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COMPACTNESS OF THE SPACE OF EMBEDDED
MINIMAL SURFACES WITH FREE BOUNDARY IN
THREE-MANIFOLDS WITH NONNEGATIVE RICCI

CURVATURE AND CONVEX BOUNDARY

Ailana Fraser & Martin Man-chun Li

Abstract

We prove a lower bound for the first Steklov eigenvalue of em-
bedded minimal hypersurfaces with free boundary in a compact
n-dimensional Riemannian manifold which has nonnegative Ricci
curvature and strictly convex boundary. When n = 3, this implies
an apriori curvature estimate for these minimal surfaces in terms
of the geometry of the ambient manifold and the topology of the
minimal surface. An important consequence of the estimate is a
smooth compactness theorem for embedded minimal surfaces with
free boundary when the topological type of these minimal surfaces
is fixed.

1. Introduction

In a series of recent papers [11, 12, 10], Fraser and Schoen studied an
extremal problem for the first Steklov eigenvalue on compact surfaces with
boundary and proved that minimal surfaces in Euclidean balls with free bound-
ary on the boundary of the ball realize the extrema. The equatorial disk [37]
and the critical catenoid [11, 12, 10] uniquely maximize σ1(Σ)L(∂Σ) among
metrics on the disk and annulus respectively. In the recent preprint [12], they
were able to prove existence of extremal metrics for genus zero orientable sur-
faces with any number of boundary components, and the extrema are achieved
by properly embedded minimal surfaces in the unit ball B3 in R

3 with free
boundary. The nonorientable case of a Möbius band was also studied in detail.
This motivates the question of finding more examples of properly embedded
minimal surfaces in the unit ball. In the case without boundary, Lawson [22]
proved that a closed orientable surface of any genus can be realized as an
embedded minimal surface in the standard round sphere S3 (while any nonori-
entable closed surface except RP 2 can be realized as a minimal immersion into
S3). A central question in this direction is the following:

Question 1. Which compact orientable surfaces with boundary can be
realized as properly embedded minimal surfaces in the unit ball B3 with free
boundary?
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Since B3 is simply connected, any properly embedded surface in B3 must
be orientable. By the results of Fraser and Schoen [12, 10], we know any genus
zero orientable surface can be minimally embedded into B3 as a free boundary
solution. Therefore, it remains to look for surfaces of higher genus. Another
related question one could ask is the following:

Question 2. Given a compact orientable surface with boundary, in how
many ways can it be realized as a properly embedded minimal surface in the
unit ball B3 with free boundary?

Note that any such minimal surface comes in a continuous family because
of the isometry group of the unit ball (which is a compact group). Therefore,
we should look at minimal embeddings up to congruences. Using the holo-
morphicity of Hopf differential, Nitsche [28] proved that the equatorial totally
geodesic disk is the only immersed minimal disk in B3 with free boundary (up
to congruences). For the annulus, we have the following conjecture:

Conjecture 1.1. The critical catenoid is the unique properly embedded min-
imal annulus in B3 with free boundary up to congruences.

One should compare this conjecture with the longstanding conjecture of
Lawson [23], which asserts that the Clifford torus is the unique embedded
minimal torus in S3 up to congruences. Various partial results were obtained
in this direction with additional assumptions ([27, 32, 36]). Very recently,
Lawson’s conjecture was proved in full generality by Brendle [4] (see [5] for a
nice survey of this conjecture).

In this paper, we prove that the space of properly embedded minimal sur-
faces in B3 with free boundary is compact in the C∞ topology, if we fixed the
topological type of the surface. In fact, we prove that the compactness result
holds in any compact 3-manifold M3 with nonnegative Ricci curvature and
strictly convex boundary ∂M . This result is similar to the classical compact-
ness of minimal surfaces in closed manifolds with positive Ricci curvature of
Choi and Schoen [7]. Note that proper embeddedness is an essential assump-
tion in our theorem.

Theorem 1.2. Let M3 be a compact 3-dimensional Riemannian manifold
with nonempty boundary ∂M . Suppose M has nonnegative Ricci curvature and
the boundary ∂M is strictly convex with respect to the inward unit normal.
Then the space of compact properly embedded minimal surfaces of fixed topo-
logical type in M with free boundary on ∂M is compact in the Ck topology for
any k ≥ 2.

The key ingredient in the proof is a lower bound on the first Steklov eigen-
value for properly embedded minimal surfaces with free boundary in terms of
the boundary convexity of ∂M . Combining with an equality from [11], this
gives an apriori upper bound on the length of the boundary in terms of the
topology of the minimal surface and the boundary convexity of ∂M . By an
isoperimetric inequality of White [38], we get an upper bound on the area of
the minimal surface as well. These together give an apriori L2 bound on the
norm of the second fundamental form of the minimal surface. By a remov-
able singularity theorem and curvature estimates similar to the ones in [7], we
obtain the smooth compactness theorem above.
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The outline of this paper is as follows. In section 2, we prove some gen-
eral facts about minimal hypersurfaces with free boundary in a Riemannian
n-manifold with nonnegative Ricci curvature and convex boundary. The key
results are the isoperimetric inequality (Lemma 2.2) and the connectedness
principle (Corollary 2.5). When n = 3, we prove that any such manifold M3 is
diffeomorphic to the unit ball B3 (Theorem 2.11). In section 3, we prove a lower
bound for the first Steklov eigenvalue of a properly embedded minimal hyper-
surface in terms of the boundary convexity of the ambient manifold. Then, we
specialize to dimension three and prove a removable singularity theorem and
curvature estimates at the free boundary in sections 4 and 5. In section 6, we
give a proof of our main compactness theorem (Theorem 1.2).
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to express their gratitude to the anonymous referee for all the useful comments.
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2. Minimal hypersurfaces with free boundary

Let Mn be a compact n-dimensional Riemannian manifold with nonempty
boundary ∂M . Let 〈·, ·〉 be the metric on M and D be the Riemannian con-
nection on M . The second fundamental form h∂M of ∂M , with respect to the
inner unit normal n, is given by h∂M (u, v) = 〈Duv, n〉, where u, v are tangent
to ∂M . The mean curvature H∂M of ∂M is then defined as the trace of h∂M ;
i.e., H∂M =

∑n−1
i=1 h∂M (ei, ei) where e1, . . . , en−1 is any orthonormal basis for

the tangent bundle T∂M . All manifolds are assumed to be smooth up to the
boundary unless otherwise stated.

Let ϕ : Σ → M be a compact hypersurface (possibly with boundary) prop-
erly immersed in M ; that is, ϕ(∂Σ) = ϕ(Σ)∩ ∂M . We say that Σ is a minimal
hypersurface with free boundary if Σ is a minimal hypersurface (i.e., the mean
curvature vanishes) and Σ meets ∂M orthogonally along ∂Σ. If ϕ is an embed-
ding, we treat Σ ⊂ M as a submanifold of M and take ϕ to be the inclusion
map Σ ↪→ M . Suppose Σ is two-sided; that is, there exists a globally defined
unit normal vector field N on Σ. Any normal vector field on Σ has the form
X = fN for some f ∈ C∞(Σ) and the second variation (see [34] for example)
of the volume functional with respect to X = fN is

δ2Σ(f) =
∫

Σ

[
‖∇Σf‖2 − (RicM (N, N) + ‖hΣ‖2)f2] dVolΣ(2.1)

−
∫

∂Σ
h∂M (N, N)f2dVol∂Σ,

where ∇Σ is the gradient operator on Σ, RicM is the Ricci curvature of M ,
and hΣ is the second fundamental form of Σ with respect to the unit normal
N . Here, dVolΣ and dVol∂Σ are the volume forms on M and ∂M respectively.
Note that N is tangent to ∂M along ∂Σ since Σ meets ∂M orthogonally along
∂Σ. We say that Σ is stable if δ2Σ(f) ≥ 0 for any smooth function f on Σ.
Otherwise, Σ is unstable. The following lemma is an immediate consequence
of formula (2.1).
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Lemma 2.1. Let Mn be an n-dimensional compact Riemannian manifold
with nonempty boundary ∂M . Suppose M has nonnegative Ricci curvature and
the boundary ∂M is strictly convex with respect to the inward unit normal; i.e.,
there exists a constant k > 0 such that h∂M (u, u) ≥ k > 0 for any unit vector
u tangent to ∂M .

Then, any two-sided, properly immersed, smooth minimal hypersurface Σn−1

with nonempty free boundary ∂Σ must be unstable. Moreover, if M is ori-
entable, then the (n − 1)-th relative integral homology group Hn−1(M, ∂M)
vanishes.

Proof. Taking f ≡ 1 in (2.1), the curvature assumptions imply that δ2Σ(1) ≤
−kVol(∂Σ) < 0 (since ∂Σ 
= ∅). Therefore, Σ is unstable. To prove the second
assertion, suppose Hn−1(M, ∂M) 
= 0. Let α 
= 0 be a nontrivial primitive class
in Hn−1(M, ∂M). We claim that one can choose a compact embedded minimal
hypersurface Σ with free boundary (which may be empty) such that α = [Σ] in
Hn−1(M, ∂M) and Σ minimizes volume among all hypersurfaces homologous
to Σ relative to ∂M (see, for example, Corollary 9.9 in [9]). This can be seen
as follows. By Poincare–Lefschetz duality and noting K(Z, 1) = S1, we have

Hn−1(M, ∂M) ∼= H1(M) ∼= 〈M, S1〉.
So α corresponds to a map f : M → S1, which we can assume to be smooth by
the Whitney approximation theorem. Then, for any regular value z ∈ S1 of f ,
the preimage f−1(z) is a properly embedded compact orientable hypersurface
which represents α in Hn−1(M, ∂M). Since Σ is stable, the curvature estimates
for stable minimal hypersurfaces ([14, 33, 35]) imply that Σ is smooth up to
the boundary (which may be empty), except possibly along a singular set S of
Hausdorff dimension at most n − 8. Assume first the singular set S is empty.
If ∂Σ 
= ∅, then we have a contradiction with the above statement since Σ is
stable and two-sided. If ∂Σ = ∅, then it follows from Lemma 2.2 below that
this is impossible. In case S is nonempty, a cutoff argument near the singular
set gives the same conclusion since S has codimension greater than 3. q.e.d.

The next lemma is an isoperimetric inequality for minimal hypersurfaces
in M , which holds under slightly weaker curvature assumptions than those in
Lemma 2.1.

Lemma 2.2 (Isoperimetric inequality). Let Mn be a compact n-dimensional
Riemannian manifold with nonempty boundary ∂M . Suppose M has nonnega-
tive Ricci curvature and the boundary ∂M is strictly mean convex with respect
to the inward unit normal.

Then, M contains no smooth, closed, embedded minimal hypersurface. Fur-
thermore, if n ≤ 7, then there exists a constant c > 0, depending only on M ,
such that

(2.2) Vol (Σ) ≤ cVol (∂Σ)

for any smooth immersed minimal hypersurface Σ in M .

Proof. It suffices to show that M contains no smooth, closed, embedded
minimal hypersurface. Then the isoperimetric inequality (2.2) follows from
Theorem 2.1 of [38]. Suppose not, and let Σ be a smooth, closed embedded
minimal hypersurface in M . Since ∂M is strictly mean convex, we have Σ ∩
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∂M = ∅ by the strong maximum principle (see [38]). Therefore, Σ and ∂M
are a positive distance apart; i.e., d(Σ, ∂M) = � > 0. Since both ∂M and Σ are
compact, there exists a minimizing geodesic γ : [0, �] → M (parametrized by
arc length) that realizes the distance between Σ and ∂M . Since γ is minimizing,
γ lies in the interior of M except at γ(�) ∈ ∂M . Moreover, γ is orthogonal to Σ
and ∂M at the end points. Pick any orthonormal basis e1, . . . , en−1 for Tγ(0)Σ
and let V1, . . . , Vn−1 be their parallel extensions to normal vector fields along
γ. If we look at the second variation of γ with respect to the normal variation
fields Vi, i = 1, . . . , n − 1 and sum over i, we get

n−1∑
i=1

δ2γ(Vi, Vi) = −
∫ �

0
RicM (γ′, γ′)ds − HΣ(γ(0)) − H∂M (γ(�)) < 0

since RicM ≥ 0, Σ is minimal, and ∂M is strictly mean convex. Therefore,
δ2γ(Vi, Vi) < 0 for some i and hence γ cannot be stable. This contradicts that
γ is a minimizing geodesic from Σ to ∂M . This proves the lemma. q.e.d.

Remark 2.3. We will later apply (2.2) to properly embedded minimal sur-
faces with free boundary. However, the isoperimetric inequality (2.2) applies
in general to any minimal hypersurface Σ without any assumptions on the
boundary ∂Σ.

The next lemma shows that under the curvature assumptions in Lemma 2.1,
any two properly embedded minimal hypersurfaces must intersect each other.

Lemma 2.4. Let Mn be an n-dimensional compact orientable Riemannian
manifold with nonempty boundary ∂M . Suppose M has nonnegative Ricci cur-
vature and the boundary ∂M is strictly convex with respect to the inward unit
normal. Then, any two properly embedded orientable minimal hypersurfaces Σ1
and Σ2 in M with free boundaries on ∂M must intersect; i.e., Σ1 ∩ Σ2 
= ∅.

Proof. We argue by contradiction. Suppose there are two disjoint properly
embedded minimal hypersurfaces Σ1, Σ2 with free boundaries on ∂M . Without
loss of generality, we assume that both Σ1 and Σ2 are connected. Note that ∂Σ1
and ∂Σ2 are nonempty by Lemma 2.2. Since Hn−1(M, ∂M) = 0 by Lemma
2.1, there exists a compact connected domain Ω ⊂ M such that ∂Ω = Σ1 ∪
Σ2 ∪ Γ, where Γ is a smooth domain in ∂M . On Ω, let d1 and d2 be the
distance functions from Σ1 and Σ2 respectively. Since M has nonnegative Ricci
curvature and Σ1, Σ2 are minimal, we have ΔMd1 ≤ 0 and ΔMd2 ≤ 0 on Ω
in the barrier sense (see Definition 1 in [6]) away from Σ1 and Σ2. Notice that
we have used the fact that these minimal hypersurfaces meet ∂M orthogonally
so that for any point x in Ω \ Σ1, d1(x) is realized by a geodesic from x
to an interior point y on Σ1. Hence, the same calculation as in the Laplace
comparison theorem for the case without boundary applies here. Therefore,
ΔM (d1 + d2) ≤ 0 in the barrier sense on Ω. We claim that d1 + d2 is constant
on Ω.

If d1 +d2 attains an interior minimum in Ω, the generalized Hopf maximum
principle in [6] implies that d1 + d2 is constant. Since d1 + d2 is continuous,
the global minimum must be achieved by some point p ∈ ∂Ω = Σ1 ∪ Σ2 ∪ Γ.
Since ∂M is strictly convex, the outward normal derivative of d1 +d2 is strictly
positive on Γ ⊂ ∂M . Indeed the outward normal derivative of each of d1 and d2
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is positive on Γ. Therefore, the minimum p lies on Σ1 or Σ2. Assume, without
loss of generality, that p ∈ Σ1. Observe that d1 + d2 = d2 on Σ1, and p is a
point on Σ1 that is closest to Σ2. Since ∂M is convex and Ω is connected, there
exists a minimizing geodesic γ ⊂ Ω that connects p to Σ2, and such a geodesic
γ is disjoint from ∂M and meets Σ1 and Σ2 orthogonally at the end points.
On the other hand, as d1 + d2 = d1 on Σ2, γ actually realizes the distance
between Σ1 and Σ2 in Ω. This implies that d1 + d2 is constant on γ, but then
d1 + d2 has an interior minimum, which implies that d1 + d2 is constant in
Ω. However, since the outward normal derivative of d1 + d2 is strictly positive
on Γ ⊂ ∂M and Γ is nonempty, this is a contradiction. Therefore, Σ1 and Σ2
cannot be disjoint. q.e.d.

Corollary 2.5 (Connectedness principle). Under the curvature assump-
tions on M and ∂M in Lemma 2.4, any properly embedded minimal hypersur-
face in M with free boundary is connected.

One can prove Lemma 2.4 using a form of Reilly’s formula [31]. In this
paper, we will look at compact manifolds with piecewise smooth boundary.
We first observe that Reilly’s formula holds for such manifolds provided that
the function is smooth enough away from the singular set S of the boundary.
Note that there is a sign difference in the formula from that in [8], since we
are using the inward unit normal instead of the outward unit normal.

Lemma 2.6 (Reilly’s formula). Let Ω be a compact n-manifold with piece-
wise smooth boundary ∂Ω = ∪k

i=1Σi. Suppose f is a continuous function on
Ω where f ∈ C∞(Ω \ S), and S = ∪k

i=1∂Σi is the singular set. Assume that
there exists some C > 0, depending only on f , such that ‖f‖C3(Ω′) ≤ C for all
Ω′ ⊂⊂ Ω \ S. Then, Reilly’s formula holds:

0 =
∫

Ω
RicΩ(Df, Df) − (ΔΩf)2 + ‖D2f‖2(2.3)

+
k∑

i=1

∫
Σi

[
(−ΔΣif + HΣi

∂f

∂ni
)

∂f

∂ni
+ 〈∇Σif,∇Σi

∂f

∂ni
〉

+ hΣi(∇Σif,∇Σif)
]
.

Here, RicΩ is the Ricci tensor of Ω; ΔΩ, D2 and D are the Laplacian, Hes-
sian, and gradient operators on Ω respectively; ΔΣi and ∇Σi are the intrinsic
Laplacian and gradient operators on each Σi; ni is the inward unit normal of
Σi; HΣi and hΣi are the mean curvature and second fundamental form of Σi

in Ω with respect to the inward unit normal respectively.

Proof. Since the singular set S = ∪k
i=1∂Σi has codimension two in Ω, the

smoothness assumption of f implies that Stokes’ Theorem with singularites
(Theorem 3.3 of [21]) is applicable. Hence, the same proof as in Theorem 1 of
[8] gives the desired result. q.e.d.

Using Lemma 2.6, we give an alternative proof of Lemma 2.4.

Alternative Proof of Lemma 2.4. We will prove Lemma 2.4 by contradiction.
Suppose Σ1 and Σ2 are connected and disjoint. Let Ω be the connected domain
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bounded by Σ1 and Σ2 modulo ∂M as before. Note that Ω is a compact n-
manifold with piecewise smooth boundary ∂Ω = Σ1 ∪ Σ2 ∪ Γ, where Γ ⊂ ∂M .
Let int(Ω) denote the interior of Ω. Consider the following mixed Dirichlet-
Neumann boundary value problem on Ω:

(2.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔΩf = 0 on int(Ω)
f = 0 on Σ1,

f = 1 on Σ2,
∂f
∂n = 0 on Γ,

where n is the outward unit normal on ∂M . Since Σ1 and Σ2 meet ∂M or-
thogonally along their boundaries, there exists a function ϕ ∈ C∞(Ω) such
that ⎧⎪⎨

⎪⎩
ϕ = 0 on Σ1,

ϕ = 1 on Σ2,
∂ϕ
∂n = 0 on Γ.

Letting f̂ = f − ϕ, the mixed boundary value problem (2.4) is equivalent to
the following mixed boundary value problem with zero boundary data:

(2.5)

⎧⎪⎨
⎪⎩

ΔΩf̂ = ΔΩϕ on int(Ω),
f̂ = 0 on Σ1 ∪ Σ2,
∂f̂
∂n = 0 on Γ.

Since ΔΩϕ ∈ C∞(Ω), classical results for elliptic equations with homogeneous
boundary data ([1, 25]) imply that a solution to (2.5) exists in the classical
sense and the solution f̂ ∈ C0,α(Ω) ∩ C∞(Ω \ S), where S = ∂Σ1 ∪ ∂Σ2,
and therefore f = f̂ + ϕ ∈ C0,α(Ω) ∩ C∞(Ω \ S) is a solution to (2.4), with
uniform C3 estimates away from the singular set S. Applying Reilly’s formula
in Lemma 2.6 to f and Ω, as ΔΩf = 0, we obtain

(2.6) 0 ≥
∫

Ω
RicM (Df, Df) +

∫
Γ

h∂M (∇∂Mf,∇∂Mf).

The boundary terms for Σ1 and Σ2 vanish since Σ1 and Σ2 are minimal and
f is constant on Σ1 and Σ2. Since RicM ≥ 0 and h∂M ≥ k > 0, (2.6) implies
that ∇∂Mf = 0 and hence f is locally constant on Γ, which is impossible
since ∂Γ = ∂Σ1 ∪ ∂Σ1 and f = 0 on Σ1 but f = 1 on Σ2. Thus, we have a
contradiction. q.e.d.

Remark 2.7. (a) Note that the free boundary condition comes in the
proof in a rather subtle way that gives enough regularity to the mixed
boundary value problem (2.4) to apply Reilly’s formula in Lemma 2.6.
If the free boundary condition is dropped, the theorem is no longer true.
For example, there are disjoint flat disks in the unit ball in R

3.
(b) The theorem does not hold if we only assume that RicM ≥ 0 and ∂M is

only weakly convex. For example, let Bn−1 be the (n − 1)-dimensional
unit ball in R

n and M be the product manifold Bn−1 × [0, 1] smoothly
capped off by two unit half n-balls at the two ends. Then all the slices
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Bn−1 × {t}, t ∈ [0, 1], are mutually disjoint embedded minimal hyper-
surfaces with free boundary on ∂M . However, there are some rigidity
results in this case (see [29]).

We now prove a result about the connectedness of ∂M for M with nonneg-
ative curvature and strictly mean convex boundary.

Proposition 2.8. Let Mn be an n-dimensional compact Riemannian mani-
fold with nonempty boundary ∂M . Suppose M has nonnegative Ricci curvature
and the boundary ∂M is strictly mean convex with respect to the inward unit
normal. Then ∂M is connected, and the homomorphism

π1(∂M) i∗−→ π1(M)

induced by the inclusion map i : ∂M → M is surjective.

Proof. The proof is similar to the one in Lemma 2.2. If ∂M is not connected,
there exists a minimizing geodesic from one component of ∂M to another com-
ponent that realizes the distance between them. However, the second variation
formula and the curvature assumptions on M and ∂M imply that γ is unsta-
ble, which is a contradiction. Therefore, ∂M is connected. (One can also give a
different proof using Reilly’s formula (2.3). Suppose ∂M is not connected. Let
Σ be one of its components. Take f ∈ C∞(M) to be a harmonic function that
is equal to one on Σ and is equal to zero on ∂M \Σ, which is nonempty. Then,
Reilly’s formula implies that f is constant, which is a contradiction.) The same
argument applies to the universal cover M̃ of M . Thus ∂M̃ is connected and
this implies the surjectivity of the homomorphism π1(∂M) → π1(M) as in
[23]. q.e.d.

Remark 2.9. As noted in [23], Proposition 2.8 remains true if ∂M is
assumed to be only piecewise smooth and if the interior angle between two
smooth boundary pieces is always less than π.

From the alternative proof of Lemma 2.4, we actually proved that if Ω is a
connected n-manifold with nonnegative Ricci curvature and piecewise smooth
boundary ∂Ω, where we can decompose ∂Ω = Γ1 ∪ Γ2 with Γ1 non-empty and
strictly convex with respect to the inward unit normal, and Γ2 minimal, then
Γ2 must be connected. The following corollary is an immediate consequence
following the arguments in the proof of Theorem 2 in [23].

Corollary 2.10. Let Mn be a compact n-dimensional Riemannian manifold
with nonempty boundary ∂M . Suppose M has nonnegative Ricci curvature and
the boundary ∂M is strictly convex with respect to the inward unit normal. Let
Σ be a properly embedded minimal hypersurface in M with free boundary on
∂M . If both Σ and M are orientable, then Σ divides M into two connected
components Ω1 and Ω2.

When n = 3, we get much stronger topological restrictions on M3 from the
curvature and boundary convexity assumptions.

Theorem 2.11. Let M3 be a compact Riemannian 3-manifold with non-
empty boundary ∂M . Assume M has nonnegative Ricci curvature.
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(a) If M is orientable and ∂M is strictly mean convex with respect to the
inner unit normal, then M3 is diffeomorphic to a 3-dimensional handle-
body.

(b) If ∂M is strictly convex with respect to the inner unit normal, then M3

is diffeormorphic to the 3-ball B3.

Remark 2.12. Note that we do not need to assume M is orientable in case
(b); it follows as a consequence. For higher dimensions n ≥ 4, we conjecture
that in case (b), Mn has finite fundamental group (see Conjecture 1.3 in [24]).

Proof. First, we assume that M is orientable. If ∂M is strictly mean convex
and nonempty, then it is connected, by Proposition 2.8. Using Theorem 5 in
[26], we know that M is a handlebody. If ∂M is strictly convex, then we also
have H2(M, ∂M) = 0 from Lemma 2.1, which implies that M is diffeomorphic
to the 3-ball B3.

Suppose M is nonorientable and ∂M is strictly convex. Then the orientable
double cover M̃ is the 3-ball B3. Therefore, ∂M̃ = S2 is a double cover of ∂M ;
thus ∂M is homeomorphic to RP 2. However, since ∂M is the boundary of a
compact manifold, by a theorem of Pontrjagin [30], all the Stiefel-Whitney
numbers of ∂M vanish. However w1(RP 2) = w2(RP 2) = 1. This is a contra-
diction. So M must be orientable. q.e.d.

3. Steklov Eigenvalue Estimate

In this section, we prove a lower bound for the first Steklov eigenvalue of a
compact properly embedded minimal hypersurface satisfying the free boundary
condition in a compact orientable manifold M with boundary, where M has
nonnegative Ricci curvature and ∂M is strictly convex. We refer the reader to
section 2 of [11] for a brief description of the Dirichlet-to-Neumann map and
Steklov eigenvalues.

Theorem 3.1. Let Mn be an n-dimensional compact orientable Riemann-
ian manifold with nonempty boundary ∂M . Suppose M has nonnegative Ricci
curvature and the boundary ∂M is strictly convex with respect to the inward
unit normal. Let k > 0 be a constant such that h∂M (u, u) ≥ k > 0 for any unit
vector u tangent to ∂M .

Let Σ be a properly embedded minimal hypersurface in M with free boundary
on ∂M . Supose one of the following holds,

(i) Σ is orientable; or
(ii) π1(M) is finite;

then we have the following eigenvalue estimate

σ1(Σ) ≥ k

2
,

where σ1(Σ) is the first non-zero Steklov eigenvalue of the Dirichlet-to-Neumann
map on Σ.

Proof. We first assume that Σ is orientable. By Corollary 2.5 and Corollary
2.10, Σ is connected and Σ divides M into two connected components Ω1 and
Ω2. Take Ω = Ω1. Let ∂Ω = Σ ∪ Γ where Γ ⊂ ∂M . Thus, ∂Σ = ∂Γ. Note
that Γ is not necessarily connected, but each component of Γ must intersect
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Σ along some component of ∂Σ. Otherwise, ∂M would have more than one
component, which would contradict Proposition 2.8.

Let z ∈ C∞(∂Σ) be a first eigenfunction of the Dirichlet-to-Neumann map
on Σ; i.e., there exists z1 ∈ C∞(Σ) such that

(3.1)

⎧⎪⎨
⎪⎩

ΔΣz1 = 0 on Σ,

z1 = z along ∂Σ,
∂z1
∂νΣ

= σ1z along ∂Σ,

where νΣ is the outward conormal vector of ∂Σ with respect to Σ, and σ1 =
σ1(Σ). Recall that ∂Γ = ∂Σ. Let z2 ∈ C∞(Γ) be the harmonic extension of
z ∈ C∞(∂Γ) to Γ: {

ΔΓz2 = 0 on Γ,

z2 = z along ∂Γ.

Next, we consider the Dirichlet boundary value problem on the compact n-
manifold Ω with piecewise smooth boundary ∂Ω = Σ ∪ Γ:

(3.2)

⎧⎪⎨
⎪⎩

ΔΩf = 0 on Ω,

f = z1 along Σ,

f = z2 along Γ.

Note that the Dirichlet boundary data is continuous. Standard results on ellip-
tic boundary problems ([1, 2, 3]) imply that a classical solution for (3.2) exists
and f ∈ C1,α(Ω)∩C∞(Ω \ ∂Σ), for every α ∈ (0, 1), together with uniform C3

estimates away from the singular set ∂Σ. Applying Reilly’s formula (2.3), we
have

0 ≥
∫

Σ

(
〈∇Σf,∇Σ ∂f

∂nΣ
〉 + hΣ(∇Σf,∇Σf)

)

+
∫

Γ

(
〈∇Γf,∇Γ ∂f

∂nΓ
〉 + k‖∇Γf‖2

)
.

where nΣ and nΓ are the inward unit normals of Σ and Γ respectively, with
respect to Ω. Without loss of generality, we can assume that the integral∫
Σ hΣ(∇Σf,∇Σf) ≥ 0. Otherwise, we choose Ω = Ω2 instead. Using the fact

that ΔΣ(f |Σ) = ΔΣz1 = 0 and ΔΓ(f |Γ) = ΔΓz2 = 0, integrating by parts
gives

(3.3) 0 ≥
∫

∂Σ

∂f

∂νΣ

∂f

∂nΣ
+

∫
∂Γ

∂f

∂νΓ

∂f

∂nΓ
+ k

∫
Γ

‖∇Γf‖2,

where νΣ and νΓ are the outward conormal vectors of ∂Σ = ∂Γ with respect to
Σ and Γ respectively. Since Σ meets Γ orthogonally along ∂Σ = ∂Γ, we have
νΣ = −nΓ and nΣ = −νΓ along the common boundary ∂Σ. Since f ∈ C1,α(Ω),
the gradient Df is continuous on Ω up to the singular set ∂Σ = ∂Γ. Therefore,∫

∂Σ

∂f

∂νΣ

∂f

∂nΣ
= −

∫
∂Σ

∂f

∂νΣ

∂f

∂νΓ
=

∫
∂Γ

∂f

∂νΓ

∂f

∂nΓ
.

Putting this back into (3.3) and using the boundary condition in (3.1), we get

0 ≥ −2σ1

∫
∂Γ

f
∂f

∂νΓ
+ k

∫
Γ

‖∇Γf‖2.
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Since ΔΓ(f |Γ) = 0, another integration by parts on Γ implies that
∫

∂Γ f ∂f
∂νΓ

=∫
Γ ‖∇Γf‖2. As f is non-constant on Γ (since z is non-constant on ∂Γ), we get

σ1 ≥ k/2. This proves the theorem when Σ is orientable.
Now, suppose Σ is not orientable but π1(M) is finite. Let M̃ be the universal

cover of M . Then M̃ satisfies the same curvature assumptions as M . Since
π1(M) is finite, M̃ is compact and π : M̃ → M is a finite covering. Let Σ̃ be
the lifting of Σ; i.e., Σ̃ = π−1(Σ). Since M̃ is simply connected and Σ̃ is properly
embedded, both M̃ and Σ̃ are orientable. By the result above, σ1(Σ̃) ≥ k/2.
But the pullback by π of the first Steklov eigenfunction of Σ into Σ̃ is again
an eigenfunction of Σ̃. Therefore, σ1(Σ) ≥ σ1(Σ̃) ≥ k/2. The proof of Theorem
3.1 is completed. q.e.d.

Since Bn is simply connected, we have the following corollary.

Corollary 3.2. Let Σ be a compact properly embedded minimal hypersurface
in Bn, the Euclidean unit ball, with free boundary on ∂Bn. Then σ1(Σ) ≥ 1/2.

It is known ([11]) that for a minimal submanifold properly immersed in the
unit ball in R

n with free boundary on the unit sphere, the coordinate functions
are Steklov eigenfunctions with eigenvalue 1. It is natural to ask if this is the
first Steklov eigenvalue when the minimal submanifold is properly embedded
and has codimension one.

Conjecture 3.3. Let Σ be a compact properly embedded minimal hyper-
surface in Bn, the Euclidean unit ball, with free boundary on ∂Bn. Then
σ1(Σ) = 1.

From now on, we will assume that n = 3. In [11], Fraser and Schoen proved
that if Σ is a compact orientable surface of genus g with γ boundary compo-
nents of total length L(∂Σ), then σ1(Σ)L(∂Σ) ≤ 2π(g + γ). Combining this
with a bound of Kokarev [20] and Theorem 3.1, we get the following estimate
on the boundary length of a minimal surface with free boundary in terms of
its topology.

Proposition 3.4. Let M and Σ be the same as in Theorem 3.1. Assume
that dim Σ = 2. Then,

L(∂Σ) ≤ min
{

4π

k
(g + γ),

16π

k

[
g + 3

2

]}
.

Remark 3.5. By Theorem 2.11, we know that M3 is diffeomorphic to the
unit ball B3, which is simply connected, and hence any properly embedded
surface in M is automatically orientable.

Corollary 3.6. Let Σ be a compact properly embedded minimal hypersurface
in B3, the Euclidean unit ball, with free boundary on ∂B3. Then L(∂Σ) ≤
4π(g + γ).

4. Removable Singularity Theorem

In this section, we prove a removable singularity result at the free bound-
ary for properly embedded minimal surfaces with free boundary in a compact
Riemannian 3-manifold with boundary.
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Theorem 4.1. Let M3 be a Riemannian 3-manifold with boundary and let
Q be a point on ∂M . Suppose Σ ⊂ M is a (possibly nonorientable) minimal
surface with smooth boundary and finite Euler characteristic which is properly
embedded in M \ {Q}. Assume that Σ meets ∂M orthogonally along ∂Σ. If Q
lies in the closure of ∂Σ as a point set, then Σ ∪ {Q} is a smooth properly
embedded minimal surface in M .

Proof. Assume first that Σ is orientable. Let Ω denote the Riemann surface
(with boundary) determined by the induced metric on Σ, and let F : Ω → M
be a conformal harmonic embedding with Σ = F (Ω). Since the Euler charac-
teristic of Σ is finite, Ω is conformally equivalent to a compact Riemann surface
(with boundary) with a finite number of disks and points removed. Therefore,
there exist (open or closed) arcs or points γ1, . . . , γk such that Ω = Ω∪(∪k

i=1γi)
is a compact Riemann surface Ω with boundary. Since Q lies in the closure of ∂Σ
as a point set, this implies that we can extend F continuously to Ω. We claim
that all γi are points on the boundary. Note that for each γi, F (γi) = {Q}.
Suppose γi is an arc. Since F is continuous up to γi and is harmonic with a
constant value along γi, by a result in [15], F is C1,α up to γi. Since F is
conformal, dF = 0 along γi and therefore we can extend F past γi to take
the constant value Q and this extension is still C1. This results in a weakly
harmonic map which is C1, and therefore a classical harmonic map ([18]).
However, since F is constant on an open set, F must be identically constant
on Ω, which is a contradiction. Therefore, each γi is a point. Moreover, we see
that γi is not an interior point, since F is a proper embedding and Q lies in the
closure of ∂Σ. Therefore, F extends smoothly ([19]) across γi to a harmonic
map from Ω to M . If γi were a boundary branch point of F , then by the asymp-
totic expansion near a branch point at the free boundary (Lemma 1 of [17]),
there would be a line of self-intersection emanating from Q, which contradicts
that Σ is embedded. Therefore, F extends as a proper minimal immersion
from Ω ∪ {γ1, . . . , γk}. Since Σ is properly embedded, the maximum principle
for minimal surfaces with free boundary implies that k = 1 (otherwise, there
would be two minimal half-disks with free boundary that touch at one point at
Q, which would violate the maximum principe). Hence, F : Ω∪{γ1} → Σ∪{Q}
is a smooth properly embedded compact minimal surface in M with smooth
free boundary on ∂M .

Now suppose Σ is not orientable. Let Σ̃ be the orientable double cover of
Σ and let Ω be the Riemann surface determined by Σ̃. The same argument
as above gives a proper minimal immersion from Ω ∪ {γ1, . . . , γk}. Choose a
sufficiently small r such that F−1(Br(Q) ∩ Σ) is a disjoint union of open sets
D1, . . . , Dk with γi ∈ Di. Since Σ is properly embedded, by the maximum
principle, we have F (Di) = F (Dj) for all i, j. Therefore, Σ ∪ {Q} is a smooth
properly embedded compact minimal surface in M with smooth free boundary
on ∂M . This proves Theorem 4.1.

q.e.d.

5. Curvature Estimates

In this section, we extend the well-known “small total curvature” estimate
of Choi and Schoen [7] to the free boundary case.
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Theorem 5.1. Let M3 be a compact Riemannian 3-manifold with bound-
ary. Then there exists r > 0 small enough (depending only on M and ∂M)
such that the following holds: let Q ∈ M , and suppose Σ is a compact properly
immersed minimal surface in M with free boundary on ∂M such that Q ∈ Σ.
Then there exists ε > 0 depending only on the geometry of Br(Q) in M such
that if ∫

Σ∩Br(Q)
‖hΣ‖2da ≤ ε,

then we have

max
0≤σ≤r

(
σ2 sup

Br−σ(Q)
‖hΣ‖2

)
≤ C,

where C is a constant depending only on the geometry of Br(Q) in M .

Proof. Choose σ0 ∈ (0, r] such that

σ2
0 sup

Br−σ0 (Q)
‖hΣ‖2 = max

0≤σ≤r

(
σ2 sup

Br−σ(Q)
‖hΣ‖2

)
.

Let Q0 ∈ Br−σ0(Q) be chosen so that

‖hΣ‖2(Q0) = sup
Br−σ0 (Q)

‖hΣ‖2.

Therefore, as Bσ0/2(Q0) ⊂ Br−σ0/2(Q), by the choice of σ0 and Q0, we have

sup
Bσ0/2(Q0)

‖hΣ‖2 ≤ sup
Br−σ0/2(Q)

‖hΣ‖2 ≤ 4‖hΣ‖2(Q0).

We rescale the metric ds2 on M by setting d̃s
2

= ‖hΣ‖2(Q0)ds2. Then Σ is
still a minimal surface with respect to d̃s

2
with free boundary on ∂M . In the

rescaled metric, we have

(5.1) ‖h̃Σ‖2(Q0) = 1 and sup
B̃r0 (Q0)

‖h̃Σ‖2 ≤ 4,

where r0 = 1
2σ0‖hΣ‖(Q0). We claim that we can choose ε sufficiently small

enough so that r0 ≤ 1. In this case,

max
0≤σ≤r

(
σ2 sup

Br−σ(Q)
‖hΣ‖2

)
= σ2

0 sup
Br−σ0 (Q)

‖hΣ‖2 ≤ 4.

Suppose that r0 ≥ 1, then ρ0 = (‖hΣ‖(Q0))−1 ≤ σ0/2. Therefore,∫
Σ∩B̃1(Q0)

‖h̃Σ‖2d̃a =
∫

Σ∩Bρ0 (Q0)
‖hΣ‖2da ≤

∫
Σ∩Br(Q)

‖hΣ‖2da ≤ ε.

If 0 < ε < 1, then

(5.2)
∫

Σ∩B̃
ε1/3 (Q0)

‖h̃Σ‖2d̃a ≤
∫

Σ∩B̃1(Q0)
‖h̃Σ‖2d̃a ≤ ε.

By the monotonicity formula for minimal surfaces with free boundary ([14]),
when r is sufficiently small, there is a constant c > 0, depending on the geome-
try of Br(Q), such that the area with respect to d̃s

2
satisfies A(Σ∩B̃ε1/3(Q0)) ≥
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cε2/3. Thus, (5.2) implies that

inf
Σ∩B̃

ε1/3 (Q0)
‖h̃Σ‖2 ≤ c−1ε1/3.

Together with (5.2), this implies that

(5.3) ‖‖h̃Σ‖2‖C0,α(Σ∩B̃
ε1/3 (Q0)) ≥ cε−α/3

for any α ∈ (0, 1). On the other hand, using (5.1), for each P ∈ Σ ∩ B̃ε1/3(Q0),
the connected component of Σ ∩ B̃ε1/3(Q0) containing P is a graph over some
open set of TP Σ of a function uP with uniformly bounded gradient and Hessian.
Note that Σ is minimal, hence u satisfies a uniformly elliptic equation. If P /∈
∂M , we can apply the interior Schauder estimate (Corollary 6.3 of [13]) to get a
uniform C2,α estimate for uP . If P ∈ ∂M , using the free boundary condition, u
satisfies a homogeneous boundary condition in the Fermi coordinates, hence the
Schauder estimate for uniformly elliptic equations with homogeneous boundary
conditions ([1]) again implies a uniform C2,α estimate for uP . Therefore, in any
case, we have

‖‖h̃Σ‖2‖C0,α(Σ∩B̃
ε1/3 (Q0)) ≤ C

for some constant C > 0 depending only on the geometry of Br(Q). This
contradicts (5.3) above when ε > 0 is sufficiently small (depending on the
geometry of Br(Q)). As a result, when ε > 0 is chosen small enough, then
r0 ≤ 1. So we are done.

q.e.d.

6. The Smooth Compactness Theorem

We prove our main compactness result in this section.

Theorem 6.1. Let M3 be a compact 3-dimensional Riemannian manifold
with nonempty boundary ∂M . Suppose M has nonnegative Ricci curvature and
the boundary ∂M is strictly convex with respect to the inward unit normal.
Then the space of compact properly embedded minimal surfaces of fixed topo-
logical type in M with free boundary on ∂M is compact in the Ck topology for
any k ≥ 2.

Proof. Note that by Theorem 2.11, M3 is diffeomorphic to the unit ball B3,
hence is simply connected. Let Σ be a compact properly embedded minimal
surface with free boundary on ∂M . Then Σ is orientable. Suppose Σ has genus
g with γ boundary components. From the Gauss equation and the minimality
of Σ, for any x ∈ Σ, we have

1
2
‖hΣ‖2(x) = KM (x) − KΣ(x),

where KM (x) and KΣ(x) are the sectional curvatures of the plane TxΣ with
respect to M and Σ respectively. Integrating the equality above over Σ and
applying the Gauss-Bonnet theorem, we obtain

1
2

∫
Σ

‖hΣ‖2 =
∫

Σ
KM +

∫
∂Σ

kg − 2πχ(Σ),
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where kg is the geodesic curvature of ∂Σ with respect to Σ and χ(Σ) is the
Euler characteristic of Σ. Since Σ meets ∂M orthogonally along ∂Σ, kg is equal
to h∂M (u, u), where u is the unit tangent vector for ∂Σ. Therefore, there exists
a constant C > 0 depending only on the upper bound of the sectional curvature
of M and the principal curvatures of ∂M so that

1
2

∫
Σ

‖hΣ‖2 ≤ CA(Σ) + CL(∂Σ) − 2π(2 − 2g − γ).

Using the isoperimetric inequality (2.2) and the apriori length bound in Propo-
sition 3.4, we obtain ∫

Σ
‖hΣ‖2 ≤ C(g + γ),

where C is a constant depending only on the geometry of the ambient manifold
M .

Let {Σi} be a sequence of compact properly embedded minimal surfaces of
fixed topological type. Using the same covering argument as [7, pp. 390–391],
we can extract a subsequence of {Σi}, which we still call {Σi}, and a finite
number of points {x1, . . . , x�} such that Σi converges in the C∞ topology to
some Σ0 in M \∪�

j=1Br(xj) for any sufficiently small r > 0. Here, Σ0 is a prop-
erly embedded minimal surface (possibly with multiplicity) in M \{x1, . . . , x�}
with free boundary on ∂M \ {x1, . . . , x�}. Note that some xj may lie on ∂M .
By the removable singularity theorem (Theorem 4.1), Σ = Σ0 ∪ {x1, . . . , x�} is
a compact properly embedded minimal surface with free boundary. The only
thing left to prove is that Σ has multiplicity 1 as the limit of Σi.

Recall that Σ is orientable. As Σi converges to Σ0 in M \ ∪�
j=1Bε2(xj) for

any sufficiently small ε, there exists a large enough i such that Σi\∪�
j=1Bε2(xj)

is locally a union of graphs over Σ0 by the curvature estimate in Theorem 5.1.
We claim that there is only one sheet. Suppose not, then since Σ is orientable,
we can order the sheets Γ1, . . . ,Γk, where k ≥ 2. We claim that in this case,
we would have σ1(Σi) → 0 as ε → 0, which would contradict the eigenvalue
estimate in Theorem 3.1.

To prove that σ1(Σi) → 0 as ε → 0, we define a Lipschitz function on Σi

such that

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 on Γ1 \ ∪�
j=1Bε(xj)

log rj−log ε2

log ε−log ε2 on each Γ1 ∩ (Bε(xj) \ Bε2(xj))

0 on Σi ∩ ∪�
j=1Bε2(xj)

− log rj−log ε2

log ε−log ε2 on each (Γ2 ∪ · · · ∪ Γk) ∩ (Bε(xj) \ Bε2(xj))

−1 on (Γ2 ∪ · · · ∪ Γk) \ ∪�
j=1Bε(xj),

where rj = dM (xj , ·) is the distance function in M from xj . After possibly
subtracting a constant, we can assume that

∫
∂Σi

ϕ = 0. Using the coarea
formula and the monotonicity formula for minimal surfaces with free boundary
([14]), the same calculation as [7, p. 392] implies that∫

Σi

‖∇Σiϕ‖2 → 0 as ε → 0.
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On the other hand,
∫

∂Σi
ϕ2 converges to a constant C as ε → 0. Since each Γ�

covers ∂Σ0 once, we have L(∂Γ�) ≥ L(∂Σ0) − η for any arbitrarily small η > 0
as ε → 0. Hence, C 
= 0. By the variational characterization of the first Steklov
eigenvalue

σ1(Σi) = inf∫
∂Σi

f=0,f �≡0

∫
Σi

‖∇Σif‖2∫
∂Σi

f2 ,

we see that σ1(Σi) → 0 as ε → 0. Using the Allard regularity theorem for
minimal surfaces with free boundary ([16]), we see that Σi converges to Σ in
the C∞ topology even across the points x1, . . . , x�. This completes the proof
of Theorem 6.1. q.e.d.

Corollary 6.2. The space of compact properly embedded smooth minimal
surfaces of fixed topological type in the Euclidean unit ball B3 with free boundary
on ∂B3 is compact in the C∞ topology.
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