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EXPONENTIAL ESTIMATES

FOR PLURISUBHARMONIC FUNCTIONS

AND STOCHASTIC DYNAMICS

Tien-Cuong Dinh, Viêt-Anh Nguyên & Nessim Sibony

Abstract

We prove exponential estimates for plurisubharmonic functions
with respect to Monge-Ampère measures with Hölder continuous
potential. As an application, we obtain several stochastic proper-
ties for the equilibrium measures associated to holomorphic maps
on projective spaces. More precisely, we prove the exponential de-
cay of correlations, the central limit theorem for general d.s.h.
observables, and the large deviations theorem for bounded d.s.h.
observables and Hölder continuous observables.

1. Introduction

In this paper we prove exponential estimates for plurisubharmonic
functions with respect to a class of probability measures which contains
the measures of maximal entropy for many dynamical systems in several
complex variables. This permits us to prove the large deviations theo-
rem for these dynamical systems and also sharp decay of correlation
estimates. The results seem to be new even in dimension 1. This type
of exponential estimates should play a role in the study of stochastic
properties of dynamical systems in the complex domain.

Let X be a complex manifold of dimension k and K a compact subset
of X. Let µ be a positive measure on X. If ψ is a plurisubharmonic
function and if µ is given by a differential form with coefficients in Lploc,

p > 1, then e−αψ restricted to K is integrable with respect to µ for some
constant α > 0. The case where X is an open set in C

k and µ is the
Lebesgue measure is a classical result (see Hörmander [22] and Skoda
[29]). The general case is a direct consequence. These estimates are
very useful in complex geometry; see e.g., Demailly’s book [5] and the
references therein. They are also very useful in Kähler-Einstein geometry
and have been developed by Tian-Yau [30, 31, 32].

In this paper, we consider a class of measures satisfying an analogous
property. We first recall some notions (see [8]). The measure µ is said to
be locally moderate if for any open set U ⊂ X, any compact set K ⊂ U ,
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and any compact familly F of plurisubharmonic functions (p.s.h. for
short) on U , there are constants α > 0 and c > 0 such that

∫

K
e−αψdµ ≤ c for ψ ∈ F .

This inequality implies that F is bounded in Lploc(µ) for 1 ≤ p <∞. In
particular, µ has no mass on pluripolar sets. The existence of c and α
is equivalent to the existence of c′ > 0 and α′ > 0 satisfying

µ{z ∈ K, ψ(z) < −M} ≤ c′e−α
′M

for M ≥ 0 and ψ ∈ F . Note that the functions on F are uniformly
bounded from above on K (see e.g., [5]). Applying the above estimates
to log ‖z − a‖, we obtain that the µ-measure of a ball of center a ∈ K

and of small radius r is bounded by rα
′′

for some α′′ > 0. In the one
variable case, this property is equivalent to the fact that µ is locally
moderate.

Fix a hermitian form ω, i.e., a smooth strictly positive (1, 1)-form, on
X. Let S be a positive closed current of bidegree (p, p) on X. Define the
trace measure of S by σS := S∧ωk−p. We say that S is locally moderate
if its trace measure is locally moderate. So, if S is given by a continuous
differential form, then it is locally moderate. Observe that the notion of
locally moderate current does not depend on the choice of ω.

Consider a continuous real-valued function u on the support supp(S)
of S. The multiplication uS defines a current on X, so the current
ddc(uS) is also well-defined. The function u is S-p.s.h. if ddc(uS) is
a positive current. If R is a positive closed (1, 1)-current on X, then
we can locally write R = ddcu where u is a p.s.h. function. We call
u a local potential of R. If R has local continuous potentials, then the
wedge product R ∧ S is well-defined and is locally given by R ∧ S :=
ddc(uS). Indeed, it is enough to have that u is locally integrable with
respect to the trace measure of S. The wedge product is a positive closed
(p+1, p+1)-current which does not depend on the choice of u. We refer
the reader to [1, 5, 18, 2, 13] for the intersection theory of currents.
Here is one of our main results.

Theorem 1.1. Let S be a locally moderate positive closed (p, p)-
current on a complex manifold X. If u is a Hölder continuous S-p.s.h.
function, then ddc(uS) is locally moderate. In particular, if R is a pos-
itive closed (1, 1)-current with Hölder continuous local potentials, then
R ∧ S is locally moderate.

If u is a continuous p.s.h. function on X, then the Monge-Ampère
(p, p)-currents, 1 ≤ p ≤ k, associated to u are defined by induction

(ddcu)p := ddcu ∧ . . . ∧ ddcu (p times).
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These currents are very useful in complex analysis and geometry. We
have the following corollary.

Corollary 1.2. Let u be a Hölder continuous p.s.h. function on X.
Then the Monge-Ampère currents (ddcu)p are locally moderate.

We give now an application to dynamics. Consider a non-invertible
holomorphic endomorphism f of the projective space P

k. Let d ≥ 2 de-
note the algebraic degree of f . That is, f is induced by a homogeneous
polynomial endomorphism of degree d on C

k+1. If V is a subvariety of
pure codimension p on P

k, then f−1(V ) is a subvariety of pure codi-
mension p and of degree (counted with multiplicity) dp deg(V ). More
generally, if S is a positive closed (p, p)-current on P

k, then f∗(S) is a
well-defined positive closed (p, p)-current of mass dp‖S‖. Here, we con-
sider the metric on P

k induced by the Fubini-Study form ωFS that we

normalize by
∫
Pk ω

k
FS = 1. The mass of S is given by ‖S‖ := 〈S, ωk−pFS 〉.

We refer the reader to [26, 12] for the definition of the pull-back oper-
ator f∗ on positive closed currents.

Recall some dynamical properties of f and its iterates fn := f ◦
· · · ◦ f , n times; see e.g., the survey article [28]. One can associate to
f some canonical invariant currents. Indeed, d−n(fn)∗(ωFS) converge to
a positive closed (1, 1)-current T of mass 1 on P

k. The current T has
locally Hölder continuous potentials. So, one can define T p := T∧. . .∧T ,
p times. The currents T p are the Green currents associated to f , and
µ := T k is the Green measure of f . They are totally invariant by f :
d−pf∗(T p) = d−k+pf∗(T

p) = T p.

Corollary 1.3. Let f be a non-invertible holomorphic endomorphism
of Pk. Then the Green currents and the Green measure associated to f
are locally moderate.

This property of the Green measure µ allows us to prove the cen-
tral limit theorem and the large deviations theorem for a large class of
observables. Recall that a quasi-p.s.h. function on P

k is locally the dif-
ference of a p.s.h. function and a smooth function. A function is called
d.s.h. if it is equal outside a pluripolar set to the difference of two quasi-
p.s.h. functions. We identify two d.s.h. functions if they are equal out of
a pluripolar set. Moreover, d.s.h. functions are integrable with respect
to µ (see e.g., [5, 10] and Section 3). Recall that µ has no mass on
pluripolar sets.

Corollary 1.4. Let f be a non-invertible holomorphic endomorphism
of P

k. Let µ denote its Green measure. If a d.s.h. function ψ on P
k

satisfies 〈µ,ψ〉 = 0 and is not a coboundary, then it satisfies the central
limit theorem with respect to µ.

The reader will find more details in Sections 3 and 4. Corollary 1.4
was known for ψ bounded d.s.h., and for ψ Hölder continuous, see
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[17, 8, 10, 11]. The result was recently extended by Dupont to un-
bounded functions ψ with analytic singularities such that eψ is Hölder
continuous [15]. He uses Ibragimov’s approach and gives an application
of the central limit theorem (see also [16]). Our result relies on the
verification of Gordin’s condition in Theorem 4.1. Some finer stochastic
properties of µ (the almost-sure invariance principle, the Donsker and
Strassen principles, and the law of the iterated logarithm) can be de-
duced from the so-called Philipp-Stout’s condition proved by Dupont
[15] or Gordin’s condition that we obtain here (see [20]). We refer to
[6, 21, 25, 7, 27, 36] and the references therein for some results in
the case of dimension 1. We will prove in Section 5 that bounded d.s.h.
functions and Hölder continuous functions satisfy the large deviations
theorem.

Note that Corollary 1.3 can be extended to several situations, in par-
ticular to Hénon maps, to regular polynomial automorphisms and also to
automorphisms of compact Kähler manifolds [28, 9]. For a simple proof
of the Hölder continuity of Green functions, see [13, Lemma 5.4.2].

Acknowledgment. We would like to thank the referee for his remarks.

2. Locally moderate currents

In this section, we give the proof of Theorem 1.1. Assume that S is
moderate and u is a Hölder continuous function on supp(S) with Hölder
exponent 0 < ν ≤ 1.

The problem is local. So, we can assume that U = X is the ball B2 of
center 0 and of radius 2 in C

k, K is the closed ball B1/2 of radius 1/2,

and ω is the canonical Kähler form ddc‖z‖2. Here, z = (z1, . . . , zk) is a
coordinate system of Ck. We replace S by S∧ωk−p−1 in order to assume
that S is of bidegree (k − 1, k − 1). We have the following lemma.

Lemma 2.1. Let G be a compact family of p.s.h. functions on B2.
Then G is bounded in L1

loc(σS). Moreover, the mass of the measure
ddcϕ ∧ S is locally bounded on B2, uniformly on ϕ ∈ G .

Proof. Observe that on any compact set H of B2, the functions of G

are bounded from above by the same constant. Subtracting from these
functions a constant allows us to assume that they are negative on H.
We deduce from the fact that S is locally moderate that

∫
H ϕdσS is

bounded uniformly on ϕ ∈ G . This proves the first assertion.
For the second assertion, consider a compact set H ⊂ B2. Let 0 ≤

χ ≤ 1 be a cut-off function, smooth, supported on a compact set L ⊂ B2

and equal to 1 on H. The mass of ddcϕ∧S is bounded by the following
integral:

∫
χddc(ϕS) =

∫
ddcχ ∧ ϕS ≤ ‖χ‖C 2

∫

L
|ϕ|dσS .
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We have seen that the last term is bounded uniformly on ϕ. q.e.d.

We will use the following classical lemma.

Lemma 2.2. Let u be a ν-Hölder continuous function on a closed
subset F of B2. Then u can be extended to a ν-Hölder continuous func-
tion on B1.

Proof. We can assume that |u| ≤ 1. Define for x ∈ B1,

ũ(x) := min{u(y) +A‖x− y‖ν , y ∈ F ∩B1}

where A > 0 is a constant large enough so that |u(a)−u(b)| ≤ A‖a−b‖ν
on F ∩B1. It follows that ũ(x) = u(x) for x ∈ F ∩B1. We only have to
check that ũ is ν-Hölder continuous.

Consider two points x and x′ in B1 such that ũ(x) ≤ ũ(x′). The
aim is to bound ũ(x′) − ũ(x). Let y be a point in F ∩ B1 such that
ũ(x) = u(y) +A‖x− y‖ν . By definition of ũ(x′), we have

ũ(x′)− ũ(x) ≤ u(y) +A‖x′ − y‖ν − ũ(x)

≤ A‖x′ − y‖ν −A‖x− y‖ν

≤ A(‖x′ − x‖+ ‖x− y‖)ν −A‖x− y‖ν

≤ A‖x′ − x‖ν .

This completes the proof. q.e.d.

We continue the proof of Theorem 1.1. For simplicity, let u denote
the extension of u to B1 as above for F = supp(S). Subtracting from
u a constant allows us to assume that u ≤ −1 on B1. Define v(z) :=
max(u(z), A log ‖z‖) for a constant A large enough. Observe that since
A is large, v is equal to u on B2/3 and to A log ‖z‖ near the boundary of
B1. Moreover, v is ν-Hölder continuous. We are interested in an estimate
on B1/2. So, replacing u by v allows us to assume that u = A log ‖z‖
on B1 \ B1−4r for some constant 0 < r < 1/16. Fix a smooth function
χ with compact support in B1−r, equal to 1 on B1−2r, and such that
0 ≤ χ ≤ 1.

Lemma 2.3. If ϕ is a p.s.h. function on B2, then
∫

B1

χϕddc(uS) = −
∫

B1−r\B1−3r

ddcχ ∧ ϕuS −
∫

B1−r\B1−3r

dχ ∧ ϕdcu ∧ S

+

∫

B1−r\B1−3r

dcχ ∧ ϕdu ∧ S +

∫

B1−r

χuddcϕ ∧ S.

Proof. Observe that u is smooth on B1 \ B1−4r. So, all the previous
integrals make sense (see also Lemma 2.1). On the other hand, one can
approximate ϕ by a decreasing sequence of smooth p.s.h. functions (one
reduces slightly B2 if necessary). Therefore, it is enough to prove the
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lemma for ϕ smooth. A direct computation using integration by parts
gives
∫

B1

χϕddc(uS) =

∫

B1

ddc(χϕ) ∧ uS =

∫

B1

ddcχ ∧ ϕuS +

∫

B1

dχ ∧ dcϕ ∧ uS

−
∫

B1

dcχ ∧ dϕ ∧ uS +

∫

B1

χddcϕ ∧ uS.

We also have
∫

B1

dχ ∧ ϕdc(uS) =

∫

B1

dc(dχϕ) ∧ uS = −
∫

B1

ddcχ ∧ ϕuS

−
∫

B1

dχ ∧ dcϕ ∧ uS

and
∫

B1

dcχ ∧ ϕd(uS) =

∫

B1

d(dcχϕ) ∧ uS =

∫

B1

ddcχ ∧ ϕuS

−
∫

B1

dcχ ∧ dϕ ∧ uS.

It follows from the above computation that
∫

B1

χϕddc(uS) = −
∫

B1

ddcχ ∧ ϕuS −
∫

B1

dχ ∧ ϕdc(uS)

+

∫

B1

dcχ ∧ ϕd(uS) +
∫

B1

χddcϕ ∧ uS.

The fact that ddcχ, dχ, dcχ are supported in B1−r \ B1−2r and χ is
supported in B1−r implies the result. q.e.d.

End of the proof of Theorem 1.1. Since F is compact, it is locally
bounded from above. Subtracting from each function ϕ ∈ F a con-
stant allows us to assume that ϕ ≤ 0 on B1. Define ϕM := max(ϕ,−M)
and ψM := ϕM−1−ϕM for ϕ ∈ F and M ≥ 0. Let G denote the family
of all these functions ϕM . This family is compact in L1

loc. Lemma 2.1
implies that in B1 the masses of ddcϕM and of ddcϕM ∧ S are locally
bounded independently of ϕ ∈ F and of M . The function ψM is pos-
itive, bounded by 1, supported in {ϕ < −M + 1}, and equal to 1 on
{ϕ < −M}. The mass of ddc(uS) on {ϕ < −M} is bounded by

∫
χψMdd

c(uS),

with χ as in Lemma 2.3 above. We will show that this integral is .

e−ανM/3 for some α > 0. This implies the result.
Since S is locally moderate, we have the following estimate for some

α > 0:

σS
{
z ∈ B1−r, ϕ(z) < −M + 1

}
. e−αM .
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Lemma 2.3 implies that
∫

B1

χψMdd
c(uS) = −

∫

B1−r\B1−3r

ddcχ ∧ ψMuS −
∫

B1−r\B1−3r

dχ ∧ ψMd
cu ∧ S

+

∫

B1−r\B1−3r

dcχ ∧ ψMdu ∧ S +

∫

B1−r

χuddcψM ∧ S.

The first three integrals on the right-hand side are . e−αM . This is a
consequence of the above estimate on σS and the smoothness of u on
B1 \B1−4r. It remains to estimate the last integral.

We now use the ν-Hölder continuity of u. Define ǫ := e−αM/3. This
is a small constant since we only have to consider M big. Write u =
uǫ + (u − uǫ), where uǫ is defined on B1−r and is obtained from u by
convolution with a smooth approximation of identity. The convolution
can be chosen so that ‖uǫ‖C 2 . ǫ−2 and ‖u − uǫ‖∞ . ǫν = e−ανM/3.
Moreover, the C 2-norm of uǫ on B1−r \B1−3r is bounded independently
of ǫ since u = log ‖z‖ on B1 \B1−4r. We have
∫
χuddcψM ∧ S =

∫
χddcψM ∧ Suǫ +

∫
χddcψM ∧ S(u− uǫ)

=

∫
χddcψM ∧ Suǫ +

∫
χ(ddcϕM−1 − ddcϕM ) ∧ S(u− uǫ).

By Lemma 2.1, the last integral is . ‖u− uǫ‖∞ . e−ανM/3.
Using an expansion as above, we obtain

∫
χddcψM ∧ Suǫ =

∫

B1−r\B1−3r

ddcχ ∧ ψMSuǫ +

∫

B1−r\B1−3r

dχ ∧ ψMS ∧ dcuǫ

−
∫

B1−r\B1−3r

dcχ ∧ ψMS ∧ duǫ +
∫
χψMS ∧ ddcuǫ.

As above, the first three integrals on the right-hand side are . e−αM

because uǫ has bounded C 2-norm on B1−r \ B1−3r. Consider the last
integral. Since ψM is supported in {ϕ ≤ −M + 1}, the estimate on σS
implies that the considered integral is . e−αM‖uǫ‖C 2 . e−αM ǫ−2 =
e−ανM/3. We deduce from all the previous estimates that

∫
χuddcψM ∧ S . e−ανM/3.

This completes the proof. q.e.d.

Remark 2.4. On a compact Kähler manifold X, one can introduce
the notion of (globally) moderate current. For this purpose, in the defi-
nition, one replaces local p.s.h. functions by (global) quasi-p.s.h. func-
tions. In the case where X = P

k, the first and third authors introduced
in [13] a notion of super-potential for positive closed (p, p)-currents.
One can prove that currents with Hölder continuous super-potentials
are moderate and the intersection of currents with Hölder continuous
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super-potentials admits Hölder continuous super-potentials. If a (p, p)-
current admits a Hölder continuous potential, it has a Hölder continuous
super-potential and then is moderate.

3. Decay of correlations

Let µ be the Green measure of an endomorphism f of algebraic degree
d ≥ 2 of Pk. In this section, we will prove that µ is mixing and expo-
nentially mixing in different senses. If φ is a d.s.h. function on P

k, we
can write ddcφ = R+−R− where R± are positive closed (1, 1)-currents.
The d.s.h. norm of φ is defined by

‖φ‖DSH := ‖φ‖L1(Pk) + inf ‖R±‖,
with R± as above. Note that R+ and R− have the same mass since they
are cohomologous, and that ‖ · ‖DSH . ‖ · ‖C 2 . The following result was
proved in [17, 8, 10] for p = +∞.

Theorem 3.1. Let f be a holomorphic endomorphism of algebraic
degree d ≥ 2 and µ its Green measure. Then for every 1 < p ≤ +∞
there is a constant c > 0 such that

|〈µ, (ϕ ◦ fn)ψ〉 − 〈µ,ϕ〉〈µ,ψ〉| ≤ cd−n‖ϕ‖Lp(µ)‖ψ‖DSH

for n ≥ 0, ϕ in Lp(µ) and ψ d.s.h. Moreover, for 0 ≤ ν ≤ 2 there is a
constant c > 0 such that

|〈µ, (ϕ ◦ fn)ψ〉 − 〈µ,ϕ〉〈µ,ψ〉| ≤ cd−nν/2‖ϕ‖Lp(µ)‖ψ‖C ν

for n ≥ 0, ϕ in Lp(µ) and ψ of class C ν.

The expression 〈µ, (ϕ ◦ fn)ψ〉 − 〈µ,ϕ〉〈µ,ψ〉 is called the correlation
of order n between the observables ϕ and ψ. The measure µ is said to
be mixing if this correlation converges to 0 as n tends to infinity, for
smooth observables (or equivalently, for continuous, bounded or L2(µ)
observables).

Observe that the second assertion in Theorem 3.1 is a consequence
of the first one. Indeed, on one hand, since ‖ψ‖DSH . ‖ψ‖C 2 , we obtain
the second assertion for ν = 2. On the other hand, we have since µ is
invariant

|〈µ, (ϕ ◦ fn)ψ〉 − 〈µ,ϕ〉〈µ,ψ〉| ≤ 2‖ϕ‖L1(µ)‖ψ‖C 0 . ‖ϕ‖Lp(µ)‖ψ‖C 0 .

So, the second assertion holds for ν = 0. The theory of interpolation
between the Banach spaces C 0 and C 2 [33] implies that

|〈µ, (ϕ ◦ fn)ψ〉 − 〈µ,ϕ〉〈µ,ψ〉| . d−nν/2‖ϕ‖Lp(µ)‖ψ‖C ν .

We prove now the first assertion in Theorem 3.1. Since µ is invariant,
the assertion is clear when ψ is constant. Indeed, in this case, the cor-
relations vanish. So, subtracting from ψ a constant allows us to assume
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that 〈µ,ψ〉 = 0. We have to bound |〈µ, (ϕ ◦ fn)ψ〉|. Consider the follow-
ing weak topology on the space DSH(Pk) of d.s.h. functions. We say that
the sequence (φn) converges to φ in DSH(Pk) if φn → φ in the sense of
currents and if ‖φn‖DSH is bounded uniformly on n. Recall here some
basic properties of d.s.h. functions (see [10]).

Proposition 3.2. Let φ be a d.s.h. function. There is a constant
c > 0 independent of φ and two negative quasi-p.s.h. functions φ± such
that φ = φ+ − φ−, ‖φ±‖DSH ≤ c‖φ‖DSH, and dd

cφ± ≥ −c‖φ‖DSHωFS.
Moreover, |φ| is d.s.h. and ‖|φ|‖DSH ≤ c‖φ‖DSH. If φn → φ in DSH(Pk),
then φn → φ in Lp for 1 ≤ p < +∞.

Since µ is locally a Monge-Ampère measure with continuous potential,
ψ 7→ 〈µ,ψ〉 is continuous with respect to the considered topology on
DSH(Pk). We say that µ is PC. This allows us to prove that the DSH-
norm of φ is equivalent to the norm

‖φ‖′DSH := |〈µ, φ〉| + inf ‖R±‖

where we write as above ddcφ = R+−R− (see [10]). In particular, log |h|
is d.s.h. for any rational function h on P

k, and similarly for the potential
u of any positive closed (1, 1)-current R, i.e., a quasi-p.s.h. function u
such that ddcu = R− cωFS for some constant c.

Consider the codimension 1 subspace DSH0(P
k) of DSH(Pk) defined

by 〈µ, φ〉 = 0. On this subspace, one has ‖φ‖′DSH = inf ‖R±‖. Recall
that µ is totally invariant : f∗µ = dkµ. Then the space DSH0(P

k) is
invariant under f∗. Recall that f∗φ is defined by

f∗φ(x) :=
∑

y∈f−1(x)

φ(y)

where the points in f−1(x) are counted with multiplicities (there are
exactly dk points). The mass of a positive closed current on P

k can
be computed cohomologically. We have ‖f∗R±‖ = dk−1‖R±‖ and hence
‖f∗φ‖′DSH ≤ dk−1‖φ‖′DSH on DSH0(P

k). Define also the Perron-Frobenius
operator by

Λφ := d−kf∗φ.

Since µ is totally invariant, this is the adjoint operator of f∗ on L2(µ).
Observe that ‖Λφ‖′DSH ≤ d−1‖φ‖′DSH on DSH0(P

k). So, Λ has a spectral

gap on DSH(Pk): the constant functions correspond to the eigenvalue 1
and the spectral radius on DSH0(P

k) is bounded by d−1 < 1.

Proposition 3.3. There are constants c > 0 and α > 0 such that for
ψ ∈ DSH0(P

k) with ‖ψ‖DSH ≤ 1 and for every n ≥ 0 we have

〈µ, eαdn|Λnψ|〉 ≤ c.
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In particular, there is a constant c > 0 independent of ψ ∈ DSH0(P
k)

such that

‖Λnψ‖Lq(µ) ≤ cqd−n‖ψ‖DSH

for every n ≥ 0 and every 1 ≤ q < +∞.

Proof. Since ‖ · ‖DSH and ‖ · ‖′DSH are equivalent, we assume for sim-
plicity that ‖ψ‖′DSH = 1. Observe that dnΛnψ belongs to the family of

functions in DSH0(P
k) with ‖·‖′DSH norm bounded by 1. It follows from

Proposition 3.2 that dn|Λnψ| belongs to a compact family of d.s.h. func-
tions. By Theorem 1.1 and Proposition 3.2, there are positive constants
α and c such that

〈µ, eαdn|Λnψ|〉 ≤ c.

For the second assertion, it is enough to assume that q is a positive
integer. Since ex ≥ xq/q! for x ≥ 0, we deduce, using the inequality
q! ≤ qq, that ‖dnΛnψ‖Lq(µ) ≤ cq for some constant c > 0 independent
of ψ, n, and q. q.e.d.

End of the proof of Theorem 3.1. Let 1 ≤ q < +∞ such that p−1 +
q−1 = 1. Using a simple coordinate change, Proposition 3.3, and the
Hölder inequality, we obtain that

|〈µ, (ϕ ◦ fn)ψ〉| = d−kn|〈(fn)∗µ, (ϕ ◦ fn)ψ〉| = |〈µ,ϕ Λnψ〉|
. ‖ϕ‖Lp(µ)‖Λnψ‖Lq(µ) . d−n‖ϕ‖Lp(µ)‖ψ‖DSH.

This completes the proof. q.e.d.

It is shown in [8] that µ is mixing of any order and is K-mixing. More
precisely, we have for every ψ in L2(µ),

lim
n→∞

sup
‖ϕ‖L2(µ)=1

|〈µ, (ϕ ◦ fn)ψ〉 − 〈µ,ϕ〉〈µ,ψ〉| = 0.

The reader can deduce the K-mixing from Theorem 3.1 and the fact
that Λ has norm 1 when it acts on L2(µ).

The following result gives the exponential mixing of any order. It can
be extended to Hölder continuous observables using the interpolation of
operators.

Theorem 3.4. Let f , d, and µ be as in Theorem 3.1 and r ≥ 1 an
integer. Then there is a constant c > 0 such that

∣∣∣〈µ,ψ0(ψ1 ◦ fn1) . . . (ψr ◦ fnr)〉 −
r∏

i=0

〈µ,ψi〉
∣∣∣ ≤ cd−n

r∏

i=0

‖ψi‖DSH

for 0 = n0 ≤ n1 ≤ · · · ≤ nr, n := min0≤i<r(ni+1 − ni), and ψi d.s.h.

Proof. The proof is by induction on r. The case r = 1 is a consequence
of Theorem 3.1. Suppose the result is true for r−1. We have to check it
for r. Without loss of generality, assume that ‖ψi‖DSH ≤ 1. This implies
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that m := 〈µ,ψ0〉 is bounded. The invariance of µ and the hypothesis
of induction imply that

∣∣∣〈µ,m(ψ1 ◦ fn1) . . . (ψr ◦ fnr)〉 −
r∏

i=0

〈µ,ψi〉
∣∣∣

=
∣∣∣〈µ,mψ1(ψ2 ◦ fn2−n1) . . . (ψr ◦ fnr−n1)〉 −m

r∏

i=1

〈µ,ψi〉
∣∣∣ ≤ cd−n

for some constant c > 0. In order to get the desired estimate, it is enough
to show that∣∣∣〈µ, (ψ0 −m)(ψ1 ◦ fn1) . . . (ψr ◦ fnr)〉

∣∣∣ ≤ cd−n.

Observe that the operator (fn)∗ acts on Lp(µ) for p ≥ 1 and its norm is
bounded by 1. Using the invariance of µ and the Hölder inequality, we
get for p := r + 1,

∣∣∣〈µ, (ψ0 −m)(ψ1 ◦ fn1) . . . (ψr ◦ fnr)〉
∣∣∣

≤
∣∣∣〈µ,Λn1(ψ0 −m)ψ1 . . . (ψr ◦ fnr−n1)〉

∣∣∣

≤ ‖Λn1(ψ0 −m)‖Lp(µ)‖ψ1‖Lp(µ) . . . ‖ψr ◦ fnr−n1‖Lp(µ)

≤ cd−n1‖ψ1‖Lp(µ) . . . ‖ψr‖Lp(µ),

for some constant c > 0. Since ‖ψi‖Lp(µ) . ‖ψi‖DSH, the previous es-
timates imply the result. Note that as in Theorem 3.1, it is enough to
assume that ψi is d.s.h. for i ≤ r− 1 and ψr is in L

p(µ) for some p > 1.
q.e.d.

We obtain from Proposition 3.3 the following result.

Proposition 3.5. Let 0 < ν ≤ 2 be a constant. There are constants
c > 0 and α > 0 such that if ψ is a ν-Hölder continuous function with
‖ψ‖C ν ≤ 1 and 〈µ,ψ〉 = 0, then

〈µ, eαdnν/2 |Λnψ|〉 ≤ c for every n ≥ 0.

Moreover, there is a constant c > 0 independent of ψ such that

‖Λnψ‖Lq(µ) ≤ cqν/2d−nν/2

for every n ≥ 0 and every 1 ≤ q < +∞.

Proof. We only consider the spaces of functions ψ such that 〈µ,ψ〉 =
0. By Proposition 3.3, since ‖ · ‖DSH . ‖ · ‖C 2 , we have

‖Λnψ‖Lq(µ) ≤ cqd−n‖ψ‖C 2 ,

with c > 0 independent of q and of ψ. On the other hand, by definition
of Λ, we have

‖Λnψ‖Lq(µ) ≤ ‖Λnψ‖L∞(µ) ≤ ‖ψ‖C 0 .
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The theory of interpolation between the Banach spaces C 0 and C 2 [33]
(applied to the linear operator ψ 7→ Λnψ − 〈µ,ψ〉) implies that

‖Λnψ‖Lq(µ) ≤ Aν [cqd
−n]ν/2‖ψ‖C ν ,

for some constant Aν > 0 depending only on ν and on P
k. This gives

the second assertion in the proposition.
For the first assertion, assume that ‖ψ‖C ν ≤ 1. Fix a constant α > 0

small enough. We have (we can assume c ≥ 1)

〈µ, eαdnν/2 |Λnψ|〉 =
∑

q≥0

1

q!
〈µ, |αdnν/2Λnψ|q〉 ≤

∑

q≥0

1

q!
αqcqqq.

By Stirling’s formula, the last sum converges. This implies the result.
q.e.d.

4. Central limit theorem

In this section, we give the proof of Corollary 1.4. We first recall some
facts [23, 35]. Let (M,F ,m) be a probability space and g : M → M
a measurable map which preserves m, i.e., m is g∗-invariant : g∗m =
m. The measure m is ergodic if, for any measurable set A such that
g−1(A) = A, we have m(A) = 0 or m(A) = 1. This is equivalent to
the property that m is extremal in the convex set of invariant proba-
bility measures (if m is mixing, then it is ergodic). When m is ergodic,
Birkhoff’s theorem implies that if ψ is an observable in L1(m), then

lim
n→∞

1

n

[
ψ(x) + ψ(g(x)) + · · ·+ ψ(gn−1(x))

]
= 〈m,ψ〉

for m-almost every x.
Assume now that 〈m,ψ〉 = 0. Then the previous limit is equal to

0. The central limit theorem (CLT for short), when it holds, gives the
speed of this convergence. We say that ψ satisfies the CLT if there is a
constant σ > 0 such that

1√
n

[
ψ(x) + ψ(g(x)) + · · ·+ ψ(gn−1(x))

]

converges in distribution to the Gaussian random variable N (0, σ) of
mean 0 and of variance σ. Recall that ψ is a coboundary if there is a
function ψ′ in L2(µ) such that ψ = ψ′ − ψ′ ◦ g. In this case, one easily
checks that

lim
n→∞

1√
n

[
ψ(x)+ψ(g(x))+· · ·+ψ(gn−1(x))

]
= lim

n→∞

1√
n

[
ψ′(x)−ψ′(gn(x))

]
= 0

in distribution. So, ψ does not satisfies the CLT (sometimes, one says
that it satisfies the CLT for σ = 0).

The CLT can be deduced from some strong mixing, (see [3, 19, 24,
34]). In the following result, E(ψ|Fn) denotes the expectation of ψ with
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respect to Fn, that is, ψ 7→ E(ψ|Fn) is the orthogonal projection from
L2(m) onto the subspace generated by Fn-measurable functions.

Theorem 4.1 (Gordin). Consider the decreasing sequence Fn :=
g−n(F ), n ≥ 0, of algebras. Let ψ be a real-valued function in L2(m)
such that 〈m,ψ〉 = 0. Assume that

∑

n≥0

‖E(ψ|Fn)‖L2(m) <∞.

Then the positive number σ defined by

σ2 := 〈m,ψ2〉+ 2
∑

n≥1

〈m,ψ(ψ ◦ gn)〉

is finite. It vanishes if and only if ψ is a coboundary. Moreover, when
σ 6= 0, then ψ satisfies the CLT with variance σ.

Note that σ is equal to the limit of n−1/2‖ψ + · · · + ψ ◦ gn−1‖L2(m).
The last expression is equal to ‖ψ‖L2(m) if the family (ψ ◦ gn)n≥0 is

orthogonal in L2(m).
We now prove Corollary 1.4. Since µ is mixing, it is ergodic. So, we

can apply Gordin’s theorem to the map f on (Pk,B, µ) where B is the
canonical Borel algebra.

Lemma 4.2. Let Bn := f−n(B) for n ≥ 0. Then for φ ∈ L2(µ) we
have

E(φ|Bn) = (Λnφ) ◦ fn and ‖E(φ|Bn)‖L2(µ) = ‖Λnφ‖L2(µ).

Proof. Consider a function in L2(µ) which is measurable with respect
to Bn. It has the form ξ ◦fn. We have ‖ξ ◦fn‖L2(µ) = ‖ξ‖L2(µ) since µ is

invariant. Hence, ξ ∈ L2(µ). We deduce from the identity d−kn(fn)∗µ =
µ that

‖E(φ|Bn)‖L2(µ) = sup
‖ξ‖L2(µ)=1

|〈µ, (ξ ◦ fn)φ〉|

= sup
‖ξ‖L2(µ)=1

d−kn|〈(fn)∗µ, (ξ ◦ fn)φ〉|

= sup
‖ξ‖L2(µ)=1

|〈µ, ξΛnφ〉|

= ‖Λnφ‖L2(µ).

The computation also shows that the previous supremum is reached
when ξ is proportional to Λnφ. It follows that E(φ|Bn) = (Λnφ) ◦ fn.
q.e.d.

End of the proof of Corollary 1.4. By Proposition 3.3 and Lemma 4.2,
since ψ is d.s.h., we have ‖E(ψ|Bn)‖L2(µ) . d−n. Hence,

∑
n≥0 ‖E(ψ|Bn)‖L2(µ)

converges. It is enough to apply Theorem 4.1 in order to get the result.
q.e.d.
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Remark 4.3. If ψ is an observable in L∞(µ), then ‖Λnψ‖L∞(µ) ≤
‖ψ‖L∞(µ). Hence, by Lemma 4.2, the Gordin’s condition in Theorem 4.1

is a consequence of the condition
∑

n≥1 ‖Λnψ‖
1/2
L1(µ)

< +∞. In particu-

lar, Hölder continuous observables satisfy the CLT; see Proposition 3.5
and [10, 11] for meromorphic maps.

The following proposition gives us the next term in the expansion of
the L2-norm of Birkhoff’s sums.

Proposition 4.4. Let ψ be a d.s.h. or an ν-Hölder continuous func-
tion, with 0 < ν ≤ 2, such that 〈µ,ψ〉 = 0. Let σ ≥ 0 and γ be the
constants defined by

σ2 := 〈µ,ψ2〉+ 2
∑

n≥1

〈µ,ψ(ψ ◦ fn)〉 and γ := 2
∑

n≥1

n〈µ,ψ(ψ ◦ fn)〉.

Then

‖ψ + · · ·+ ψ ◦ fn−1‖2L2(µ) − nσ2 + γ

is of order O(d−n) if ψ is d.s.h. and O(d−nν/2) if ψ is ν-Hölder contin-
uous.

Proof. Since µ is invariant, we have 〈µ, (ψ ◦ f l)(ψ ◦ fm)〉 = 〈µ,ψ(ψ ◦
fm−l)〉 for m ≥ l. It follows that

‖ψ + · · ·+ ψ ◦ fn−1‖2L2(µ) =
∑

0≤l,m≤n−1

〈µ, (ψ ◦ f l)(ψ ◦ fm)〉

= n〈µ,ψ2〉+
∑

1≤j≤n−1

2(n − j)〈µ,ψ(ψ ◦ f j)〉

= nσ2 − γ +
∑

j≥n

2(j − n)〈µ,ψ(ψ ◦ f j)〉.

Theorem 3.1 implies the result. Note that this theorem also implies that
the series in the definition for σ2 and for γ are convergent. Moreover,
the previous computation gives that σ2 is the limit of n−1‖ψ+ · · ·+ψ ◦
fn−1‖2L2(µ), which is a positive number. q.e.d.

5. Large deviations theorem

In this section, we prove the large deviations theorem (LDT for short)
for the equilibrium measure of holomorphic endomorphisms of Pk. We
have the following result, which holds in particular for C 2 observables.

Theorem 5.1. Let f be a holomorphic endomorphism of Pk of al-
gebraic degree d ≥ 2. Then the equilibrium measure µ of f satisfies the
large deviations theorem (LDT) for bounded d.s.h. observables. More
precisely, if ψ is a bounded d.s.h. function, then for every ǫ > 0 there is
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a constant hǫ > 0 such that

µ
{
z ∈ P

k :
∣∣ 1
n

n−1∑

j=0

ψ ◦ f j(z)− 〈µ,ψ〉
∣∣ > ǫ

}
≤ e−n(log n)

−2hǫ

for all n large enough.

Note that in the classical large deviations theorem for independent
random variables, there is no factor (log n)−2 in the previous estimate.

We start with the following Bennett’s type inequality (see [4, Lemma
2.4.1]).

Lemma 5.2. Let (M,F ,m) be a probability space and G a σ-subalgebra
of F . Assume that there is a constant 0 < ν < 1 and an element
A ∈ F such that m(A ∩ B) = νm(B) for every B ∈ G . Define s− :=
max

{
1, ν−1(1 − ν)

}
and s+ := max

{
1, ν(1 − ν)−1

}
. Let ψ be a real-

valued function on M such that ‖ψ‖L∞(m) ≤ b and E(ψ|G ) = 0. Then

E(eλψ|G ) ≤ νe−s
−λb + (1− ν)es

+λb

for every λ ≥ 0.

Proof. Fix a strictly positive constant λ. Let ψ0 be the function which
is equal to t− := −s−λb on A and to t+ := s+λb on M \ A. We have
ψ2
0 ≥ (λb)2 ≥ (λψ)2. We deduce from the hypothesis on A and the

relation −νs−+(1−ν)s+ = 0 that E(ψ0|G ) = 0. Let g(t) = a0t
2+a1t+a2

be the unique quadratic function such that h(t) := g(t) − et satisfies
h(t+) = 0 and h(t−) = h′(t−) = 0. We have g(ψ0) = eψ0 .

Since h′′(t) = 2a0 − et admits at most one zero, h′ admits at most
two zeros. The fact that h(t−) = h(t+) = 0 implies that h′ vanishes in
]t−, t+[. Hence h′ admits exactly one zero at t− and another in ]t−, t+[.
We deduce that h′′ admits a zero. This implies that a0 > 0. Moreover,
h vanishes only at t−, t+ and h′(t+) 6= 0. It follows that h(t) ≥ 0 on
[t−, t+] because h is negative near +∞. Thus, et ≤ g(t) on [t−, t+] and
then E(eλψ|G ) ≤ E(g(λψ)|G ).

Since a0 > 0, if an observable φ satisfies E(φ|G ) = 0, then E(g(φ)|G )
is an increasing function of E(φ2|G ). Now, using the properties of ψ and
ψ0, we obtain

E(eλψ|G ) ≤ E(g(λψ)|G ) ≤ E(g(ψ0)|G )

= E(eψ0 |G ) ≤ νe−s
−λb + (1− ν)es

+λb,

which completes the proof. q.e.d.

We continue the proof of Theorem 5.1. Without loss of generality we
may assume that 〈µ,ψ〉 = 0, |ψ| ≤ 1 and ‖ψ‖DSH ≤ 1. The general idea
is to write ψ = ψ′ + (ψ′′ − ψ′′ ◦ f) for functions ψ′ and ψ′′ in DSH0(P

k)
such that

E(ψ′ ◦ fn|Bn+1) = 0, n ≥ 0,
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where Bn := f−n(B) as above with B the canonical Borel algebra of
P
k. In the language of probability theory, these identities mean that

(ψ′ ◦ fn)n≥0 is a reversed martingale difference as in Gordin’s approach
(see also [34]). The strategy is to prove the LDT for ψ′ and for the
coboundary ψ′′−ψ′′◦f . Theorem 5.1 is in fact a consequence of Lemmas
5.4 and 5.8 below.

Define

ψ′′ := −
∞∑

n=1

Λnψ, ψ′ := ψ − (ψ′′ − ψ′′ ◦ f).

Using the estimate ‖Λφ‖′DSH ≤ d−1‖φ‖′DSH on DSH0(P
k), we see that

ψ′ and ψ′′ are in DSH0(P
k) with norms bounded by some constant. In

particular, they belong to L2(µ). However, we lose the boundedness:
these functions are not necessarily in L∞(µ).

Lemma 5.3. We have Λnψ′ = 0 for n ≥ 1 and E(ψ′ ◦ fn|Bm) = 0
for m > n ≥ 0.

Proof. We deduce from the definition of ψ′′ that

Λψ′ = Λψ − Λψ′′ + Λ(ψ′′ ◦ f) = Λψ − Λψ′′ + ψ′′ = 0.

It follows that Λnψ′ = 0 for n ≥ 1. For every function φ in L2(µ), since
µ is invariant, we have

〈µ, (ψ′ ◦ fn)(φ ◦ fm)〉 = 〈µ,ψ′(φ ◦ fm−n)〉 = 〈µ, (Λm−nψ′)φ〉 = 0,

which completes the proof. q.e.d.

Given a function h ∈ L1(µ), define the Birkhoff’s sum Snh by

S0h := 0 and Snh :=
n−1∑

j=0

h ◦ f j for n ≥ 1.

Lemma 5.4. The coboundary ψ′′ − ψ′′ ◦ f satisfies the LDT.

Proof. By Proposition 3.3, up to multiplying ψ by a constant, we
can assume that 〈µ, e|ψ′′|〉 ≤ c for some constant c > 0. Observe that
Sn(ψ

′′ − ψ′′ ◦ f) = ψ′′ − ψ′′ ◦ fn. Consequently, for a given ǫ > 0, we
have, using the invariance of µ,

µ
{
|Sn(ψ′′ − ψ′′ ◦ f)| > nǫ

}
≤ µ

{
|ψ′′ ◦ fn| > nǫ

2

}
+ µ

{
|ψ′′| > nǫ

2

}

= 2µ
{
|ψ′′| > nǫ

2

}
= 2µ

{
e|ψ

′′| > e
nǫ
2
}

≤ 2e−
nǫ
2 〈µ, e|ψ′′|〉 ≤ 2ce−

nǫ
2 .

Hence, ψ′′ ◦ f − ψ′′ satisfies the LDT. q.e.d.

It remains to show that ψ′ satisfies the LDT. Fix a number δ such
that 1 < δ5 < d. We will use the following lemma for a positive constant
b of order O(log n).
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Lemma 5.5. There are constants c > 0 and α > 0 such that for
every b ≥ 1 we have

µ
{
|ψ′| > b

}
≤ ce−αδ

b
.

Proof. Define ϕ :=
∑

n≥1 δ
5n|Λnψ|. Since ‖Λφ‖′DSH ≤ d−1‖φ‖′DSH

on DSH0(P
k), ϕ is in DSH0(P

k) and has a bounded DSH-norm. So,
〈µ, eαϕ〉 ≤ c′ for some constants c′ > 0 and α > 0. It is enough to
consider the case where b = 5l for some integer l. Since |ψ| ≤ 1, we also
have |Λnψ| ≤ 1. Hence

|ψ′′| ≤
∑

n≥1

|Λnψ| ≤ δ−5l
∑

n≥1

δ5n|Λnψ|+
∑

1≤n≤l

|Λnψ| ≤ δ−5lϕ+ l.

Consequently, we deduce that

µ
{
|ψ′′| > 2l

}
≤ µ

{
ϕ > δ5l

}
≤ e−αδ

5l〈µ, eαϕ〉 ≤ c′e−αδ
5l
.

Therefore, by definition of ψ′, since |ψ| ≤ 1 ≤ l and µ is invariant, we
obtain

µ
{
|ψ′| > 5l

}
≤ µ

{
|ψ′′| > 2l

}
+ µ

{
|ψ′′ ◦ f | > 2l

}

= 2µ
{
|ψ′′| > 2l

}
≤ 2c′e−αδ

5l
.

This implies the lemma. q.e.d.

In order to apply Lemma 5.2, we will need the following property.

Lemma 5.6. There is a Borel set A such that µ(A ∩ B) = (1 −
d−1)µ(B) for every B in B1 .

Proof. Recall that f defines a ramified covering of degree dk. Since
µ has no mass on analytic sets, it does not charge the critical values of
f . So, there is a Borel set Z of total µ measure such that f−1(Z) is the
union of dk disjoint Borel sets Zi, 1 ≤ i ≤ dk. Moreover, one can choose
Zi so that f : Zi → Z is bijective. Since µ is totally invariant, we have
µ(Zi) = d−k for every i. Define A := ∪i>dk−1Zi.

Since B is an element of B1, we have B = f−1(B′) with B′ := f(B).
We also have µ(Zi ∩ f−1(B′)) = d−kµ(B′) = d−kµ(B). Therefore,

µ(A ∩B) =
∑

i>dk−1

µ(Zi ∩ f−1(B′)) =
∑

i>dk−1

d−kµ(B) = (1− d−1)µ(B).

This gives the lemma. q.e.d.

Lemma 5.7. For every b ≥ 1, there are Borel sets Wn such that

µ(Wn) ≤ cne−αδ
b
and

∫

Pk\Wn

eλSnψ
′

dµ ≤ d
[(d− 1)e−λb + e(d−1)λb

d

]n
,

where c > 0 and α > 0 are constants independent of b.
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Proof. For n = 1, define W := {|ψ′| > b}, W ′ := f(W ), and W1 :=
f−1(W ′). Since µ is totally invariant and f has topological degree dk,
we have µ(f(W )) ≤ dkµ(W ). This and Lemma 5.5 imply that

µ(W1) = µ(W ′) ≤ dkµ(W ) ≤ ce−αδ
b

for some constant c > 0. We also have
∫

Pk\W1

eλS1ψ
′

dµ =

∫

Pk\W1

eλψ
′

dµ ≤ eλb ≤ d
[(d− 1)e−λb + eλb

d

]
.

So, the lemma holds for n = 1.
Suppose the lemma for n ≥ 1; we need to prove it for n + 1. Define

Wn+1 := f−1(Wn) ∪W1 = f−1(Wn ∪W ′). We have

µ(Wn+1) ≤ µ(f−1(Wn)) + µ(W1) = µ(Wn) + µ(W1) ≤ c(n+ 1)e−αδ
b
.

We will apply Lemma 5.2 to M := P
k, F := B, G := B1 = f−1(B),

m := µ, ν := 1 − d−1 (see Lemma 5.6), and to the function ψ∗ such
that ψ∗ = ψ′ on P

k \W1 and ψ∗ = 0 on W1. By Lemma 5.3, we have
E(ψ∗|G ) = E(ψ∗|B1) = 0 since W1 is an element of B1.

Observe that |ψ′| ≤ b on P
k \W1. Hence, |ψ∗| ≤ b. By Lemma 5.2,

we have

E(eλψ
∗ |B1) ≤

(d− 1)e−λb + e(d−1)λb

d
on P

k for λ ≥ 0.

It follows that

E(eλψ
′ |B1) ≤

(d− 1)e−λb + e(d−1)λb

d
on P

k \W1 for λ ≥ 0.

Now, using the fact that Wn+1 and eλSn(ψ
′◦f) are B1-measurable, we

can write∫

Pk\Wn+1

eλSn+1ψ′

dµ =

∫

Pk\Wn+1

eλψ
′

eλSn(ψ
′◦f)dµ

=

∫

Pk\Wn+1

E(eλψ
′ |B1)e

λSn(ψ′◦f)dµ.

Since Wn+1 = f−1(Wn) ∪W1, the last integral is bounded by

sup
Pk\W1

E(eλψ
′ |B1)

∫

Pk\f−1(Wn)
eλSn(ψ

′◦f)dµ

≤
[(d− 1)e−λb + e(d−1)λb

d

] ∫

Pk\Wn

eλSnψ
′

dµ

≤ d
[ (d− 1)e−λb + e(d−1)λb

d

]n+1
,

where the last inequality follows from the hypothesis of induction for n.
So, the lemma holds for n+ 1. q.e.d.

The following lemma, together with Lemma 5.4, implies Theorem 5.1.
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Lemma 5.8. The function ψ′ satisfies the LDT.

Proof. Fix an ǫ > 0. By Lemma 5.7, we have, for every λ ≥ 0,

µ
{
|Snψ′| ≥ nǫ

}
≤ µ(Wn) + e−λnǫ

∫

Pk\Wn

eλSnψ
′

dµ

≤ cne−αδ
b
+ de−λnǫ

[(d− 1)e−λb + e(d−1)λb

d

]n
.

Take b := log n(log δ)−1 and λ := uǫb−2 with a fixed u > 0 small enough.
We have

cne−αδ
b
= cne−αn ≤ e−αn/2

for n large. Since u is small, λb is small. It follows that

(d−1)e−λb+e(d−1)λb

d

≤ (d− 1)(1 − λb+ λ2b2) + (1 + (d− 1)λb+ (d− 1)2λ2b2)

d

≤ 1 + d2λ2b2 ≤ ed
2λ2b2 = ed

2u2ǫ2b−2
.

Therefore

de−λnǫ
[(d− 1)e−λb + e(d−1)λb

d

]n
≤ de−nuǫ

2b−2(1−d2u) = de−n(logn)
−2hǫ

for some constant hǫ > 0. We deduce from the previous estimates that

µ
{
|Snψ′| ≥ nǫ

}
≤ e−n(logn)

−2hǫ

for some constant hǫ > 0 and for n large. So, ψ′ satisfies the LDT. q.e.d.

Now, using Proposition 3.5 we can prove the LDT for Hölder contin-
uous observables.

Theorem 5.9. Let f be a holomorphic endomorphism of Pk of al-
gebraic degree d ≥ 2. Then the equilibrium measure µ of f satisfies the
large deviations theorem for Hölder continuous observables. More pre-
cisely, if ψ is a Hölder continuous function, then for every ǫ > 0 there
is a constant hǫ > 0 such that

µ
{
z ∈ P

k :
∣∣ 1
n

n−1∑

j=0

ψ ◦ f j(z)− 〈µ,ψ〉
∣∣ > ǫ

}
≤ e−n(log n)

−2hǫ

for all n large enough.

The proof follows along the same lines as Theorem 5.1. Fix a ν-Hölder
continuous function ψ with 0 < ν ≤ 2 and a constant 1 < δ < dν/10. We
define as above the functions ψ′, ψ′′ and ϕ :=

∑
n≥0 δ

5n|Λnψ|. We only

have to check that 〈µ, eαϕ〉 ≤ c for some constants α > 0 and c > 0. In

fact, this implies the inequality 〈µ, eα|ψ′′|〉 ≤ c and the crucial estimate
in Lemma 5.5. We deduce the estimate 〈µ, eαϕ〉 ≤ c from Proposition

3.5 and the following lemma for θ := δ5d−ν/2 and ηn := αdnν/2|Λnψ|.
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Lemma 5.10. Let ηn be positive measurable functions and 0 < θ < 1
be a constant. Assume there is a constant c > 0 such that 〈µ, eηn〉 ≤ c
for every n ≥ 0. If ξ := (1− θ)

∑
n≥0 θ

nηn, then e
ξ is µ-integrable.

Proof. Define ξm := (1 − θ)
∑

n≥m θ
n−mηn. We have ξ0 = ξ and

ξm = (1− θ)ηm + θξm+1. The Hölder inequality implies that

〈µ, eξm〉 = 〈µ, e(1−θ)ηmeθξm+1〉 ≤ 〈µ, eηm〉1−θ〈µ, eξm+1〉θ ≤ c1−θ〈µ, eξm+1〉θ.
By induction, this implies that

〈µ, eξ0〉 ≤ c(1−θ)(1+θ+θ
2+··· ),

which implies the result. q.e.d.

Remark 5.11. In the main estimate of Theorem 5.9, we can remove
the factor (log n)−2 if ‖Λnψ‖L∞(µ) tends to 0 exponentially fast when
n → ∞. This is the case in dimension 1 (see Drasin-Okuyama [14];
and when f is a generic map in higher dimension, see [13]). LDT was
recently proved for Lipschitz observables in dimension 1 by Xia-Fu [36].
It seems there is a slip in their paper: they state the main result for
Hölder continuous observables.

6. Abstract version of large deviations theorem

In this section, we give a version of the large deviations theorem in an
abstract setting. Let (M,F ,m) be a probability space and f :M →M
a measurable map which preserves m, i.e., f∗(m) = m. Define F1 :=
f−1(F ). We say that f has bounded jacobian if there is a constant κ > 0
such that m(f(A)) ≤ κm(A) for every A ∈ F . Observe that f∗ defines
a linear operator of norm 1 from L2(m) into itself.

Theorem 6.1. Let f : (M,F ,m) → (M,F ,m) be a map with
bounded jacobian which preserves m as above. Let Λ denote the adjoint
of f∗ on L2(m). Let ψ be a bounded real-valued measurable function.
Assume there are constants δ > 1 and c > 0 such that

〈m, eδn |Λnψ−〈m,ψ〉|〉 ≤ c for every n ≥ 0.

Then ψ satisfies the large deviations theorem, that is, for every ǫ > 0,
there exists a constant hǫ > 0 such that

m
{
z ∈M :

∣∣ 1
n

n−1∑

j=0

ψ ◦ f j(z)− 〈m,ψ〉
∣∣ > ǫ

}
≤ e−n(log n)

−2hǫ

for all n large enough.

The proof follows the same steps as in Section 5. The details are left
to the reader. We only note two important points. The property that
f is of bounded jacobian allows us to prove an analog of Lemma 5.7.
Indeed, in the proof of that lemma, the inequality µ(W ′) ≤ dkµ(W )
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should be replaced by m(W ′) ≤ κm(W ). The following version of the
Bennett’s inequality replaces Lemma 5.2.

Lemma 6.2. Let ψ be a real-valued function onM such that ‖ψ‖L∞(m) ≤
b and E(ψ|F1) = 0. Then

E(eλψ|F1) ≤
e−λb + eλb

2

for every λ ≥ 0.

Proof. We decompose the measure m using the fibers of f . For m-
almost every x ∈ M , there is a positive measure mx on Mx := f−1(x)
such that if ϕ is a function in L1(m), then

〈m,ϕ〉 =
∫

M
〈mx, ϕ〉dm(x).

Since m is invariant by f , we have

〈m,ϕ〉 = 〈m,ϕ ◦ f〉 =
∫

M
〈mx, ϕ ◦ f〉dm(x) =

∫

M
‖mx‖ϕ(x)dm(x).

Therefore, mx is a probability measure for m-almost every x. Using also
the invariance of m, we obtain for ϕ and φ in L2(m) that

〈m,ϕ(φ ◦ f)〉 =

∫

M
〈mx, ϕ(φ ◦ f)〉dm(x) =

∫

M
〈mx, ϕ〉φ(x)dm(x)

=

∫

M
〈mf(x), ϕ〉φ(f(x))dm(x).

We deduce that

E(ϕ|F1)(x) = 〈mf(x), ϕ〉.
By hypothesis, we have 〈mx, ψ〉 = 0 for m-almost every x. It suffices

to check that

〈mx, e
λψ〉 ≤ e−λb + eλb

2
.

Consider first the particular case where there is an element A ⊂ F such
that A ⊂Mx and mx(A) = 1/2. Applying Lemma 5.2 to Mx := f−1(x),
mx, A, ν := 1/2 and for G := {∅,Mx} the trivial σ-algebra ofMx yields
the result. The general case is deduced from the previous particular
case. Indeed, it is enough to apply this case to the disjoint union of
(M,F ,m) with a copy (M ′,F ′,m′) of this space, i.e., to the space

(M ∪M ′,F ∪F ′, m2 + m′

2 ) and to the function equal to ψ on M and on
M ′. q.e.d.
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