapping class group action on GHa(M).

Whitehead moves for measured laminations. We now describe the
action of the mapping class group Mod(S) on ML(S) in terms of the
parametrization (16) by differences of shear coordinates on 7(.S). More
generally, we look at the coordinates w® on ML"(S) obtained from (16)
via analytic continuation. Similarly to the derivation in Subsection 2.3
of the shear coordinate expression (7) for the mapping class group action
on Teichmiiller space, we extend the action on ML™(S) to R x R¥ by
equivariance:

(2% ') = (2, w®) = (2%, w®) o .
Here, % and w® are the shear coordinates on the base Teichmiiller
space and on the fibers of Rj-valued measured laminations associated
with an embedded trivalent fat graph I on S, and z'® and w'® are the
corresponding coordinates associated with IV = p(T") for ¢ € Mod(S).
For a Whitehead move along an edge o € E(T'), it is easy to com-

pute the coordinate transformation, as the coordinates w® are analytic
extensions of differences of coordinates x®. This yields

(xa — x/a = —°
2P0 s /B0 = 2P0 log(1 + e*7)
V€ s /€ = 27¢ —log(1 + e7*")

(34) Wa . w — wla = %
¥4 w®
+e
W€ s W — W — Joo (et
- g 14e—@ ’

while the coordinates of all other edges are preserved. A direct compu-
tation, which again makes use of the definition of the coordinates w® as
an analytic continuation of differences of shear coordinates, shows that
the Whitehead moves (34) satisfy all relations of Theorem 2.3 and also
preserve the analytic continuation of the constraints (17). This proves
the following proposition.

Proposition 5.1. The transformations (34) induce an action of the
mapping class group Mod(S) on the bundle ML(S) of measured geodesic
laminations on S.

The mapping class group action in shear-bending coordinate.
We now consider the moduli spaces of MGH Einstein spacetimes. The
definition (19) of the shear-bending coordinates on GH (M) now allows
one to derive their transformation under Whitehead moves directly from
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the action (34) by adding the terms in (34) for the real and imaginary
part of the coordinates z:

2% 2 =
(35) WA 2P0y /B0 = 280 4 log(1 + €*%)
2V s 26 = 27€ —log(1 + 7).

Note that for A = 1 the logarithms are not well defined, due to the pres-
ence of branching points. These, however, does not affect the holonomies
where only the exponentials of shear coordinates appear.

Clearly, the transformation (35) is simply the analytic continuation of
the associated Whitehead move W,, : R® — R¥ in (7). As an immediate
generalization of Theorem 2.4, we thus have the following result.

Theorem 5.2. The Whitehead moves W RE — RE satisfy the re-
lations of Theorem 2.3. Furthermore, they preserve the constraints (21)
and induce an action of the mapping class group Mod(S) on GHA(M).

Proof. This follows immediately from Theorem 2.4 as the Whitehead
moves (35) and the constraints (21) are the analytic continuation of (7)
and (4). The computation proving the pentagon identity for Whitehead
moves (7) is given in Appendix B for the convenience of the reader. The
other relations of Theorem 2.3 are easily verified. q.e.d.

Mapping class group actions on 7#7(S). In view of the symplecto-
morphism between 7%7(S) and GHa (M) obtained in Theorem 4.7, it
is natural to study the mapping class group action on 7%7(S) induced
by (35) via pull-back. We will now show that the induced actions on
T*T(S) are all symplectic but are all distinct for different signs of the
curvature A. This should have interesting consequences for the quantum
theory as it provides a common representation for the corresponding
quantum operators in terms of the Weyl algebra such that the algebra
of quantum symmetries, e.g., the quantum mapping class group action,
is the only distinguishing feature between the theories for different val-
ues of A. This is further evidence for the importance of the mapping
class group in the quantization.

We start by computing the pull-back of the Whitehead move W(j} :

RE — R (35) with the linear Poisson map F%/VP : T*RE — RE in (33):
(&, pa) > 2/ = —a — bmiy pp <

Wolz\oﬂ-%/[/P . (.’L’ﬁ’é’ pﬁ,&) — 2/5,5 :$B’5+€7T€[}(5]§pg+log (1 + ety ppe
(2V€, Py ) s 21 :xmeww’;ﬁpg —log (1 + e‘f”a—“ﬁfppc) .

Here and in the following, we use Einstein’s summation convention and
omit the sum over the edge label ¢ for better legibility. Comparing this
expression with the map W’V’%,P . T*RF — Rf defined by the Weil-
Petersson bivector 7, p for the fat graph IV =Ty, it is easy to identify
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the associated maps W2 : T*R¥” — T*R¥ for which the following dia-
gram commutes:

#

T
*1 F wrp E
T*RE ——— > RE
WA wi
T*RE E
7r/ﬁ RA
WP

Note that since 77"9[, p is not injective, such maps are unique only up to

translations by elements of Ker 77’&/ p- A direct computation shows that

the following map satisfies this condition:

(2% 2% = — 22
2P0 s 289 = 269 4 Reylog (1 + exaM’Ta/CPpC)
(36) W2 a7 2/ = 27¢ — Reylog <1 et T ppe

07

Pa > Py = —Pa + Py + e + Tmy log (1 - exa””%p@‘)

/ —
kpﬁf)/’&’e = p67’y7675 - pﬁ7’77576'

Using this expression for the map Wé\ : T*RF — T*RE, one can verify
its properties by direct computations, which yields the following theo-
rem.

Theorem 5.3. The Whitehead moves /W\Zi\ : T*RP — T*RY satisfies
the relations of Theorem 2.3. Furthermore, they preserve the constraints
(4) and their gauge orbits and induce an action of the mapping class

group Mod(S) on T*T(S).

Proof. That map W2 : T*RP — T*R¥ in (36) satisfy the relations of
Theorem 2.3 follows by direct computations. The only non-trivial case
is that of the pentagon relation, which is analogous to that for (7); see
Appendix B.

That the constraints (4) and their gauge orbits are preserved can
be seen from the combinatorial relation between I" and IV = I",,. Con-
sider a face ¢ € F(I") containing the sequence of edges (53, a, €) and its
transformation under a Whitehead move as in Figures 3 and 4. The cor-
responding face i € F(I') then necessarily contains the sequence (3, ¢€).
As the constraints are given by a sum over the coordinates of edges in
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the face, it is clear from (36) that the pull-back of ¢’ can be written as

« ag
Lo 1 Ty ppe
c’ZoWé\:xﬁ—i—xE—l—Reglog( re e >+
1+ e~ =My ppg
=P a4 =
where the dots stand for the contribution of the other edges in the face
1, which is invariant under Wé} On the other hand, the gauge orbits are
the orbits of points in R” x (R®)* under the translations of 1-forms by
differentials of the constraints as in (28). So consider the transformation
of a 1-form p + gdc' under (36). For the coordinate of the edge a we
have

Wol‘\(pa + qeia) = Pa — qeia +Dy+ qei'y +De t qeis
+ Img IOg <1 + ex&+f7racp<+g7rva9i<>
= W pa) +a(—0a + 0%+ 00) = Wi(pa) + a0,

since 0%, = 1, 0% =0,0'. = 1and 0", = 0. For any other edge, including
the neighboring edges of «, we have

Wé\(pn +q0'y) = py+ qb'y = Wo/}(pn) +q0",,
since the multiplicity of 1 on the face i does not change under a White-

head move. This shows the gauge orbits of ¢’ are mapped to the gauge
orbits of ¢/* or, equivalently,

W2 (p + qd’) = W2 (p) + qdc”.
The same arguments can be applied to other (combinations of) edge

sequences involved in the Whitehead move. This shows that ¢’o Wh=c
and W2([p]) = [W2(p)] and completes the proof. q.e.d.

5.2. The mapping class group action is symplectic.

Hamiltonians for the Whitehead move. In this section, we show
that the transformations (35) and (36) are Poisson maps with respect
to the gravitational and cotangent bundle Poisson structure and that
the induced mapping class group actions GHA (M) and T*T(S) are all
symplectic. This is achieved by decomposing the Whitehead moves into
terms generated via the Poisson structure by a Hamiltonian and an
additional term, which is linear, purely combinatorial, and independent
of A. We show that the latter corresponds to the transformation of
the Poisson bivector. Such a decomposition of the Whitehead moves is
already possible in the Teichmiiller context, so the proof presented here
can be viewed as a generalization of the corresponding result for shear
coordinates.

We therefore start by considering the Whitehead move for shear coor-
dinates on Teichmiiller space. Let I' be an embedded trivalent fat graph
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on S, and denote by x® the corresponding shear coordinate for an edge

a € E(T'). For each edge a € E(I"), consider the Hamiltonian function

H, : R¥ — R given by

(z)?
4

where Liy denotes Euler’s dilogarithm. A short computation using the

combinatorial structure of my p and the expression for the derivative
of H,

(37) H,(z) = H(z%) = + Lig(—e®"),

0H,
Ozx®
then shows that the Whitehead move W, : R¥ — R¥ in (7) is given by

% 2/ = —x®
Wy :
o xﬁv’Yvévﬁ — x/ﬁf)/’&’e — xﬁf)/’&’e _|_ %xa _|_ {xﬁf)/’&’ej HOC}

= J2% —log(1+¢™")

wp
This allows us to decompose it as W, = A, o B, with maps A, B, :
RE — RE defined by

4 % 2 = —x%
s xﬁv’Yvévﬁ — x/ﬁy%&é — xﬁf)/’&’e _|_ %xa7

B, % — ZE/a — :Eav
o -
xﬁ;yﬁ,& — x’67%675 = ;1757%6’6 + {3367%675, Ha}WP'

It is then immediate that the transformation B, is a Poisson map B, :
(R¥, myp) — (RF myp), as it can be interpreted as the Hamiltonian
flow generated by the Hamiltonian H, via the Weil-Petersson Poisson
bracket. In contrast, the combinatorial linear transformation A, : R¥ —
R¥ transforms the Poisson bivector 7y p associated with the fat graph I'
into the Poisson bivector 7y, associated with IV = T',. This follows by
a simple computation of the push-forward of my p by A, which yields
(Aq)«mw p = Ty p. This gives a simple proof that the Whitehead moves
(7) indeed induces a symplectic action of Mod(.S) on T(S), as stated in
Theorem 2.4.

Similarly, in the context of the moduli spaces GHa (M), we may de-
compose the Whitehead moves W2 : RE — RY in (35) using the
analytic extension H2 : Ry — Rj of the Hamiltonian function (37).
More precisely, for each edge a@ € E(I') consider the real functions
Im,H2 : Ry — R given by the imaginary part of H2,

Imy H(2) = Iy (HA(ZO‘))
—y*log(1 + "), A=0
= e+ ety e, A= 1
Im(Lig(—e®"+1¥%)), A =1,
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and their derivatives with respect to the real and imaginary parts of z¢

Olm,H? N Lo
nga :Img<%z —log(1+€ )),
Olm,H2 o
% = Reg(%zo‘ — log(1 + €7 )>

The Whitehead move W2 : RY — RY can then be written as

WA . 2% Y = %)
o ZB7’Y767E — Z’B?’)/véve — ZB7’Y767E _|_ %za _|_ {zﬁ?’%éve, IméHé}}A’

and can be decomposed as W2 = A% o BA, with A B2 : RE — RF
given by
AN

«

2% 2/ = =22,
25777676 — 2/5777676 — 26777576 _|_ %Za,

@ Il _ o
BA . 25 =z =z,
[ zﬁ,'y,6,e — z/67’Y7675 — 26777675 + {zﬁv'ﬁéve’ IméHé}}A

The transformation B2 is again a Hamiltonian flow—namely, the one
generated by ImyH,, via the gravitational Poisson structure. The combi-
natorial transformation A% sends the gravitational bivector mp for T' to
the gravitational bivector 7y for T" = T, which means (A2%).my = 7.
When combined with Theorem 5.2, this generalizes Theorem 2.4 from
the context of Teichmiiller space to the moduli spaces of MGH Einstein
spacetimes and proves that the mapping class group action on GH (M)
is symplectic.

Theorem 5.4. The Whitehead moves W2 : (RY, ma) — (RY, 7)) in
(35) are Poisson maps, and the induced mapping class group action on
GHA(M) is symplectic.

Another benefit of this decomposition of the Whitehead moves is that
it has a geometrical interpretation. For this, note that the imaginary
part of the complex dilogarithm is closely related to the Bloch—Wigner
function D(z) = Im(Lig(2)) + log |z| arg(1 — z), which describes the vol-
ume of an ideal hyperbolic tetrahedron in three-dimensional hyperbolic
space. The volume of such an ideal hyperbolic tetrahedron is given by
the Bloch-Wigner function of the cross-ratio of its vertices (see, for in-
stance, [48]), and there are similar results for the spherical tetrahedra
[33]. As a Whitehead move corresponds to gluing an ideal tetrahedron
on two adjacent ideal triangles in an ideal triangulation, it is natu-
ral that the Hamiltonian generating this transformation is related to
the volume of an ideal tetrahedron. In the context of three-dimensional
Einstein manifolds, it seems plausible that the Hamiltonian obtained for
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different values of A could be related to the volumes of certain tetrahe-
dra in three-dimensional Minkowski, anti-de Sitter and de Sitter space.

Hamiltonians for the cotangent bundle. We now show that a sim-
ilar decomposition of the Whitehead move is possible for the mapping
class group action (36) on the cotangent bundle 7*7(S). For this, we
construct transformations A2, BA : T*RF — T*R¥, which are defined
uniquely up to translations generated by the constraints by the require-
ment that the following diagrams commute:

7'I"j 7'('ﬁ
(38) T*RE ——W° RE TRE " - RE
Al AA BA BY
T*RE RE T*RE RE.
WP Twp

For this, we first pull-back A% and B2 via the map W%VP : T*RE — RE
in (33) and then compare the results with 77"9[, p and 7'('%,[/ p» respectively.
A similar computation to that of A% and B2 together with the fact the
map W%V p is Poisson shows that these transformations are given by

(2% 2'% = —x®
iy gP0€ 1y gB0e = gB1de 4 Ty
Pa v Po = —Pa + 5(Pg + Py +ps + pe)
PBrse 7 Py se = Phiydes
% 'Y = g
e xBmoe /|—> z/Bde = :175’7"576:— {xfm‘svg, ImHA o ﬂ-Iﬁ/VP}T*
Pa > Do = Pa + {Pa, ImH} o 7TWP}T*
PBde = Panse = Phyde

This defines a decomposition of the Whitehead moves in (36) as W2 =
ALoBA . The map B2 is again a Hamiltonian flow—namely, the one gen-
erated by the Hamiltonian Im,H 2 ow%v p: T*RE — R via the cotangent
bundle Poisson structure. The map A2 is again a linear combinatorial
transformation, which does not depend on A and maps the cotangent
bundle bivector 7p+« for the graph I' to the cotangent bundle bivec-
tor m/. for the graph IV = T, e.g., (A2).m7« = 7). This proves the
following theorem which, combined with Theorem 5.3, shows that the
induced mapping class group actions on T*7(S) are symplectic for all
values of A.
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Theorem 5.5. The Whitehead moves W2 : (T*RE, 7p.) — (T*RE, 71.,)
(36) are Poisson maps, and the induced mapping class group actions on
T*T(S) are symplectic for all values of A.

Appendix A. Model spacetimes for 3d gravity

In this appendix, we describe the model spacetimes of 3d gravity and
their description in terms of the groups PSL(2,R) and PSL(2,C). These
model spacetimes are three-dimensional Minkowski space Mg for A = 0,
anti-de Sitter space AdSs for A < 0, and de Sitter space dS3 for A > 0.
All of these model spacetimes are of constant curvature, which is given
by the cosmological constant A, and admit a simple description in terms
of the Lie group PSL(2,R) and its complexification PSL(2, C).

The group SL(2,R) and its Lie algebra. In order to exhibit the
similarities between the model spacetimes, it is helpful to first consider
the Lie group SL(2,R) and its Lie algebra. For this, we introduce the

following basis of s[(2,R),
1 0 01
(b %) #=3(T0)

(39)
(0 -1
JO - 2 < 1 0 Jl -
which diagonalizes the Killing form on sl(2,R) and relates it to the
three-dimensional Minkowski metric n = diag(—1,1,1):
I{(JZ', Jj) = TI“(JZ'Jj) = %nij'

DN
DN

Minkowski geometry. Three-dimensional Minkowski space Mgy is an
affine space over the vector space R3 with the Lorentzian metric n =
diag(—1,1,1). Elements of (R3,7) can be identified with the Lie algebra
s[(2,R) via the map
1 2 0
x ¥ —
b0 (‘Toaxlaxz) = X =22, = <gj2 + 20 gt ) )
such that the metric is given by minus the determinant:
no(z, ) = —det X = 1TrX? — L(TrX)>.

The group of orientation—preserving and time orientation-preserving
isometries of Mg is the Poincaré group in three dimensions Go =
ISO(2,1) = PSL(2,R) x s[(2,R), with the group multiplication

(A,X)-(B,Y) = (AB, X + AY A™Y),

where A, B € PSL(2,R), X, Y € sl(2,R). With the identification
s[(2,R) = R? from above, its action on M3 is given by

(A, X) Y =AYA™' + X,
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Two-dimensional hyperbolic space H? embeds in Minkowski space as
the space of future-oriented timelike unit vectors with the induced met-
ric. In terms of the matrix realization of M3 this can be described as
the subspace of matrices with determinant 1. The subgroup of Gy that
preserves this embedding of H? is PSL(2,R) = {(4,0) : A € PSL(2,R)}.

Anti-de Sitter geometry. Three-dimensional anti-de Sitter space is
defined as a quadric in R*:

AdSs = {(a°,2',2%,2%) e RY: —(a")? + (21)* + (2%)* - (2°)* = -1}

with the Lorentzian metric induced by the flat pseudo-Riemannian met-
ric diag(—1,1,1,—1). Topologically, anti-de Sitter space is a product
S! x R? presenting a closed timelike direction. This is somewhat irrel-
evant for our considerations since one can always unwrap such closed
time direction by going to the universal covering space. On the other
hand, it is sometimes also convenient to consider certain quotient of
anti-de Sitter space by the group Zy and to work with its image in
three-dimensional projective space:

Xy ={la® 2t 0?12 € RPP: —(2)% + (21)? + (a)% - (a)% = -1},

As in the case of Minkowski space, three-dimensional anti-de Sitter space
can be described in terms of the group PSL(2,R). The map

3 1,2 0
0o 1 2 3 x° +x T x

1 (et x?) = X =
-1 ( y L,y ) <a:2 JRLUNNS: S |

identifies AdS3 with the group SL(2,R) and X_; with the group PSL(2,R).
In both cases, the metric is the one induced by minus the determinant:

n-1(z,z) = —det X = 1TrX? — 1(TrX)>

The isometry group of AdSs is the group SO(2,2) = SL(2,R) xSL(2,R) /Zo,
whose action on the realization above is given by the following action
of SL(2,R) x SL(2,R):

(A,B)- X = AXB™ L.

As the kernel of this group action is {(1,1),(—1,—1)}, it induces an
action of SO(2,2) on AdSs. Similarly, the isometry group of X_; is the
group G_; = PSL(2,R) x PSL(2,R).

Two-dimensional hyperbolic space H? embeds in AdSs and in X_;
as a totally geodesic surface with the induced metric. In terms of the
matrix realization, H? can be described as the subspace characterized
by the condition 23 = 0. The subgroup of G_; that preserves H? is given
by the diagonal embedding PSL(2,R) = {(A4,A) : A € PSL(2,R)}.
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de Sitter geometry. Three-dimensional de Sitter space is also given
as a quadric in R*:

Xl — ng — {($0’$1’$2’$3) c R4; _(3:0)2 + (33‘1)2 + ($2)2 + ($3)2 — 1}’

with the Lorentzian metric induced by the flat metric diag(—1,1,1,1).
The map

- 3 1 2 0

0o 1 2 3 . . (1x° + @ r~ —x
(%, x0) = 1X =1 .

o1 ( y L, T, ) <$2 20 i3 — ol

identifies dSz with a subset of SL(2,C). The image of ¢; consists of
those matrices of SL(2,C) that are invariant under the involution

(iX)° = Jo(iX)TJ5t.
In this case, the induced metric is given by the determinant
m(z,z) = det(iX) = $TrX? — 2(TrX)%

The associated isometry group is the Lorentz group in four dimensions
G1 =5S0(3,1) = PSL(2,C), which acts on the matrix realization of dSs
via

A-(iX) = A(1X)A°.

Although the two-dimensional hyperbolic space H? also embeds in de
Sitter space as a totally geodesic surface, the relevant embedding of H?
is the one in the dual hyperbolic 3-space. The duality correspondence
between X; and H? is given via the duality correspondence between one-
dimensional and three-dimensional hyperplanes through the origin in
R31. It maps points, geodesics, and geodesic planes in X;, respectively,
to geodesic planes, geodesics, and points in H?. In terms of the matrix
realization above, this embedding of H? can be described as the dual
plane to the point 22 = 1. The subgroup of G that preserves H? is then
the subgroup PSL(2,R) C PSL(2,C).

Appendix B. The pentagon relation for the Whitehead moves

Theorem B.1. The Whitehead moves (35) satisfies the pentagon
relation.

Proof. This follows by a direct computation from the expression (35)
for the Whitehead moves in terms of shear-bending coordinates 2 :
GHA(M) — Rja. Explicitly, the transformation of coordinates under
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Figure 6. The pentagon relation for the Whitehead moves.

the sequence of Whitehead moves in Figure 6 is given by

z* +log(1 + ezC)

r <
« 1 1 z
z° 2% +log(1 +e C) 2P —log(1 + e’zC)
2P 2P — log(1+e7%") 20 aCyan
27 27 27 + 27 — log(AHe—te— 1:64 )
s s e
zs — z . — 20 +10g(1 +ezn + eZCJrzn)
€ __ —z
¢ ¢ —log(l+e™*") 2€ + 28 + 27 —log(1 + €% + ezC?LG)
-z n Cym
2 2" +log(1 + ezg) ¢ tlog(1+ e+ e(z T
L —z" —log(1l+€*") J

e per+2¢ T

2z 4+ log( Thes? z¢ ] ¢
28 4+ log(1 + ") 28 +log(1 + ") 2B
27 —log(14+e=") 27 —log(1 4+ e *") 27
= 20 4+ log(1 4 e + ez<+zn) = 2 tlog(l+e”) || 20
€ €
2¢+ 2° 4 27 —log(1 + ez"{_;’_ ez<+zn) _Zzn jn
n n

2 —log(1 +e*" 4 ¢ n+z ) 26 —log(1+e ") z¢

L —2¢ +log(14 e *") J N

This proof is essentially identical to the corresponding proof for shear
coordinates on Teichmiiller space and is included only for the reader’s
convenience. q.e.d.
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