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CONTROLLING AREA BLOW-UP IN MINIMAL

OR BOUNDED MEAN CURVATURE VARIETIES

Brian White

Abstract

Consider a sequence of minimal varieties Mi in a Riemannian
manifold N such that the measures of the boundaries are uni-
formly bounded on compact sets. Let Z be the set of points at
which the areas of the Mi blow up. We prove that Z behaves in
some ways like a minimal variety without boundary. In particu-
lar, it satisfies the same maximum and barrier principles that a
smooth minimal submanifold satisfies. For suitable open subsets
W of N , this allows one to show that if the areas of the Mi are
uniformly bounded on compact subsets of W , then the areas are
in fact uniformly bounded on all compact subsets of N . Similar
results are proved for varieties with bounded mean curvature. The
results about area blow-up sets are used to show that the Allard
Regularity Theorems can be applied in some situations where key
hypotheses appear to be missing. In particular, we prove a ver-
sion of the Allard Boundary Regularity Theorem that does not
require any area bounds. For example, we prove that if a sequence
of smooth minimal submanifolds converge as sets to a subset of a
smooth, connected, properly embedded manifold with nonempty
boundary, and if the convergence of the boundaries is smooth,
then the convergence is smooth everywhere.

1. Introduction

If M is an embedded, m-dimensional manifold-with-boundary in a
Riemannian manifold Ω and if U is a subset of Ω, then |M |(U) and
|∂M |(U) will denote the m-dimensional area of M ∩U and the (m− 1)-
dimensional area of (∂M) ∩ U . For most of this article, the reader is
not assumed to have any knowledge of varifolds, but for readers who do
have such knowledge, if M is an m-dimensional varifold, then |M |(U)
denotes the mass of M in U (written ‖M‖(U) in [1] and μM(U) in [7])
and |∂M |(U) denotes the generalized boundary measure of M applied
to the set U . (In [1], |∂M |(U) is written ‖δM‖sing(U).)

Let Mi be a sequence of m-dimensional minimal varieties in a Rie-
mannian manifold Ω or, more generally, varieties with mean curvature
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bounded by some h <∞. Even more generally, the hypothesis that the
mean curvature is bounded above by h can be replaced by the hypothesis
that not “too much” of Mi has mean curvature > h, i.e., that

lim sup
i→∞

∫
Mi∩K

(|H| − h)+ dA <∞

for every compact subset K of Ω, where H is the mean curvature vec-
tor and where t+ denotes the positive part of t (i.e., t+ = max{t, 0}).
We suppose that the boundaries have uniformly bounded measure in
compact sets K:

lim sup
i→∞

|∂Mi|(K) <∞.

Let Z be the set of points at which the areas of the Mi blow up:

Z = {x ∈ Ω : lim sup
i

|Mi|(B(x, r) =∞ for every r > 0}.

Equivalently, Z is the smallest closed subset of Ω such that the areas of
the Mi are uniformly bounded as i→∞ on compact subsets of Ω \ Z.

It is useful to have natural conditions that imply that Z is empty,
since if Z is empty, then the areas of the Mi are uniformly bounded
on all compact subsets of Ω and thus (for example) a subsequence of
the Mi will converge as varifolds to a limit varifold of locally bounded
first variation. This paper gives some such conditions. It also gives some
properties shared by every such area blowup set Z.

First we prove that every such set Z satisfies the following maximum
principle:

1.1. Theorem (Maximum Principle, §2.6). If f : Ω → R is a C2

function and if f |Z has a local maximum at p, then

Tracem(D2f(p)) ≤ h |Df(p)|,

where Tracem(D2f(p)) is the sum of the m lowest eigenvalues of the
Hessian of f at p.

A closed set Z that satisfies the conclusion of Theorem 1.1 will be
called an (m,h) set. The concept of an (m,h) set can be regarded as a
generalization of the concept of an m-dimensional, properly embedded
submanifold without boundary and with mean curvature bounded by
h. In particular, if M is a smooth, properly embedded, m-dimensional
submanifold without boundary, then M is an (m,h) set if and only if its
mean curvature is bounded by h. (See Corollary 2.8 and Theorem 7.1.)

We also prove that any (m,h) set Z satisfies the same barrier princi-
ple that is satisfied by m-dimensional submanifolds of mean curvature
bounded by h:

1.2. Theorem (Barrier Principle, §7.1). Let Ω be a C1 Riemannian
manifold without boundary, and let Z be an (m,h) subset of Ω. Let N
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be a closed region in Ω with smooth boundary such that Z ⊂ N , and let
p ∈ Z ∩ ∂N . Then

κ1 + · · ·+ κm ≤ h,

where κ1 ≤ κ2 ≤ · · · ≤ κn−1 are the principal curvatures of ∂N at p
with respect to the unit normal that points into N .

The converse is also true. (See Theorem 8.2.)
In the case dim(N) = m+1, there is a also a strong barrier principle

(Theorem 7.3): in the notation of Theorem 1.2, if dim(N) = m+1, if the
mean curvature of ∂N is everywhere greater than or equal to h (with
respect to the normal that points into N), and if Z ⊂ N is an (m,h)
set that touches ∂N at a point p, then Z contains the entire connected
component of ∂N containing p.

The support of every m-dimensional varifold with mean curvature
bounded by h is an (m,h) set. (See Corollary 2.8.) Thus Theorem 1.2
includes as a special case the barrier principle for varifolds proved in [12].

The following theorem allows one to conclude in some circumstances
that Z is empty:

1.3. Theorem (Constancy Theorem, §4.1). Suppose that an (m,h) set
Z is a subset of a connected, C1 properly embedded, m-dimensional sub-
manifold M of the ambient space Ω. Then Z = ∅ or Z = M . In other
words, the characteristic function of Z is constant on M .

1.4. Corollary. Let Σ be a closed, proper subset of a connected, C1-
embedded, m-dimensional submanifold M of Ω . Suppose that Mi is a
sequence of m-dimensional varieties (or, more generally, varifolds) in
Ω such that the boundary measures of the Mi are uniformly bounded on
compact sets and such that the mean curvatures of the Mi are uniformly
bounded. If the areas of the Mi are uniformly bounded on compact subsets
of Ω\Σ, then they are also uniformly bounded on compact subsets of Ω.

In Section 5, we use the results above (specifically, Corollary 1.4)
to prove a theorem (§5.4) that extends Allard’s Regularity Theorem
in the case of integer-multiplicity varifolds. (Allard’s Theorem holds
more generally for varifolds with densities bounded below by 1, but our
theorem is false under that weaker assumption: see §5.6.) For example,
for minimal varieties, we have:

1.5. Theorem (§5.1). Suppose Mi is a sequence of proper m-dimensional
minimal varieties-without-boundary (or stationary integral varifolds) in
a Riemannian manifold Ω. Suppose the Mi converge as sets (see Re-
mark 1.6) to a subset of an m-dimensional, connected, C1 properly em-
bedded submanifold M of Ω. If the Mi converge weakly to M with mul-
tiplicity 1 anywhere, then they converge smoothly to M everywhere.
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The key word here is “anywhere”: to invoke Allard’s theorem directly,
one needs to assume the weak, multiplicity 1 convergence Mi → M
everywhere.

An analogous result (§5.4) holds if the Mi have uniformly bounded
mean curvatures.

Allard’s Regularity Theorem does not require bounded mean curva-
ture, but rather only mean curvature in Lp for some p greater than the
dimension. Similarly, Theorem 5.4 does not require that the surfaces Mi

in question have bounded mean curvature, but rather that they satisfy
the weaker hypothesis that

(1) lim sup
i

∫
Mi∩K

(|H| − h)+)p dA <∞

for some h < ∞, for some p > m, and for every compact K ⊂ Ω.
In that case, the conclusion is not smooth convergence but rather C1

convergence with local C1,1−m/p bounds.

1.6. Remark. In Theorem 1.5 (and elsewhere in this paper), we say
that the sets Si ⊂ Ω converge as sets to S ⊂ Ω provided that

S = {x ∈ Ω : lim sup
i

d(x, Si) = 0} = {x ∈ Ω : lim inf
i

d(x, Si) = 0},

where d(x,A) = inf{d(x, a) : a ∈ A}. This notion (due to Kuratowski)
is in general weaker than convergence with respect to the Hausdorff
metric on closed sets. (For compact Ω, the two notions are equivalent.)
Such convergence has a nice compactness property: if Si is a sequence
of closed subsets of a Riemannian manifold Ω, then (according to the
Arzela–Ascoli theorem) by passing to a subsequence, we can assume
that the functions d(·, Si) converge to a limit function f . It follows that
the Si converge as sets to the zero set of f .

Section 6 gives a version of Allard’s Boundary Regularity Theorem
that does not assume any area bounds.

Sections 9 and 10 give additional results for the case of codimension 1
varieties, i.e., the case of (m,h) sets in an (m+1)-dimensional manifold.
For example, as a special case of those results, we have the following:

1.7. Theorem. Let m < 7, and let N be closed, mean convex region
in Rm+1 with smooth boundary. Suppose that ∂N is not a minimal sur-
face, and that N does not contain any smooth, stable, properly embedded
minimal hypersurface. If Z is an (m, 0) set contained in N , then Z = ∅.

(We remark that in R3, the hypothesis that N not contain a smooth,
stable properly embedded minimal hypersurface is redundant.)

We also prove (Corollaries 7.4 and 9.2) that the Hoffman–Meeks Half-
space Theorems for proper minimal surfaces in R3 hold for arbitrary
(2, 0) sets in R3.

Finally, in Section 11, we prove
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1.8. Theorem. If Z ⊂ Rn is an (m,h) set, then the set Z(s) of points
at distance ≤ s from Z is also an (m,h) set.

We also prove an analogous result for (m,h) subsets of Riemannian
manifolds.

Readers who are interested in minimal varieties (rather than varieties
of bounded curvature) may skip Section 10 and much of Sections 5 and 6.
(The portions of 5 and 6 that may be skipped are indicated there.)

Acknowledgments. This research was supported by the National Sci-
ence Foundation under grants DMS 0406209, DMS 1105330, and DMS
1404282.

2. Area Blow-Up

2.1. Definition. Let Ω be a smooth manifold without boundary and
with a C1 Riemannian metric g. Let Z be a closed subset of Ω. We
say that Z is an (m,h) subset of (Ω, g) provided it has the following
property: if f : Ω → R is a C2 function such that f |Z has a local
maximum at p, then

(2) Tracem(D2f(p)) ≤ h |Df(p)|.

If there is such a function f for which (2) does not hold, we say that Z
fails to be an (m,h) set at the point p.

Here |Df | is the norm of the derivative of f (or, equivalently, the norm
of the gradient of f) with respect to the metric g, and Tracem(D2f) is
the sum of the lowest m eigenvalues of the Hessian of f with respect to
the metric g. In other words, Tracem(D2f(p)) is the sum of the lowest
m eigenvalues of the matrix of second partial derivatives of f in any
system of normal coordinates at p. Note this matrix is also the matrix
(with respect to the same normal coordinates) for the endomorphism
D(∇f(p)), where D is the covariant derivative (with respect to the Levi–
Civita connection) and ∇f is the gradient of f . Thus Tracem(D2f) is
equal to Tracem(D∇f).

2.2. Remark. Let Z ⊂ Ω be a closed set. It follows immediately from
the definition that the set of h for which Z is an (m,h) set either is
empty or has the form [η,∞) for some 0 ≤ η <∞.

2.3. Remark. Suppose N is a smooth Riemannian n-manifold with
boundary and with a C1 Riemannian metric g. ThenN can be embedded
into a smooth open n-manifold Ω and the metric g can be extended to
be a C1 Riemannian metric on all of Ω. A closed subset Z of N is called
an (m,h) subset of (N, g) if and only if it is an (m,h) subset of (Ω, g).
It is straightforward to show that this condition is indepedent of the
choice of Ω and of choice of the extension of the metric.
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The following lemma implies that in the definition of (m,h) subset,
it suffices to consider test functions f with additional properties:

2.4. Lemma. Suppose Z ⊂ Ω is a closed subset that fails to be an
(m,h) subset at the point p ∈ Z. Then there is a C2 function f : Ω→ R

such that we have the following

(1) Tracem(D2f(p)) > h |Df(p)|.
(2) The restriction of f to Z attains its maximum value of 0 uniquely

at the point p:

f(x) < f(p) = 0 for all x ∈ Z, x �= p.

(3) The set {x : f(x) ≥ a} is compact for every a ∈ R. Indeed, if
u : Ω → (−∞, 0] is any smooth, proper function, we can choose f
so that f coincides with u outside of some compact set.

Proof. By hypothesis, there is a C2 function f : Ω→ R such that (1)
holds and such that f |Z has a local maximum at p,

max f |Z ∩B = f(p),

where B is some open neighborhood of p. By replacing f by f − f(p),
we can assume that f(p) = 0.

Let u : Ω → (−∞, 0] be a smooth, proper function. By modifying u
on a compact set, we can assume that u(p) = 0, that u(x) < 0 for all
x �= p, and that D2u(p) = 0.

Let φ : Ω → R be a smooth, nonnegative function that is supported
in B and that is equal to 1 in some neighborhood of p. Replacing f by
φf + u gives a function with all the asserted properties. q.e.d.

The following corollary says that we can choose the function f in
Lemma 2.4 to be smooth (not just C2), provided we are allowed to
move the point p slightly:

2.5. Corollary. Suppose Z ⊂ Ω is a closed subset that fails to be an
(m,h) subset at the point q ∈ Z. Then there is a point p ∈ Z (which
may be chosen arbitrarily close to q) and a smooth function f : Ω→ R

having the properties asserted in Lemma 2.4.

Proof. Let f be a C2 function having all the properties asserted by
Lemma 2.4 with q in place of p. Let fi : Ω→ R be a sequence of smooth
functions such that fi converges to f uniformly and also locally in C2. It
follows that each fi|Z attains its maximum at some point pi, and that
the pi converge to q. Furthermore, the local C2 convergence implies that

Tracem(D2fi(pi)) > h |Dfi(pi)|

for all sufficiently large i. For each such i, we can modify fi exactly
as in the proof of Lemma 2.4 to get a smooth function f̃i that has
properties (1), (2), and (3) (with f̃i and pi in place of f and p.) q.e.d.
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2.6. Theorem. Let Ω be a smooth, n-dimensional manifold without
boundary. Let gi (i = 1, 2, 3, . . . ) and g be C1 Riemannian metrics on
Ω such that the gi converge to g in C1.

For each i, let Mi be an m-dimensional varifold in Ω such that the
mean curvature of Mi with respect to gi is bounded by h <∞ and such
that the boundaries of the Mi are uniformly bounded on compact subsets
of Ω:

(3) lim sup
i

|∂Mi|(U) <∞ for all U ⊂⊂ Ω.

Let

(4) Z = {x ∈ Ω : lim sup
i

|Mi|(B(x, r)) =∞ for every r > 0}.

Then Z is an (m,h) subset of Ω.
More generally, the conclusion remains true if the hypothesis that the

mean curvatures are bounded by h is replaced by the hypothesis that

(5) lim sup
i

∫
Mi∩K

(|H| − h)+ dA <∞

for every compact K ⊂ Ω, where H is the mean curvature vector and
where t+ = max{t, 0}.

2.7. Remark. Readers who are primarily interested in minimal vari-
eties may wish to read the following proof under that assumption that
the Mi are minimal, i.e., that h = 0: in that case a number of terms in
the proof drop out. Similarly, readers primarily interested in bounded
mean curvature varieties may wish to make the assumption that Mi

has mean curvature bounded by h (instead of making the more general
assumption (5)), since a few terms in the proof then drop out.

Proof. To simplify notation, we give the proof in the case where the
Mi are properly embedded manifolds-with-boundary. But (aside from
the notation) exactly the same proof works for general varifolds. We
prove the result by contradiction. Thus suppose Z fails to be an (m,h)
set at a point p ∈ Z.

By Lemma 2.4, there is a C2 function f : Ω→ R such that

Tracem(D2f(p)) > h |Df(p)|,(6)

f(x) < f(p) for every x ∈ Z \ {p}, and(7)

{f ≥ a} is compact for every a ∈ R.(8)

Choose δ > 0 so that[
Tracem(D2f)(p)− h |Df(p)|

]
g
> δ,

where the subscript g indicates that the expression inside the brackets
is with respect to the metric g. Let B ⊂ Ω be a compact ball centered
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at p such that

(9) min
B

[
Tracem(D2f)− h |Df |

]
g
> δ.

(Such a set B exists because the inequality [Tracem(D2f)−h |Df | ]g > δ
defines an open set containing p.)

By (7) and (8),
max

Z\interior(B)
f < f(p).

By adding a constant to f , we can assume that

(10) max
Z\interior(B)

f < 0 < f(p).

Let N = {f ≥ 0}. By (8) and (10), N \ interior(B) is a compact
subset of Zc, so by definition of Z,

(11) lim sup
i

|Mi| (N \B) <∞.

Let B∗ be a small closed ball centered at p such that B∗ is in the interior
of B ∩N . Choose constants Γ, γ > 0, and τ ≥ 0 such that

max
N

f |Df |g < Γ,(12)

min
B∗

f > γ, and(13)

min
N

[ f Tracem(D2f)]g > −τ.(14)

Note that the left sides of (9), (12), and (14) all depend C1-continuously
on the metric g. Thus for all sufficiently large i, the inequalities hold
with gi in place of g; for the rest of the proof, we restrict ourselves to
such i. All metric-dependent quantities below are with respect to gi.

Let Xi be the gradient of 1
2f

2 with respect to the metric gi:

Xi = ∇

(
1

2
f2

)
= f∇f.

Thus
|Xi| = f |Df | ≤ Γ

on N by (12). Also,

DXi = fD(∇f) + Df ⊗∇f,

so

(15) Tracem(DXi) = Tracem(fD(∇f) + Df ⊗∇f).

The endomorphisms fD(∇f) and Df ⊗∇f of the tangent space (to the
ambient space) correspond (using the metric) to the quadratic forms
fD2f and df ⊗ df , so (15) implies that

Tracem(DXi) = Tracem(fD2f + df ⊗ df)

≥ Tracem(fD2f).



CONTROLLING AREA BLOW-UP 509

This last inequality holds because df ⊗df is positive semidefinite, which
implies that the eigenvalues of fD2f + df ⊗ df are bounded below by
the corresponding eigenvalues of fD2f . (See Lemma 12.3.) Thus

Tracem(DXi) ≥ Tracem(fD2f) = f Tracem(D2f)

on N .
Since divMi

Xi ≥ Tracem(DXi), this implies that

(16) divMi
Xi ≥

{
f ( |Df |h+ δ) on N ∩B

−τ on N \B

by (9) and (14) (for gi).
Since Xi = 0 on ∂N , we have∫

Mi∩N

divMi
Xi dA =

∫
Mi∩N

−H ·Xi dA+

∫
∂Mi∩N

Xi · ν dS

≤

∫
Mi∩N

h |Xi| dA+

∫
Mi∩N

(|H | − h)+ |Xi| dA+

∫
∂Mi∩N

|Xi| dS

≤

∫
Mi∩N

hf |Df | dA+ Γ

∫
Mi∩N

(|H | − h)+ dA+ Γ |∂Mi|(N)

≤

∫
Mi∩N

hf |Df | dA+O(1),

where O(1) stands for any quantity that is bounded independent of i.
Thus∫

Mi∩N∩B

(divMi
Xi − hf |Df | ) dA ≤

∫
Mi∩(N\B)

(hf |Df | − divMi
Xi) dA+O(1).

Thus by (16),∫
Mi∩N∩B

δf dA ≤

∫
Mi∩(N\B)

(hf |Df |+ τ) dA+O(1)

≤ (Γh+ τ) |Mi| (N \B) +O(1)

≤ O(1),

where the last step is by (11). Since B∗ ⊂ N ∩ B and since f > γ on
B∗, this implies that

(17) δγ |Mi| (B
∗) ≤ O(1).

However, the left side of (17) is unbounded since p ∈ Z and B∗ is a ball
centered at p. The contradiction proves the theorem. q.e.d.

2.8. Corollary. Let M be a proper, m-dimensional submanifold of Ω
with no boundary and with mean curvature everywhere ≤ h. Then M is
an (m,h) subset of Ω.

More generally, let M be an m-dimensional varifold (not necessarily
rectifiable) of locally bounded first variation with mean curvature every-
where ≤ h and with no generalized boundary. Then the support of M is
an (m,h) subset of Ω.
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Proof. If M is a manifold, let Mi (for i = 1, 2, . . . ) be obtained by
multiplying the multiplicity of M everywhere by i. Then the area blow-
up set Z is M itself, and so M = Z is an (m,h) set by Theorem 2.6.
Similarly, if M is a general m-varifold (i.e., a measure on a certain
Grassman bundle), one lets Mi be the result of multiplying M by i.
Exactly the same argument shows that the support of M is an (m,h)
set. q.e.d.

Conversely, if a smooth m-dimensional manifold is an (m,h) set, then
its mean curvature is everywhere ≤ h. (This follows from the Barrier
Principle 7.1.)

3. Limits of (m,h) subsets

3.1. Theorem. Suppose for i = 1, 2, 3, . . . that Zi is an (m,hi) subset
of C1 Riemannian manifold (Ω, gi). Suppose that the gi converge in C1

to a Riemannian metric g, that the Zi converge as sets (see remark 1.6)
to a closed set Z, and that the hi converge to a limit h.

Then Z is an (m,h) subset of (Ω, g).

Proof. We prove the theorem by contradiction. Suppose that Z fails
to be an (m,h) subset at some point p ∈ Z. By Lemma 2.4, there is a
C2 function f : Ω→ R such that

Tracem(D2f(p)) > h |Df(p)|(18)

f(x) < f(p) for every x ∈ Z \ {p}, and(19)

{f ≥ a} is compact for every a ∈ R.(20)

Now Zi is nonempty for all sufficiently large i, so by properness (20),
f |Zi will attain its maximum at a point pi. Furthermore, pi converges
to p as i → ∞ (by (19) and (20)). By (18), and by the convergence of
gi to g, hi to h, and pi to p,

[Tracem(D2f(pi))− hi |Df(pi)|]gi > 0,

for all sufficiently large i, contradicting the hypothesis that Zi is an
(m,hi) subset of (Ω, gi). q.e.d.

3.2. Corollary. Suppose Z is an (m,h) subset of (Ω, g), where Ω is an
open subset of Rn containing the origin, g is a C1 Riemannian metric
on Ω, and gij(0) is the Euclidean metric δij . Let λi be a sequence positive
numbers tending to ∞, and suppose that the dilated sets

λiZ := {λip : p ∈ Z}

converge to a limit set Z∗. Then Z∗ is an (m, 0) subset of Rn (with
respect to the Euclidean metric).
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Proof. Let gi be the metric on λiΩ obtained from g by dilation. (In
other words, gi is the result of pushing forward the metric g by the map
x �→ λix, and then multiplying by λ2

i .)
Then Zi is an (m,h/λi) subset of (Ωi, gi), so by Theorem 3.1, Z is an

(m, 0) subset of Rn. q.e.d.

4. The Constancy Theorem

4.1. Theorem (Constancy Theorem). Let Ω be an open subset of a
manifold with C1 Riemannian metric g. Let Z be an (m,h) set in (Ω, g).
Suppose Z is a subset of a connected, m-dimensional, properly embedded
submanifold M of Ω. Then Z = ∅ or Z = M . In other words, the
characteristic function of Z is constant on M .

Proof. The result is essentially local, so we may assume that Ω ⊂ Rn.
Suppose the result is false, i.e., that Z is a nonempty proper subset of
M . Then M \ Z contains an open geodesic ball B whose boundary
contains a point p ∈ Z. (See Lemma 4.3 below if that is not clear.) By
translation, we can assume that p = 0. By making a linear change of
coordinates, we may assume that the metric g is the Euclidean metric
at 0 (i.e., that gij(0) = δij .)

Now let λi be a sequence of positive numbers such that λi →∞. Note
that the sets

λi(M \B) := {λix : x ∈M \B}

converge to a closed halfspace H of Tan0 M with 0 ∈ ∂H. Thus by
passing to a subsequence, we can assume that the sets λiZ converge to
a closed subset Z∗ of H with 0 ∈ Z∗ ∩ ∂H. By rotating, we can assume
that H is the halfplane

H = {x ∈ Rn : x1 ≤ 0 and xi = 0 for all i > m}.

By Corollary 3.2, Z∗ is an (m, 0) subset of Rn (with respect to the
Euclidean metric).

Now consider the function

f : Rn → R,

f(x) = x1 + (x1)
2 +

∑
i>m

(xi)
2.

Note that f |H has a local maximum at 0, so f |Z∗ has a local maximum
at 0. But

Tracem(D2f(0)) = 2 > 1 = |Df(0)|,

contradicting the fact that Z∗ is an (m, 0) set. q.e.d.

4.2. Corollary. Suppose that Z is an (m,h) subset of Ω. Suppose also
that Z is contained in M , where M is either

1) a C1 submanifold of dimension ≤ m− 1, or
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2) a connected, m-dimensional, C1 manifold-with-boundary such that
the boundary is nonempty.

Then Z = ∅.

Proof. Note that (in either case) M is contained in anm-dimensional,

C1 manifold M̂ without boundary. Now apply the Constancy Theo-
rem 4.1 to Z and M̂ . q.e.d.

4.3. Lemma. Let M be a connected Riemannian manifold without
boundary. Let K be a proper, nonempty, closed subset of M . Then M \K
contains an open geodesic ball B whose boundary contains a point in K.

Proof. Let q be a point in the boundary of K, i.e, in K ∩M \K.
Choose a point p ∈M \K sufficiently close to q that the closed geodesic
ball of radius dist(p, q) about p is compact. Then the open geodesic ball
of radius dist(p,K) centered at p has the desired properties. q.e.d.

5. Versions of Allard’s Regularity Theorem

We begin with the case of minimal varieties:

5.1. Theorem. Let Ω be a smooth Riemannian manifold (not neces-
sarily complete). Let Mi ⊂ Ω be a sequence of m-dimensional, properly
embedded minimal submanifolds without boundary. Suppose that the Mi

converge as sets (see Remark 1.6) to a subset of an m-dimensional, con-
nected, smoothly embedded submanifold M of Ω. Suppose also that some
point in M has a neighborhood U ⊂ Ω such that Mi∩U converges weakly
to M ∩ U with multiplicity 1, i.e., such that

(*)

∫
Mi

φdA→

∫
M

φdA

for every continuous, compactly supported function φ : U → R. Then
Mi converges to M smoothly and with multiplicity 1 everywhere.

The result remains true if each Mi is minimal with respect to a Rie-
mannian metric gi provided the metrics gi converge smoothly to a limit
Riemannian metric. The result is also true if each Mi is a gi-stationary
integral varifold or, more generally, a gi-stationary varifold with density
≥ 1 at every point in its support.

Proof. By Theorem 2.6, the area blow-up set Z is an (m, 0) set. By
hypothesis, the area blowup set Z is disjoint from U and is therefore
a proper subset of M . Hence by the Constancy Theorem 4.1, Z = ∅.
In other words, the areas of the Mi are uniformly bounded on compact
subsets of Ω. Thus (after passing to a subsequence) the Mi converge in
the varifold sense to a stationary varifold V supported in M .

By the constancy theorem for stationary varifolds ([1, §4.6(3)] or
[7, §41]), V is M with some constant multiplicity. By hypothesis, the
multiplicity is equal to 1 in U . Therefore it is equal to 1 everywhere.
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But then the convergence Mi →M is smooth by the Allard Regularity
Theorem. (More precisely, the convergence is C1,α for some α > 0 by
Allard’s theorem, which then implies by standard elliptic regularity that
the convergence is smooth.) q.e.d.

5.2. Remark. In the case where the Mi are smooth minimal subman-
ifolds, the proof actually requires very little geometric measure theory.
In particular, the existence of a varifold limit and the constancy the-
orem follow rather directly from the definition of varifold. And if the
Mi’s are smooth, the required version of the Allard Regularity Theorem
has a very elementary proof: see [10, Theorem 1.1]. (The proof in [10]
is for compact M , but with minor modification, the proof works for
noncompact M .)

5.3. Remark. The multiplicity 1 hypothesis (*) here (and also in The-
orem 5.4) can be weakened to

lim sup
i

∫
Mi

φdA ≤

∫
M

φdA

for every continuous, nonnegative, compactly supported function f :
U → R, provided we assume that the Mi converge as sets to a nonempty
subset of M . The proof is almost exactly as before.

Readers interested in minimal (rather than bounded mean curvature)
varieties may skip the rest of this section.

5.4. Theorem. Let Ω be a smooth Riemannian manifold (not necessar-
ily complete). Let Mi ⊂ Ω be a sequence of m-dimensional submanifolds
without boundary such that

(21) lim sup
i

∫
Mi∩K

(|H| − h)+)p dA <∞

for some some h < ∞, some p > m, and for every compact K ⊂ Ω.
Suppose that the Mi converge as sets (see Remark 1.6) to a subset of an
m-dimensional, connected, C1 embedded submanifold M of Ω. Suppose
also that some point in M has a neighborhood U ⊂ Ω such that Mi ∩U
converges weakly to M ∩U with multiplicity 1. Then Mi converges to M
in C1. Furthermore, the Mi are locally uniformly bounded in C1,1−m/p:

lim sup
i

(
sup

x,y∈Mi∩K,x �=y

d(Tan(Mi, x),Tan(Mi, y))

d(x, y)1−m/p

)
<∞

for every compact K ⊂ Ω.
The result remains true if the Mi are integer-multiplicity rectifiable

varifolds or, more generally, if the Mi are varifolds with the gap α prop-
erty (see Definition 5.5, below) for some α > 1.
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The multiplicity 1 hypothesis in U can be weakened slightly; see Re-
mark 5.3.

Unlike the minimal case (Theorem 5.1), Theorem 5.4 fails for varifolds
if the gap α hypothesis is replaced by the weaker hypothesis that the
density is ≥ 1 almost everywhere. See §5.6 for an example of such failure.

5.5. Definition. Let V be an rectifiable m-varifold and α > 1. We say
that V has the gap α property if the density Θ(V, x) of V at x belongs
to

{1} ∪ [α,∞)

for μV almost every x.

Proof of Theorem 5.4. Let h′ = h+ 1. Then

(|H| − h′)+ ≤ ((|H| − h)+)p.

So, by (21),

lim sup
i

∫
Mi∩K

(|H| − h′)+ dA <∞

for every compact K ⊂ Ω. Hence, exactly as in the proof of Theorem 5.1,
the areas of the Mi must be uniformly bounded on compact sets. Thus
by passing to a subsequence, we can assume that the Mi’s converge to
a limit varifold V . Also,(∫

Mi∩K
|H|p dA

)1/p

≤

(∫
Mi∩K

hp dA

)1/p

+

(∫
Mi∩K

((|H| − h)+)p dA

)1/p

≤ h area(Mi ∩K)1/p +

(∫
Mi∩K

((|H| − h)+)p dA

)1/p

.

Since the area of Mi ∩ K is bounded as i → ∞, the hypothesis (21)
implies that

lim sup
i

(∫
Mi∩K

|H|p dA

)1/p

<∞.

Recall that the density of V at x is

Θ(V, x) = lim
r→0

|V |B(x, r)

ωmrm
,

provided the limit exists, where ωm is the volume of the unit ball in
Rm. By the monotonicity formula for the Mi’s (which implies the same
monotoncity for V ), Θ(V, x) exists everywhere and is upper semicontin-
uous in x, and it also has the following property:

Θ(V, x) ≥ lim supΘ(Mi, xi) provided xi → x.

(See, for example, [7, §17.8] for proof of these upper-semicontinuity prop-
erties.) In particular, Θ(V, x) ≥ 1 for every point in spt(V ).

Now let W be the set of points where Θ(V, x) = 1. By hypothesis, W
is a nonempty subset of M .
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We claim thatW is a relatively open subset ofM . To see that, suppose
x ∈W , i.e., that Θ(V, x) = 1. By the Allard Regularity Theorem, there
is a open ball B ⊂ Ω around x such that for all sufficiently large i ≥ i0,
spt(Mi)∩B is a C1 submanifold and such that the spt(Mi)∩U converge
in C1 to M ∩ U . By the upper-semicontinuity of density [7, §17.8], and
by replacing B by a smaller open ball around x and by replacing i0
by a larger number, we can assume that Θ(Mi, ·) < α at almost all
points of spt(Mi) ∩ B for i ≥ i0. By the gap α property, Θ(Mi, ·) = 1
at almost all points of spt(Mi) ∩ B for i ≥ i0. Hence the measures
μMi

and Hm
�(spt(Mi)) coincide in B, which implies (because of the

C1 convergence) that μV and Hm
�M also coincide in B. That in turn

implies that Θ(V, ·) ≡ 1 in B ∩M , so B ∩M ⊂W . This proves that W
is a relatively open subset of M .

Now if W �= M , then there would be an open geodesic ball D in W
and a point x ∈ D ∩W c. (Recall Lemma 4.3.) By definition of W ,

Θ(V, x) �= 1.

Now the tangent cone C to V at x is a plane with multiplicity Θ(V, x).
(The multiplicity is constant on the plane by the constancy theorem for
stationary varifolds ([1, §4.6(3)] or [7, §41]). However, the multiplicity
is equal to 1 on a halfplane of that cone–namely, the tangent halfplane
to D at x–so Θ(V, x) = 1, contradicting the fact that x /∈ W . The
contradiction proves that W = M , i.e, that Θ(V, ·) ≡ 1 on M . The
conclusion then follows from the Allard Regularity Theorem. q.e.d.

5.6. A counterexample. As mentioned above, Theorem 5.4 fails if
the gap α hypothesis is replaced by the hypothesis that the density
≥ 1 almost everywhere. We now give an example of that failure. Let
g : R → R be a smooth function such that g(x) = 0 if and only if
|x| ≥ 1. Let Sn be the union of the graph of (1/n)g and the x-axis (i.e.,
the graph of the 0 function). Let φ : [1,∞)→ [1, 2] be a smooth function
such that φ(t) = 2 for 1 ≤ t ≤ 2 and such that φ(x) = 1 for x ≥ 3.

Now let Mn be the rectifiable varifold whose support is Sn and whose
density Θ(V, (x, y)) at (x, y) ∈ Sn is 1 if |x| < 1 and φ(|x|) for |x| ≥
1. Let M be the x-axis. Then Mn, M , and Ω = R2 satisfy all the
hypotheses except for the gap α hypothesis. Also, Θ(Mn, ·) ≥ 1 at every
point of spt(Mn), i.e., at every point of Sn. However, we do not have C1

convergence spt(Mi)→M . Indeed, none of the Mi are C
1 at the points

(1, 0) and (−1, 0).

6. Versions of Allard’s Boundary Regularity Theorem

6.1. Theorem. Let Ω be a smooth Riemannian manifold, and let M ⊂
Ω be an m-dimensional smooth, connected, properly embedded manifold-
with-boundary such that ∂M is smooth and nonempty. Let Mi be a
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sequence of properly embedded m-dimensional minimal submanifolds-
with-boundary of Ω such that the Mi converge as sets to a subset of M ,
and such that the boundaries ∂Mi converge smoothly to ∂M . Then Mi

converges smoothly to M .
The result remains true if each Mi is minimal with respect to a Rie-

mannian metric gi provided the metrics gi converge smoothly to a limit
Riemannian metric.

See §6.2 for a generalization to submanifolds Mi of bounded mean
curvature or (even more generally) to varifolds with (|H| − h)+ in Lp

for some p > m.
Note that we are not assuming any area bounds. To deduce the

smooth convergence Mi → M directly from Allard’s Regularity The-
orems (boundary and interior), one would need to assume that the Mi

converge weakly (in the sense of Radon measures) to M with multiplic-
ity 1. Indeed, we prove Theorem 6.1 by deducing weak, multiplicity 1
convergence from the hypotheses.

Proof. The area blow-up set of theMi is an (m, 0) set by Theorem 2.6,
and it is contained in a connected m-manifold with nonempty boundary,
so it is empty by Corollary 4.2. That is, the areas of theMi are uniformly
bounded on compact subsets of Ω. Thus by passing to a subsequence, we
can assume that the Mi converge as varifolds to a varifold V supported
in M .

Let X be a compactly supported smooth vectorfield on Ω. If we think
of Mi as a rectifiable varifold (by assigning it multiplicity 1 everywhere),
recall that its first variation operator δMi is given by

δMi(X) =

∫
Mi

divMi
X dHm

= −

∫
Mi

H ·X dHm +

∫
∂Mi

X · νi dH
m−1.

Thus

(22)

|δMi(X)| ≤

∫
Mi

|H ·X| dHm +

∫
∂Mi

|X · νi| dH
m−1

≤

∫
∂Mi

|X| dHm−1.

Taking the limit as i→∞ gives

(23) |δV (X)| ≤

∫
∂M
|X| dHm−1.

In particular, δV (X) = 0 forX compactly supported in Ω\∂M , so by the
constancy theorem for stationary varifolds ([1, §4.6(3)] or [7, §41]), V is
the rectifiable varifold obtained by assigning some constant multiplicity
a ≥ 0 to M .
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(Strictly speaking, the constancy theorem only tells us that V and
the varifold M with multiplicity a coincide in Ω\∂M . However, since V
has locally bounded first variation (by 23), |V | is absolutely continuous
with respect to Hm (see [7, §3.2, §40.5]). Thus |V |(∂M) = 0, so in fact
the two varifolds coincide throughout Ω.)

Thus by the first variation formula for M ,

δV (X) = a

∫
∂M

X · ν dHm−1,

where ν is the unit normal vectorfield to ∂M that points out of M .
Substituting this into (23) gives

(24) a

∫
∂M

X · ν dHm−1 ≤

∫
∂M
|X| dHm−1.

Now let X be a vectorfield whose restriction to ∂M is fν, where f is
a nonnegative function that is strictly positive on some nonempty open
set. Then (24) becomes

a

∫
∂M

f dHm−1 ≤

∫
f dHm−1,

which implies that a ≤ 1.
We have shown that the Mi converge as varifolds to M with multi-

plicity a where a ≤ 1. By Allard’s Regularity and Boundary Regular-
ity Theorems (or by the simplified version in [10]), the convergence is
smooth on compact subsets of Ω.

(Concerning the simplified versions of Allard’s theorems: the proof
described in [10] is for interior points, but the method works equally
well at the boundary.) q.e.d.

Readers interested in minimal (rather than bounded mean curvature)
varieties may skip the rest of this section.

Theorem 6.1 remains true if we replace the hypothesis that the Mi

are minimal by the hypothesis that

lim sup
i→∞

∫
K∩Mi

((|H| − h)+)p dA <∞

for every compact K ⊂ Ω, provided we also replace smooth convergence
(in the conclusion) by convergence in C1 (with uniform local C1,1−m/p

bounds). However, the proof of Theorem 6.1 does not work in the more
general setting. (As in the minimal case, by passing to a subsequence
we can assume that the Mi converge as varifolds to limit varifold V
supported in M . However, V need not be stationary in Ω \ ∂M , and
thus we cannot invoke the constancy theorem for stationary varifolds as
we did in the minimal case.) So a different proof is required. In fact, we
prove a more general result that also applies to varifolds:
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6.2. Theorem. Let Vi be a sequence of m-dimensional varifolds in a
smooth Riemannian manifold Ω such that we have the following:

(1) For each i and for each smooth, compactly supported vectorfield X
on Ω,

δVi(X) = −

∫
X ·Hi d|Vi|+

∫
Γi

X · νi dH
m−1,

where Γi is a smooth, proper, (m − 1)-dimensional submanifold of
Ω, Hi is a Borel vectorfield on Ω, and νi is a Borel vectorfield on
Γi with |νi(x)| ≤ 1 for all x.

(2) Θ(Vi, x) ≥ 1 at each point of spt(Vi) \ Γi.
(3) The spt(Vi) converge as sets (see Remark 1.6) to a subset S of a con-

nected, proper, C1 submanifold M with ∂M smooth and nonempty.
(4) Γi converges smoothy to ∂M .
(5) For every compact K ⊂ Ω,

lim sup
i→∞

∫
K
(|Hi| − h)+)p d|Vi| <∞,

where p and h are finite constants with p > m.

Then, after passing to a subsequence, the Vi converge to a limit V . If z
is a point in ∂M , then Θ(V, z) = 1/2 and z has a neighborhood U such
that

(i) for all sufficiently large i, the set spt(Vi)∩U is a C1,1−m/p manifold-
with-boundary in U (the boundary being Γi ∩ U), with a C1,1−m/p

bound independent of i, and
(ii) spt(Vi) ∩ U converges in C1 to M ∩ U .

Furthermore, if β > 1, then U can be chosen so that

(iii) supx∈U\Γi
Θ(Vi, x) ≤ β for all sufficiently large i.

The theorem remains true if the Vi satisfy the hypotheses for a sequence
gi of Riemannian metrics on Ω converging smoothly to a limit metric g.

6.3. Corollary. Suppose that the Vi in Theorem 6.2 are integer-multi-
plicity rectifiable varifolds or, more generally, varifolds with the gap α
property (§5.5) for some α > 1 independent of i. Then S = M , and
every point (interior or boundary) of M has a neighborhood U ⊂ Ω for
which (i) and (ii) hold, and for which Θ(Vi, ·) ≡ 1 on spt(Vi) ∩ U \ Γi

for all sufficiently large i.

The corollary is false without the gap α assumption: if we let Vi be
the portion of Mi from §5.6 in the region {(x, y) : |x| ≤ 5} and if we
let M = [−5, 5]×{0}, then all the hypotheses of Theorem 6.2 hold, but
there are interior points (x, y) of M (namely, the points (±1, 0)) such
that (x, y) is a singular point of every Vi.
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Proof of corollary. Let z be a point in ∂M , and let β be a number such
that 1 < β < α. Let U be a neighborhood of z satisfying the conclusions
of the theorem. Then by hypothesis (2) and by conclusion (iii),

1 ≤ Θ(Vi, x) < α

for all x ∈ U ∩ spt(Vi) \ Γi and i ≥ i0, so by the gap α property,
Θ(Vi, x) ≡ 1 for such x and i0.

Now by Theorem 5.4, the multiplicity 1 convergence in U implies
such convergence in all of Ω \ ∂M . But that implies that S (the limit
of the spt(Vi)) is all of M . In particular, S includes all of ∂M , so (by
Theorem 6.2) we also get multiplicity 1 convergence everywhere. q.e.d.

Proof of Theorem 6.2. Let h′ = h + 1. Then, as in the proof of Theo-
rem 5.4,

lim sup
i→∞

∫
K
(|Hi| − h′)+) d|Vi| <∞,

for every compact K. Thus the area blow-up set of the Vi is an (m,h′)
set by Theorem 2.6 and Definition 2.1, and it is contained in a connected
m-manifold with nonempty boundary, so it is empty by Corollary 4.2.
In other words, the areas of the Vi are uniformly bounded on compact
sets. It follows (using hypothesis (5) and Minkowski’s inequality) that

sup
K

∫
|Hi|

p d|Vi| <∞

for compact sets K ⊂ Ω. By passing to a subsequence, we can assume
that the Vi converge to a varifold V . Now let z be a point in S ∩ ∂M .
The remaining conclusions are local, so we can replace Ω by any open
set containing z. By isometrically embedding Ω into some RN and then
enlarging it to get an open subset of RN , we can assume that Ω is an
open subset of RN with the Euclidean metric. We may also assume that
z is the origin 0. By replacing Ω with an open ball whose closure is in
Ω, we can assume that

(25) a := sup
i

(∫
|Hi|

p d|Vi|

)1/p

<∞.

From the hypothesis (1) and Holder’s inequality, we have

|δVi(X)| ≤ a

(∫
|X|q d|Vi|

)1/q

+

∫
Γi

|X| dHm−1

for all smooth, compactly supported vectorfields X, where q = p/(p−1).
Passing to the limit gives

(26) |δV (X)| ≤ a

(∫
|X|q d|V |

)1/q

+

∫
∂M
|X| dHm−1.

For r > 0, let V r, M r, and Ωr be obtained from V , M , and Ω by
dilation by 1/r about 0.
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We claim that

(27) δV r(X) ≤ r1−m/pa

(∫
|X|q d|V r|

)1/q

+

(∫
∂Mr

|X| dHm−1

)
for every smooth vectorfield X supported in Ωr. To prove the claim, fix
an r and let X̃(x) = X(x/r). Then

|δV r(X)| = r1−m|δV (X̃)|

≤ r1−ma

(∫
|X̃ |q d|V |

)1/q

+ r1−m

(∫
∂M
|X̃| dHm−1

)

= r1−m/pa

(∫
|X|q d|V r|

)1/q

+

(∫
∂Mr

|X| dHm−1

)
.

This proves the claim.
Let

(28)

θ := Θ∗(|V |, 0) := lim sup
r→0

|V |B(0, r)

ωmrm
= lim sup

r→0

|V r|B(0, 1)

ωm
∈ [0,∞].

Consider a sequence of r’s tending to 0 and let Λ be the set of those r’s.
Choose Λ so that

(29) lim
r∈Λ→0

|V r|B(0, 1)

ωm
= θ.

By passing to a further subsequence, we can assume that the supports of
V r converge as r ∈ Λ→ 0 to a subset of M ′ := Tan(M, 0), the tangent
halfplane to M at 0. Thus by (27) and Corollary 4.2, the areas of the
V r are uniformly bounded on compact sets, so, by passing to a further
subsequence, we can assume that the V r converge to a limit varifold V ′

as r ∈ Λ→ 0. From (27), we see that

(30) δV ′(X) ≤

∫
∂M ′

|X| dHm−1

for all smooth, compactly supported X. In particular, V ′ is station-
ary in RN \ ∂M ′, so, by the constancy theorem for stationary vari-
folds ([1, §4.6(3)] or [7, §41]), V ′ is the halfplane M ′ with some constant
multiplicity. By (29), that multiplicity is 2θ. Thus

δV ′(X) = 2θ

∫
divM ′ X dHm = 2θ

∫
∂M ′

X · ν dHm−1,

where ν is the unit normal vector to ∂M ′ that points out from M ′. Thus
by (30),

2θ

∫
∂M ′

X · ν dHm−1 ≤

∫
∂M ′

|X| dHm−1,

which immediately implies that θ ≤ 1/2. (Let X be a smooth, com-
pactly supported vecforfield whose restriction to M ′ is fν, where f is a
nonnegative function that is not identically 0.)
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Now θ = Θ∗(|V |, 0) ≤ 1/2 implies, for all sufficiently small balls
B(0, r), that Vi�B(0, r) satisfies the hypotheses of the Allard Boundary
Regularity Theorem [2, p. 429] for all sufficiently large i, which implies
the asserted behavior (i) and (ii) in a smaller ball. Also, hypothesis (2)
and conclusion (ii) of the theorem imply that Θ(V, 0) ≥ 1/2. Therefore,
Θ(V, 0) = 1/2.

It remains only to prove (iii). Let U satisfy (i) and (ii). We may
assume that (i) and (ii) hold for all i by dropping the first i0 terms in
the sequence. Now suppose that (iii) does not hold for any U . Then,
after passing to a subsequence, we can assume that there are points
xi ∈ U \ Γi such that xi → 0 and such that

Θ(Vi, xi) ≥ β.

Let yi be the point in Γi nearest to xi. Translate Vi, M , and xi by

−yi and dilate by 1/|xi − yi| to get V †
i , M

†
i , and x†i . Note that the M †

i

converge to the halfplane M ′ = Tan(M ′, 0). (This follows from the C1

convergence in (ii).) Now by exactly the same reasoning used for the V r,

we can assume, after passing to a subsequence, that the V †
i converge to a

limit V † consisting of the halfplane M ′ = Tan(M, 0) with some constant

multiplicity c ≤ 1. Note that the points x†i converge to the point x† in

M ′ such that x† is a unit vector in M ′ perpendicular to ∂M ′. Now

1 ≥ c = Θ(V †, x†) ≥ lim sup
i

Θ(V †
i , x

†
i ) ≥ β

by the upper semicontinuity of density for varifolds whose mean cur-
vatures satisfy uniform local Lp bounds [7, §17.8]. However, β > 1 by
hypothesis. The contradiction proves (iii). q.e.d.

6.4. Remark. In Theorem 6.2, the hypothesis that |ν(·)| ≤ 1 can be
relaxed |ν(·)| ≤ γ, where γ > 1 is a constant (depending on m and on
dim(Ω)) from the Allard Boundary Regularity Theorem. If the Vi have
the gap α property, then we can let γ be any number with 1 < γ < α.
The proof is almost exactly the same as the proof of Theorem 6.2.

7. The Barrier Principle

The following theorem shows that an (m,h) subset obeys the same
barrier form of the maximum principle that is satisfied by smooth m-
manifolds with mean curvature bounded by h.

7.1. Theorem (Barrier Principle). Let Ω be a C1 Riemannian manifold
without boundary, and let Z be an (m,h) subset of Ω. Let N be a closed
region in Ω with smooth boundary such that Z ⊂ N , and let p ∈ Z∩∂N .
Then

κ1 + · · ·+ κm ≤ h,

where κ1 ≤ κ2 ≤ · · · ≤ κn−1 are the principal curvatures of ∂N at p
with respect to the unit normal that points into N .
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Proof of the Barrier Principle (Theorem 7.1). Since the result is local,
we may assume that Ω is an open subset of Rn. It suffices to construct
a smooth function f : Ω→ R such that

max
N

f = f(p),(31)

Df(p) �= 0,(32)

and such that

Tracem(D2f)(p)

|Df(p)|
= μ :=

m∑
i=1

κi.

Case 1: g is the Euclidean metric. Let u : Ω → R be the signed
distance to ∂N :

u(x) =

{
dist(x, ∂N) if x /∈ N,

− dist(x, ∂N) if x ∈ N.

Let e1, . . . , en−1 be unit vectors in Tanp ∂N in the principal directions
of ∂N . These vectors together with ∇u(p) form an orthonormal basis
for Rn, and a standard and straightforward computation shows that
these are eigenvectors of D∇u(p) with eigenvalues κ1, . . . , κn−1, and 0.

Let f(x) = eαu(x), where α is a positive number to specified later.
Then

Df = αeαuDu.

If we work in normal coordinates at p and (by a slight abuse of notation)
use D2f to denote the matrix of second partial derivatives of f with
respect to those coordinates, then we have (at the point p)

D2f = α2eαuDuTDu+ αeαuD2u.

From this we see that the eigenvectors of D2u(p) are also eigenvectors
of D2f(p), and that the eigenvalues of D2f(p) are

(33) λi = ακi (i = 1, . . . , n− 1)

together with λn := α2. Choosing α so that

α > max
i
|κi|

guarantees that λn is the largest eigenvalue and thus by (33) that

Tracem(D2f(p)) =
m∑
i=1

ακi = αμ,

so
Tracem(D2f(p))

|Df(p)|
=

αμ

α
= μ.

This completes the proof in Case 1.
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Case 2: g is a general C1 metric. As before, we can assume that
Ω ⊂ Rn. By a diffeomorphic change of coordinates, we may assume
that

(34) gij(p) = δij

and that

(35) Dgij(p) = 0.

Now by (34) and (35), at the point p, the principal curvatures of
∂M with respect to the Euclidean metric δ are equal to the principal
curvatures with respect to the metric g. Thus, by Case 1, there is a
smooth function f : Ω→ R such that Df(p) �= 0,

max
N

f = f(p),

and such that

(36)

[
Tracem(D2f(p))

|Df(p)|

]
δ

= μ.

But by (34) and (35), the left side of (36) does not change if we replace
δ by g. This completes the proof in Case 2. q.e.d.

7.2. Corollary. Suppose Z is an (m, 0) subset of smooth Riemannian
(m + 1)-manifold. If t ∈ [0, T ] �→ M(t) is a mean curvature flow of
compact hypersurfaces and if M(0) is disjoint from Z, then M(t) is
disjoint from Z for all t ∈ [0, T ].

Here the mean curvature flow can be a classical flow, a Brakke flow
of varifolds, or a level-set flow. See [11, Proposition 7.7] for the proof.
(There, Z is stated to be the support of a stationary m-varifold, but in
fact the proof only uses the Barrier Principle 7.1 and hence establishes
Corollary 7.2 for any (m, 0) set Z.)

In the codimension 1 case, we also have a strong barrier principle:

7.3. Theorem (Strong Barrier Principle). Let Z be an (m,h) subset of
a smooth, (m+1)-dimensional, Riemannian manifold Ω without bound-
ary.

Let N be a closed region in Ω with smooth, connected boundary such
that Z ⊂ N and such that

H∂N · ν ≥ h

at every point of ∂N , where H∂N (x) is the mean curvature vector of ∂N
at x and ν(x) is the unit normal at x to ∂N that points into N .

If Z contains any points of ∂N , then it contains all of ∂N .

Proof. See [8] for a proof. Specifically, [8, step 1, page 687] shows that
any set Z that violates the conclusion of the strong barrier principle 7.3
also violates the conclusion of the barrier principle 7.1. (The proof there
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is written for the case h = 0, but the same proof works for arbitrary h.)
q.e.d.

7.4. Corollary (The Halfspace Theorem for (2, 0) sets). Suppose Z ⊂
R3 is a nonempty (2, 0) set that lies in a halfspace of R3. Then Z
contains a plane. Indeed, if L : R3 → R is a nonconstant linear function
and if

s := sup
Z

L <∞,

then Z contains the plane L = s.

Proof. Hoffman and Meeks [4, Theorem 1] proved this in the case
where Z is a properly immersed minimal submanifold of R3, but their
proof only uses the strong barrier principle and hence also works for
arbitrary (2, 0) sets Z. q.e.d.

8. Converse to the Barrier Principle

8.1. Lemma. Suppose Z is a closed subset of a Riemannian manifold
Ω. If Z is not an (m,h) set, then there is smooth function f : Ω → R

such that f |Z has a local maximum at a point p where

(37) Tracem(D2f(p)) > h |Df(p)|

and where

(38) Df(p) �= 0.

Proof. Since the result is local, we may assume that Ω is diffeomorphic
to a ball or, equivalently, to Rn. Thus we may in fact assume that Ω
is Rn with a Riemannian metric. By hypothesis, there is a C2 function
f : Ω → R and a point p such that f |Z has a local maximum at p
and such that (37) holds. By Corollary 2.5, there is such an f that is
smooth. By translation, we may assume that p = 0.

We assume that Df(0) = 0, as otherwise there is nothing to prove.
By replacing f by

x �→ f(x)− ε |x|2

for a sufficiently small ε > 0, we may assume that f |Z has a strict local
maximum at 0 and that Df has an isolated zero at 0, i.e., that

(39) Df(x) �= 0 if 0 < |x| < r

for some r > 0.
Since Tracem(D2f(0)) > 0, the function f does not have a local max-

imum at 0. Thus 0 is not in the interior of Z. Let pi be a sequence of
points in Ω \ Z converging to 0. Let

fi : Ω→ R,

fi(x) = f(x− pi).
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Since f |Z has a strict local maximum at p, it follows that (for suffi-
ciently large i) fi|Z has a local maximum at some point qi with limi qi =
0. By the smooth convergence fi → f and by (37),

Tracem(D2fi(qi))− h |Dfi(qi)| > 0

for all sufficiently large i.
Now |qi − pi| > 0 since qi ∈ Z and pi /∈ Z. Also, |qi − pi| → 0 since pi

and qi tend to 0. Thus |Dfi(qi)| �= 0 by (39).
Thus (for all sufficiently large i) the function fi and the point qi have

the desired properties. q.e.d.

8.2. Theorem. Let Z be a closed subset of a Riemannian manifold Ω,
and let m < dim(Ω). Suppose that Z is not an (m,h) set. Then there is
a closed region N ⊂ Ω containing Z and a point p ∈ Z ∩ ∂N such that
∂N is smooth and such that

Hm(∂N, p) > h,

where Hm(∂N, p) is the sum of the smallest m principal curvatures of
∂N at p with respect to the unit normal that points into N .

Proof. By hypothesis, there is a point p ∈ Z and a smooth function
f : Ω→ R such that f |Z has a local maximum at p and such that

Tracem(D2f(p)) > h |Df(p)|.

By Lemma 8.1, we may assume that Df(p) �= 0. We may also assume
that

|Df(p)| = 1.

(Otherwise replace f by f/|Df(p)|.) Thus

Tracem(D2f(p)) > h.

By modifying f outside of a compact neighborhood of p, we may assume
that f |Z attains its global maximum at p, and that Df never vanishes
on the level set f = f(p). Hence the set N := {x : f(x) ≤ f(p)} is a
closed region with smooth boundary, Z ⊂ N , and p ∈ Z ∩ ∂N .

Let

κ1 ≤ κ2 ≤ · · · ≤ κn−1

be the principal curvatures of ∂N at p with respect to the unit normal
that points into N . We may suppose that we have chosen normal co-
ordinates at p such that the standard basis vectors e1, e2, . . . , en−1 are
the corresponding principal directions of ∂N at p. Let

ν =
∇f

|∇f |
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and s = |∇f |, so that ∇f = sν. Now

Dei(∇f(p)) = Deisν

= sDeiν + νDeis

= κiei + νDeis,

so

ei · Dei∇f(p) = κi.

In other words, κi is the ii entry of the matrix for D∇f(p) with respect
to the orthonormal basis e1, . . . , en. Thus

h < Tracem(D2f(p)) ≤
m∑
i=1

κi.

(For the last step we are using the following fact from linear algebra: if
Q is a symmetric n× n matrix, then the sum of any m of the diagonal
entries of Q is greater than or equal to the sum of the smallest m
eigenvalues of Q.) q.e.d.

9. Minimal Hypersurfaces

Here we prove some results in the special case of (m, 0) sets in (m+1)-
dimensional manifolds. In the next section, we extend the results to
(m,h) sets with h > 0.

We suppose throughout this section that N is a smooth, (m + 1)-
dimensional Riemannian manifold with smooth, connected boundary.
We also suppose that one of the following hypotheses holds:

1) N is complete with Ricci curvature bounded below, or
2) N has an exhaustion by nested, compact, mean convex regions, or
3) N is a subset of a larger (m+ 1)-manifold and N is compact and

mean convex.

(Each of these hypotheses guarantees that a compact hypersurface
in N moving by mean curvature flow cannot escape to infinity in fi-
nite time. For hypotheses (2) and (3), this follows immediately from
the maximum principle. For hypothesis (1), see [6, 6.2 or 6.4]. In hy-
potheses (2) and (3), the mean convex regions referred to need not have
smooth boundary.)

9.1. Theorem. Let m < 7, and let N be a smooth, mean convex, (m+
1)-dimensional Riemannian manifold with smooth, nonempty, connected
boundary satisfying one of the hypotheses (1)–(3) above.

Suppose that N contains a nonempty (m, 0) subset Z and that Z does
not contain all of ∂N . Then N contains a nonempty, smooth, embedded,
stable minimal hypersurface S that weakly separates Z from ∂N in the
following sense: if C ⊂ N is a connected, compact set that contains
points of Z and of ∂N , then C intersects S.
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The theorem remains true for m ≥ 7, except that the surface S is
allowed to have a singular set of Hausdorff dimension ≤ m− 7.

(We remark that S has a one-sided minimizing property considerably
stronger than stability. See [9, §11] for details. In particular, if any con-
nected component of S is one-sided (i.e., has a nonorientable normal
bundle), then its two-sided double cover is also stable.)

Proof. By the Strong Barrier Principle 7.3, the set Z must lie in
the interior of N . If ∂N is a stable minimal hypersurface, then we let
S = ∂N . Thus we may assume that ∂N is not a minimal hypersurface
or that it is an unstable minimal hypersurface. We divide the proof into
four cases according to whether ∂N is or is not minimal and whether it
is or is not compact.

Case 1: ∂N is compact and ∂N is not a minimal surface. Let

t ∈ [0,∞) �→ K(t)

be the flow such that K(0) = N and such that ∂K(t) flows by mean
curvature flow. Each of the hypotheses (1), (2), and (3) imply that ∂K(t)
remains in N (as a compact set) for all time.

Also, since Z is an (m, 0) set, ∂K(t) can never bump into Z (Corol-
lary 7.2.) That is, Z is contained in the interior of K(t) for all t. Thus
Z ⊂ K∞ ⊂ interior(N) where K∞ = ∩tK(t). Furthermore, by [9, §11],
S := ∂K∞ is a minimal surface with the indicated regularity properties.
This completes the proof in Case 1.

Case 2: ∂N is a compact, unstable minimal hypersurface. The in-
stability means that we can push ∂N slightly into N to get a surface
whose mean curvature is everywhere nonzero and points away from ∂N .
(For example, we can push Σ into N by the lowest eigenfunction of the
Jacobi operator; see [5, Proposition A3] for a proof.) Replacing N by
the portion of N on one side of that surface reduces Case 2 to Case 1.

Case 3: ∂N is noncompact and nonminimal. In this case, let p be a
point in ∂N where the mean curvature of ∂N is nonzero. Let f : ∂N →
R be a proper Morse function such that f(p) = min f < 0 and such
that 0 is a regular value of f . Let

t ∈ [0,∞) �→ K(t) ⊂ N

be the flow such that

K(0) = N,

K(t) ∩ (∂N) = {q ∈ ∂N : f(q) ≥ t},

and such that the surfaces

M(t) := ∂K(t)

move by mean curvature flow.
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(Note that M(t) is a (possibly singular) m-dimensional surface with
boundary; the boundary of M(t) is {q ∈ ∂N : f(q) = t}.)

The rest of the proof is essentially identical to the proof in Case 1.
Case 4: ∂N is a noncompact, unstable minimal hypersurface. Let

f : ∂N → R be a smooth, proper Morse function that is bounded
below. Since ∂N is unstable, it follows that for all sufficiently large t,
the surface (∂N) ∩ {f < t} will be unstable. In particular, there is a
regular value τ of t for which the surface Σ := (∂N) ∩ {f < τ} is
unstable. By adding a constant to f , we may suppose that τ = 0. The
instability implies that we can push the interior of Σ slightly into the
interior of N to get a surface Σ′ with ∂Σ′ = ∂Σ such that the mean
curvature of Σ′ is everywhere nonzero and points away from ∂N . For
example, we can push Σ into N by the lowest eigenfunction of the Jacobi
operator as in Case (2). We make the perturbation small enough that
the closed region bounded by Σ ∪ Σ′ does not contain any points of Z.

Now let
t ∈ [0,∞) �→M(t)

be the mean curvature flow (constructed by elliptic regularization) such
that M(0) = Σ′ and such that ∂M(t) = {x ∈ ∂N : f(x) = t} for all
t ≥ 0.

The rest of the proof is identical to the proof in Case 3. q.e.d.

9.2. Corollary (Strong Halfspace Theorem for (2, 0) sets). Let Σ be a
connected, properly embedded, separating minimal surface in a complete
3-manifold Ω of nonnegative Ricci curvature. Suppose Z is a nonempty
(2, 0) set that lies in the closure N of one of the connected components of
Ω \Σ, and suppose that Σ \Z is nonempty. Then N contains a properly
embedded, totally geodesic surface M with Ricci flat normal bundle.

In particular, if Ω is the flat R3, then Σ is a plane and Z contains a
plane parallel to Σ.

Hoffman and Meeks [4, Theorem 2] proved this in the case where Z
is a properly immersed minimal surface.

Proof. The corollary follows from the Theorem 9.1 because by [3, page
210, paragraph 1], every complete, stable, two-sided minimal surface M
in Ω is totally geodesic and has Ricci flat normal bundle.

The last assertion (“Z contains a plane parallel to Σ”) is Corollary 7.4.
q.e.d.

10. Bounded Mean Curvature Hypersurfaces

Here we extend Theorem 9.1 from (m, 0) sets to (m,h) sets.

10.1. Definition. LetN be a smooth Riemannian manifold with smooth
boundary, and let h ≥ 0. We say that N is h-mean convex provided

(40) H∂N · ν ≥ h
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at all points of ∂N , where H∂N is the mean curvature vector and ν is
unit normal to ∂N that points into N .

It is also convenient to allow N with piecewise smooth boundary. In
particular, supposeN = ∩iNi is the intersection of finitely many smooth
Riemannian manifolds with smooth boundary and that the ∂Ni are
transverse. (The transversality means that if x belongs to several of the
∂Ni, then the unit normals to those ∂Ni at x are linearly independent.)
In that case, we say that N is h-mean convex provided (40) holds at all
the regular boundary points of N .

In this section, we suppose that h > 0 and that N is a smooth, (m+
1)-dimensional Riemannian manifold that satisfies one of the following
hypotheses:

(i) N is complete with Ricci curvature bounded below.
(ii) N has an exhaustion by nested, compact, h-mean convex regions.
(iii) N is a subset of a larger (m+ 1)-manifold and N is compact and

h-mean convex.

(The exhausting regions in (ii) and the region N in (iii) are allowed
to have piecewise smooth boundary.)

10.2. Theorem. Let h > 0, let m < 7, and let N be a smooth, h-
mean convex, (m + 1)-dimensional Riemannian manifold with smooth,
nonempty, connected boundary. Suppose that one of the hypotheses (i),
(ii), or (iii) holds, and that N contains a nonempty (m,h) subset Z.

Then Z is contained in a region K whose boundary is smooth and
has constant mean curvature h with respect to the inward unit normal.
Furthermore, if ∂N is not contained in Z, then ∂K is stable for the
functional (area)− h(enclosed volume).

The theorem remains true for m ≥ 7, except that the surface S is
allowed to have a singular set of Hausdorff dimension ≤ m− 7.

Proof. The proof is exactly the same as the proof of Theorem 9.1,
except that in that proof we let the sets K(t) evolve so that ∂K(t)
moves not with velocity H but rather with velocity H −hν, where H is
the mean curvature and ν(x) is the inward unit normal.

Suitable varifold solutions to the flow can be constructed by elliptic
regularization just as in the h = 0 case. Furthermore, h-mean convexity
is preserved by the flow just as in the h = 0 case. Indeed, all the results
in [9] for mean convex mean curvature flow continue to hold for arbitrary
h, with only very minor modifications in the proofs. In fact, for h > 0,
the behavior of ∂K(t) as t → ∞ is slightly simpler: in the case h = 0,
it is possible for ∂K(t) to converge smoothly to a double cover of the
limit surface S, whereas for h > 0, that is clearly impossible. q.e.d.
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11. The Distance to an (m,h) Set

Here we show that (m,h) sets behave well with respect to the distance
function. The theorem and its proof are particularly simple when the
ambient space is Euclidean, so we consider that case first:

11.1. Theorem. Suppose Z is an (m,h) subset of Rn. Then for s > 0,
the set Z(s) of points in Rn at distance ≤ s from Z is also an (m,h)
set.

Proof. Let f : Rn → R be a smooth function such that f |Z(s) has
a local maximum at p ∈ Z(s). Let q be a point in Z that minimizes
dist(q, p). Let

g(x) = f(x+ p− q).

Then g|Z has a local maximum at q, so

Tracem(D2g(q)) − h |Dg(q)| ≤ 0.

Since Df(p) = Dg(q) and D2f(p) = D2g(q), this implies that

Tracem(D2f(p))− h |Df(p)| ≤ 0.

q.e.d.

11.2. Theorem. Suppose Z is an (m,h) subset of a connected, Rie-
mannian manifold Ω. For s > 0, let Z(s) be the set of points at geodesic
distance ≤ s from Z.

(i) If the sectional curvatures of Ω are bounded below by K, then Z(s)
is an (m,h −mKs) set.

(ii) If dim(Ω) = m+1 and if the Ricci curvature of Ω is bounded below
by ρ, then Z(s) is an (m,h− ρs) set.

Proof. If dim(Ω) = m, then by the constancy Theorem 4.1, Z is either
all of Ω or the empty set, in either of which cases the theorem is trivially
true. Thus we suppose that dim(Ω) > m.

LetN be a closed region in Ω with smooth boundary such that Z(s) ⊂
N and such that p ∈ Z(s) ∩ ∂N . By Theorem 8.2, it suffices to show
that

Hm(∂N, p) ≤ h−mKs

in case (i) or

Hm(∂N, p) ≤ h− ρs

in case (ii). Let q be a point in Z such that dist(q, p) = s. Let Γ be the
geodesic joining p to q. Note that the signed distance function dist(·, ∂N)
will be smooth on an open set containing Γ \ {q}, but that it may not
be smooth at q.

We get around that lack of smoothness as follows. Note that for each
ε > 0, we can find a closed region N ′ ⊂ Ω with smooth boundary such
that
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(1) N ⊂ N ′,
(2) N ∩ ∂N ′ = {p},
(3) the principal directions of ∂N at p are also principal directions of

∂N ′ at p,
(4) each principal curvature of ∂N ′ at p is strictly less than the corre-

sponding principal curvature of ∂N at p, and
(5) each principal curvature of ∂N ′ at p is within ε of the the corre-

sponding principal curvature of N at p.

By (5),

(41) Hm(∂N ′, p) ≥ Hm(∂N, p) −mε.

By (4), the function f(·) := dist(·, ∂N ′) is smooth on an open subset of
N ′ containing Γ. In particular, if

N∗ = {x ∈ N ′ : dist(x, ∂N ′) ≥ s},

then q ∈ ∂N∗ and ∂N∗ is smooth near q.
It follows (Proposition 12.2) that each principal curvature of ∂N∗

at q is greater than or equal to Ks plus the corresponding principal
curvature of ∂N ′ at p, and thus (taking the sum of the first m principal
curvatures) that

Hm(∂N∗, q) ≥ Hm(∂N ′, p) +mKs.

Since Z ⊂ N∗ and since Z is an (m,h) set, the left side of this inequality
is at most h (by the barrier principle 7.1), so

h ≥ Hm(∂N ′, p) +mKs

≥ Hm(∂N, p) −mε+mKs

by (41). Since ε > 0 can be arbitrarily small, this implies that h ≥
Hm(∂N, p) +mKs or

Hm(∂N, p) ≤ h−mKs,

from which it follows (Theorem 8.2) that Z(s) is an (m,h−mKs) set.
If dim(Ω) = m+ 1, then (letting N , N ′, and N∗ be as above)

Hm(∂N∗, q) ≥ Hm(∂N ′, p) + ρs

by Proposition 12.2. Arguing exactly as above with ρ in place of mK,
we conclude that

Hm(∂N, p) ≤ h− ρs,

from which it follows that Z(s) is an (m,h− ρs) set. q.e.d.
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12. Appendix: Tubular Neighborhoods

For the reader’s convenience, we give the basic facts about the second
fundamental form of the level sets of the distance function to a smooth
hypersurface. (These facts were used in Section 11.)

12.1. Lemma. Let M be a two-sided, smoothly embedded hypersurface
in a smooth, (n+1)-dimensional Riemannian manifold N , let f : N →
R be the signed distance function to M , and let Ω be an open subset of
N on which f is smooth with nonvanishing gradient. For p ∈ Ω, let

Mp := {x : f(x) = f(p)}

be the level set of f containing p, and let Bp be the second fundamental
form of Mp at p with respect to the unit normal ν(p) := ∇f(p). Then

(DνB)(·, ·) = R(·, ν, ·, ν) +
n∑

k=1

B(·, ek)B(ek, ·),

where R is the curvature tensor of N and where e1, . . . , en are unit
vectors orthogonal to each other and to ν.

Proof. Note that the hypotheses imply that ν is a unit vectorfield
and that the integral curves of ν are geodesics:

(42) Dνν ≡ 0.

Let x and y be two tangent vectorfields to one of the level sets of f .
Extend these vectorfields by parallel transport along the integral curves
of ν. Thus

(43) Dνx = Dνy = 0.

Now

B(y,x) = B(x,y) = (Dxy) · ν = −x · Dyν.

By (43), (DνB)(x,y) = ν(B(x,y)). Thus by (42) and (43),

(DνB)(x,y) = ν(Dxy · ν)

= (DνDxy) · ν +Dxy · Dνν

= (DνDxy) · ν + 0

= R(ν,x)y · ν + (DxDνy) · ν + (D[ν,x]y) · ν

= R(ν,x, ν,y) + 0 + (D[ν,x]y) · ν.

It remains only to show that

(44) (D[ν,x]y) · ν =

n∑
k=1

B(x, ek)B(ek,y).

Now

[ν,x] = Dνx−Dxν = −Dxν,
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which is orthogonal to ν, and thus tangent to the level sets of f , so

(45) (D[ν,x]y) · ν = B([ν,x],y) = B(−Dxν,y).

Now

−Dxν =

n∑
k=1

(−Dxν · ek)ek

=

n∑
k=1

B(x, ek)ek.

Substituting this into (45) and using the linearity of B(·,y) gives (44).
q.e.d.

12.2. Proposition. Let Ω, f , ν, B, and Mx (for x ∈ Ω) be as in
Lemma 12.1. Let κ1(x) ≤ · · · ≤ κn(x) be the principal curvatures of Mx

at x with respect to the unit normal ν. Let Γ be a geodesic curve per-
pendicular to the level sets of f (i.e., an integral curve of the vectorfield
ν := ∇f).

If p, q ∈ Γ and if f(q) > f(p), then

κi(q) ≥ κi(p) +K dist(p, q),(46)

TracemBq ≥ TracemBp +mK dist(p, q),(47)

H(q) ≥ H(p) + ρdist(p, q),(48)

where K is a lower bound for the sectional curvature of the ambient
space, ρ is a lower bound for the Ricci curvature of the ambient space,
and H(x) = traceBx is the mean curvature of M(x) at x with respect
to ν.

Proof. Let V be the space of normal vectorfields v on Γ such that
Dνv ≡ 0. We may regard B(q) and B(p) as both being symmetric
bilinear forms on V . (In effect, we are identifying TanpMp and Tanq Mq

by parallel transport along Γ.)
Let v be a vectorfield in V . Then Dν(B(v,v)) = (DνB)(v,v), so by

Lemma 12.1,

(49) Dν(B(v,v)) ≥ R(ν,v, ν,v),

and thus

Dν(B(v,v)) ≥ K‖v‖2.

Integrating from p to q gives

Bq(v,v) ≥ Bp(v,v) +K dist(p, q)‖v‖2.

Now (46) follows from the Rayleigh quotient characterization of the
eigenvalues of Bx, i.e., the principal curvatures. (See Lemma 12.3, be-
low.)

Summing from i = 1 to m in (46) gives (47).
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To prove (48), let e1, . . . , en be an orthonormal set of vectorfields in
V . Then by (49),

Dν(B(ei, ei)) ≥ R(ν, ei, ν, ei).

Summing from i = 1 to n gives

Dνh ≥ Ricci(ν, ν) ≥ ρ.

Assertion (48) follows by integrating from p to q. q.e.d.

12.3. Lemma. Let Q and Q′ be symmetric bilinear forms on a Eu-
clidean space V . Suppose Q(v,v) ≤ Q′(v,v) for all unit vectors v.
Then each eigenvalue of Q is less than or equal to the corresponding
eigenvalue of Q′.

Proof. This follows immediately from the Rayleigh quotient charac-
terization of the eigenvalues:

λk(Q) = inf
W∈G(k,V )

(
sup

w∈W, |w|=1
Q(w,w)

)
,

where G(k, V ) is the set of k-dimensional linear subspaces of V . q.e.d.
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