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MINIMAL HYPERSURFACES

Camillo De Lellis & Dominik Tasnady

Abstract

We give a shorter proof of the existence of nontrivial closed
minimal hypersurfaces in closed smooth (n+ 1)-dimensional Rie-
mannian manifolds, a theorem proved first by Pitts for 2 ≤ n ≤ 5
and extended later by Schoen and Simon to any n.

0. Introduction

In this paper we give a proof of the following theorem, a natural gen-
eralization of the classical existence of nontrivial simple closed geodesics
in closed 2-dimensional Riemannian manifolds.

Theorem 0.1. Let M be an (n+1)-dimensional smooth closed Rie-
mannian manifold. Then there is a nontrivial embedded minimal hyper-
surface Σ ⊂M without boundary with a singular set SingΣ of Hausdorff
dimension at most n− 7.

More precisely, Σ is a closed set of finite Hn-measure and SingΣ ⊂ Σ
is the smallest closed set S such that M \ S is a smooth embedded
hypersurface (Σ \ SingΣ is in fact analytic if M is analytic). In this
paper smooth will always mean C∞. In fact, the result remains true
for any C4 Riemannian manifold M , Σ then will be of class C2 (see
[18]). Moreover

∫

Σ\Sing Σ ω = 0 for any exact n-form on M . The case

2 ≤ n ≤ 5 was proved by Pitts in his groundbreaking monograph [16],
an outstanding contribution which triggered all the subsequent research
in the topic. The general case was proved by Schoen and Simon in [18],
building heavily upon the work of Pitts.

The monograph [16] can be ideally split into two parts. The first
half of the book implements a complicated existence theory for suit-
able “weak generalizations” of global minimal submanifolds, which is a
version of the classical min-max argument introduced by Birkhoff for
n = 1 (see [5]). The second part contains the regularity theory needed
to prove Theorem 0.1. The curvature estimates of [19] for stable mini-
mal surfaces are a key ingredient of this part: the core contribution of
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[18] is the extension of these fundamental estimates to any dimension,
which enabled the authors to complete Pitts’ program for n > 5.

[18] gives also a quite readable account of parts of Pitts’ regularity
theory. To our knowledge, there is instead no contribution to clarify
other portions of the monograph, at least in general dimension. Indeed,
for n = 2, the unpublished PhD thesis of Smith (see [21]) gives a pow-
erful variant of Pitts’ approach. Building on ideas of Simon, the author
proved the existence of minimal embedded 2-spheres in any M which
is topologically a 3-sphere (further theorems in general Riemannian 3-
manifolds have been claimed in [17]; [6] and [10] contain a complete
proof of the Simon–Smith Theorem and of a statement in the direction
of [17]). Smith’s aproach relies heavily on the features of 2-dimensional
surfaces in 3-manifolds, most notably on the celebrated paper [13], and
therefore it is not feasible in higher dimensions.

This paper gives a much simpler proof of Theorem 0.1. Our contribu-
tion draws heavily on the existing literature and follows Pitts in many
aspects. However, we introduce some new ideas which, in spite of their
simplicity, allow us to shorten the proof dramatically. These contribu-
tions are contained in Sections 3 and 4 of the paper, but we prefer to
give a complete account of the proof of Theorem 0.1, containing all
the necessary technical details. We leave aside only those facts which
are either (by now) classical results or for which we can give a precise
reference.

0.1. Min-max surfaces. In what follows M will denote an (n + 1)-
dimensional smooth Riemannian manifold without boundary. First of
all we need to generalize slightly the standard notion of a 1-parameter
family of hypersurfaces, allowing for some singularities.

Definition 0.2. A family {Γt}t∈[0,1]k of closed subsets of M with
finite Hn-measure is called a generalized smooth family if

(s1) For each t there is a finite set Pt ⊂ M such that Γt is a smooth
hypersurface in M \ Pt;

(s2) Hn(Γt) depends smoothly on t and t 7→ Γt is continuous in the
Hausdorff sense;

(s3) on any U ⊂⊂M \ Pt0 , Γt
t→t0−→ Γt0 smoothly in U .

{Γt}t∈[0,1] is a sweepout of M if there exists a family {Ωt}t∈[0,1] of open
sets such that

(sw1) (Γt \ ∂Ωt) ⊂ Pt for any t;
(sw2) Ω0 = ∅ and Ω1 =M ;
(sw3) Vol(Ωt \ Ωs) + Vol(Ωs \ Ωt) → 0 as t→ s.

Remark 0.3. The convergence in (s3) means, as usual, that, if U ⊂⊂
M \ Pt0 , then there is δ > 0 such that, for |t − t0| < δ, Γt ∩ U is the
graph of a function gt over Γt0 ∩ U . Moreover, given k ∈ N and ε > 0,
‖gt‖Ck < ε provided δ is sufficiently small.
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We introduce the singularities Pt for two important reasons. They
allow for the change of topology which, for n > 2, is a fundamental tool
of the regularity theory. Moreover, it is easy to exhibit sweepouts as in
Definition 0.2, as is witnessed by the following proposition.

Proposition 0.4. Let f : M → [0, 1] be a smooth Morse function.
Then {{f = t}}t∈[0,1] is a sweepout.

The obvious proof is left to the reader. For any generalized family
{Γt}, we set

(0.1) F({Γt}) := max
t∈[0,1]

Hn(Γt).

A key property of sweepouts is an obvious consequence of the isoperi-
metric inequality.

Proposition 0.5. There exists C(M) > 0 such that F({Γt}) ≥
C(M) for every sweepout.

Proof. Let {Ωt} be as in Definition 0.2. Then there is t0 ∈ [0, 1] such
that Vol(Ωt0) = Vol(M)/2. We then conclude

Hn(Γt0) ≥ c−1
0 (2−1Vol (M))

n
n+1 ,

where c0 is the isoperimetric constant of M . q.e.d.

For any family Λ of sweepouts, we define

(0.2) m0(Λ) := inf
Λ

F = inf
{Γt}∈Λ

[

max
t∈[0,1]

Hn(Γt)

]

.

By Proposition 0.5, m0(Λ) ≥ C(M) > 0. A sequence {{Γt}
k} ⊂ Λ is

minimizing if

lim
k→∞

F({Γt}
k) = m0(Λ) .

A sequence of surfaces {Γktk} is a min-max sequence if {{Γt}
k} is mini-

mizing and Hn(Γktk) → m0(Λ). The min-max construction is applied to
families of sweepouts which are closed under a very natural notion of
homotopy.

Definition 0.6. Two sweepouts {Γ0
s} and {Γ1

s} are homotopic if there
is a generalized family {Γt}t∈[0,1]2 such that Γ(0,s) = Γ0

s and Γ(1,s) = Γ1
s.

A family Λ of sweepouts is called homotopically closed if it contains the
homotopy class of each of its elements.

Ultimately, this paper gives a proof of the following Theorem, which,
together with Proposition 0.4, implies Theorem 0.1 for n ≥ 2 (recall that
Morse functions exist on every smooth compact Riemannian manifold
without boundary; see corollary 6.7 of [14]).
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Theorem 0.7. Let n ≥ 2. For any homotopically closed family Λ of
sweepouts there is a min-max sequence {Γktk} converging (in the sense of
varifolds) to an embedded minimal hypersurface Σ as in Theorem 0.1.
Multiplicity is allowed.

The smoothness assumption on the metric g can be relaxed easily to
C4. The ingredients of the proof where this regularity is needed are: the
regularity theory for the Plateau problem, the unique continuation for
classical minimal surfaces, and the Schoen–Simon compactness theorem.
C4 suffices for all of them.

The paper is organized as follows: Section 1 contains some prelimi-
naries, Section 2 gives an overview of the proof of Theorem 0.7, Section
3 contains the existence theory, and Sections 4 and 5 contain the regu-
larity theory.

Acknowledgments. Both authors are grateful for the support by the
DFG Sonderforschungsbereich / Transregio 71.

1. Preliminaries

1.1. Notation. Throughout this paper our notation will be consistent
with the one introduced in section 2 of [6]. We summarize it in the
following table.

Inj (M) the injectivity radius of M ;
Bρ(x), Bρ(x), ∂Bρ(x) the open and closed ball,

the distance sphere in M ;
diam(G) the diameter of G ⊂M ;
d(G1, G2) infx∈G1,y∈G2 d(x, y) ;
Bρ the ball of radius ρ and

centered in 0 in R
n;

expx the exponential map in M at x ∈M ;
An(x, τ, t) the open annulus Bt(x) \Bτ (x);
AN r(x) the set {An(x, τ, t) with 0 < τ < t < r};
X (M), Xc(U) smooth vector fields, smooth vector

fields compactly supported in U .

Remark 1.1. In [6] the authors erroneously define d as the Hausdorff
distance. However, for the purposes of both this and that paper, the
correct definition of d is the one given here, since in both cases the
following fact plays a fundamental role: d(A,B) > 0 =⇒ A ∩ B = ∅.
Note that, unlike the Hausdorff distance, d is not a distance on the space
of compact sets.

1.2. Caccioppoli sets and Plateau’s problem. We give here a brief
account of the theory of Caccioppoli sets. A standard reference is [12].
Let E ⊂ M be a measurable set and consider its indicator function 1E
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(taking the value 1 on E and 0 onM \E). The perimeter of E is defined
as

Per (E) := sup

{
∫

M
1E divω : ω ∈ X (M), ‖ω‖C0 ≤ 1

}

.

A Caccioppoli set is a set E for which Per (E) <∞. In this case the dis-
tributional derivative D1E is a Radon measure and PerE corresponds
to its total variation. As usual, the perimeter of E in an open set U ,
denoted by Per (E,U), is the total variation of D1E in the set U .

We follow De Giorgi and, given a Caccioppoli set Ω ⊂M and an open
set U ⊂M , we consider the class

(1.1) P(U,Ω) := {Ω′ ⊂M : Ω′ \ U = Ω \ U} .

The theorem below states the fundamental existence and interior reg-
ularity theory for De Giorgi’s solution of the Plateau problem, which
summarizes results of De Giorgi, Almgren, Simons and Federer (see [12]
for the case M = R

n+1 and section 37 of [20] for the general case).

Theorem 1.2. Let U,Ω ⊂ M be, respectively, an open and a Cac-
cioppoli set. Then there exists a Caccioppoli set Ξ ∈ P(U,Ω) minimizing
the perimeter. Moreover, any such minimizer is, in U , an open set whose
boundary is smooth outside of a singular set of Hausdorff dimension at
most n− 7.

1.3. Theory of varifolds. We recall here some basic facts from the
theory of varifolds; see for instance chapters 4 and 8 of [20] for further
information. Varifolds are a convenient way of generalizing surfaces to a
category that has good compactness properties. An advantage of vari-
folds, over other generalizations (like currents), is that they do not allow
for cancellation of mass. This last property is fundamental for the min-
max construction. If U is an open subset of M , any finite nonnegative
measure on the Grassmannian G(U) of unoriented n-planes on U is said
to be an n-varifold in U . The space of n-varifolds is denoted by V(U)
and we endow it with the topology of the weak∗ convergence in the sense
of measures. Therefore, a sequence {V k} ⊂ V(U) converges to V if

lim
k→∞

∫

ϕ(x, π) dV k(x, π) =

∫

ϕ(x, π) dV (x, π)

for every ϕ ∈ Cc(G(U)). Here π denotes an n-plane of TxM . If U ′ ⊂ U
and V ∈ V(U), then V U ′ is the restriction of the measure V to G(U ′).
Moreover, ‖V ‖ is the nonnegative measure on U defined by

∫

U
ϕ(x) d‖V ‖(x) =

∫

G(U)
ϕ(x) dV (x, π) ∀ϕ ∈ Cc(U) .

The support of ‖V ‖, denoted by supp (‖V ‖), is the smallest closed set
outside which ‖V ‖ vanishes identically. The number ‖V ‖(U) will be
called the mass of V in U .
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Recall also that an n-dimensional rectifiable set is the countable union
of closed subsets of C1 surfaces (modulo sets ofHn-measure 0). If R ⊂ U
is an n-dimensional rectifiable set and h : R → R+ is a Borel function,
then the varifold V induced by R is defined by

(1.2)

∫

G(U)
ϕ(x, π) dV (x, π) =

∫

R
h(x)ϕ(x, TxR) dH

n(x)

for all ϕ ∈ Cc(G(U)). Here TxR denotes the tangent plane to R in x. If
h is integer-valued, then we say that V is an integer rectifiable varifold.
If Σ =

⋃

niΣi, then by slight abuse of notation we use Σ for the varifold
induced by Σ via (1.2).

If ψ : U → U ′ is a diffeomorphism and V ∈ V(U), ψ♯V ∈ V(U ′) is the
varifold defined by

∫

ϕ(y, σ) d(ψ♯V )(y, σ) =

∫

Jψ(x, π)ϕ(ψ(x), dψx(π)) dV (x, π) ,

where Jψ(x, π) denotes the Jacobian determinant (i.e., the area ele-
ment) of the differential dψx restricted to the plane π; cf. equation (39.1)
of [20]. Obviously, if V is induced by a C1 surface Σ, V ′ is induced by
ψ(Σ).

Given χ ∈ Xc(U), let ψ be the isotopy generated by χ, i.e., ∂ψ∂t = χ(ψ).
The first and second variation of V with respect to χ are defined as

[δV ](χ) =
d

dt
(‖ψ(t, ·)♯V ‖)(U)

∣

∣

∣

∣

t=0

and [δ2V ](χ) =
d2

dt2
(‖ψ(t, ·)♯V ‖)(U)

∣

∣

∣

∣

t=0

;

cf. sections 16 and 39 of [20]. V is said to be stationary (resp. stable)
in U if [δV ](χ) = 0 (resp. [δ2V ](χ) ≥ 0) for every χ ∈ Xc(U). If V is
induced by a surface Σ with ∂Σ ⊂ ∂U , V is stationary (resp. stable) if
and only if Σ is minimal (resp. stable).

Stationary varifolds in a Riemannian manifold satisfy the monotonic-
ity formula, i.e., there exists a constant Λ (depending on the ambient
manifold M) such that the function

(1.3) f(ρ) := eΛρ
‖V ‖(Bρ(x))

ωnρn

is nondecreasing for every x (see theorem 17.6 of [20]; Λ = 0 if the
metric of M is flat). This property allows us to define the density of a
stationary varifold V at x, by

θ(x, V ) = lim
r→0

‖V ‖(Br(x))

ωnrn
.
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1.4. Schoen–Simon curvature estimates. Consider an orientable
U ⊂M . We look here at closed sets Γ ⊂M of codimension 1 satisfying
the following regularity assumption:

(SS) Γ ∩ U is a smooth embedded hypersurface outside a closed set S
with Hn−2(S) = 0.

Γ induces an integer rectifiable varifold V . Thus Γ is said to be minimal
(resp. stable) in U with respect to the metric g of U if V is stationary
(resp. stable). The following compactness theorem, a consequence of the
Schoen–Simon curvature estimates (compare with theorem 2 of section
6 in [18]), is a fundamental tool in this note.

Theorem 1.3. Let U be an orientable open subset of a manifold and
{gk} and {Γk}, respectively, sequences of smooth metrics on U and of
hypersurfaces {Γk} satisfying (SS). Assume that the metrics gk converge
smoothly to a metric g, that each Γk is stable and minimal relative to
the metric gk, and that supHn(Γk) <∞. Then there are a subsequence
of {Γk} (not relabeled), a stable stationary varifold V in U (relative to
the metric g), and a closed set S of Hausdorff dimension at most n− 7
such that

(a) V is a smooth embedded hypersurface in U \ S;
(b) Γk → V in the sense of varifolds in U ;
(c) Γk converges smoothly to V on every U ′ ⊂⊂ U \ S.

Remark 1.4. The precise meaning of (c) is as follows: fix an open
U ′′ ⊂ U ′ where the varifold V is an integer multiple N of a smooth
oriented surface Σ. Choose a normal unit vector field on Σ (in the metric
g) and corresponding normal coordinates in a tubular neighborhood.
Then, for k sufficiently large, Γk ∩ U ′′ consists of N disjoint smooth
surfaces Γki which are graphs of functions fki ∈ C∞(Σ) in the chosen
coordinates. Assuming, w.l.o.g., fk1 ≤ fk2 ≤ . . . ≤ fkN , each sequence

{Γki }k converges to Σ in the sense of Remark 0.3.

Note the following obvious corollary of Theorem 1.3: if Γ is a station-
ary and stable surface satisfying (SS), then the Hausdorff dimension of
Sing Γ is, in fact, at most n− 7. Since we will deal very often with this
type of surface, we will use the following notational convention.

Definition 1.5. Unless otherwise specified, a hypersurface Γ ⊂ U is
a closed set of codimension 1 such that Γ\Γ ⊂ ∂U and Sing Γ has Haus-
dorff dimension at most n − 7. The words “stable” and “minimal” are
then used as explained at the beginning of this subsection. For instance,
the surface Σ of Theorem 0.1 is a minimal hypersurface.

2. Proof of Theorem 0.7

2.1. Isotopies and stationarity. It is easy to see that not all min-max
sequences converge to stationary varifolds (see [6]). In general, for any
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minimizing sequence {{Γt}
k} there is at least one min-max sequence

converging to a stationary varifold. For technical reasons, it is useful
to consider minimizing sequences {{Γt}

k} with the additional property
that any corresponding min-max sequence converges to a stationary var-
ifold. The existence of such a sequence, which roughly speaking follows
from “pulling tight” the surfaces of a minimizing sequence, is an impor-
tant conceptual step and goes back to Birkhoff in the case of geodesics
and to the fundamental work of Pitts in the general case (see also [7]
and [8] for other applications of these ideas). In order to state it, we
need some terminology.

Definition 2.1. Given a smooth map F : [0, 1] → X (M), for any
t ∈ [0, 1] we let Ψt : [0, 1] × M → M be the one-parameter family
of diffeomorphisms generated by the vectorfield F (t). If {Γt}t∈[0,1] is a
sweepout, then {Ψt(s,Γt)}(t,s)∈[0,1]2 is a homotopy between {Γt} and
{Ψt(1,Γt)}. These will be called homotopies induced by ambient iso-
topies.

We recall that the weak∗ topology on the space V(M) (varifolds with
bounded mass) is metrizable and we choose a metric D which induces it.
Moreover, let Vs ⊂ V(M) be the (closed) subset of stationary varifolds.

Proposition 2.2. Let Λ be a family of sweepouts which is closed un-
der homotopies induced by ambient isotopies. Then there exists a mini-
mizing sequence {{Γt}

k} ⊂ Λ such that, if {Γktk} is a min-max sequence,

then D(Γktk ,Vs) → 0.

This proposition is proposition 4.1 of [6]. Though stated for the case
n = 2, this assumption, in fact, is never used in the proof given in that
paper. Therefore we do not include a proof here.

2.2. Almost mimimizing varifolds. It is well known that a station-
ary varifold can be far from regular. To overcome this issue, we introduce
the notion of almost minimizing varifolds.

Definition 2.3. Let ε > 0 and U ⊂M be open. A boundary ∂Ω inM
is called ε-almost minimizing (ε-a.m.) in U if there is NO 1-parameter
family of boundaries {∂Ωt}, t ∈ [0, 1], satisfying the following properties:

(s1), (s2), (s3), (sw1), and (sw3) of Definition 0.2 hold;(2.1)

Ω0 = Ω and Ωt \ U = Ω \ U for every t;(2.2)

Hn(∂Ωt) ≤ Hn(∂Ω) + ε
8 for all t ∈ [0, 1];(2.3)

Hn(∂Ω1) ≤ Hn(∂Ω)− ε.(2.4)

A sequence {∂Ωk} of hypersurfaces is called almost minimizing in U if
each ∂Ωk is εk-a.m. in U for some sequence εk → 0.

Roughly speaking, ∂Ω is a.m. if any deformation which eventually
brings down its area is forced to pass through some surface which has
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substantially larger area. A similar notion was introduced for the first
time in the pioneering work of Pitts and a corresponding one is given
in [21] using isotopies (see section 3.2 of [6]). Following in part section
5 of [6] (which uses a combinatorial argument inspired by a general one
of [2] reported in [16]), we prove in Section 3 the following existence
result.

Proposition 2.4. Let Λ be a homotopically closed family of sweep-
outs. There is a function r :M → R+ and a min-max sequence Γk = Γktk
such that

(a) {Γk} is a.m. in every An ∈ AN r(x)(x) with x ∈M ;

(b) Γk converges to a stationary varifold V as k → ∞.

In this part we introduce, however, a new ingredient. The proof of
Proposition 2.4 has a variational nature: assuming the nonexistence of
such a min-max sequence, we want to show that on an appropriate
minimizing sequence {{Γt}

k}, the energy F({Γt}
k) can be lowered by

a fixed amount, contradicting its minimality. Note, however, that we
have one-parameter families of surfaces, whereas the variational notion
of Definition 2.3 focuses on a single surface. Pitts (who in turn has a
stronger notion of almost minimality) avoids this difficulty by consider-
ing discretized families, and this, in our opinion, makes his proof quite
hard. Instead, our notion of almost minimality allows us to stay in the
smooth category: the key technical point is the “freezing” presented in
Section 3.2 (compare with Lemma 3.1).

2.3. Replacements. We complete the program in Sections 4 and 5
showing that our notion of almost minimality is still sufficient to prove
regularity. As a starting point, as in the theory of Pitts, we consider
replacements.

Definition 2.5. Let V ∈ V(M) be a stationary varifold and U ⊂M
be an open set. A stationary varifold V ′ ∈ V(M) is called a replacement
for V in U if V ′ = V on M \ Ū , ‖V ′‖(M) = ‖V ‖(M), and V U is a
stable minimal hypersurface Γ.

We show in Section 4 that almost minimizing varifolds do posses
replacements.

Proposition 2.6. Let {Γj}, V , and r be as in Proposition 2.4. Fix
x ∈ M and consider an annulus An ∈ AN r(x)(x). Then there is a

varifold Ṽ , a sequence {Γ̃j}, and a function r′ :M → R+ such that

(a) Ṽ is a replacement for V in An and Γ̃j converges to Ṽ in the sense
of varifolds;

(b) Γ̃j is a.m. in every An′ ∈ AN r′(y)(y) with y ∈M ;
(c) r′(x) = r(x).
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The strategy of the proof is the following. Fix an annulus An. We
would like to substitute Γj = ∂Ωj in An with the surface minimizing
the area among all those which can be continuously deformed into Γj

according to our homotopy class: we could appropriately call it a solu-
tion of the (8j)−1 homotopic Plateau problem. As a matter of fact, we
do not know any regularity for this problem. However, if we consider a
corresponding minimizing sequence {∂Ωj,k}k, we will show that it con-
verges, up to subsequences, to a varifold V j which is regular in An. This
regularity is triggered by the following observation: on any sufficiently
small ball B ⊂ An, V j B is the boundary of a Caccioppoli set Ωj

which solves the Plateau problem in the class P(Ωj , B) (in the sense of
Theorem 1.2).

In fact, by standard blow-up methods of geometric measure theory,
V j is close to a cone in any sufficiently small ball B = Br(y). For k
large, the same property holds for ∂Ωj,k. Modifying suitably an idea of
[21], this property can be used to show that any (sufficiently regular)

competitor Ω̃ ∈ P(Ωj,k, B) can be homotopized to Ωj,k without passing
through a surface of large energy. In other words, minimizing sequences
of the homotopic Plateau problem are in fact minimizing for the usual
Plateau problem at sufficiently small scales.

Having shown the regularity of V j in An, we use the Schoen–Simon
compactness theorem to show that V j converges to a varifold Ṽ which
in An is a stable minimal hypersurface. A suitable diagonal sequence
Γj,k(j) gives the surfaces Γ̃j.

2.4. Regularity of V . One would like to conclude that, if V ′ is a re-
placement for V in an annulus contained in a convex ball, then V = V ′

(and hence V is regular in An). However, two stationary varifolds might
coincide outside of a convex set and be different inside: the standard
unique continuation property of classical minimal surfaces fails in the
general case of stationary varifolds (see the appendix of [6] for an exam-
ple). We need more information to conclude the regularity of V . Clearly,
applying Proposition 2.6 three times, we conclude:

Proposition 2.7. Let V and r be as in Proposition 2.4. Fix x ∈ M
and An ∈ AN r(x)(x). Then:

(a) V has a replacement V ′ in An such that
(b) V ′ has a replacement V ′′ in any

An′ ∈ AN r(x)(x) ∪
⋃

y 6=x

AN r′(y)(y)

such that
(c) V ′′ has a replacement V ′′′ in any An′′ ∈ AN r′′(y)(y) with y ∈M .

r′ and r′′ are positive functions (which might depend on V ′ and V ′′).
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In fact, the process could be iterated infinitely many times. However,
it turns out that three iterations are sufficient to prove regularity, as
stated in the following proposition. Its proof is given in Section 5, where
we basically follow [18] (see also [6]).

Proposition 2.8. Let V be as in Proposition 2.7. Then V is induced
by a minimal hypersurface Σ (in the sense of Definition 1.5).

3. The existence of almost mimimizing varifolds

In this section we prove Proposition 2.4. At various steps in the reg-
ularity theory we will have to construct comparison surfaces which are
deformations of a given surface. However, each initial surface will be just
a member of a one-parameter family and in order to exploit our varia-
tional properties we must in fact construct “comparison families.” If we
consider a family as a moving surface, it becomes clear that difficulties
arise when we try to embed the deformation of a single “time-slice”
into the dynamics of the family itself. The main new point of this sec-
tion is therefore the following technical lemma, which allows to use the
“static” variational principle of Definition 2.3 to construct a “dynamic”
competitor.

Lemma 3.1. Let U ⊂⊂ U ′ ⊂ M be two open sets and {∂Ξt}t∈[0,1]
a sweepout. Given an ε > 0 and a t0 ∈ [0, 1], assume {∂Ωs}s∈[0,1] is
a one-parameter family of surfaces satisfying (2.1), (2.2), (2.3), and
(2.4), with Ω = Ξt0 . Then there is η > 0, such that the following holds
for every a, b, a′, b′ with t0 − η ≤ a < a′ < b′ < b ≤ t0 + η. There is a
competitor sweepout {∂Ξ′

t}t∈[0,1] with the following properties:

(a) Ξt = Ξ′
t for t ∈ [0, a] ∪ [b, 1] and Ξt \ U

′ = Ξ′
t \ U

′ for t ∈ (a, b);
(b) Hn(∂Ξ′

t) ≤ Hn(∂Ξt) +
ε
4 for every t;

(c) Hn(∂Ξ′
t) ≤ Hn(∂Ξt)−

ε
2 for t ∈ (a′, b′).

Moreover, {∂Ξ′
t} is homotopic to {∂Ξt}.

Bulding on Lemma 3.1, Proposition 2.4 can be proved using a clever
combinatorial argument due to Pitts and Almgren. Indeed, for this part
our proof follows literally the exposition of section 5 of [6]. This section
is therefore split into two parts. In the first one we use the Almgren–
Pitts combinatorial argument to show Proposition 2.4 from Lemma 3.1,
which will be proved in the second one.

3.1. Almost minimizing varifolds. Before coming to the proof, we
introduce some further notation.

Definition 3.2. Given a pair of open sets (U1, U2) we call a hyper-
surface ∂Ω ε-a.m. in (U1, U2) if it is ε-a.m. in at least one of the two
open sets. We denote by CO the set of pairs (U1, U2) of open sets with

d (U1, U2) ≥ 4min{diam(U1),diam(U2)}.
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The following trivial lemma will be of great importance.

Lemma 3.3. If (U1, U2) and (V 1, V 2) are such that

d (U1, U2) ≥ 2min{diam(U1), diam(U2)} ,

d (V 1, V 2) ≥ 2min{diam(V 1), diam(V 2)} ,

then there are indices i, j ∈ {1, 2} with d (U i, V j) > 0.

We are now ready to state the Almgren–Pitts combinatorial lemma:
Proposition 2.4 is indeed a corollary of it.

Proposition 3.4 (Almgren–Pitts combinatorial lemma). Let Λ be a
homotopically closed family of sweepouts. There is a min-max sequence

{ΓN} = {∂Ω
k(N)
tk(N)

} such that

• ΓN converges to a stationary varifold;
• For any (U1, U2) ∈ CO, ΓN is 1/N -a.m. in (U1, U2), for N large
enough.

Proof of Proposition 2.4. We show that a subsequence of the {Γk} in
Proposition 3.4 satisfies the requirements of Proposition 2.4. For this, fix
k ∈ N and r > 0 such that Inj (M) > 9r > 0. Then (Br(x),M\B9r(x)) ∈
CO for all x ∈ M . Therefore we have that Γk is (for k large enough)
1/k-almost minimizing in Br(x) or M \B9r(x). Therefore, having fixed
r > 0,

(a) either {Γk} is (for k large) 1/k-a.m. in Br(y) for every y ∈M ;
(b) or there are a (not relabeled) subsequence {Γk} and a sequence

{xkr} ⊂M such that Γk is 1/k-a.m. in M \B9r(x
k
r).

If for some r > 0 (a) holds, we clearly have a sequence as in Proposition
2.4. Otherwise, there are a subsequence of {Γk}, not relabeled, and a
collection of points {xkj }k,j∈N ⊂M such that

• for any fixed j, Γk is 1/k-a.m. in M \B1/j(x
k
j ) for k large enough;

• xkj → xj for k → ∞ and xj → x for j → ∞.

We conclude that, for any J , there is KJ such that Γk is 1/k-a.m. in
M \ B1/J (x) for all k ≥ KJ . Therefore, if y ∈ M \ {x}, we choose r(y)
such that Br(y) ⊂⊂M \{x}, whereas r(x) is chosen arbitrarily. It follows

that An ⊂⊂M \{x}, for any An ∈ AN r(z)(z) with z ∈M . Hence, {Γk}
is 1/k-a.m. in An, provided k is large enough, which completes the proof
of the proposition. q.e.d.

Proof of Proposition 3.4. We start by picking a minimizing sequence
{{Γt}

k} satisfying the requirements of Proposition 2.2 and such that
F({Γt}

k) < m0 +
1
8k . We then assert the following claim, which clearly

implies the proposition.

Claim. For N large enough, there exists tN ∈ [0, 1] such that ΓN :=
ΓNtN is 1

N -a.m. in all (U1, U2) ∈ CO and Hn(ΓN ) ≥ m0 −
1
N .
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Define

KN :=

{

t ∈ [0, 1] : Hn(ΓNt ) ≥ m0 −
1

N

}

.

Assume the claim is false. Then there is a sequence {Nk} such that the
assertion of the claim is violated for every t ∈ KNk

. By a slight abuse
of notation, we do not relabel the corresponding subsequence and from
now on we drop the super- and subscripts N .

Thus, for every t ∈ K we get a pair (U1,t, U2,t) ∈ CO and two families

{∂Ωi,t,τ}
i∈{1,2}
τ∈[0,1] such that

(i) ∂Ωi,t,τ ∩ (Ui,t)
c = ∂Ωt ∩ (Ui,t)

c;
(ii) ∂Ωi,t,0 = ∂Ωt;

(iii) Hn(∂Ωi,t,τ ) ≤ Hn(∂Ωt) +
1
8N ;

(iv) Hn(∂Ωi,t,1) ≤ Hn(∂Ωt)−
1
N .

For every t ∈ K and every i ∈ {1, 2}, we choose U ′
i,t such that Ui,t ⊂⊂

U ′
i,t and

d (U ′
1,t, U

′
2,t) ≥ 2min{diam(U ′

1,t),diam(U ′
2,t)}.

Then we apply Lemma 3.1 with Ξt = Ωt, U = Ui,t, U
′ = U ′

i,t and
Ωτ = Ωi,t,τ . Let ηi,t be the corresponding constant η given by Lemma
3.1 and let ηt = min{η1,t, η2,t}.

Next, cover K with intervals Ii = (ti − ηi, ti + ηi) in such a way that

• ti + ηi < ti+2 − ηi+2 for every i;
• ti ∈ K and ηi < ηti .

Step 1: Refinement of the covering. We are now going to refine
the covering Ii to a covering Jl such that:

• Jl ⊂ Ii for some i(l);
• there is a choice of a Ul such that U ′

l ∈ {U ′
1,ti(l)

, U ′
2,ti(l)

} and

(3.1) d (U ′
i , U

′
j) > 0 if J i ∩ J j 6= ∅;

• each point t ∈ [0, 1] is contained in at most two of the intervals Jl.

The choice of our refinement is in fact quite obvious. We start by
choosing J1 = I1. Using Lemma 3.3, we choose indices r, s such that
dist(U ′

r,t1 , U
′
s,t2) > 0. For simplicity we can assume r = s = 1. We then

set U ′
1 = U ′

1,t1 . Next, we consider two indices ρ, σ such that d (U ′
ρ,t2 , U

′
σ,t3) >

0. If ρ = 1, we then set J2 = I2 and U ′
2 = U ′

1,t2
. Otherwise, we cover

I2 with two open intervals J2 and J3, with the property that J2 is dis-
joint from I3 and J3 is disjoint from I1. We then choose U ′

2 = U ′
1,t2

and U ′
3 = U ′

2,t2
. From this we are ready to proceed inductively. Note

therefore that, in our refinement of the covering, each interval Ij with
j ≥ 2 gets either “split into two halves” or remains the same (compare
with Figure 1, left).
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. . . . . .

M

J1
J2
J3

J5

U ′

1

U ′

2

U ′

3

J4

K

U ′

5

slices ΓntU ′

4
J2

J1

K

J3

b3a3 + δ

b3 − δa3

Figure 1. The left picture shows the refinement of the
covering. We split I2 into J2 ∪ J3 because U ′

4 = U ′
1,t3

intersects U ′
2 = U ′

1,t2
. The refined covering has the prop-

erty that U ′
i∩U

′
i+1 = ∅. In the right picture the segments

(ak, bk) = Jk and (ak + δ, bk − δ). Any point τ ∈ K be-
longs to at least one (ai + δ, bi − δ) and to at most one
Jj \ (aj + δ, bj − δ).

Next, fixing the notation (ai, bi) = Ji, we choose δ > 0 with the
following property:

(C) Each t ∈ K is contained in at least one segment (ai + δ, bi − δ)
(compare with Figure 1, right).

Step 2: Conclusion. We now apply Lemma 3.1 to conclude the
existence of a family {∂Ωi,t} with the following properties:

• Ωi,t = Ωt if t 6∈ (ai, bi) and Ωi,t \ U
′
i = Ωt \ U

′
i if t ∈ (ai, bi);

• Hn(∂Ωi,t) ≤ Hn(∂Ωt) +
1
4N for every t;

• Hn(∂Ωi,t) ≤ Hn(∂Ωt)−
1
2N if t ∈ (ai + δ, bi − δ).

Note that, if t ∈ (ai, bi) ∩ (aj, bj), then j = i+ 1 and in fact t 6∈ (ak, bk)
for k 6= i, i+1. Moreover, dist(U ′

i , U
′
i+1) > 0. Thus, we can define a new

sweepout {∂Ω′
t}t∈[0,1]

• Ω′
t = Ωt if t 6∈ ∪Ji;

• Ω′
t = Ωi,t if t is contained in a single Ji;

• Ω′
t =

[

Ωt \ (U
′
i ∪ U

′
i+1)

]

∪[Ωi,t ∩ U
′
i ]∪

[

Ωi+1,t ∩ U
′
i+1

]

if t ∈ Ji∩Ji+1.

In fact, it is as well easy to check that {∂Ω′
t}t∈[0,1] is homotopic to {∂Ωt}

and hence belongs to Λ.
Next, we want to compute F({∂Ω′

t}). If t 6∈ K, then t is contained in
at most two Ji’s, and hence ∂Ω′

t can gain at most 2 · 1
4N in area:

(3.2) t 6∈ K ⇒ Hn(∂Ω′
t) ≤ Hn(∂Ωt) +

1

2N
≤ m0(Λ)−

1

2N
.

If t ∈ K, then t is contained in at least one segment (ai+ δ, bi − δ) ⊂ Ji
and in at most a second segment Jl. Thus, the area of ∂Ω′

t looses at
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least 1
2N in U ′

i and gains at most 1
4N in U ′

l . Therefore we conclude

(3.3) t ∈ K ⇒ Hn(∂Ω′
t) ≤ Hn(∂Ωt)−

1

4N
≤ m0(Λ)−

1

8N
.

Hence F({∂Ω′
t}) ≤ m0(Λ)−(8N)−1, which is a contradiction tom0(Λ) =

infΛF . q.e.d.

3.2. Proof of Lemma 3.1. The proof consists of two steps.

Step 1: Freezing. First of all, we choose open sets A and B such
that

• U ⊂⊂ A ⊂⊂ B ⊂⊂ U ′;
• ∂Ξt0 ∩ C is a smooth surface, where C = B \ A.

This choice is clearly possible since there are only finitely many sin-
gularities of ∂Ξt0 . Next, we fix two smooth functions ϕA and ϕB such
that

• ϕA + ϕB = 1;
• ϕA ∈ C∞

c (B), ϕB ∈ C∞
c (M \A).

Now, we fix normal coordinates (z, σ) ∈ ∂Ξt0 ∩C × (−δ, δ) in a regular
δ-neighborhood of C ∩ ∂Ξt0 . Because of the convergence of Ξt to Ξt0 ,
we can fix η > 0 and an open C ′ ⊂ C, such that the following holds for
every t ∈ (t0 − η, t0 + η):

• ∂Ξt ∩ C is the graph of a function gt over ∂Ξt0 ∩ C;
• Ξt ∩ C \ C ′ = Ξt0 ∩C \ C ′;
• Ξt ∩ C

′ = {(z, σ) : σ < gt(z)} ∩ C
′,

(compare with Figure 2). Obviously, gt0 ≡ 0. We next introduce the
functions

(3.4) gt,s,τ := ϕBgt + ϕA((1− s)gt + sgτ )

for t, τ ∈ (t0 − η, t0 + η), s ∈ [0, 1]. Since gt converges smoothly to gt0 as
t→ t0, by choosing η arbitrarily small, we can make sups,τ ‖gt,s,τ−gt‖C1

arbitrarily small. Next, if we express the area of the graph of a function
g over ∂Ξt0 ∩ C as an integral functional of g, this functional depends
obviously only on g and its first derivatives. Thus, if Γt,s,τ is the graph
of gt,s,τ , then we can choose η so small that

(3.5) max
s,τ

Hn(Γt,s,τ ) ≤ H(∂Ξt ∩ C) +
ε

16
.

Now, given t0 − η < a < a′ < b′ < b < t0 + η, we choose a′′ ∈ (a, a′) and
b′′ ∈ (b′, b) and fix the following:

• a smooth function ψ : [a, b] → [0, 1] which is identically equal to 0
in a neighborhood of a and b and equal to 1 on [a′′, b′′];

• a smooth function γ : [a, b] → [t0 − η, t0 + η] which is equal to
the identity in a neighborhood of a and b and indentically t0 in
[a′′, b′′].
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Next, define the family of open sets {∆t} as follows:

• ∆t = Ξt for t 6∈ [a, b];
• ∆t \B = Ξt \B for all t;
• ∆t ∩A = Ξγ(t) ∩A for t ∈ [a, b];

• ∆t ∩C \ C ′ = Ξt0 ∩ C \ C ′ for t ∈ [a, b];
• ∆t ∩C

′ = {(z, σ) : σ < gt,ψ(t),γ(t)(z)} for t ∈ [a, b].

Note that {∂∆t} is in fact a sweepout homotopic to ∂Ξt. In addition:

• ∆t = Ξt if t 6∈ [a, b], and ∆t and Ξt coincide outside of B (and
hence outside of U ′) for every t;

• ∆t ∩A = Ξγ(t) ∩A for t ∈ [a, b] (and hence ∆t ∩ U = Ξγ(t) ∩ U).

Therefore, ∆t ∩U = Ξt0 ∩U for t ∈ [a′′, b′′], i.e., ∆t ∩U is frozen in the
interval [a′′, b′′]. Moreover, because of (3.5),

(3.6) Hn(∂∆t ∩ C) ≤ Hn(∂Ξt ∩ C) +
ε

16
for t ∈ [a, b].

Step 2: Dynamic competitor. Next, fix a smooth function χ :
[a′′, b′′] → [0, 1] which is identically 0 in a neighborhood of a′′ and b′′

and which is identically 1 on [a′, b′]. We set

• Ξ′
t = ∆t for t 6∈ [a′′, b′′];

• Ξ′
t \ A = ∆t \ A for t ∈ [a′′, b′′];

• Ξ′
t ∩A = Ωχ(t) ∩A for t ∈ [a′′, b′′].

The new family {∂Ξ′
t} is also a sweepout, obviously homotopic to {∂∆t}

and hence homotopic to {∂Ξt}. We next estimateHn(∂Ξ′
t). For t 6∈ [a, b],

Ξ′
t ≡ Ξt and hence

(3.7) Hn(∂Ξ′
t) = Hn(∂Ξt) for t 6∈ [a, b].

For t ∈ [a, b], we anyhow have Ξ′
t = Ξt on M \ B and Ξ′

t = ∆t on C.
This shows the property (a) of the lemma. Moreover, for t ∈ [a, b] we
have

Hn(∂Ξ′
t)−Hn(∂Ξt) ≤ [Hn(∂∆t ∩C)−Hn(∂Ξt ∩ C)]

+[Hn(∂Ξ′
t ∩A)−Hn(∂Ξt ∩A)]

(3.6)

≤
ε

16
+ [Hn(∂Ξ′

t ∩A)−Hn(∂Ξt ∩A)].(3.8)

To conclude, we have to estimate the part in A in the time interval [a, b].
We have to consider several cases separately.

(i) Let t ∈ [a, a′′]∪ [b′′, b]. Then Ξ′
t∩A = ∆t∩A = Ξγ(t)∩A. However,

γ(t), t ∈ (t0−η, t0+η), and, having chosen η sufficiently small, we
can assume

(3.9) |Hn(∂Ξs ∩A)−Hn(∂Ξσ ∩A)| ≤
ε

16
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t0 − η
a

a′

a′′

b′

b′′

b
t0 + η

C

A

C ′

∂Ξt

∂Ξt0

Figure 2. The left picture shows the intervals involved
in the construction. If we focus on the smaller set A, then
the sets Ξ′

t coincide with ∆t and evolve from Ξa to Ξt0
(resp. Ξt0 to Ξb) in [a, a′′] (resp. [b′′, b]); they then evolve
from Ξt0 to Ω1 (resp. Ω1 to Ξt0) in [a′′, a′] (resp. [b′, b′′]).
In the right picture, the sets in the region C. Indeed, the
evolution takes place in the region C ′ where we patch
smoothly Ξt0 with Ξγ(t) into the sets ∆t.

for every σ, s ∈ (t0−η, t0+η). (Note: this choice of η is independent
of a and b!) Thus, using (3.8), we get

(3.10) Hn(∂Ξ′
t) ≤ Hn(∂Ξt) +

ε

8
.

(ii) Let t ∈ [a′′, a′] ∪ [b′′, b′]. Then ∂Ξ′
t ∩A = ∂Ωχ(t) ∩A. Therefore we

can write, using (3.8),

Hn(∂Ξ′
t)−Hn(∂Ξt) ≤

ε

16
+ [Hn(∂Ξt0 ∩A)−Hn(∂Ξt ∩A)]

+ [Hn(∂Ωχ(t) ∩A)−Hn(∂Ξt0 ∩A)]

(3.9),(2.3)

≤
ε

16
+

ε

16
+
ε

8
=

ε

4
.(3.11)

(iii) Let t ∈ [a′, b′]. Then we have Ξ′
t ∩A = Ω1 ∩A. Thus, again using

(3.8),

Hn(∂Ξ′
t)−Hn(∂Ξt) ≤

ε

16
+ [Hn(∂Ω1 ∩A)−Hn(∂Ξt0 ∩A)]

+ [Hn(∂Ξt0 ∩A)−Hn(∂Ξt ∩A)]

(2.4),(3.9)

≤
ε

16
− ε+

ε

16
< −

ε

2
.(3.12)

Gathering the estimates (3.7), (3.10), (3.11), and (3.12), we finally ob-
tain the properties (b) and (c) of the lemma. This finishes the proof.
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4. The existence of replacements

In this section we fix An ∈ AN r(x)(x) and we prove the conclusion
of Proposition 2.6.

4.1. Setting. For every j, consider the class H(Ωj, An) of sets Ξ such
that there is a family {Ωt} satisfying Ω0 = Ωj, Ω1 = Ξ, (2.1), (2.2),
and (2.3) for ε = 1

j and U = An. Consider next a sequence Γj,k =

∂Ωj,k which is minimizing for the perimeter in the class H(Ωj, An): this
is the minimizing sequence for the (8j)−1-homotopic Plateau problem
mentioned in Subsection 2.3. Up to subsequences, we can assume that

• Ωj,k converges to a Caccioppoli set Ω̃j;
• Γj,k converges to a varifold V j;
• V j (and a suitable diagonal sequence Γ̃j = Γj,k(j)) converges to a

varifold Ṽ .

The proof of Proposition 2.6 will then be broken into three steps. In the
first one we show

Lemma 4.1. For every j and every y ∈ An there is a ball B =
Bρ(y) ⊂ An and a k0 ∈ N with the following property. Every open set Ξ
such that

• ∂Ξ is smooth except for a finite set,
• Ξ \B = Ωj,k \B,
• and Hn(∂Ξ) < Hn(∂Ωj,k)

belongs to H(Ωj, An) if k ≥ k0.

In the second step we use Lemma 4.1 and Theorem 1.2 to show:

Lemma 4.2. ∂Ω̃j ∩ An is a stable minimal hypersurface in An and
V j An = ∂Ω̃j An.

Recall that in this section we use the convention of Definition 1.5. In
the third step we use Lemma 4.2 to conclude that the sequence Γ̃j and
the varifold Ṽ meet the requirements of Proposition 2.6.

4.2. Proof of Lemma 4.1. The proof of the lemma is achieved by
exhibiting a suitable homotopy between Ωj,k and Ξ. The key idea is:

• First deform Ωj,k to the set Ω̃ which is the union of Ωj,k \B and
the cone with vertex y and base Ωj,k ∩ ∂B;

• Then deform Ω̃ to Ξ.

The surfaces of the homotopizing family do not gain too much in area,
provided B = Bρ(y) is sufficiently small and k sufficiently large: in this

case the area of the surface Γj,k ∩ B will, in fact, be close to the area
of the cone. This “blow down–blow up” procedure is an idea which we
borrow from [21] (see section 7 of [6]).
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Proof of Lemma 4.1. We fix y ∈ An and j ∈ N. Let B = Bρ(y) with
B2ρ(y) ⊂ An and consider an open set Ξ as in the statement of the
Lemma. The choice of the radius of the ball Bρ(y) and of the constant
k0 (which are both independent of the set Ξ) will be determined at the
very end of the proof.

Step 1: Stretching Γj,k ∩ ∂Br(y). First of all, we choose r ∈ (ρ, 2ρ)
such that, for every k,

Γj,k is regular in a neighborhood of ∂Br(y)(4.1)

and intersects it transversally.

In fact, since each Γj,k has finitely many singularities, Sard’s lemma
implies that (4.1) is satisfied by a.e. r. We assume moreover that 2ρ
is smaller than the injectivity radius. For each z ∈ Br(y) we consider
the closed geodesic arc [y, z] ⊂ Br(y) joining y and z. As usual, (y, z)
denotes [y, z] \ {y, z}. We let K be the open cone consisting

(4.2) K =
⋃

z∈∂B∩Ωj,k

(y, z) .

We now show that Ωj,k can be homotopized through a family Ω̃t to a
Ω̃1 in such a way that

• maxtH
n(∂Ω̃t)−Hn(∂Ωj,k) can be made arbitrarily small;

• Ω̃1 coincides with K in a neighborhood of ∂Br(y).

First of all, consider a smooth function ϕ : [0, 2ρ] → [0, 2ρ], with

• |ϕ(s)− s| ≤ ε and 0 ≤ ϕ′ ≤ 2;
• ϕ(s) = s if |s− r| > ε and ϕ ≡ r in a neighborhood of r.

Set Φ(t, s) := (1 − t)s + tϕ(s). Moreover, for every λ ∈ [0, 1] and every
z ∈ Br(y) let τλ(z) be the point w ∈ [y, z] with dist (y,w) = λdist (y, z).
For 1 < λ < 2, we can still define τλ(z) to be the corresponding point
on the geodesic that is the extension of [y, z]. (Note that by the choice

of ρ this is well defined.) We are now ready to define Ω̃t (compare with
Figure 3, left):

• Ω̃t \ An(y, r − ε, r + ε) = Ωj,k \ An(y, r − ε, r + ε);

• Ω̃t ∩ ∂Bs(y) = τs/Φ(t,s)(Ω
j,k ∩ ∂BΦ(t,s)) for every s ∈ (r− ε, r+ ε).

Thanks to (4.1), for ε sufficiently small Ω̃t has the desired properties.
Moreover, since Ξ coincides with Ωj,k on M \Bρ(y), the same argument
can be applied to Ξ. This shows that

w.l.o.g. we can assume K = Ξ = Ωk,j(4.3)

in a neighborhood of ∂Br(y).

Step 2: The homotopy We then consider the following family of
open sets {Ωt}t∈[0,1] (compare with Figure 3, right):

• Ωt \Br(y) = Ωj,k \Br(y) for every t;
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∂Br+ε(y)

∂Br−ε(y)
∂Br(y)

∂B(1−2t)r(y)

Figure 3. The left picture illustrates the stretching of
Γj,k into a cone-like surface in a neighborhood of ∂Br(y).
The right picture shows a slice Ωt∩Br(y) for t ∈ (0, 1/2).

• Ωt ∩An(y, |1− 2t|r, r) = K ∩An(y, |1− 2t|r, r) for every t;
• Ωt ∩B(1−2t)r(y) = τ1−2t(Ω

k,j ∩Br(y)) for t ∈ [0, 12 ];

• Ωt ∩B(2t−1)r(y) = τ2t−1(Ξ ∩Br(y)) for t ∈ [12 , 1].

Because of (4.3), this family satisfies (s1)–(s3), (sw1), and (sw3). It
remains to check,

(4.4) max
t

Hn(∂Ωt) ≤ Hn(∂Ωj,k) +
1

8j
∀k ≥ k0

for a suitable choice of ρ, r and k0.
First of all, we observe that, by the smoothness of M , there are con-

stants µ and ρ0, depending only on the metric, such that the following
holds for every r < 2ρ < 2ρ0 and λ ∈ [0, 1]:

Hn(K) ≤ µrHn−1(∂Ωj,k ∩ ∂Br(y))(4.5)

Hn([∂(τλ(Ω
j,k ∩Br(y)))] ∩Bλr(y)) ≤ µHn(∂Ωj,k ∩Br(y))(4.6)

Hn([∂(τλ(Ξ ∩Br(y)))] ∩Bλr(y)) ≤ µHn(∂Ξ ∩Br(y))(4.7)
∫ 2ρ

0
Hn−1(∂Ωj,k ∩ ∂Bτ (y)) dτ ≤ µHn(∂Ωj,k ∩B2ρ(y)) .(4.8)

In fact, for ρ small, µ will be close to 1. (4.5), (4.6) and (4.7) give the
obvious estimate

max
t

Hn(∂Ωt)−Hn(∂Ωj,k) ≤ µHn(∂Ωj,k ∩B2ρ(y))(4.9)

+µrHn−1(∂Ωj,k ∩ ∂Br(y)) .

Moreover, by (4.8) we can find r ∈ (ρ, 2ρ) which, in addition to (4.9),
satisfies

(4.10) Hn−1(∂Ωj,k ∩ ∂Br(y)) ≤
2µ

ρ
Hn(∂Ωj,k ∩B2ρ(y)) .
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Hence, we conclude

(4.11) max
t

Hn(∂Ωt) ≤ Hn(∂Ωj,k) + (µ + 4µ2)Hn(∂Ωj,k ∩B2ρ(y)) .

Next, by the convergence of Γj,k = ∂Ωj,k to the stationary varifold V j ,
we can choose k0 such that

(4.12) Hn(∂Ωj,k ∩B2ρ(y)) ≤ 2‖V j‖(B4ρ(y)) for k ≥ k0.

Finally, by the monotonicity formula,

(4.13) ‖V j‖(B4ρ(y)) ≤ CM‖V j‖(M)ρn .

We are hence ready to specify the choice of the various parameters:

• We first determine the constants µ and ρ0 < Inj (M) (which de-
pend only on M) which guarantee (4.5), (4.6), (4.7), and (4.8);

• We subsequently choose ρ < ρ0 so small that

2(µ+ 4µ2)CM‖V j‖(M)ρn < (8j)−1,

and k0 so that (4.12) holds.

At this point ρ and k are fixed, and, choosing r ∈ (ρ, 2ρ) satisfying (4.1)
and (4.10), we construct {∂Ωt} as above, concluding the proof of the
lemma.

4.3. Proof of Lemma 4.2. Fix j ∈ N and y ∈ An, and let B =
Bρ(y) ⊂ An be the ball given by Lemma 4.1. We claim that Ω̃j min-

imizes the perimeter in the class P(Ω̃j , Bρ/2(y)). Assume, by contra-

diction, that Ξ is a Caccioppoli set with Ξ \ Bρ/2(y) = Ω̃j \ Bρ/2(y)
and

(4.14) Per (Ξ) < Per (Ω̃j)− η .

Note that, since 1Ωj,k → 1Ω̃j strongly in L1, up to extraction of a
subsequence we can assume the existence of τ ∈ (ρ/2, ρ) such that

(4.15) lim
k→∞

‖1Ω̃j − 1Ωj,k‖L1(∂Bτ (y)) = 0 .

We also recall that, by the semicontinuity of the perimeter,

(4.16) Per (Ω̃j) ≤ lim inf
k→∞

Hn(∂Ωj,k) .

Define therefore the set Ξj,k by setting

Ξj,k = (Ξ ∩Bτ (y)) ∪ (Ωj,k \Bτ (y)) .

(4.14), (4.15) and (4.16) imply

(4.17) lim sup
k→∞

[Per (Ξj,k)−Hn(∂Ωj,k)] ≤ −η .

Fix next k and recall the following standard way of approximating Ξj,k

with a smooth set. We first fix a compactly supported convolution kernel
ϕ, then consider the function gε := 1Ξj,k∗ϕε, and finally look at a smooth
level set ∆ε := {gε > t} for some t ∈ (14 ,

3
4). Then Hn(∂∆ε) converges
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to Per (Ξj,k) as ε → 0 (see [12] in the euclidean case and [15] for the
general one).

Clearly, ∆ε does not coincide anymore with Ωj,k outside Bρ(y). Thus,

fix (a, b) ⊂ (τ, ρ) with the property that Σ := Ωj,k ∩ Bb(y) \ Ba(y) is
smooth. Fix a regular tubular neighborhood T of Σ and corresponding
normal coordinates (ξ, σ) on it. Since Ξj,k \ Bτ (y) = Ωj,k \ Bτ (y), for
ε sufficiently small ∂∆ε ∩ Bb(y) \ Ba(y) ⊂ T and T ∩ ∆ε is the set
{σ < fε(ξ)} for some smooth function fε. Moreover, as ε → 0, fε → 0
smoothly.

Therefore, a patching argument entirely analogous to the one of the
freezing construction (see Subsection 3.2) allows us to modify Ξj,k to a
set ∆j,k with the following properties:

• ∂∆j,k is smooth outside of a finite set;
• ∆j,k \B = Ωj,k \B;
• lim supk(H

n(∂∆j,k)−Hn(∂Ωj,k)) ≤ −η < 0.

For k large enough, Lemma 4.1 implies that Ξj,k ∈ H(Ωj, An), which
would contradict the minimality of the sequence Ωj,k.

Next, in order to show that the varifold V j is induced by ∂Ω̃j , it
suffices to show that in fact Hn(∂Ωj,k) converges to Hn(∂Ω̃j) (since we
have not been able to find a precise reference for this well-known fact,
we give a proof in the appendix; compare with Proposition A.1). On the
other hand, if this is not the case, then we have

Hn(∂Ω̃j ∩Bρ/2(y)) < lim sup
k→∞

Hn(∂Ωj,k ∩Bρ/2(y))

for some y ∈ An and some ρ to which we can apply the conclusion of
Lemma 4.1. We can then use Ω̃j in place of Ξ in the argument of the
previous step to contradict, once again, the minimality of the sequence
{Ωj,k}k. The stationarity and stability of the surface ∂Ω̃j is, finally, an
obvious consequence of the variational principle.

4.4. Proof of proposition 2.6. Consider the varifolds V j and the di-
agonal sequence Γ̃j = Γj,k(j) of Section 4.1. Observe that Γ̃j is obtained
from Γj through a suitable homotopy which leaves everything fixed out-
side An. Consider An(x, ε, r(x) − ε) containing An. It follows from the

a.m. property of {Γj} that {Γ̃j} is also a.m. in An(x, ε, r(x) − ε).
Note next that if a sequence is a.m. in an open set U and U ′ is a

second open set contained in U , then the sequence is a.m. in U ′ as well.
This trivial observation and the discussion above implies that Γ̃j is a.m.
in any An ∈ AN r(x)(x).

Fix now an annulus An′ = An(x, ε, r(x) − ε) ⊃⊃ An. Then M =
An′ ∪ (M \ An). For any y ∈ M \ An (and y 6= x), consider r′(y) :=

min{r(y),dist(y,An)}. If An′′ ∈ AN r′(y)(y), then Γj ∩An′′ = Γ̃j ∩An′′,

and hence {Γ̃j} is a.m. in An′′. If y ∈ An′, then we can set r′(y) =
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Figure 4. On the left, the set Ω̃j, the competitor Ξ, one
set of the sequence {Ωj,k}k, and the corresponding Ξj,k.
On the right, the smoothing ∆ε of Ξ

j,k and the final set
∆j,k (a competitor for Ωj,k).

min{r(y),dist(y, ∂An′)}. If An′′ ∈ AN r′(y)(y), then An′′ ⊂ An′, and,

since {Γ̃j} is a.m. in An′ by the argument above, {Γ̃j} is a.m. in An′′.

We next show that Ṽ is a replacement for V in An. By Theorem 1.3,
Ṽ is a stable minimal hypersurface in An. It remains to show that Ṽ is
stationary. Ṽ is obviously stationary inM\An, because it coincides with
V there. Next, let An′ ⊃⊃ An. Since {An′,M \An} is a covering of M ,
we can subordinate a partition of unity {ϕ1, ϕ2} to it. By the linearity of

the first variation, we get [δṼ ](χ) = [δṼ ](ϕ1χ)+[δṼ ](ϕ2χ) = [δṼ ](ϕ1χ).

Therefore it suffices to show that Ṽ is stationary in An′. Assume, by
contradiction, that there is χ ∈ Xc(An

′) such that [δṼ ](χ) ≤ −C < 0

and denote by ψ the isotopy defined by ∂ψ(x,t)
∂t = χ(ψ(x, t)). We set

(4.18) Ṽ (t) := ψ(t)♯Ṽ Σj(t) = ψ(t, Γ̃j).

By continuity of the first variation there is ε > 0 such that δṼ (t)(χ) ≤
−C/2 for all t ≤ ε. Moreover, since Σj(t) → Ṽ (t) in the sense of vari-
folds, there is J such that

(4.19) [δΣj(t)](χ) ≤ −
C

4
for j > J and t ≤ ε.

Integrating (4.19), we conclude Hn(Σj(t)) ≤ Hn(Γ̃j) − Ct/8 for every

t ∈ [0, ε] and j ≥ J . This contradicts the a.m. property of Γ̃j in An′, for
j large enough.

Finally, observe that Hn(Γ̃j) ≤ Hn(Γj) by construction and

lim inf
n

(Hn(Γ̃j)−Hn(Γj)) ≥ 0,

because otherwise we would contradict the a.m. property of {Γj} in An.

We thus conclude that ‖V ‖(M) = ‖Ṽ ‖(M). q.e.d.
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5. The regularity of varifolds with replacements

In this section we prove Proposition 2.8. We recall that we adopt the
convention of Definition 1.5. We first list several technical facts from
geometric measure theory.

5.1. Maximum principle. The first one is just a version of the clas-
sical maximum principle.

Theorem 5.1. (i) Let V be a stationary varifold in a ball Br(0) ⊂
Rn+1. If supp (V ) ⊂ {zn+1 ≥ 0} and supp (V ) ∩ {zn+1 = 0} 6= ∅, then
Br(0) ∩ {zn+1 = 0} ⊂ supp (V ).

(ii) Let W be a stationary varifold in an open set U ⊂M and K be a
smooth strictly convex closed set. If x ∈ supp (V )∩∂K, then supp (V )∩
Br(x) \K 6= ∅ for every positive r.

For (ii) we refer, for instance, to appendix B of [6], whereas (i) is a
very special case of the general result of [22].

5.2. Tangent cones. The second device is a fundamental tool of geo-
metric measure theory. Consider a stationary varifold V ∈ V(U) with
U ⊂M and fix a point x ∈ supp (V ) ∩ U . For any r < Inj (M) consider
the rescaled exponential map T xr : B1 ∋ z 7→ expx(rz) ∈ Br(x), where
expx denotes the exponential map with base point x. We then denote
by Vx,r the varifold (T xr )

−1
♯ V ∈ V(B1). Then, as a consequence of the

monotonicity formula, one concludes that for any sequence {Vx,rn} there
exists a subsequence converging to a stationary varifold V ∗ (stationary
for the euclidean metric!), which in addition is a cone (see corollary
42.6 of [20]). Any such cone is called tangent cone to V in x. For vari-
folds with the replacement property, the following is a fundamental step
towards the regularity (first proved by Pitts for n ≤ 5 in [16]).

Lemma 5.2. Let V be a stationary varifold in an open set U ⊂ M
having a replacement in any annulus An ∈ AN r(x)(x) for some positive
function r. Then

• V is integer rectifiable;
• θ(x, V ) ≥ 1 for any x ∈ U ;
• any tangent cone C to V at x is a minimal hypersurface for general
n and (a multiple of) a hyperplane for n ≤ 6.

Proof. First of all, by the monotonicity formula there is a constant
CM such that

(5.1)
‖V ‖(Bσ(x))

σn
≤ CM

‖V ‖(Bρ(x))

ρn

for all x ∈ M and all 0 < σ ≤ ρ < Inj (M). Fix x ∈ supp (‖V ‖)
and 0 < r < min{r(x)/2, Inj (M)/4}. Next, we replace V with V ′ in
the annulus An(x, r, 2r). We observe that ‖V ′‖ 6≡ 0 on An(x, r, 2r);
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otherwise there would be ρ ≤ r and ε such that supp (‖V ′‖)∩∂Bρ(x) 6= ∅
and supp (‖V ′‖) ∩ AN (x, ρ, ρ + ε) = ∅. By the choice of ρ, this would
contradict Theorem 5.1(ii).

Thus we have found that V ′ An(x, r, 2r) is a non-empty stable min-
imal hypersurface and hence there is y ∈ An(x, r, 2r) with θ(y, V ′) ≥ 1.
By (5.1),

‖V ‖(B4r(x))

(4r)n
=

‖V ′‖(B4r(x))

(4r)n
≥

‖V ′‖(B2r(y))

(4r)n
(5.2)

≥
ωn

2nCM
θ(y, V ′) ≥

ωn
2nCM

.

Hence, θ(x, V ) is uniformly bounded away from 0 on supp (‖V ‖) and
Allard’s rectifiability theorem (see theorem 42.4 of [20]) gives that V is
rectifiable.

Let C denote a tangent cone to V at x and let ρk → 0 a sequence
with V x

ρk
→ C. Note that C is stationary. We replace V by V ′

k in

An(x, λρk, (1− λ)ρk), where λ ∈ (0, 1/4) and set W ′
k = (T xρk)♯V

′
k. Up to

subsequences we have W ′
k → C ′ for some stationary varifold C ′. By the

definition of a replacement we obtain

C ′ = C in Bλ ∪An(0, 1 − λ, 1),(5.3)

‖C ′‖(Bρ) = ‖C‖(Bρ) for ρ ∈ (0, λ) ∪ (1− λ, 1).(5.4)

Moreover, since C is a cone,

(5.5)
‖C ′‖(Bσ)

σn
=

‖C ′‖(Bρ)

ρn
for all ρ, σ ∈ (0, λ) ∪ (1− λ, 1).

By the monotonicity formula for stationary varifolds in euclidean spaces,
(5.5) implies that C ′ as well is a cone (see for instance 17.5 of [20]).
Moreover, by the Compactness theorem 1.3, C ′ An(0, λ, 1 − λ) is a
stable embedded minimal hypersurface. Since C and C ′ are integer rec-
tifiable, the conical structure of C implies that supp (C) and supp (C ′)
are closed cones (in the usual meaning for sets) and the densities θ(·, C)
and θ(·, C ′) are 0-homogeneous functions (see theorem 19.3 of [20]).
Thus (5.3) implies C = C ′ and hence that C is a stable minimal hy-
persurface in An(0, λ, 1− λ). Since λ is arbitrary, C is a stable minimal
hypersurface in the punctured ball. Thus, if n ≤ 6, by Simons’ theo-
rem (see Theorem B.2 in [20]) C is in fact a multiple of a hyperplane.
If instead n ≥ 7, since {0} has dimension 0 ≤ n − 7, C is a minimal
hypersurface in the whole ball B1 (recall Definition 1.5). q.e.d.

5.3. Unique continuation and two technical lemmas on vari-

folds. To conclude the proof we need yet three auxiliary results. All of
them are justified in Appendix A. The first one is a consequence of the
classical unique continuation for minimal surfaces.
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Theorem 5.3. Let U be a smooth open subset of M and let Σ1,Σ2 ⊂
U be two connected smooth embedded minimal hypersurfaces with ∂Σi ⊂
∂U . If Σ1 coincides with Σ2 in some open subset of U , then Σ1 = Σ2.

The other two are elementary lemmas for stationary varifolds.

Lemma 5.4. Let r < Inj (M) and let V be a stationary varifold.
Then

(5.6) supp (V ) ∩Br(x) =
⋃

0<s<r

supp (V Bs(x)) ∩ ∂Bs(x).

Lemma 5.5. Let Γ ⊂ U be a relatively closed set of dimension n
and S a closed set of dimension at most n − 2 such that Γ \ S is a
smooth embedded hypersurface. Assume Γ induces a varifold V which is
stationary in U . If ∆ is a connected component of Γ\S, then ∆ induces
a stationary varifold.

5.4. Proof of Proposition 2.8. The proof consists of five steps.

Step 1: Set up. Let x ∈M and ρ ≤ min{r(x)/2, Inj(M)/2}. Then
we choose a replacement V ′ for V in An(x, ρ, 2ρ) coinciding with a
stable minimal embedded hypersurface Γ′. Next, choose s ∈ (0, ρ) and
t ∈ (ρ, 2ρ) such that ∂Bt(x) intersects Γ′ transversally. Then we pick
a second replacement V ′′ of V ′ in An(x, s, t), coinciding with a stable
minimal embedded hypersurface Γ′′ in the annulus An(x, s, t). Now we
fix a point y ∈ ∂Bt(x)∩Γ

′ that is a regular point of Γ′ and a radius r > 0
sufficiently small such that Γ′ ∩Br(y) is topologically an n-dimensional
ball in M and γ = Γ′ ∩ ∂Bt(x)∩Br(y) is a smooth (n− 1)-dimensional
surface. This can be done due to our regularity assumption on y. Then
we choose a diffeomorphism ζ : Br(y) → B1 such that

ζ(∂Bt(x)) ⊂ {z1 = 0} and ζ(Γ′′) ⊂ {z1 > 0},

where z1, . . . , zn+1 are orthonormal coordinates in B1. Finally, suppose

ζ(γ) = {(0, z2, . . . , zn, g
′((0, z2, . . . , zn))},

ζ(Γ′) ∩ {z1 ≤ 0} = {(z1, . . . , zn, g
′((z1, . . . , zn))}

for some smooth function g′. Note that

• any kind of estimates (like curvature estimates or area bound or
monotonicity) for a minimal surface Γ ⊂ Br(y) translates into
similar estimates for the surface ζ(Γ);

• varifolds in Br(y) are pushed forward to varifolds in B1 and there
is a natural correspondence between tangent cones to V in ξ and
tangent cones to ζ♯V in ζ(ξ).

We will use the same notation for the objects in Br(y) and their images
under ζ.

Step 2: Tangent cones. We next claim that any tangent cone to
V ′′ at any point w ∈ γ is a unique flat space. Note that all these w
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z1 = 0

B1

ζ(Γ′)

ζ(Γ′′)
ζ(γ)

Figure 5. The surfaces Γ′, Γ′′, and γ in the coordinates z.

are regular points of Γ′. Therefore by our transversality assumption
every tangent cone C at w coincides in {z1 < 0} with the half space
TwΓ

′ ∩ {z1 < 0}. We wish to show that C coincides with TwΓ
′. By

the constancy theorem (see theorem 41.1 in [20]), it suffices to show
supp (C) ⊂ TwΓ

′.
Note first that if z ∈ TwΓ

′ ∩ {z1 = 0} is a regular point for C,
then by Theorem 5.3, C coincides with TwΓ

′ in a neighborhood of z.
Therefore, if z ∈ supp (C) ∩ {z1 = 0}, either z is a singular point,
or C = TwΓ

′ in a neighborhood of z. Assume now by contradiction
that p ∈ supp (C) \ TwΓ

′. Since, by Lemma 5.2 and the fact that Γ′′

has replacements due to Proposition 2.7, SingC has dimension at most
n − 7, and we can assume that p is a regular point of C. Consider
next a sequence N j of smooth open neighborhoods of SingC such that

TwΓ
′ \ N

j
is connected and N j → SingC. Let ∆j be the connected

component of C \N
j
containing p. Then ∆j is a smooth minimal surface

with ∂∆j ⊂ ∂N j . We conclude that ∆j cannot touch {z1 = 0}: it would
touch it in a regular point of supp (C) ∩ {z1 = 0} and hence it would

coincide with TwΓ
′ \ N

j
, which is impossible because it contains p. If

we let ∆ = ∪∆j, then ∆ is a connected component of the regular part
of C, which does not intersect {z1 = 0}. Let W be the varifold induced
by ∆: by Lemma 5.5 W is stationary. Since C is a cone, W is also a
cone. Thus supp (W ) ∋ 0. On the other hand, supp (W ) ⊂ {z1 ≥ 0}.
Thus, by Theorem 5.1(i), {z1 = 0} ⊂ supp (W ). But this would imply
that {z1 = 0} ∩ TwΓ

′ is in the singular set of C: this is a contradiction
because the dimension of {z1 = 0} ∩ TwΓ

′ is n− 1.

Step 3: Graphicality. In this step we show that the surfaces Γ′ and
Γ′′ can be “glued” together at ∂Bt(x); that is,

(5.7) Γ′′ ⊂ Γ′ in Bt(x) \Bt−ε(x) for some ε > 0.
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For this we fix z ∈ γ and, using the notation of Step 2, consider the
(exterior) unit normal τ(z) to the graph of g′. Let T zr : R

n+1 → R
n+1 be

the dilation of the (n+ 1)-space given by

T zr (z̄) =
z̄ − z

r
.

By Step 2 we know that any tangent cone to V ′′ at z is given by the
tangent space TzΓ

′, and therefore the rescaled surfaces Γr = T zr (Γ
′′)

converge to the half space H = {v : τ(z) · v = 0, v1 > 0}. We claim that
this implies that we have

(5.8) lim
z̄→z,z̄∈Γ′′

|(z̄ − z) · τ(z)|

|z̄ − z|
= 0

uniformly on compact subsets of γ. We argue by contradiction and as-
sume the claim is wrong. Then there is a sequence {zj} ⊂ Γ′′ with
zj → z and |(zj − z) · τ(z)| ≥ k|zj − z| for some k > 0. We can assume
that zj is a regular point of Γ′′ for all j ∈ N. We set rj = |zj − z|; then
there is a positive constant k̄ such that B2k̄rj

(zj) ∩H = ∅. This implies

that dist(H,Bk̄rj(zj)) ≥ k̄rj . By the minimality of Γ′′ we can apply the

monotonicity formula and find

‖V ′′‖(Bk̄rj (zj)) ≥ Ck̄nrnj

for some positive constant C depending on the diffeomorphism ζ. In
other words, there is a considerable amount of the varifold that is far
from the half space H. But this contradicts the fact that the corre-
sponding full space is the only tangent cone. We also point out that this
convergence is uniform on compact subsets of γ.

Now we denote by ν the smooth normal field to Γ′′ with ν·(0, . . . , 0, 1) ≥
0. Let Σ be the space {(0, α1, . . . , αn) : αi ∈ R}. Then we assume
that zj → z, set rj = dist(zj ,Σ) and define the rescaled hypersurfaces

Γj = T
zj
rj (Γ

′′ ∩Brj (zj)). Then all the Γj are smooth stable minimal sur-
faces in B1, and thus we can apply Theorem 1.3 to extract a subsequence
that converges to a stable minimal hypersurface in the ball B1/2. But
by (5.8) we know that this limit surface is simply TzΓ

′ ∩B1/2. Since the

convergence is in the C1 topology, we have

lim
z̄→z,z̄∈Γ′′

ν(z̄) = τ(z).

Again this convergence is uniform in compact subsets of γ.
For any z ∈ γ Theorem 1.3 gives us a radius σ > 0 and a function

g′′ ∈ C2({z1 ≥ 0}) with

Γ′′ ∩Bσ(z) = {(z1, . . . , zn, g
′′(z1, . . . , zn)) : z1 > 0}

g′′(0, z2, . . . , zn) = g′(0, z2, . . . , zn)

Dg′′(0, z2, . . . , zn) = Dg′(0, z2, . . . , zn).
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Using elliptic regularity theory (see [11]), we conclude that g′ and g′′

are the restriction of a smooth function g giving a minimal surface ∆.
Now using Theorem 5.3, we conclude that ∆ ⊂ Γ′, and hence that Γ′′ is
a subset of Γ′ in a neighborhood of z. Since this is vaild for every z ∈ γ,
we conclude (5.7).

Step 4: Regularity in the annuli. In this step we show that V is
a minimal hypersurface in the punctured ball Bρ(x) \ {x}. First of all,
we prove

(5.9) Γ′ ∩An(x, ρ, t) = Γ′′ ∩An(x, ρ, t).

Assume for instance that p ∈ Γ′′ \ Γ′. Without loss of generality we can
assume that p is a regular point. Then let ∆ be the connected component
of Γ′′ \ (Sing Γ′′ ∪ Sing Γ′) containing p. ∆ is necessarily contained in
Bt−ε(x); otherwise, by (5.7) and Theorem 5.3 ∆ would coincide with
a connected component of Γ′ \ (Sing Γ′′ ∪ Sing Γ′), contradicting p ∈
Γ′′\Γ′. But then ∆ induces, by Lemma 5.5, a stationary varifold V , with
supp (V ) ⊂ Bt−ε(x). So, for some s ≤ t−ε, we have ∂Bs(x)∩supp (V ) 6=
∅ and supp (V ) ⊂ Bs(x), contradicting Theorem 5.1(ii). This proves
Γ′′ ⊂ Γ′. Precisely the same argument can be used to prove Γ′ ⊂ Γ′′.

Thus we conclude that Γ′ ∪ Γ′′ is in fact a minimal hypersurface in
An(x, s, 2ρ). Since s is arbitrary, this means that Γ′ is in fact contained
in a larger minimal hypersurface Γ ⊂ B2ρ(x) \ {x} and that, moreover,
Γ′′ ⊂ Γ for any second replacement V ′′, whatever is the choice of s (t
being instead fixed).

Now fix such a V ′′ and note that V ′′ Bs(x) = V Bs(x). Note,
moreover, that by Theorem 5.1(ii) we necessarily conclude

supp (V Bs(x)) ∩ ∂Bs(x) ⊂ Γ′′ ⊂ Γ .

Thus, using Lemma 5.4, we conclude supp (V ) ⊂ Γ, which hence proves
the desired regularity of V .

Step 5: Conclusion. The only thing left to analyize are the centers
of the balls Bρ(x) of the previous steps. Clearly, if n ≥ 7, we are done
because by the compactness of M we only have to add possibly a finite
set of points, that is, a 0-dimensional set, to the singular set. In other
words, the centers of the balls can be absorbed in the singular set.

If, on the other hand, n ≤ 6, we need to show that x is a regular
point. If x /∈ supp (‖V ‖), we are done, so we assume x ∈ supp (‖V ‖).
By Lemma 5.2 we know that every tangent cone is a multiple θ(x, V )
of a plane (note that n ≤ 6). Consider the rescaled exponential maps
of Section 5.2 and note that the rescaled varifolds Vr coincide with
(T xr )

−1(Γ) = Γr. Using Theorem 1.3 we get the C1-convergence of sub-
sequences in B1 \ B1/2 and hence the integrality of θ(x, V ) = N .

Fix geodesic coordinates in a ball Bρ(x). Thus, given any small posi-
tive constant c0, if K ∈ N is sufficiently large, there is a hyperplane πK
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such that, on An(x, 2−K−2, 2−K), the varifold V is the union of m(K)
disjoint graphs of Lipschitz functions over the plane πK , all with Lips-
chitz constants smaller than c0, counted with multiplicity j1(K), . . . , jm(K),
with j1 + . . . + jm = N . We do not know a priori that there is a
unique tangent cone to V at x. However, if K is sufficiently large, it
follows that the tilt between two consecutive planes πK and πK+1 is
small. Hence ji(K) = ji(K+1) and the corresponding Lipschitz graphs
do join, forming m disjoint smooth minimal surfaces in the annulus
An(x, 2−K−3, 2−K), topologically equivalent to n-dimensional annuli.
Repeating the process inductively, we find that V Bρ(x) \ {x} is in
fact the union of m smooth disjoint minimal hypersurfaces Γ1, . . . ,Γm

(counted with multiplicities j1 + . . .+ jm = N), which are all, topologi-
cally, punctured n-dimensional balls.

Since n ≥ 2, by Lemma 5.5, each Γi induces a stationary varifold.
Every tangent cone to Γi at x is a hyperplane, and, moreover, the density
of Γi (as a varifold) is everywhere equal to 1. We can therefore apply
Allard’s regularity Theorem (see [1]) to conclude that each Γi is regular.
On the other hand, the Γi are disjoint in Br(x) \ {x} and they contain
x. Therefore, if m > 1, we contradict the classical maximum principle.
We conclude that m = 1 and hence that x is a regular point for V .

Appendix A. Proofs of the technical lemmas

A.1. Varifolds and Caccioppoli set limits.

Proposition A.1. Let {Ωk} be a sequence of Caccioppoli sets and U
an open subset of M . Assume that

(i) D1Ωk → D1Ω in the sense of measures in U ;
(ii) Per (Ωk, U) → Per (Ω, U)

for some Caccioppoli set Ω and denote by V k and V the varifolds induced
by ∂∗Ωk and ∂∗Ω. Then V k → V in the sense of varifolds.

Proof. First, we note that by the rectifiability of the boundaries we
can write

(A.1) V k = Hn ∂∗Ωk ⊗ δTx∂∗Ωk , V = Hn ∂∗Ω⊗ δTx∂∗Ω ,

where ∂∗Ω, ∂∗Ωk are the reduced boundaries and Tx∂
∗Ω is the approx-

imate tangent plane to Ω in x (see chapter 3 of [12] for the relevant
definitions). With the notation µ ⊗ αx we understand, as usual, the
measure ν on a product space X × Y given by

ν(E) =

∫ ∫

1E(x, y) dαx(y) dµ(x) ,

where µ is a Radon measure on X and x 7→ αx is a weak∗ µ-measurable
map from X into M(Y ) (the space of Radon measures on Y ).
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By (ii) we have ‖V k‖ → ‖V ‖ and hence there is W ∈ V(U) such
that (up to subsequences) V k → W . In addition, ‖V ‖ = ‖W‖. By the
disintegration theorem (see theorem 2.28 in [3]) we can write W =
Hn ∂∗Ω⊗ αx. The proposition is proved, once we have proved

(Cl) αx0 = δTx0∂∗Ω for Hn-a.e. x0 ∈ ∂∗Ω.

To prove this, we reduce the situation to the case where Ω is a half space
by a classical blow-up analysis. Having fixed a point x0, a radius r, and
the rescaled exponential maps T x0r : B1 → Br(x0) as in Subsection 5.2,
we define

• V k
r := (T x0r )−1

♯ V k and Vr := (T x0r )−1
♯ V ;

• Ωkr := (T x0r )−1(Ωk) and Ωr := (T x0r )−1(Ω).

Clearly, V k
r and Ωkr are related by the same formulas as in (A.1). Next,

let G be the set of radii r such that

Hn(∂∗Ωk ∩ ∂Br(x0)) = Hn(∂∗Ω ∩ ∂Br(x0)) = 0

for every k and observe that the complement of G is a countable set. De-
note by H the set {x1 < 0}. Then, after a suitable choice of orthonormal
coordinates in B1, we have

(a) D1Ωk
r
→ D1Ωr and Per (Ωkr ,B1) → Per (Ωr,B1) for k → ∞ and

r ∈ G;
(b) D1Ωr → D1H and Per (Ωr,B1) → Per (H,B1) for r → 0, r ∈ G;
(c) T0∂

∗H = Tx0∂
∗Ω;

(d) V k
r → Vr for k → ∞ and r ∈ G.

(The assumption r ∈ G is essential: see proposition 1.62 of [3] or propo-
sition 2.7 of [9]).

Next, for Hn-a.e. x0 ∈ ∂∗Ω we have in addition

(e) Vr → Hn ∂∗H ⊗ αx0
(in fact, if D ⊂ C(PnR) is a dense set, the claim holds for every x0
which is a point of approximate continuity for all the functions x 7→
∫

ϕ(y)dαx(y) with ϕ ∈ D).

By a diagonal argument we get sets Ω̃k = Ωkr(k) such that

(f) D1Ω̃k → D1H and Per (Ω̃k,B1) → Per (H,B1);

(g) Hn ∂∗Ω̃k ⊗ δTx∂∗Ω̃k → Hn ∂∗H ⊗ αx0 .

Let e1 = (1, 0, . . . 0) and ν be the exterior unit normal to ∂∗Ωk. Then
(f) implies

lim
k→∞

∫

∂∗Ω̃k

‖ν − e1‖
2 = lim

k→∞

(

2Hn(∂∗Ω̃k)− 2

∫

∂∗Ω̃k

〈ν, e1〉

)

= 0 .

This obviously gives Hn ∂∗Ω̃k ⊗ δTx∂∗Ω̃k → Hn ∂∗H ⊗ δT0∂∗H , which

together with (c) and (g) gives αx0 = δT0∂∗H = δTx0∂∗Ω, which is indeed

the claim (Cl). q.e.d.
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A.2. Proof of Theorem 5.3. LetW ⊂ U be the maximal open set on
which Σ1 and Σ2 coincide. If W 6= U , then there is a point p ∈W ∩ U .
In a ball Bρ(p), Σ2 is the graph of a smooth function w over Σ1 (as
usual, we use normal coordinates in a regular neighborhood of Σ1). By
a straightfoward computation, w satisfies a differential inequality of the
form |AijD2

ijw| ≤ C(|Dw| + |w|) where A is a smooth function with
values in symmetric matrices, satisfying the usual ellipticity condition
Aijξiξj ≥ λ|ξ2|, where λ > 0. Let x ∈ W be such that dist(x, p) < ε.
Then w vanishes at infinite order in x and hence, according to the
classical result of Aronszajn (see [4]), w ≡ 0 on a ball Br(x) where
r depends on λ, A, C and dist(x, ∂Bρ(p)), but not on ε. Hence, by
choosing ε < r we contradict the maximality of W .

A.3. Proof of Lemma 5.4. Let T be the set of points y ∈ supp (V )
such that the approximate tangent plane to V in y is transversal to the
sphere ∂B|y−x|(x). The claim follows from the density of T in supp (V ).
The (quite short) proof of this statement can be found for instance in
appendix B of [6] (compare with lemma B.2 therein).

A.4. Proof of Lemma 5.5. Set Γr := Γ\S and denote by H the mean
curvature of Γr and by ν the unit normal to Γr. Obviously H = 0. Let
V ′ be the varifold induced by ∆. We claim that

(A.2) [δV ′](χ) =

∫

∆
div∆ χ = −

∫

∆
Hχ · ν

for any vector field χ ∈ Xc(U).
The first identity is the classical computation of the first variation

(see lemma 9.6 of [20]). To prove the second identity, fix a vector field
χ and a constant ε > 0. W.l.o.g. we assume S ⊂ Γ. By the definition of
the Hausdorff measure, there exists a covering of S with balls Bri(xi)
centered on xi ∈ S such that ri < ε and

∑

i r
n−1
i ≤ ε. By the compact-

ness of S ∩ supp (χ) we can find a finite covering {Bri(xi)}i∈{1,...,N}. Fix
smooth cutoff functions ϕi with

• ϕi = 1 on M \B2ri(xi) and ϕi = 0 on Bri(xi);
• 0 ≤ ϕi ≤ 1, |∇ϕi| ≤ Cr−1

i .

(Note that C is in fact only a geometric constant.) Then χε := χΠϕi
is compactly supported in U \ S. Thus,

(A.3)

∫

∆
div∆ χε = −

∫

∆
Hχε · ν .
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The RHS of (A.3) obviously converges to the RHS of (A.2) as ε → 0.
As for the left-hand side, we estimate

∫

∆
|div∆(χ− χε)| ≤

∑

i

∫

Bri
(xi)∩∆

(‖∇χ‖C0 + ‖χ‖C0‖∇ϕi‖C0)

≤
∑

i

‖V ‖(Bri(xi))‖χ‖C1(1 + Cr−1
i )(A.4)

≤ C‖χ‖C1

∑

i

(rni + Crn−1
i ) < Cε

where the second inequality in the last line follows from the monotonic-
ity formula. We thus conclude that the LHS of (A.3) converges to the
LHS of (A.2).
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