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JENKINS–SERRIN–TYPE RESULTS FOR THE JANG

EQUATION
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Abstract

Let (M, g, k) be an initial data set for the Einstein equations of
general relativity.

We prove that there exist solutions of the Plateau problem for
marginally outer trapped surfaces (MOTSs) that are stable in the
sense of MOTSs. This answers a question of G. Galloway and N.
O’Murchadha raised in [13] and is an ingredient in the proof of
the spacetime positive mass theorem [9] given by L.-H. Huang, D.
Lee, R. Schoen, and the first named author.

We show that a canonical solution of the Jang equation exists
in the complement of the union of all weakly future outer trapped
regions in the initial data set with respect to a given end, provided
that this complement contains no weakly past outer trapped re-
gions. The graph of this solution relates the area of the horizon
to the global geometry of the initial data set in a non-trivial way.

We prove the existence of a Scherk–type solution of the Jang
equation outside the union of all weakly future or past outer
trapped regions in the initial data set. This result is a natural
exterior analogue for the Jang equation of the classical Jenkins–
Serrin theory.

We extend and complement existence theorems [19, 20, 40, 29,
18, 31, 11] for Scherk–type constant mean curvature graphs over
polygonal domains in (M, g), where (M, g) is a complete Riemann-
ian surface. We can dispense with the a priori assumptions that
a sub solution exists and that (M, g) has particular symmetries.
Also, our method generalizes to higher dimensions.

1. Introduction and Notation

In this paper we prove a series of results concerning the geometric
theory of the Jang equation. We apply our insights to obtain an opti-
mal extension to general Riemannian surfaces of the classical Jenkins-
Serrin-Spruck theory [20, 40] on the existence of Scherk-type minimal
and constant mean curvature graphs. In fact, our methods allow us to

Received 11/12/2013.

207



208 M. EICHMAIR & J. METZGER

remove two conditions from J. Spruck’s pioneering result [40] in R2.

In Section 2 we show that there exist stable solutions of the Plateau
problem for marginally outer trapped surfaces. This answers a question
of G. Galloway and N. O’Murchadha raised in [13]. This result is sub-
tle in view of the non-variational nature of these surfaces. The proof
is based on the fact that using the existence theory in [6], we can con-
struct ordered families of solutions of the Plateau problem. This result
is applied in the recent proof of the spacetime positive mass theorem
by L.-H. Huang, D. Lee, R. Schoen, and the first named author in [9].
Stability in the existence theory for closed MOTSs was concluded in [3,
Section 4] (see also [1, Section 3.6] for a simplification) by a different
argument that does not extend to the present situation.

In Sections 3, 4, and 5 we develop the geometric theory of the Jang
equation pioneered by R. Schoen and S.-T. Yau in [34] to prove the
existence of non-trivial and, in some cases, canonical Scherk-type solu-
tions of the Jang equation in the complement of the total weakly future
outer trapped region and the total weakly past outer trapped region.

In Section 6 we employ techniques from the geometric theory of the
Jang equation, in particular the capillarity regularization and the geo-
metric blow up analysis from [34] and ideas from the solution of the
non-variational Plateau problem for marginally outer trapped surfaces
in [6], to the classical Jenkins–Serrin–Spruck problem [19, 20, 40] of
finding necessary and sufficient conditions for a domain in a Riemann-
ian surface to support a Scherk-type constant mean curvature graph.
In the case of positive mean curvature, we are able to dispense with
the a priori assumption that the domain admit a sub solution which is
required in the foundational paper by J. Spruck [40] (in R2) and its re-
cent extension to domains in S2 and H2 by L. Hauswirth, H. Rosenberg,
and J. Spruck [18], and to domains in Hadamard manifolds [11] by A.
Folha and H. Rosenberg. Moreover, our results are valid in arbitrary
complete Riemannian surfaces. Thus the existence of a Scherk-type con-
stant mean curvature graph above a Riemannian surface is fully reduced
to a (generically) finite set of inequalities relating area and circumference
of certain polygons that can be inscribed into the domain: the Jenkins-
Serrin-Spruck flux conditions. Our approach here does not distinguish
between minimal and (positive) constant mean curvature graphs. In
the case of minimal graphs, we recover the results by B. Nelli and H.
Rosenberg [29] (in H2) and by A. Pinheiro [31] (in general Riemann-
ian surfaces). Our methods carry over to higher dimensions. A more
detailed overview of the literature and a precise statement of our result
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are given in Section 6.

In the appendices we collect several results that are used in this paper.
In Appendix A we deduce the interior gradient estimate for solutions
of the prescribed mean curvature equation in low dimensions from the
regularity theory for almost minimal boundaries. In Appendix B we
characterize those domains that support infinite boundary value solu-
tions of the prescribed mean curvature equation without making an a
priori assumption on the regularity of the boundary. In Appendix C we
observe a simple and useful consequence of the classical compactness and
regularity theory for almost minimal boundaries: the horizontal parts
of the unit normal vector fields of solutions to the prescribed mean cur-
vature equation are equicontinuous in low dimensions.

We proceed by introducing some notation and conventions.

Let (M,g) be a connected Riemannian manifold of dimension n, with
3 ≤ n ≤ 7, and let k be a symmetric (0, 2)-tensor on M . In the context
of the Cauchy problem for the Einstein equations in general relativ-
ity, k is referred to as the (spacetime) second fundamental form tensor
and the triple (M,g, k) is called an initial data set. We often require
that (M,g, k) is asymptotically flat, i.e. that the complement of some
compact subset of M consists of finitely many connected components
N1, . . . , Nm, called the ends, each one diffeomorphic to Rn \B1(0) and
such that in the corresponding coordinate systems the metric tensor gij
converges to the Euclidean metric δij and the second fundamental form
tensor kij to zero. More precisely, we require that

|gij − δij |+ |x||∂kgij | = O(|x|−q)
and

kij = O(|x|−q−1)
as |x| → ∞ for some

q >
n− 2

2
.

When n = 3, we ask in addition that for some β > 2,

trg(k) = gijkij = O(|x|−β)
as x → ∞. This last condition is imposed so that certain barriers for
the Jang equation can be constructed far out in the asymptotically flat
ends, cf. Appendix D.

Let (M,g, k) be an initial data set, and let Σ ⊂ M be a two-sided
hypersurface with unit normal vector field ν. The future outer and
past outer expansion scalars of Σ are defined, respectively, as θ+Σ =
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HΣ + trΣ(k) and θ−Σ = HΣ − trΣ(k). Here, HΣ is the mean curvature
scalar of Σ computed as the tangential divergence of ν and trΣ(k) is the
trace of k restricted to the tangent space of Σ. The hypersurface Σ is
called future outer trapped (respectively past outer trapped) if θ+Σ < 0

(θ−Σ < 0) everywhere on Σ, weakly future outer trapped (respectively

weakly past outer trapped) if θ+Σ ≤ 0 (θ−Σ ≤ 0) everywhere on Σ, and
is called a marginally future outer trapped surface or MOTS for short
(respectively marginally past outer trapped surface or MITS for short)
if θ+Σ = 0 (θ−Σ = 0) everywhere on Σ. Except for Section 2, the MOTSs
and MITSs appearing in this paper will be closed and in fact bound-
aries of sets Ω that contain part of an end {x ∈ Ni : |x| ≥ r0} for
some r0 ≥ 1 and i ∈ {1, . . . ,m}. If we write a hypersurface Σ as the
(relative) boundary of a set Ω, say Σ = ∂Ω in U where U is an open
subset of M , we will use the unit normal field ν of Σ pointing into Ω
to compute the scalar mean curvature HΣ and the expansion scalars θ±Σ
unless otherwise noted.

Let (M,g, k) be a complete asymptotically flat manifold of dimen-
sion 3 ≤ n ≤ 7. Fix one of the ends, say N1. It is easy to see that
HSr > | trSr k| for all r ≥ r0, provided that r0 ≥ 1 is sufficiently large.
Here, Sr = {x ∈ N1 : |x| = r} is the coordinate sphere of radius r in N1.
The mean curvature scalar HSr is computed as the tangential divergence
of the unit normal pointing into the end. Let M− ⊂ M (respectively
M+ ⊂M) be the interior of the intersection of all open subsets Ω ⊂M
that contain {x ∈ N1 : |x| ≥ r0} and which have smooth compact em-
bedded boundary satisfying H∂Ω + tr∂Ω(k) ≤ 0 (H∂Ω− tr∂Ω(k) ≤ 0). It
follows from [3] in dimension n = 3 and from [7] in dimensions 3 ≤ n ≤ 7
that M− (respectively M+) has smooth compact embedded boundary
such that H∂M− + tr∂M−(k) = 0 (H∂M+

− tr∂M+
(k) = 0). Thus ∂M−

is a MOTS and ∂M+ is a MITS. The complements of the regions M−

and M+ are the total weakly future outer trapped region and the total
weakly past outer trapped region of (M,g, k) with respect to the cho-
sen end, respectively. If (M,g, k) has more than one end, then both
∂M− and ∂M+ are non-empty and each of them separates the portion
{x ∈ N1 : |x| ≥ r0} of N1 from

⋃m
i=2{x ∈ Ni : |x| ≥ r0} provided r0 is

sufficiently large.

Given an open subset Ω ⊂M and a function u ∈ C2(Ω) we define, in
local coordinates near a point x ∈ Ω,

H(u) =

(
gij − uiuj

1 + |Du|2
)

D2
iju√

1 + |Du|2
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and

tr(k)(u) =

(
gij − uiuj

1 + |Du|2
)
kij .

Here, all geometric operations (raising indices, gradient, length of gra-
dient, Hessian) are with respect to g. These definitions are independent
of the particular coordinate system used. The function H(u) at x ∈ Ω is
the scalar mean curvature of the graph G = {(x, u(x)) : x ∈ Ω} of u in
the Riemannian product (Ω×R, g+dxn+1⊗dxn+1) at the point (x, u(x))
with respect to the downward pointing unit normal, and tr(k)(u) eval-
uated at x is the trace of k (extended to Ω × R by zero in the vertical
direction) over the tangent space of this graph at (x, u(x)). If

H(u) + tr(k)(u) = 0,(1)

then G, with its downward orientation, is a MOTS in the new initial
data set (M × R, g + dxn+1 ⊗ dxn+1, k). Equation (1) is known as the
Jang equation.

For background material on MOTSs, MITSs, and the Jang equation
we refer the reader to the survey article [1].
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2. Stability of solutions of the Plateau problem

The notion of stability for MOTSs with boundary in the definition
below is natural in view of the notion of stability for closed MOTSs that
has been introduced and studied systematically in [2].

Definition 2.1 (Cf. [13, Section 2]). Let (M,g, k) be an initial
data set and consider a two-sided hypersurface Σ ⊂ M with boundary
∂Σ = Γ and with a designated “outward” unit normal vector field ν.
Assume that Σ is a MOTS. Then Σ is said to be stable in the sense
of MOTSs if there exists a smooth function f that is positive in the
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interior of Σ, vanishes on the boundary Γ, and is such that LΣf ≥ 0.
Here,

LΣφ = −ΔΣφ+ 2〈X,DΣφ〉
+
(
1
2 RΣ−1

2 |h+ k|2Σ − J(ν)− μ+ divΣX − |X|2)φ,
where X is the tangential part of the vector field dual to k(ν, ·) on
Σ, h is the second fundamental form of Σ (with trace HΣ), DΣφ is
the tangential gradient of φ along Σ, RΣ is the scalar curvature of Σ,
μ = 1

2

(
RM +(trM (k))2 − |k|2M

)
is the local mass density, and where

J = div(k − trM (k)g) is the local current density. Equivalently, Σ is
stable in the sense of MOTSs if, and only if, the principal eigenvalue of
LΣ is non-negative.

For a careful discussion of principal eigenvalues of (not necessarily
self-adjoint) elliptic operators, we refer the reader to [32, Sections 3.6
and 3.7].

We recall the following existence theorem for MOTSs spanning a
given boundary:

Theorem 2.2 ([6]). Let (M,g, k) be a complete initial data set of
dimension n with 2 ≤ n ≤ 7. Let Ω � M be a bounded open set
with smooth boundary ∂Ω. Let Γ ⊂ ∂Ω be a non-empty smooth closed
embedded submanifold of ∂Ω such that ∂Ω \ Γ = ∂−Ω∪̇∂+Ω for disjoint
non-empty relatively open subsets ∂−Ω, ∂+Ω of ∂Ω. Assume that H∂Ω+
tr∂Ω k < 0 near ∂−Ω with the mean curvature computed as the tangential
divergence pointing into Ω and that H∂Ω + tr∂Ω k > 0 near ∂+Ω with
the mean curvature scalar computed as the tangential divergence of the
unit normal pointing out of Ω. Then there exists a smooth hypersurface
Σ ⊂ Ω with boundary Γ that is an almost minimizing relative boundary
in Ω and such that Σ is a MOTS with respect to the unit normal pointing
towards ∂+Ω.

The following theorem answers a question posed in [13, Section 3].
It is an ingredient in the proof of the spacetime positive mass theorem
given in [9].

Theorem 2.3. Assumptions as in Theorem 2.2. Then there exists
a solution Σ of the Plateau problem for MOTSs in Ω with boundary Γ
that is stable in the sense of MOTSs.

Proof. Given ε > 0 small, let Γε = {θ ∈ ∂+Ω : dist∂Ω(θ,Γ) = ε}. It
follows from the construction in the proof of Theorem 2.2 in [6, Chapter
4] that the MOTSs Σε ⊂ Ω spanning Γε are (strictly) ordered. To see
this, recall that the open subset of Ω whose relative boundary is Σε is
the geometric limit as t ↘ 0 of downward translations of the regions
lying above the graphs uεt ∈ C∞loc(Ω) constructed in [6, Lemma 4.2].
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Given t > 0 and 0 < ε < ε′ small, we have that S
uε′
t
⊂ Suε

t
(in the

notation of [6]) and hence uε
′

t ≤ uεt . It follows that the regions above

the graphs are ordered so that Σε′ lies to one side (towards ∂+Ω) of

Σε. The geometric maximum principle shows that components of Σε′

and Σε that span components of Γε and Γε′ cannot touch unless they
coincide. We will discard all extraneous closed components of Σε. This
does not change that each Σε is a relative boundary, nor that the Σε’s
are ordered.

The geometric compactness properties of the almost minimizing rel-
ative boundaries Σε show that as ε↘ 0, the Σε converge smoothly and
with multiplicity one to an embedded MOTS Σ that spans Γ. We claim
that this MOTS Σ is stable in the sense of MOTSs. To see this, let
U, V,W ⊂ Σ be non-empty open subsets with smooth boundaries such
that U � V � W � int Σ. Let ν be the unit normal vector field of
Σ that points towards ∂+Ω. (This makes sense because Σ is a relative
boundary in Ω spanning Γ.) By assumption, there exist positive func-
tions f ε ∈ C∞(W ) for ε > 0 small with {expθ (f ε(θ)ν(θ)) : θ ∈ V } ⊂ Σε

and such that f ε → 0 with all derivatives on compact subsets of W .
Because Σ and Σε both satisfy the MOTS equation, f ε is solution of a
homogeneous linear elliptic equation in divergence form on V . The op-
erator describing the linearization of the equation at the function that
vanishes identically is LΣ. Arguing exactly as in [39, p. 333], using Har-
nack theory, it follows that the functions f ε can be rescaled (so their
infimum is one on V , say) so as to converge smoothly to a positive func-
tion fV ∈ C∞(V ) with LΣ(fV ) = 0. This implies that U is stable in
the sense of MOTSs. To see this, let λ be the first principal eigenvalue
of LΣ|U and let h ∈ C∞(Ū) be the corresponding first (Dirichlet) eigen-
function so that LΣh = λh. We recall that the first principal eigenvalue
is simple and that the corresponding eigenfunctions do not change signs.
By scaling, using that g vanishes on the boundary of U and that fV is
positive on V and that U � V , we may assume that 0 < h ≤ fV on U
with equality at some point. The maximum principle then implies that
λ ≥ 0. We conclude that every open subset U � int Σ is stable in the
sense of MOTSs. Using that the principal eigenvalue of an elliptic op-
erator depends continuously on the operator and the domain, it follows
that Σ is stable in the sense of MOTSs. q.e.d.

3. Scherk-type solutions of the Jang equation

The content of the following proposition is similar to that of Theorem
3.1 in [28]. We include an alternative proof here as preparation for the
more general and difficult Theorem 3.3 below. The modification of the
data near the boundary in our proof is much less delicate than that in
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[28]. The regions M− and M+ in the statement of Proposition 3.1 and
Theorem 3.3 below are defined in the introduction.

Proposition 3.1 (Cf. Theorem 3.1 in [28] when n = 3). Let (M,g, k)
be a complete asymptotically flat initial data set of dimension n, 3 ≤ n ≤
7, and assume that ∂M− and ∂M+ are disjoint. There exists a smooth
solution u : M− ∩M+ → R of the Jang equation H(u) + tr(k)(u) = 0
such that u(x) → 0 as x → ∞ in the end of (M,g, k) contained in
M− ∩M+ and such that u(x)→ ±∞ as dist(x, ∂M±)→ 0.

Proof. We abbreviate Ω = M− ∩M+. Let χ ∈ C∞c (M) be such that
χ ≡ ±1 near ∂M±. Given ε ∈ (0, 1) we define kε = k + εχ. Note that
H∂M+

+ tr∂M+
(kε) > 0 and H∂M− + tr∂M−(k

ε) < 0.
Arguing exactly as in [6, Chapter 3] and [7, Chapters 3 and 4], using

also the argument in Appendix D, we see that for every ε ∈ (0, 1)
there exists a connected open subset Ωε

0 ⊂ Ω containing the chosen
end of (M,g, k) and a solution uε ∈ C∞loc(Ω

ε
0) of the Jang equation

H(uε) + tr(kε)(uε) = 0 on Ωε
0 with the following properties:

(i) We have that {x ∈ Ω : |x| > Λ} ⊂ Ωε
0 for some Λ ≥ 1 that is

independent of ε ∈ (0, 1). The topological boundary ∂Ωε
0 of Ω

ε
0 is a

smooth properly embedded hypersurface in Ω whose components
are either marginally inner trapped or marginally outer trapped
with respect to the unit normal pointing into Ωε

0. The components
are λ–minimizing with λ = 1+2n supx∈Ω,ε∈(0,1) |kε(x)| in Ω (in the

language of [5]) and stable (in the sense of (23)).
(ii) We have that u(x) → 0 as x → ∞ in Ω. We have that uε(x)

diverges to plus infinity if x ∈ Ωε
0 approaches a marginally inner

trapped component of the boundary of Ωε
0, and to minus infin-

ity if x ∈ Ω converges to a marginally outer trapped boundary
component.

(iii) The graphs {(x, uε(x)) : x ∈ Ωε
0} of uε are complete hypersurfaces

of M ×R that are stable and λ–minimizing in Ω× R.

The λ–minimizing property and stability of the graphs asserted in (iii)
implies that of the components of ∂Ωε

0 in (i), cf. [34, p. 254], [6, Lemma
A.1], and the discussion in Appendix B.

As in [7] or the discussion in Appendix B, we see that the stability
and the almost minimizing property (via uniform local mass bounds)
lead to curvature estimates for these graphs that are independent of
ε ∈ (0, 1). We now let ε ↘ 0 and pass the graphs of uε to a smooth,
properly embedded subsequential limit that contains a connected com-
plete graphical component whose domain contains the asymptotically
flat end and which satisfies all the above properties with ε = 0. (The
almost minimizing property by itself does not lead to uniform curvature
estimates near ∂Ω. As in Appendix B, we use the stability and the com-
pleteness for that. Once we know that a smooth limit exists, we can use
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the almost minimizing property to rule out sheeting.) Using the mean
value theorem and that there are no MOTSs or MITSs (with respect to
k) in Ω̄ besides ∂M− and ∂M+ we see that this graphical component
has all the properties asserted in the conclusion of the theorem.

q.e.d.

Remark 3.2. Both in Proposition 3.1 above and in Theorem 3.3
below, the outermost property of M− and M+ prevents the domain of
the sought-after graphical solution of the Jang equation from “popping
outward”. If we think of the results in this section in analogy with the
classical Jenkins–Serrin theory [19, 20], then this outermost property
takes the place of the Jenkins–Serrin flux conditions (6), (7), and (8) in
the statement of Theorem 6.1 below (with H0 = 0).

Theorem 3.3. Let (M,g, k) be a complete asymptotically flat initial
data set of dimension n where 3 ≤ n ≤ 7. Assume that ∂M+ and ∂M−

are both non-empty and that they intersect transversely. There exists
a smooth solution u : M− ∩ M+ → R of the Jang equation H(u) +
tr(k)(u) = 0 such that u(x) → 0 as x → ∞ in the end of (M,g, k)
contained in M− ∩M+ and such that u(x) → ±∞ as x ∈ M− ∩M+

approaches an interior point y of a component of M∓∩∂M± ⊂ ∂(M−∩
M+). The topological closure of the graph {(x, u(x)) : x ∈M−∩M+} of
u in M × R is a smooth properly embedded hypersurface with manifold
boundary (∂M+ ∩ ∂M−)× R.

Proof. Let Ω = M−∩M+. We denote by ν the unit normal vector field
of the hypersurface M∓ ∩ ∂M± pointing into Ω. Let ∂−Ω = M+ ∩ ∂M−

and ∂+Ω = M− ∩ ∂M+. Note that ∂−Ω and ∂+Ω are manifolds with
boundary and that their manifold boundaries coincide. The topological
boundary of Ω is the disjoint union of ∂−Ω, ∂+Ω, and ∂M− ∩ ∂M+.
Given a component γ of ∂±Ω, let Θγ ∈ C∞(γ̄) be positive in the interior
of γ and zero on its manifold boundary.

Let ε ∈ (0, 1) be so small that the sets {expy tΘγ(y)ν(y) : y ∈
int γ and t ∈ (0, 2ε)} ⊂ Ω are disjoint as γ ranges over the compo-
nents of ∂±Ω. Let χε ∈ C∞loc(Ω) with values in [−1, 1] be supported in
the union of all these sets and such that χε(y) ≡ ±1 on

Crεγ = {expy tΘγ(y)ν(y) : y ∈ int γ and t ∈ (0, ε)}
when γ is a component of ∂±Ω.

Let γ be a component of ∂−Ω. Consider the hypersurface

{(expy ε(1 − e−h)Θ(y)ν(y), h) : y ∈ int γ and h ∈ (0,∞)} ⊂ Ω× R .

It has piecewise smooth manifold boundary consisting of γ × {0} and
(∂γ)× [0,∞). It is the graph of a positive function uεγ ∈ C∞loc(Cr

ε
γ). We

have that H(uεγ) + tr(k)(uε
γ) = O(ε).
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Similarly, let γ be a component of ∂+Ω. Consider the hypersurface

{(expy ε(1 − eh)Θ(y)ν(y), h) : y ∈ int γ and h ∈ (−∞, 0)} ⊂ Ω× R .

Its topological boundary is the union of γ × {0} and (∂γ) × (−∞, 0].
This hypersurface is the graph of a negative function uεγ ∈ C∞loc(Cr

ε
γ).

We have that H(uεγ) + tr(k)(uε
γ) = O(ε).

Choose c > 0 so that for all ε > 0 sufficiently small H(uε
γ)+tr(kε)(uε

γ)
< −2ε on Crεγ when γ is a component of ∂−Ω and such that H(uεγ) +
tr(kε)(uε

γ) > 2ε on Crεγ when γ is a component of ∂+Ω. Here, kε =
k + cεχε.

Given t > 0, the functions − ε
t +uε

γ and ε
t +uεγ are, respectively, super

and sub solutions of the regularized Jang equation H(u)+tr(kε)(u) = t u
on Crεγ . Let C > 0 be a constant greater than n supε∈(0,1),x∈Ω |kε(x)|.
Then C

t and −C
t are constant super and sub solutions of this equation.

As in [6, Chapters 3 or 4] one sees that for every t > 0 there exists
a (Perron) solution uεt ∈ C∞loc(Ω) of H(uεt ) + tr(kε)(uεt ) = t uεt such that

−C
t ≤ uεt ≤ C

t on Ω, such that uεt ≤ − ε
t + uεγ on Crεγ for components

γ of ∂−Ω, such that ε
t + uεγ ≤ uεt on Crεγ for components γ of ∂+Ω,

and such that |uεt (x)| ≤ bΛ(|x|) on {x ∈ Ω : |x| > Λ} for some Λ ≥ 1
sufficiently large. Here, bΛ is as in Appendix D. (The results in [6] are
for compact domains. One way to obtain uεt that decays to zero in the
asymptotically flat end is as a limit of solutions uε,rt on {x ∈ Ω : |x| ≤ r}
with zero boundary values on {x ∈ Ω : |x| = r} as 1 ≤ r → ∞. Note
that |uε,rt (x)| ≤ bΛ(|x|) on {x ∈ Ω : Λ < |x| ≤ r} for a fixed Λ ≥ 1
sufficiently large.)

It follows that if y is an interior point of ∂−Ω, then
lim supx→y,x∈Ω uεt (x) ≤ − ε

t and that if y is an interior point of ∂+Ω,
then lim infx→y,x∈Ω uεt (x) ≥ ε

t .
The mean curvature of the graphs of uεt is bounded by 2C so that they

are 2C–minimizing (in the language of [5]) in Ω×R, cf. [6, Appendix A].
A standard application of Allard’s boundary regularity theorem exactly
as in [6, Chapter 4], using that the intersection ∂M−∩∂M+ is transverse,
shows that the closure of the graph of uεt in M × (− ε

t ,
ε
t ) is a C1,α

manifold with boundary (∂M− ∩ ∂M+) × (− ε
t ,

ε
t ). The C1,α estimates

near the boundary depend only on C and the geometry of ∂M−∩∂M+;
they are independent of ε, t > 0.

We now pass the graphs of uεt to a geometric subsequential limit
as ε, t ↘ 0. The existence and analysis of such limits is exactly as
in [6, Chapters 3, 4] (which in turn are largely based on [34]). If in
particular the limit along the subsequence (tn, εn) → (0, 0) were not
a graph with the properties asserted in the theorem, there would be
some x ∈ Ω such that the sequence {uεntn (x)}∞n=1 is unbounded. For
definiteness, let us assume that uεntn (x)→ −∞, possibly after passing to
a further subsequence. There exists a sequence of upward translations
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of the graphs of uεntn that converge, possibly after passing to a further
subsequence, locally smoothly as hypersurfaces to a vertical cylinder
Σ× R, where Σ ⊂ Ω̄ is a smooth properly embedded submanifold with
boundary ∂−M ∩ ∂+M that encloses a bounded region Ω̃ with ∂Ω with
x ∈ Ω̃, and such that HΣ + trΣ(k) = 0. Here, the mean curvature

is computed with respect to the unit normal pointing out of Ω̃. We
can argue exactly as in [7, Proposition 4.1 and Remark 4.1] that there
exists a MOTS in M− that is homologous to ∂M− and which encloses
{x} ∪M−. (The point is that we can force a blow down of the Jang

equation in the complement of the closure of Ω̃ inM−.) This contradicts
the assumption that ∂M− is the outermost MOTS. q.e.d.

4. Canonical blow up of the Jang equation

In view of analogous results for Scherk-type minimal and constant
mean curvature graphs on bounded domains, it is tempting to conjecture
that the solutions of the Jang equation constructed in Proposition 3.1
and Theorem 3.3 are unique with their properties. In Section 5 we
prove such a uniqueness result in the special case where k ≡ 0. In the
case of general second fundamental form k, we will show in Theorem
4.1 below that there exist canonical, pointwise maximal solutions of
the Jang equation for example when M− ⊂ M+. The proof of this
result proceeds via a geometric variant of the Perron method that uses
the outermost condition built into the definition of M+ in lieu of a
super solution for the problem. The basic ingredients are variations of
classical PDE techniques, cf. in particular [19, 20, 35, 36] and also [6]
and the references therein, and the analysis of geometric limits of the
Jang equation developed in [34].

Theorem 4.1. Let (M,g, k) be a complete asymptotically flat initial
data set of dimension n, 3 ≤ n ≤ 7, fix an end, and let M+ ⊂M be the
complement of the total inner trapped region of (M,g, k) with respect to
that end. Assume that there exists a solution u : M+ → R of the Jang
equation H(u) + tr(k)(u) = 0 such that u(x) → ∞ as dist(x, ∂M) → 0
and such that u(x) → 0 as x → ∞ in the asymptotically flat end. The
pointwise supremum of all such solutions is again a solution with the
same properties.

Proof. The results in Appendix D show that there exists Λ ≥ 1 such
that |u(x)| ≤ bΛ(|x|) on N = {x ∈ M+ : |x| > Λ} for every solution u
of the Jang equation as in the statement of the theorem.

Fix a smooth function u : M+ → R as in the statement of the theo-
rem. Using translates of u to obtain a priori oscillation bounds and stan-
dard methods as in [6, Lemma 2.2], one sees that for every x ∈M+ there
exists ρD(x) ∈ (0,dist(x, ∂M+)) small such that for every ρ ∈ (0, ρD(x))
the equation H(v) + tr(k)(v) = 0 on Bρ(x) with continuous boundary
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data on Sρ(x) admits a solution v ∈ C∞(Bρ(x))∩C0(B̄ρ(x)). The notion
of (Perron) sub solutions u ∈ C(M+) and super solutions u ∈ C(M+)
of the Jang equation H(v) + tr(k)(v) = 0 on M+ can thus be defined
in the usual way. Consider the class of functions Su = {u ∈ C(M+) :
u is a Perron sub solution of the Jang equation, u ≥ u on M+, and
|u(x)| ≤ bΛ(|x|) for all x ∈ M+ with |x| > Λ}. This class is closed un-
der taking pointwise maximum and under lifting u ∈ Su to the function
û ∈ C(M+) that equals u on the complement of Bρ(x) and equals the
solution v of H(v)+tr(k)(v) = 0 on Bρ(x) such that v = u on Sρ(x), for

every r ∈ (0, ρD(x)) and every x ∈M+. Note that u ∈ Su. The function
uP : M+ → R∪{∞} is defined pointwise by uP (x) = supu∈Su u(x). Let

Ω = {x ∈M+ : uP (x) <∞}. Note that N ⊂ Ω.
We claim that Ω is open, that uP |Ω is a smooth solution of the Jang

equation, and that limx→y,x∈Ω uP (x) = ∞ for every y ∈ ∂Ω. To see
this, fix x ∈ Ω. Following the standard proof of the regularity of the
Perron solution as in [15, p. 25] we see that given ρ ∈ (0, ρD(x)) there
exist {ui}∞i=1 ⊂ Su such that

u ≤ u1 ≤ u2 ≤ . . . ≤ uP

on Bρ(x), such that

H(ui) + tr(k)(ui) = 0

on Bρ(x) for all i = 1, 2, . . ., and such that

lim
i→∞

ui(x) = uP (x) <∞.

The analysis of geometric limits of solutions of the Jang equation shows
that the geometric limit of the graphs of ui in B ρ

2
(x) × R contains the

graph of a smooth solution ũx,r ∈ C∞loc(Ω
x,ρ
0 ) of the Jang equation above

some open subset Ωx,ρ
0 ⊂ Bρ(x). Moreover, we have that limi→∞ ui(y) =

∞ for all y ∈ B ρ
2
(x) \ Ωx,ρ

0 , that limz→y,z∈Ωx,ρ
0

ũx,ρ(z) = ∞ for all y ∈
B ρ

2
(x)∩ ∂Ωx,ρ

0 , and that B ρ
2
(x)∩ ∂Ωx,ρ

0 is a smooth properly embedded

MITS in B ρ
2
(x). (The point is that the functions ui are bounded below

by u so that there can be no cylindrical components in their geometric
limit, cf. the argument in Appendix A and the properties listed in Step
4 in Subsection 6.2. Note that Ωx,ρ

0 might have several components.)
Clearly, ũx,ρ ≤ uP on Ωx,ρ

0 . That ũx,ρ = uP on the connected component
of Ωx,ρ

0 containing x follows from the strong maximum principle for
differences of solutions of the Jang equation, as in the standard proof
of the regularity of Perron solutions. Since also uP ≥ u everywhere
on M+, we can deduce all the properties of Ω and uP asserted at the
beginning of this paragraph.

The argument above shows that away from ∂M+ the boundary of Ω is
a smooth properly embedded MITS. That the boundary of Ω is smooth
and embedded up to ∂+M follows from the characterization in Appendix
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B of boundaries of domains that support solutions of prescribed mean
curvature equations with infinite boundary data. The definition of M+

implies that Ω = M+. Clearly, u
P has all the properties asserted in the

conclusion of the theorem. q.e.d.

Remark 4.2. By taking the smallest super solution instead of the
largest sub solution in the proof of Theorem 4.1 we obtain an analogous
result where M+ is replaced by M− and blow up to plus infinity at the
boundary is replaced by blow down to minus infinity.

5. Uniqueness of a blow up function u at the outermost

minimal surface

Let (M,g) be a complete asymptotically flat initial data set of di-
mension n, 2 ≤ n ≤ 7, with k ≡ 0. Fix one of the ends and let
Ω = M− = M+ be as in the introduction. In this case, ∂Ω is called
the horizon of (M,g). Note that ∂Ω is a minimal surface. Let ∂−Ω and
∂+Ω be unions of different components of ∂Ω such that ∂Ω = ∂−Ω∪̇∂+Ω.

The arguments proving Proposition 3.1 show that there exists a smooth
solution u : Ω→ R of the minimal surface equation

div

(
Du√

1 + |Du|2

)
= 0

such that limx→y,x∈Ω u(x) = ±∞ for y ∈ ∂±Ω, and such that u(x)→ 0
as |x| → ∞ in Ω. Here we show that there is a solution with these prop-
erties. The proof is a straightforward adaption to our situation of a gen-
eral argument due to J. Nitsche [30] as applied in e.g. [19, 20, 40, 18]
to establish uniqueness of the Scherk-type graphs constructed there. We
give the complete argument since the asymptotically flat ends require
some care.

To see that u is unique under the present assumptions, note first that
the results in Appendix B show that the divergence of u near ∂Ω is
uniform in the distance to the respective components of the boundary,
and that the upward and downward solutions of the graph converge
geometrically to the vertical cylinders ∂+Ω×R and ∂−Ω×R respectively.
In particular,

lim
x→y,x∈Ω

Du√
1 + |Du|2 (x) = ∓ν(y)(2)

for y ∈ ∂±Ω where ν is the unit normal of ∂Ω pointing into Ω. Using
the argument in Appendix D we see that

|u(x)| + |x||Du(x)| = O(|x|2−β)(3)
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as |x| → ∞ in Ω for every β ∈ (2, n).

Suppose that v : Ω → R is a second solution with these properties.
Fix T ∈ (0,∞) that is a regular value of both (u−v) and (v−u). Using
(2) we see that

lim
s↘0

∫
{x∈Ω:dist(x,∂Ω)=s,|(u−v)(x)|<T}

(u− v)g

(
Du√

1 + |Du|2−
Dv√

1 + |Dv|2 , η
)
dHn−1

= 0.

Here, η denotes the unit normal of {x ∈ Ω : dist(x, ∂Ω) = s} pointing
towards ∂Ω. Using the decay estimates (3) for u and v we obtain that

lim
r→∞

∫
{x∈Ω:|x|=r,|u−v|<T}

(u− v)g

(
Du√

1 + |Du|2−
Dv√

1 + |Dv|2 , η
)
dHn−1=0

where η is the unit normal of {x ∈ Ω : |x| = r} pointing towards the
end. Using the divergence theorem and that u, v satisfy the minimal
surface equation, this implies that

0 =

∫
{x∈Ω:|u−v|<T}

g

(
Du−Dv,

Du√
1 + |Du|2 −

Dv√
1 + |Dv|2

)
dLn.

Using the strict convexity of the functions ξ → √
1 + g(ξ, ξ) on TxM

for all x ∈M we conclude that the integrand is pointwise non-negative
with equality at x ∈ Ω if only if Du = Dv at x. It follows that u and v
can only differ by a constant. Since we assume that they both tend to
zero on the asymptotically flat end, we obtain that u = v, as desired.

We see no way to extend this argument to non-zero k at this point
and have to contend with the existence of the canonical solution guar-
anteed under the hypotheses of Theorem 4.1.

Remark 5.1. Let u : Ω→ R be as above. It follows that

Hn−1(∂+Ω)−Hn−1(∂−Ω) = lim
r→∞

∫
{x∈Ω:|x|=r}

g(Du,D|x|)dHn−1.

Thus the unique blow up solution witnesses the area of the horizon at
infinity.

6. Extensions of the classical Jenkins–Serrin theory

6.1. Introduction. The classical Jenkins–Serrin theory [19, 20] char-
acterizes those bounded domains Ω ⊂ R2 with piecewise smooth bound-
ary for which there exists a solution u : Ω → R of the minimal surface
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equation such that

lim
(x,y)→(x0,y0)∈∂±Ω

u(x, y) = ±∞

and

lim
(x,y)→(x0,y0)∈∂0Ω

u(x, y) = φ(x0, y0).

Here, the sets ∂0Ω, ∂−Ω, and ∂+Ω are unions of the smooth compo-
nents of the boundary such that ∂Ω = ∂+Ω∪̇∂−Ω∪̇∂0Ω∪̇{corners}, and
φ ∈ C(∂0Ω) is a given function. A basic example of such a configuration

is when Ω = (−π
2 ,

π
2 ) × (−π

2 ,
π
2 ) and u(x, y) = log cos(x)

cos(y) . The graph of

u in R3 is of course the classical Scherk surface. In general, these do-
mains are precisely those for which the connected components of ∂±Ω
are straight line segments such that no two segments in ∂−Ω and no two
segments in ∂+Ω have an endpoint in common, for which the geodesic
curvature of ∂0Ω is non-negative, and which satisfy the Jenkins–Serrin
condition [19, 20]. When ∂0Ω �= ∅ these conditions demand that the
circumference of every polygon inscribed in Ω whose endpoints are cho-
sen from the finitely many corner points is strictly greater than twice
the total length of its sides that coincide with segments in ∂+Ω and
also greater than twice the total length of its sides that coincide with
segments in ∂−Ω. When ∂0Ω = ∅ the Jenkins–Serrin condition is the
same except for the inscribed polygon that is the whole domain; one
demands that the length of ∂+Ω equals the length of ∂−Ω.

An important and influential development of the field was accom-
plished by J. Spruck [40], who has extended the classical Jenkins–Serrin
theory to graphs u : Ω ⊂ R2 → R of constant mean curvature one. Pro-
vided that the piecewise smooth boundary ∂Ω consists of a union ∂+Ω
of circular arcs of unit radius that are convex towards Ω, a union of cir-
cular arcs ∂−Ω of unit radius that are concave towards Ω, and a union of
boundary arcs ∂0Ω whose geodesic curvature is greater than or equal to
one, he finds necessary and sufficient conditions for the existence of so-
lutions u assuming (arbitrary) continuous boundary values on ∂0Ω and
tending to ∞ on approach towards ∂+Ω and −∞ on approach towards
∂−Ω provided a sub solution u : Ω∗ → R

div

(
Du√

1 + |Du|2

)
≥ 1(4)

exists on the domain Ω∗ obtained from flapping the negatively curved
components of the boundary outward. (That this process gives a do-
main is a further additional assumption in [40].) The advantage of the
piecewise smooth domain Ω∗ over Ω is that its boundary arcs are all
convex, so that solutions of the constant mean curvature equation with
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prescribed boundary values away from the corners can be constructed
on it.

A further important contribution to the theory is due to U. Massari
[24], who has extended the Jenkins–Serrin theory to arbitrary dimen-
sions and variable (Lipschitz) mean curvature in the case when ∂0Ω �= ∅.
His techniques are different from J. Spruck’s. In particular, no flapping
of the boundary is required. In the special case where the mean cur-
vature is constant, the necessary and sufficient conditions he provides
for the existence of a solution are not obviously the same as those given
in [40]. We note that condition (3.3) in [24] stands in, morally and
technically, for the requirement (4) above that a sub solution of the pre-
scribed mean curvature equation exists on the domain. In the book of
E. Giusti [17, Chapter 16], an extension of the technique of U. Massari
to the “slightly more complex” case where ∂0Ω = ∅ is presented in the
minimal surface case.

More recently, the Jenkins–Serrin theory for minimal graphs has been
extended to H2×R in [29] and to M ×R in [31, 27] (where (M,g) is a
general complete Riemannian surface). The Jenkins–Serrin–Spruck the-
ory for constant mean curvature graphs has been developed for H2 ×R

and S2×R in [18] and in M2×R where M2 is a Hadamard surface by A.
Folha and H. Rosenberg [11]. A further important recent development
are the results of P. Collin and H. Rosenberg [4] and A. Folha and S.
Melo [10] who give necessary and sufficient conditions for the existence
of Scherk-type minimal and constant mean curvature graphs on ideal
polygons (with infinite area) in hyperbolic space.

As an example of a particularly interesting application of Scherk-type
graphs on Riemannian surfaces we mention the surprising construction
of harmonic diffeomorphisms between the complex plane and the hy-
perbolic space by P. Collin and H. Rosenberg [4].

In this section, we prove an extension of the Jenkins–Serrin–Spruck
theory for domains Ω ⊂M with ∂0Ω = ∅ in Riemannian surfaces (M,g)
and for general H0 ∈ [0,∞). When H0 = 0, our result is marginally
different from the corresponding result in [31] in that we consider the
possibility of closed geodesics in the blow up/blow down analysis (in
Step 5 below). In the case where H0 > 0, we neither hypothesize the
existence of a sub solution on Ω, nor do we make any additional as-
sumptions regarding the existence of an auxiliary domain as in [40, 18].
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Our proof extends (for the most part verbatim) to appropriate do-
mains in Riemannian manifolds of dimension 2 ≤ n ≤ 7. The descrip-
tion of admissible domains in higher dimensions is cumbersome. Also,
the Jenkins–Serrin–Spruck conditions become impossible to verify in ex-
amples that are not very symmetric. For this reason, we omit a detailed
discussion of the extension to higher dimensions.

In our proof we work with solutions of the (finite boundary value)
Dirichlet problem that will in general not assume any particular bound-
ary data but only have the right asymptotic behavior. This is an im-
portant difference with the construction in [40] where solutions of the
Dirichlet problem are constructed on an auxiliary domains Ω∗ whose
boundary is sufficiently convex away from finitely many points to con-
struct solutions that take on prescribed continuous data. The construc-
tion of Ω∗ in [40] proceeds by flapping the negatively curved boundary
components ∂−Ω outward so they become convex arcs. This requires
assumptions on the symmetry of the ambient manifold. For this reason,
the construction in [40, 18] is carried out only in the simply connected
space forms of dimension two. In [11], the existence of an extension of
the original domain with properties similar to those of Ω∗ is part of the
assumption. See also [11, Section 6].

6.2. The case where ∂0Ω = ∅. Let (M,g) be a complete boundaryless
Riemannian surface, let H0 ∈ [0,∞), and let Ω � M be a connected
bounded open set such that ∂Ω = ∂Ω̄. Here and below, we will use “∂”
to denote the topological boundary of a set. We assume that ∂Ω is piece-
wise smooth and in fact the union of finitely many properly embedded
arcs {Ai, Bj} and properly embedded closed curves {Ek, Fl} such that
the outward geodesic curvature of each arc Ai and closed curve Ek is
constant and equal to H0 and such that the outward geodesic curvature
of each arc Bj and closed curve Fl is constant and equal to −H0. We
assume that all the curves and the interior of all the arcs are pairwise
disjoint, and that no two arcs Ai and Ai′ and no two arcs Bj and Bj′

have an endpoint in common.

The union of the closed curves {Ek} and the interiors of the positively
curved arcs {Ai} is denoted by ∂+Ω. The union of the closed curves
{Fl} and the interiors of the negatively curved arcs {Bj} is denoted
by ∂−Ω. The endpoints of the arcs {Ai, Bj} are called the corners of
∂Ω. The assumptions imply (via the strong maximum principle when
H0 > 0) that any two arcs that share an endpoint meet at a non-zero
angle.



224 M. EICHMAIR & J. METZGER

A generalized polygon is a non-empty open subset P ⊂ Ω with ∂P =
∂P̄ and such that ∂P is piecewise smooth and consists of finitely many
of the following building blocks:

(i) Finitely many arcs of constant geodesic curvature H0 whose end-
points are amongst the corners of ∂Ω and whose interiors are em-
bedded and pairwise disjoint. We also require that each arc whose
interior intersects ∂Ω is one of {Ai, Bj}.

(ii) Pairwise disjoint embedded closed curves of constant geodesic cur-
vature ±H0 that either lie entirely in Ω or coincide with one of
{Ek, Fl} and which are disjoint from the boundary arcs.

Theorem 6.1. Let (M,g) and Ω ⊂M be as above. A necessary and
sufficient condition for the existence of a smooth function u : Ω → R

such that

div

(
Du√

1 + |Du|2

)
= H0(5)

with

lim
x→x0,x∈Ω

u(x) =

{ ∞ if x0 ∈ ∂+Ω
−∞ if x0 ∈ ∂−Ω

is that

H1
g(∂+Ω) = H0L2

g(Ω) +H1
g(∂−Ω)(6)

and that

2H1
g(∂+Ω ∩ ∂P ) < H1

g(∂P ) +H0L2
g(P )(7)

and

2H1
g(∂−Ω ∩ ∂P ) < H1

g(∂P )−H0L2
g(P )(8)

for every generalized polygon P � Ω.

The conditions (6), (7), (8) appear in the classical work of Jenkins–
Serrin (when H0 = 0 and (M,g) is R2 with the Euclidean metric) and
its generalization due to J. Spruck (when H0 > 0 and (M,g) is Eu-
clidean space), and also in the work of L. Hauswirth, H. Rosenberg, and
J. Spruck [18] (where H0 > 0 and (M,g) is one of R2,S2,H2 with their
constant curvature metrics). The necessity of these conditions follows
from a standard argument, that we summarize briefly:

Let u : Ω → R be as in the statement of Theorem 6.1. Let U ⊂
M be a non-empty and open subset such that U ∩ ∂±Ω = U ∩ ∂Ω.
The discussion in Appendix B shows that the graphs of the functions
u∓ t converge as hypersurfaces smoothly on compact subsets of U ×R

to ∂±Ω × R as t → ∞. In particular, as x ∈ Ω approaches a point
x0 ∈ ∂±Ω, the horizontal part of the downward unit normal of these
graphs, X = (1 + |Du|2)−1/2Du, converges to ± the outward pointing
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unit normal of ∂±Ω at x0. The necessity of condition (6) follows from
applying the divergence theorem to the vector field X on smooth interior
approximations of the domain Ω. The necessity of conditions (7), (8)
follows from the same argument applied to generalized polygons P � Ω,
using also that |X(x)| < 1 for x ∈ ∂P ∩ Ω.

Remark 6.2. A consequence of the existence of a graph as in (5) is
that for every γ ∈ {Ai, Bj , Ek, Fl} we have that∫

γ
|D̄ψ|2 ≥

∫
γ
(H2

0 + κg)ψ
2

for every ψ ∈ C1(γ) that vanishes near the boundary of γ. Here, D̄ is
the (tangential) gradient and κg is half the scalar curvature of (M,g).
This implies, for example, that in Euclidean space and when H0 = 1, a
domain that satisfies the Jenkins–Serrin–Spruck conditions (6), (7), (8)
must also satisfy H1

δ(Ai),H1
δ(Bj) ≤ π. The condition that H1

δ(Bj) < π
was part of the assumptions in [40, p. 16]. In fact, our proof (see
property (n) in Step 4 below) shows that the conditions (6), (7), (8)
need only be verified for generalized polygons whose boundary compo-
nents are stable. This sharpening of the classical Jenkins–Serrin–Spruck
condition is useful when constructing examples.

Remark 6.3. The complement of a generalized polygon P in Ω is
again a generalized polygon. Condition (8) for a generalized polygon
P � Ω follows from condition (7) applied to Ω \ P̄ in view of (6).

Step 1: Construction of the auxiliary domain Ω̂
Fix a component γ of ∂±Ω and a smooth function Θγ ∈ C∞(γ̄) that is

positive on γ and which vanishes on its (manifold) boundary. Let ν be
the unit normal of γ pointing out of Ω. The piecewise smooth domain
Ω̂ is obtained from Ω̄ \ {vertices} by adding the crescents

Crγ = {expθ(tΘγ(θ)ν(θ)) : t ∈ (0, ε) and θ ∈ int(γ)}
as γ ranges over all components of ∂±Ω. Here, ε > 0 small is chosen so
that there are no issues with the regularity of the exponential map and
such that the crescents Crγ are pairwise disjoint.

Step 2: Construction of barriers on Crγ and the functions Hk(x)
Let γ be a component of ∂+Ω. We would like to find solutions that

tend to ∞ on approach to γ and hence require a sub solution. The
hypersurface

{(expθ(εehΘγ(θ)ν(θ)), h) : h ∈ (−∞, 0) and θ ∈ int(γ)}
of M × R is the graph of a (locally) smooth function uγ : Crγ → R

whose downward unit normal corresponds to the outward unit normal
of the cylinder.
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Let γ be a component of ∂−Ω. We would like to find solutions that
tend to −∞ (and hence require a super solution). As above, the hyper-
surface

{(expθ(εe−hΘγ(θ)ν(θ)), h) : h ∈ (0,∞) and θ ∈ int(γ)}
is the vertical graph of a locally smooth function uγ : Crγ → R.

The function H : Ω̂→ R defined as

H(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H0 if x ∈ Ω̄ \ {corners},
div

(
Duγ√

1+|Duγ |2

)
(x) if x ∈ Crγ and if γ is a component of ∂−Ω,

div

(
Duγ√

1+|Duγ |
2

)
(x) if x ∈ Crγ and if γ is a component of ∂+Ω

is locally Lipschitz. Moreover, H(x) = H0 +O(ε) uniformly on Ω̂.

Let χ : Ω̂ → [−1, 1] be a locally smooth function such that χ ≡ ±1
near Crγ for γ ∈ ∂±Ω. Let k ≥ 1. We define a locally Lipschitz function

Hk on Ω̂ by Hk(x) = H(x) − k−1/2χ(x). Note that
√
k + uγ is a sub

solution of the equation

div

(
Du√

1 + |Du|2

)
= Hk +

1

k
u(9)

on Crγ when γ is a component of ∂+Ω, and that −√k + uγ is a super
solution for this equation on Crγ when γ is a component of ∂−Ω.

Fix a constant C > supk≥1,x∈Ω̂ |Hk(x)|. Then −Ck and Ck are, re-

spectively, sub and super solutions for (9) on Ω̂.

The introduction of the capillarity regularization (9) of the prescribed
mean curvature equation so that large constants become barriers is ex-
actly as in [34].

Step 3: The construction of uk
Let uk ∈ C2,α

loc (Ω̂) be the largest (Perron) sub solution of equation (9)

that lies below Ck on all of Ω̂ and below −√k+uγ on all crescents Crγ
corresponding to components γ of ∂−Ω. To justify the existence of such
a solution, we refer to [36, p. 375], the interior gradient estimate stated
in Appendix A, and also [41, Theorems 1.1 and 1.4], [15, Chapter 16],
and [6, Chapter 3]. The maximum principle implies that uk lies above

−Ck on all of Ω̂ and above
√
k+ uγ on all crescents Crγ corresponding

to components γ of ∂+Ω. From (9) we see that the mean curvature of



JENKINS–SERRIN–TYPE RESULTS FOR THE JANG EQUATION 227

the graph of uk is bounded uniformly by 2C on Ω̂.

Step 4: Geometric limits of graph(uk)
We claim that there is a subsequence {uki} of {uk} and there ex-

ist disjoint open subsets Ω0,Ω+,Ω− of Ω̂ and u ∈ C2,α
loc (Ω0) with the

following properties:

(a) Ω̂ = (Ω0 ∪ Ω− ∪ Ω+) ∩ Ω̂. In particular, the topological boundaries
∂Ω0, ∂Ω−, ∂Ω+ of Ω0, Ω−, Ω+ locally separate Ω0, Ω−, Ω+ from

their respective complements Ω̂ \ Ω0, Ω̂ \ Ω−, Ω̂ \ Ω+ in Ω̂. More-

over, ∂Ω0 ∩ Ω̂, ∂Ω− ∩ Ω̂, and ∂Ω+ ∩ Ω̂ are properly embedded C2,α

hypersurfaces in Ω̂.
(b) For every x ∈ Ω+ there exists an open neighborhood of x in Ω+ so

that uki(y) exceeds a given constant for all y in this neighborhood,
provided i is sufficiently large. Put differently, uki diverges to plus
infinity locally uniformly on Ω+.

(c) For every x ∈ Ω− there exists an open neighborhood of x in Ω−
so that uki(y) lies below a given constant for all points y in this
neighborhood, provided i is sufficiently large. Put differently, uki
diverges to minus infinity locally uniformly on Ω−.

(d) We have that uki → u in C2,α
loc (Ω0). In particular,

div

(
Du√

1 + |Du|2

)
= H

on Ω0.
(e) Crγ ⊂ Ω± when γ is a component of ∂±Ω.

(f) The sets ∂Ω0∩(Ω̂∪{corners}), ∂Ω−∩(Ω̂∪{corners}), and ∂Ω−∩(Ω̂∪
{corners}) consist of finitely many arcs and closed curves of constant
geodesic curvature in Ω. These arcs and closed curves are pairwise
disjoint in Ω. The arcs are properly immersed and embedded in Ω.
Their endpoints are corners of Ω, and the endpoints of any one arc
may coincide. The closed curves are contained in Ω and they are
properly embedded.

(g) If γ is a component of ∂Ω± ∩ ∂Ω0, then limx∈Ω0,x→x0
u(x) = ±∞

uniformly near x0 ∈ int(γ).
(h) The geodesic curvature of a component γ of ∂Ω0 ∩ ∂Ω+ is constant

and equal to H0 when we orient γ by the unit normal ν pointing
into Ω+. Every divergent series of downward translations of the
hypersurface graph(u) = {(x, u(x)) : x ∈ Ω0} converges to (∂Ω0 ∩
∂Ω+)× R in C2,α on compact subsets of Ω̂× R.

(i) The geodesic curvature of a component γ of ∂Ω0 ∩ ∂Ω− is constant
and equal to H0 when we orient γ by the unit normal ν pointing into
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Ω0. Every divergent series of upward translations of the hypersur-
face graph(u) = {(x, u(x)) : x ∈ Ω0} converges to (∂Ω0 ∩ ∂Ω−)× R

in C2,α on compact subsets of Ω̂× R.
(j) The geodesic curvature of a component γ of ∂Ω− ∩ ∂Ω+ is constant

and equal to H0 when we orient γ by the unit normal ν pointing
into Ω+. There exists a cylindrical neighborhood of γ ×R in Ω̂×R

in which the graphs {(x, uki(x)) : x ∈ Ω̂} converge in C2,α to γ ×R

on compact subsets.
(k) The graphs {(x, uki(x)) : x ∈ Ω̂} converge as embedded C2,α hyper-

surfaces on compact subsets of Ω̂× R to the union of the cylinders
(Ω∩∂0Ω)×R, (∂−Ω∩∂+Ω)×R and the graph {(x, u(x)) : x ∈ Ω0},
as i→∞.

(l) The vector fields Duk/
√

1 + |Duk|2 are locally equicontinuous in Ω̂.
(m) With γ and ν as in (h) - (j) we have that

lim
i→∞

∫
γ

g(ν,Duki)√
1 + |Duki |2

dH1
g = H1

g(γ).

In fact, the integrand on the left converges to 1 locally uniformly
on int(γ).

(n) The arcs and closed curves γ in (h), (i), and those in (j) interior to
Ω are stable in the sense that

∫
γ
(H2

0 + κg)ψ
2dH1

g ≤
∫
γ
|D̄ψ|2dH1

g

for all ψ ∈ C1(γ) with supp(φ) ⊂ int(γ). Here, κg is half the scalar
curvature of (M,g) and D̄ is the (tangential) gradient of ψ.

The properties listed here extend classical results about limits of mono-
tone sequences in the Jenkins–Serrin–Spruck theory, cf. [19, 20, 40, 18,
31]. For limits of not necessarily monotone sequences, some of these
properties can be inferred directly from the results of L. Mazet [26].
The ideas in [26] have been employed to prove Jenkins-Serrin-Spruck
type results for minimal graphs supported on domains in Riemannian
surfaces in [27] and for constant mean curvature graphs in [10].

The above properties are also variations of classical results on general-
ized solutions of the minimal surface equation [16, 25] or the geometric
theory of Jang equation [34]. We provide a few details below to assist
the reader.
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The barriers used in the construction of uk in Step 4 can be used to
justify (e).

Properties (a) - (m) can be deduced from the compactness and reg-
ularity properties of almost minimizing boundaries along with the geo-
metric Harnack principle (as in Appendix A), which ensures that geo-
metric limits of our graphs are made up of graphical and cylindrical
components. For limits of minimal graphs, this is the approach of [25].
For the case of geometric limits of solutions of the regularized Jang
equation (including the capillarity regularization), this has been worked
out in detail in [6]. We refer the reader to [6] for statements of more
general results and references.

Property (l) follows from Lemma C.1 in Appendix C.

The argument leading to (n) is very similar to that in Appendix B.
The Jacobi identity (21) is replaced by the differential inequality

ΔGk
ν3k + (|hk|2 +Rcg+dx3⊗dx3(νk, νk))ν

3
k

= −g
(

Duk√
1 + |Duk|2

,D

(
Hk +

1

k
uk

))
ν3k

≤ k−1/2|Dχ|ν3k

valid on Ω where all geometric quantities on the left are computed for
the graph Gk = {(x, uk(x)) : x ∈ Ω}. The additional contribution to the
stability inequality (22) disappears when we take geometric subsequen-
tial limits of Gk and its vertical translates as n → ∞. Since the arcs
γ for which (n) is asserted appear as cross-sections of vertical cylinders
that appear in such limits, and because |h|2+Rcg+dx3⊗dx3(ν, ν) reduces

to H2
0 + κg on such cross-sections, we are done.

Step 4: Analysis of the limit using the Jenkins–Serrin–Spruck

conditions

The analysis of the geometric limit of the graphs of the solutions
uk : Ω→ R using the Jenkins–Serrin–Spruck condition below is in many
ways similar to that in [40] (see in particular Sections 5 and 6 therein)
or [18, Section 7]. However, because we do not assume the existence of
a sub solution for the original equation, our main technical step, Case
b below, is quite different.

The properties listed in Step 4 show that the components P of Ω0∩Ω,
Ω+∩Ω, and Ω−∩Ω are generalized polygons in Ω. If P is a component
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of Ω− ∩ Ω, then

H0L2
g(P ) + lim sup

i→∞

∫
P

uki
ki

dL2
g ≥(10)

H1
g(∂P ∩ ∂+Ω) +H1

g(∂P ∩Ω) + lim inf
i→∞

∫
∂P∩∂−Ω

g(ν,Duki)√
1 + |Duki |2

dH1
g.

Here, ν is the unit normal pointing out of Ω. The second term on the
left is always non-positive. Similarly, if P is a component of Ω+ ∩ Ω,
then

H0L2
g(P ) + lim inf

i→∞

∫
P

uki
ki

dL2
g ≤(11)

−H1
g(∂P ∩ ∂−Ω)−H1

g(∂P ∩Ω) + lim sup
i→∞

∫
∂P∩∂+Ω

g(ν,Duki)√
1 + |Duki |2

dH1
g,

where again the unit normal ν points out of Ω. The second term on the
left is always non-negative.

We consider the following cases:

Case a: ∅ �= Ω− ∩ Ω � Ω
Let P be a component of Ω− ∩Ω. The Jenkins–Serrin–Spruck condi-

tion for P implies that

H0L2
g(P ) < H1

g(∂P ∩ ∂+Ω) +H1
g(∂P ∩ Ω)−H1

g(∂P ∩ ∂−Ω).

This contradicts our assumption (10), since clearly∣∣∣∣∣
∫
∂P∩∂−Ω

g(ν,Duki)√
1 + |Duki |2

dH1
g

∣∣∣∣∣ ≤ H1
g(∂P ∩ ∂−Ω).

Thus Case a cannot occur.

Case a’: ∅ �= Ω+ ∩ Ω � Ω
Let P be a component of Ω+ ∩Ω. The Jenkins–Serrin–Spruck condi-

tion for P implies that

H0L2
g(P ) > H1

g(∂P ∩ ∂+Ω)−H1
g(∂P ∩ Ω)−H1

g(∂P ∩ ∂−Ω),

contradicting (11), since clearly∣∣∣∣∣
∫
∂P∩∂+Ω

g(ν,Duki)√
1 + |Duki |2

dH1
g

∣∣∣∣∣ ≤ H1
g(∂P ∩ ∂+Ω).

Thus Case a’ cannot occur.

Case b: Ω ⊂ Ω−
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The Jenkins–Serrin–Spruck condition for P = Ω− ∩ Ω = Ω implies
that

H0L2
g(Ω) = H1

g(∂+Ω)−H1
g(∂−Ω).

In conjunction with (10) we conclude that

lim sup
i→∞

∫
P

uki
ki

dL2
g = 0

and that

lim inf
i→∞

∫
∂−Ω

g(ν,Duki)√
1 + |Duki |2

dH1
g = −H1

g(∂−Ω).

Passing to a further subsequence, if necessary, we see that

lim
i→∞

L2
g

({
x ∈ Ω :

uki
ki

< −ε
})

= 0(12)

for every ε > 0 and, using (l), that

lim
i→∞

g(ν,Duki)√
1 + |Duki |2

= −1(13)

locally uniformly on ∂−Ω where ν is the unit normal pointing out of Ω.

Fix a component γ of ∂−Ω and let z ∈ γ. It follows from the assump-
tions that z ∈ Ω−. Consider the functions ũki(x) = uki(x) − uki(z).
(This is an upward translation for ki large.) Then

div

(
Dũki√

1 + |Dũki |2

)
= Hki +

ũki
ki

+
uki(z)

ki
.

Using that |uki(x)| ≤ Cki for all x ∈ Ω̂ we see that the mean curvature
of these graphs is uniformly bounded. We pass to a further subsequence
so that k−1i uki(z) converges to a constant c ∈ [−C, 0]. We pass to a fur-
ther subsequence so that the graphs of the ũki converge geometrically in
C2,α to a union of properly embedded graphs and cylinders on compact
subsets in Ω̂×R. The mean curvature of these graphs and cylinders at
a point (x, x3) ∈ Ω̂ × R in the geometric limit is H(x) + c. The point
(z, 0) ∈ γ × R is contained in the geometric limit. Using (13) we see
that (z, 0) is contained in a cylindrical component γ̃ × R of the limit,

where γ̃ ⊂ Ω̂ is a properly embedded curve whose mean curvature at
x ∈ γ is given by H(x) + c. Moreover, the tangent spaces of γ and γ̃
agree together with their orientation at any point of γ ∩ γ̃.

We claim that γ = γ̃. In particular, c = 0. To see this, we distinguish
two cases.
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First, assume that γ̃ ⊂ Crγ . Then the assertion is a consequence of
the maximum principle. (We use that c ≤ 0 here.)

Second, assume that γ̃ ∩Ω �= ∅. Recall that every y ∈ γ has an open
neighborhood in Ω̂ that is separated by γ into two components such
that ũki tends to plus infinity locally uniformly in one component as
k → ∞, and such that ũki tends to minus infinity locally uniformly in
the other component. Since γ̃ ∩ Ω �= ∅, we conclude that{

x ∈ Ω : lim sup
i→∞

k−1i ũki(x) ≤ 0

}
=

{
x ∈ Ω : lim sup

i→∞
k−1i uki(x) ≤ c

}
contains a non-empty open subset. In conjunction with (12) we con-
clude that c = 0. It follows that in this case, γ and γ̃ satisfy the same
geometric equation. Further, we know that they intersect non-trivially,
and that at any point of intersection they intersect tangentially with the
same orientation. The Hopf boundary point lemma shows that γ = γ̃,
which contradicts the assumption that γ̃ ∩Ω �= ∅. It follows that γ = γ̃.

The argument in the preceding paragraph shows that there exists
a relatively open neighborhood Uγ of γ in Ω̂ that is disjoint from the
crescents corresponding to the positively curved boundary components
such that ũki converges to −∞ locally uniformly in Uγ ∩Crγ , and to ∞
in Uγ ∩ Ω.

We can repeat the above reasoning for any of the components γ1, . . . ,
γm of ∂−Ω, choosing a point zi ∈ γi for each component. Passing to
a further subsequence and relabeling if necessary, we may assume that
uki(z) ≥ uki(zi) for all i ∈ {1, . . . ,m} where z = z1. Also, we may pick
y ∈ Ω near γ1 so that

0 ≥ uki(y)

ki
≥ uki(z)

ki
→ 0.

Finally, let ûki = uki−uki(y). For k large, this is an upward translation.
Then

div

(
Dûki√

1 + |Dûki |2

)
= Hki +

ûki
ki

+
uki(y)

ki
.

For the remainder of the argument, we replace Crγ by Uγ∩Crγ (keeping
the same notation) for all components γ of ∂−Ω. This may shrink the

auxiliary domain Ω̂ slightly. We have that ũki(x) → −∞ locally uni-
formly in these new crescents Crγ . Note that ũki →∞ locally uniformly
in Crγ when γ is a component of ∂+Ω. We can take a subsequential geo-
metric limit of the graphs of ũki just as we did for the original sequence

uki so that (a) - (l) continue to hold. We use Ω̂0, Ω̂−, Ω̂+ instead of

Ω0,Ω−,Ω+ to avoid confusion. As before, the components of Ω ∩ Ω̂0
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and Ω ∩ Ω̂± are generalized polygons. We claim that Ω ⊂ Ω̂0. To see
this, note that (y, 0) is contained in the geometric limit. This implies

that y ∈ ∂Ω̂− ∪ ∂Ω̂+ ∪ Ω̂0 so that Ω ⊂ Ω̂± is impossible. The cases

∅ �= Ω∩ Ω̂± � Ω can be ruled out exactly as in Cases a and a’ above. It

follows that Ω = Ω̂0, and we can conclude as in Case c below.

Case b’: Ω ⊂ Ω+

Exactly as in Case b, we can conclude that a sequence of downward
translations of uki will converge to a solution of the original problem.
We point out that the analysis can be shortened considerably in this
case because large constants are super solutions of the equation.

Case c: Ω0 = Ω
In this case, the solutions uki converge to the sought-after solution

u : Ω→ R by (e) and (g).

Remark 6.4. Let (M,g) be a complete Riemannian manifold of di-
mension n with 2 ≤ n ≤ 7. Let H ∈ C∞(M) and let Ω ⊂ M be a
bounded domain whose boundary can be written as the disjoint union
of hypersurfaces ∂−Ω and ∂+Ω such that H∂−Ω(x) > H(x) with respect
to the unit normal pointing into Ω and such that H∂+Ω(x) < H(x) with
respect to the unit normal pointing out of Ω. There exists an open sub-
set U ⊂ Ω containing a neighborhood of ∂−Ω whose boundary in Ω is
a smooth hypersurface Σ whose mean curvature at x ∈ Σ with respect
to the unit normal pointing out of U equals H(x). Such a set U can be
found by minimizing the functional

U �→ Hn−1
g (Ω ∩ ∂∗U)−

∫
U
H(x)dLn

g (x).(14)

This was proven by M. Fuchs in [12, Theorems 2.1 and 4.1]. The exis-
tence of a hypersurface with prescribed mean curvature H also follows
from the non-variational approach in [3, 6], noting that such surfaces
are MOTSs in the initial data set (M,g, k = −H/(n− 1)g). The proofs
in [3, 6] proceed by constructing a limit of solutions of regularized Jang
equations whose boundary values diverge to plus and minus infinity near
∂+Ω and ∂−Ω respectively. The observation that the capillarity term in
the regularized Jang equation contributes “with a good sign” in the flux
integrals (10) and (11) that we exploited in the proof of Theorem 6.1
can be used to show that the boundaries of prescribed mean curvature
arising in this way also minimize (14). Cf. [6, Remark 3.2].

Appendix A. Remark on the Interior gradient estimate for

the prescribed mean curvature equation

Let (M,g) be a complete Riemannian manifold, let Ω ⊂M be a non-

empty open subset, and let u ∈ C2,α
loc (Ω) be a solution of the prescribed
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mean curvature equation

div

(
Du√

1 + |Du|2

)
= H + t u(15)

on Ω where t ∈ (0, 1) and where H is a bounded, locally Lipschitz
function. The geometric operators appearing in this equation are with
respect to the metric g, so that the left hand side represents the scalar
mean curvature of the graph G(u) = {(x, u(x)) : x ∈ Ω} ⊂ Ω × R with
respect to the product metric g + dxn+1 ⊗ dxn+1 and the downward
pointing unit normal. Then, given x ∈ Ω, the gradient of u at x is
bounded in terms of the geometry of (M,g) near x, the size of H in the
Lipschitz norm near x, and a bound on u near x. This interior gradient
estimate is derived in [37] using iteration techniques, and e.g. in [21],
[22], [23], [42], [41] using the maximum principle in a clever way. The
estimates for the gradient obtained in these references are explicit.

Here, we include a short, indirect, and conceptually simple proof of
this well-known interior gradient estimate. This proof works when the
dimension n of M lies in the range 2 ≤ n ≤ 7. It is based on the regu-
larity theory of (almost) minimizing boundaries. The ingredients of the
proof are classical. A very similar argument was employed in the proof
of Theorem 4.2 in [16]. For convenience, our references below are to the
recent paper [6] whose notation and language are compatible with ours
here. There, the reader will find further references to the literature.
The line of reasoning here should also be compared to the application
of the Harnack inequality in the corollary of Theorem 4.2 of [38].

Suppose the estimate fails (with a counterexample in dimension 2 ≤
n ≤ 7). Then there exist (M,g), Ω ⊂M , x ∈ Ω, and H as in the state-
ment, a precompact open subset B ⊂ Ω containing x, and a sequence of
solutions uk ∈ C2,α

loc (Ω) of (15) with t = tk ∈ (0, 1) such that uk(x) = 0,
such that |uk(y)| ≤ T for some T > 0 and all y ∈ B, and such that
|Duk(x)| → ∞ as i → ∞. Let Gk denote the graph of uk above B,

and let νn+1
k = (1 + |Duk|2)−1/2 denote the vertical component of its

upward pointing unit normal. By assumption, the mean curvatures of
the graphs Gk are uniformly bounded independently of k. Hence the
graphs Gk are all contained in a precompact class of almost minimizing
(relative) boundaries in B × R (cf. [6, Appendix A and Remark 4.1]).
Moreover, there exists a constant β > 0 depending only on the Lipschitz
norm of H on B such that ΔGk

νn+1
k ≤ βνn+1

k (cf. (16) and (17) below)
holds weakly on Gk. Moreover, (x, 0) ∈ Gk for every i. Let G be a subse-
quential varifold limit of Gk as k →∞. Then G is a properly embedded
C2,α two-sided hypersurface in B × R, and the subsequence of the Gk

approaches G in C2,α on compact subsets of B×R. Let νn+1 denote the
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vertical component of the “upward” unit normal of G (the orientation
is inherited from Gk). Then νn+1 is non-negative and Δ̄νn+1 ≤ βνn+1

weakly on G. By the strong maximum principle, on any component
of G, νn+1 is either everywhere positive (so that the component is a
graph) or everywhere vanishing (so that the component is a vertical
cylinder). See [25, Section 4.2] and [6, Lemma 2.3] for references and
a more detailed discussion of this geometric Harnack principle. Since
|Duk(x)| → ∞, it follows that the connected component of G contain-
ing (x, 0) is cylindrical. This is impossible, since all the graphs Gk and
consequently also G are contained in the slab M × [−T, T ].

For convenient reference, and to rectify a mistake in [6], we include
the following lemma:

Lemma A.1. Let (M,g) be a complete Riemannian manifold, let
Ω ⊂M be non-empty and open, let u ∈ C2(Ω), and let G = {(x, u(x)) :
x ∈ Ω} ⊂ M × R be its graph. Let v =

√
1 + |Du|2 and ν = Du/v.

Then

Δ̄
1

v
+ (|h|2ḡ +Rc(ν, ν) + ν(H(u)))

1

v
= 0(16)

holds weakly on G where Δ̄ is the (non-positive) Laplace-Beltrami op-
erator of G with respect to the metric ḡ induced on G from (M ×
R, g+dxn+1⊗dxn+1), |h|ḡ is the length of its second fundamental form,
H(u) = div ν is its mean curvature, and Rc is the Ricci curvature tensor
of (M,g).

Let F : TM × R → R be a locally Lipschitz function that is non-
decreasing in its last argument and such that H(u) = F (ν, u). There
exist a measurable locally bounded function f and a measurable locally
bounded vector field X on G such that

ν(H(u))
1

v
≥ −f

v
+ ḡ

(
X,∇1

v

)
(17)

holds almost everywhere on G. The bounds for f and X on a compact
subset K ⊂ Ω × R depend only on the projection of K to the base, as
well as the local geometry of (M,g) and the Lipschitz norm of F on
that set. The vector field X is the tangential part of a horizontal vector
field on M × R that is independent of the vertical variable and of u. If
F : TM × R → R does not depend on the fiber variable in TM we can
take X = 0. If we let w = log v, then

Δ̄w = |∇w|2ḡ + |h|2ḡ +Rc(ν, ν)− f − ḡ(X,∇w)(18)

holds weakly on G.

Proof. The Jacobi identity (16) is derived carefully in [34, (2.18)]. For
the second part of the lemma, choose local coordinates (x1, . . . , xn) on
Ω so that F = F (x1, . . . , xn, p1, . . . , pn, z). Note that Fp�dx

� is defined
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independently of coordinates. Following the notation of [41], we denote
the components v−1ui of ν by νi (indices raised with respect to g). The
induced metric on the graph has components ḡij = gij + uiuj. The
components of its inverse are ḡij = gij − νiνj . Then

ν(H(u)) = νF (ν, u) = νiFpj (ν
j);i + νi(Fxi

− FpjΓ
j
imνm) + v−1|Du|2Fz

≥ νiFpj (ν
j);i + νi(Fxi

− FpjΓ
j
imνm)

where covariant derivatives and the Christoffel symbols are with respect
to g. The second term on the right is defined independently of our choice
of coordinate system; it is our function f . For the first term, note that

v−1νi(νj);iFpj = v−2νium;iḡ
mjFpj

= v−3uium;iḡ
mjFpj = −(v−1)mḡmjFpj .

We let Xm = −ḡmjFpj . Note that |X|2ḡ ≤ FpiFpjg
ij . q.e.d.

Remark A.2. The derivation of [6, (6)] is flawed, as was pointed
out to the first named author by Zhuobin Liang. The correct “ensuing
differential inequality” is given by (17) along with (16). (The gradient
term is missing in [6].) This introduces two changes in [6]: In the proof
of Lemma 2.1, a gradient term ḡ(X,∇η) should be added to the line
−βη +ΔΣη. This introduces a harmless additional term of order K in
the estimate that follows in the proof of Lemma 2.1 in [6]. Similarly,
a gradient term should be added to the differential inequality in the
hypotheses of Lemma 2.3 in [6]. Again, this does not affect the proof.
The inequality (6) in [6] was carried over as (2) in [7]. That inequality
should be replaced by (18), which implies that

div(∇w − 1

2
X)− |∇w − 1

2
X|2ḡ − |h|2ḡ = Rc(ν, ν)− f − 1

4
|X|2ḡ −

1

2
divX

holds weakly on G. Multiply this inequality by φ2 where φ ∈ C1
c(Ω×R),

integrate over G, and integrate by parts in a standard way (cf. [34,
Proposition 1], [14, Proof of Theorem 2.1]), to obtain∫

G
|h|2ḡφ2 ≤ (1 + ε)

∫
G
|∇φ|2ḡ + Cε

∫
G
φ2.(19)

Here, Cε is a constant that only depends on a given ε > 0, the projection
of the support of φ to the base, and the size of the Ricci tensor of (M,g)
and the derivatives of F on that projection. For appropriate choice of
ε > 0, this inequality is equivalent to estimate (3) in [7].

Appendix B. Domains of solutions of prescribed mean

curvature equations with infinite boundary

data

Let (M,g) be a complete Riemannian manifold of dimension n, 2 ≤
n ≤ 7, let ∅ �= Ω � M be a non-empty open subset, and let u ∈ C2(Ω)
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be a solution of the equation

div

(
Du√

1 + |Du|2

)
= H0

where H0 ∈ R is a constant. Let U ⊂ M be an open set such that
U ∩∂Ω �= ∅ and assume that limx→y,x∈Ω u(x) =∞ for every y ∈ U ∩∂Ω,
where ∂Ω is the topological boundary of Ω in M .

The topological boundary U ∩ ∂Ω of Ω relative to U has the struc-
ture of a smooth two-sided properly immersed constant mean curva-
ture hypersurface ι : Σ → U . More precisely, given y ∈ U ∩ ∂Ω,
there exists an open neighborhood Oy of y in U and a diffeomorphism

φy : Oy → Bn−1
1 (0) × (−1, 1) with φy(y) = 0 such that one of the

following conditions hold:

(i) There exists a smooth function f : Bn−1
1 (0) → R with f(0) = 0,

df(0) = 0, and |df(x)| < 1 for all x ∈ Bn−1
1 (0) such that φy(Ω ∩

Oy) = {(x, t) ∈ Bn−1
1 (0) × (−1, 1) : t < f(x)}.

(ii) There exist smooth functions f1, f2 : Bn−1
1 (0)→ R with f i(0) = 0,

df i(0) = 0, |df i(x)| < 1, and f1(x) ≤ f2(x) for all x ∈ Bn−1
1 (0)

and i ∈ {1, 2} such that φy(Ω∩Oy) = {(x, t) ∈ Bn−1
1 (0)× (−1, 1) :

t < f1(x) or f2(x) < t}.
Moreover, for every ψ ∈ C1

c(Σ) we have that∫
Σ
(|h|2 +Rcg(ν, ν))ψ

2 ≤
∫
Σ
|D̄ψ|2ḡ.(20)

Here, h is the second fundamental form and ν is the unit normal vector
field of the immersion ι : Σ → U , integration is with respect to the
volume form of the pull-back metric ḡ = ι∗g, and D̄ is the gradient with
respect to ḡ.

For n = 2, the conclusions here are (roughly) [19, p. 329] (forH0 = 0)
and [36, Theorems 6.1 and 6.2] (for H0 �= 0). For n ≥ 2, it is shown in
Chapter 8 of [40] that U ∩ ∂Ω is a hypersurface of constant mean cur-
vature H0 assuming that ∂Ω is a C2 hypersurface; see also the analysis
of “extremal domains” in [16].

Below we sketch how these conclusions follow from arguments as ap-
plied in [6, 7].

Note that the graph of u, G = {(x, u(x)) : x ∈ U ∩ Ω}, is a properly
embedded hypersurface in U × R. Let V � U be a non-empty open
set with smooth boundary that is compactly contained in U . Using the
divergence theorem for the vector field (1 + |Du|2)−1/2(−Du, 1) in the
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region {(x, xn+1) : x ∈ Ω and u(x) ≤ xn+1} ∩ (V × [S, T ]) for regular
values S, T of u with S < T , we obtain that

Hn
g+dxn+1⊗dxn+1(G ∩ (V × [S, T ])) ≤ 2Ln

g (V ) + |H0|(T − S)Hn−1
g (∂V ).

In particular, we obtain locally uniform area bounds for G and its ver-
tical translates.

Let νn+1 = (1 + |Du|2)−1/2 denote the vertical component of the

(upward) unit normal vector field ν = (1 + |Du|2)−1/2(−Du, 1) of G.
The Jacobi identity (expressing the fact that vertical translation of G
leaves the mean curvature constant) implies that

Δ̄(νn+1) + (|h|2 +Rcg+dxn+1⊗dxn+1(ν, ν))νn+1 = 0.(21)

Here, Δ̄ is the (non-positive) Laplace–Beltrami operator of G with re-
spect to its induced metric ḡ. Let ψ ∈ C1

c(U × R) be a test function,
multiply (21) by ψ2(νn+1)−1, integrate over G, integrate by parts, and
use the elementary estimate −ḡ(D̄(ψ2(νn+1)−1), D̄νn+1) ≥ −|D̄ψ2|ḡ to
obtain that∫

G
(|h|2 +Rcg+dxn+1⊗dxn+1(ν, ν))ψ2 ≤

∫
G
|D̄ψ|2ḡ.(22)

The stability–based regularity theory of [33] applies and provides cur-
vature estimates for G. In fact, the curvature of G ∩ (V × [T, T + 1])
is bounded for every V � U independently of T ∈ R. (The case
n = 7 requires an additional argument, cf. Remark 4.1 in [6].) Let
GT = {(x, uT (x)) : x ∈ Ω} with uT = u− T . Note that these hypersur-
faces are naturally ordered and that their area and curvature is bounded
independently of T on compact subsets of U × R. Hence we can pass
them to a geometric (varifold) limit as T ↗ ∞. It is elementary to
check that the support of this limit equals (U ∩ ∂Ω) × R. The argu-
ments in Appendix A of [7], in particular Corollary A.1 and Remark
A.3, explain carefully how the asserted structure of the cross-section of
this geometric limit follows from this, in particular why no more than
two sheets can come together. That the stability property (22) passes
to the cross-section in the form (20) is checked exactly as in [34, p. 254].

Similar arguments characterize the boundary of open subsets Ω of
a Riemannian manifold (M,g) that support solutions u : Ω → R with
infinite boundary values on U ∩ ∂Ω of the prescribed mean curvature
equation

div

(
Du√

1 + |Du|2

)
= F

(
x,

Du√
1 + |Du|2

)
.

Here, F is a smooth function on M × Sn−1(M), where Sn−1(M) is the
unit sphere bundle of (M,g). The boundary of Ω in U then has the
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structure of a two-sided immersion ι : Σ → U such hat HΣ(ι(σ)) =
F (ι(σ), ν(σ)), where ν is the unit normal field along the immersion
pointing out of Ω. Instead of (20) one obtains that for every ε > 0 there
exists a constant Cε = (ε, |RcM |, |H|C1) such that

(1− ε)

∫
Σ
|h|2ψ2 ≤

∫
Σ
|D̄ψ|2ḡ + Cε

∫
Σ
ψ2(23)

for every ψ ∈ C1
c(Σ). See [7, (3)] for details.

Appendix C. Equicontinuous vector fields from solutions of

the prescribed mean curvature equation

The lemma below follows from the compactness and regularity the-
ory for graphs with bounded mean curvature, see e.g. [6] for precise
statements and references.

Lemma C.1. Let (M,g) be a complete n-dimensional Riemannian
manifold, 2 ≤ n ≤ 7, let Ω ⊂ M be a non-empty open subset, and let
C ≥ 0. The collection of continuously differentiable vector fields{

Du√
1 + |Du|2 : u ∈ C2(Ω) and

∣∣∣∣∣div
(

Du√
1 + |Du|2

)∣∣∣∣∣ ≤ C

}

is equicontinuous on compact subsets of Ω.

Appendix D. Barriers for the Jang equation near infinity

In [34, p. 248], certain rotationally symmetric barriers for the Jang
equation were constructed on large subsets of the asymptotically flat
ends of three dimensional initial data sets. The following proposition,
which we quote from [8], is a straightforward extension of the construc-
tion in [34] to higher dimensions.

Proposition D.1. Fix β ∈ (2, n). For Λ ≥ 1 define

bΛ(r) = Λ

∫ ∞

r
Λ

ds√
s2(β−1) − 1

on [Λ,∞). Then bΛ is continuous and positive, it is smooth on (Λ,∞),

and we have that dbΛ
dr (r) tends to −∞ as r ↘ Λ. There is a constant

c = c(β) ≥ 1 such that bΛ(r) ≤ cΛ(r/Λ)2−β and such that bΛ(Λ) ≥ c−1Λ.
Let (M,g, k) be an asymptotically flat initial data set of dimension

n, n ≥ 3, such that gijkij = O(|x|−β) as x → ∞ in the asymptotically
flat ends. (When n > 3, our definition of asymptotic flatness in the
introduction shows that there exists some β ∈ (2, n) such that gijkij =

O(|x|−β). When n = 3, this is a genuine additional hypothesis, cf.
[34, (1.4)].) There is Λ0 = Λ0(M,g, k, β) ≥ 1 such that for every Λ ≥
Λ0 we have that H(bΛ(|x|)) + tr(k)(bΛ(|x|)) > 0 and H(−bΛ(|x|)) +
tr(k)(−bΛ(|x|)) < 0 on {x ∈M : |x| > Λ}.
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In this paper, we repeatedly use the barriers from Proposition D.1
along with the maximum principle, exactly as in [34, p. 249], to
conclude that a solution u of the regularized Jang equation H(u) +
tr(k)(u) = t u (with t ≥ 0) that is defined on the complement of a com-
pact subset of (M,g, k) and which tends to zero at infinity actually lies
between −bΛ(|x|) and bΛ(|x|) provided that Λ ≥ Λ0 is large enough so
that {x ∈M : |x| > Λ} is contained in the domain of u.
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(1965), 203–214. MR 0175047.

[31] A. L. Pinheiro, A Jenkins-Serrin theorem in M
2
× R, Bull. Braz. Math. Soc.

(N.S.) 40 (2009), no. 1, 117–148. MR 2496117.



242 M. EICHMAIR & J. METZGER

[32] R. G. Pinsky, Positive harmonic functions and diffusion, Cambridge Studies in
Advanced Mathematics, vol. 45, Cambridge University Press, Cambridge, 1995.
MR 1326606.

[33] R. Schoen & L. Simon, Regularity of stable minimal hypersurfaces, Comm. Pure
Appl. Math. 34 (1981), no. 6, 741–797. MR 634285.

[34] R. Schoen & S. T. Yau, Proof of the positive mass theorem. II, Comm. Math.
Phys. 79 (1981), no. 2, 231–260. MR 612249.

[35] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations

with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264

(1969), 413–496. MR 0282058.

[36] J. Serrin, The Dirichlet problem for surfaces of constant mean curvature, Proc.
London Math. Soc. (3) 21 (1970), 361–384. MR 0275336.

[37] L. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana
Univ. Math. J. 25 (1976), no. 9, 821–855. MR 0412605.
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