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Abstract

We consider an embedded convex compact ancient solution Γt

to the curve shortening flow in R
2. We prove that Γt is either a

family of contracting circles, which is a type I ancient solution, or
a family of evolving Angenent ovals, which is of type II.

1. Introduction

We consider an ancient embedded solution Γt ⊂ R
2 of the curve

shortening flow

(1.1)
∂X

∂t
= −κN

which moves each point X on the curve Γt in the direction of the inner
normal vector N to the curve at P by a speed which is equal to the
curvature κ of the curve.

In [4] Gage and Hamilton proved that if Γ0 is a convex curve embed-
ded in R

2, then equation (1.1) shrinks Γt to a point. In addition, the
curve remains convex and becomes asymptotically circular close to its
extinction time.

In [5] Grayson studied the evolution of non-convex embedded curves
under (1.1). He proved that if Γ0 is any embedded curve in R

2, the
solution Γt does not develop any singularities before it becomes strictly
convex.

Let Γt ⊂ R
2 be an embedded ancient solution to the curve shortening

flow (1.1). If s is the arclength along the curve and X = (x, y), we can
express (1.1) as a system

∂x

∂t
=

∂2x

∂s2
,

∂y

∂t
=

∂2y

∂s2
.

The evolution for the curvature κ of Γt is given by

(1.2) κt = κss + κ3,
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which is a strictly parabolic equation. Let θ be the angle between the
tangent vector and the x-axis. For convex curves we can use the angle
θ as a parameter. It has been computed in [4] that

(1.3) κt = κ2 κθθ + κ3.

It turns out that the evolution of the family Γt is completely described
by the evolution (1.3) of the curvature κ. Gage and Hamilton observed
that a positive 2π periodic function represents the curvature function
of a simple closed strictly convex C2 plane curve if and only if

(1.4)

∫ 2π

0

cos θ

κ(θ)
dθ =

∫ 2π

0

sin θ

κ(θ)
dθ = 0.

We will assume from now on that Γt is an ancient solution of the
curve shortening flow defined on (−∞, T ). We will also assume that
our extinction time T = 0.

It is natural to consider the pressure function

p := κ2

which evolves by

(1.5) pt = p pθθ −
1

2
p2θ + 2 p2.

We say that an ancient solution to (1.3) is

• of type I, if it satisfies supt∈(−∞,−1] supΓt
|t||p(x, t)| < ∞;

• of type II, if supt∈(−∞,−1] supΓt
|t||p(x, t)| = ∞.

The ancient solution to (1.3) defined by

p(θ, t) =
1

2(−t)

corresponds to a family of contracting circles. This solution is of type
I and at the same time falls in a category of contracting self-similar
solutions (these are solutions of the flow whose shapes change homo-
thetically during the evolution). We will show in the next section the
existence of compact ancient solutions to (1.3) that are not self-similar.
Since they have been discovered by Angenent, we will refer to them as
to the Angenent ovals.

One very nice and important property of ancient solutions to the
curve shortening flow is that κt ≥ 0. This fact follows from Hamilton’s
Harnack estimate for convex curves [7]. By the strong maximum prin-
ciple, κ(·, t) > 0 for all t < 0. If we start at any time t0 ≤ 0, Hamilton
proved that

(1.6) κt +
κ

2(t− t0)
− κ2s

k
≥ 0.
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Letting t0 → −∞, we get

(1.7) κt ≥ 0.

In this note we provide the following classification of ancient convex
solutions to the curve shottening flow.

Theorem 1.1. Let p(θ, t) = κ2(θ, t) be an ancient solution to (1.5),
definning a family of embedded closed convex curves in R

2 that evolve
by the curve shortening flow. Then,

(i) either p(θ, t) = 1
(−2t) , which corresponds to contracting circles, or

(ii) p(θ, t) = λ( 1
1−e2λt

− sin2(θ + γ)), for two parameters λ > 0 and γ,

which corresponds to the Angenent ovals.

Acknowledgments. This work was partially supported by NSF grants
0354639, 0701045, and 0604657. The authors are indebted to the referee
of this paper for many fruitful comments and for providing a simplified
proof of Lemma 2.4.

2. Proof of Theorem 1.1

We begin by showing the existence of the Angenent ovals (ancient
compact solutions to the curve shortening flow that are not self-similar).

Proposition 2.1 (Angenent). There exist compact ancient solutions
to (1.5) which contract to a point at time t = 0 and have the form

(2.1) p(θ, t) = λ(
1

1− e2λt
− sin2(θ + γ))

where λ > 0 and γ is a fixed angle.

Proof. We look for a solution to (1.5) in the form

p(θ, t) = a(t)− b(t) sin2(θ + γ).

Then
pt = a′(t)− b′(t) sin2(θ + γ),

while

pθ = −2 b(t) sin(θ+γ) cos(θ+γ), pθθ = −2 b(t) (cos2(θ+γ)−sin2(θ+γ)).

If we plug everything in (1.5), we get

a′(t)− b′(t) sin2(θ + γ) = −2a(t) b(t) + 2a2(t).

Since this has to hold for every θ, we obtain that b′(t) = 0, which means
b(t) = λ. If we choose θ at which sin(θ + γ) = 0, we have

a′(t) = −2λa(t) + 2a(t)2.

Solving this ODE yields to

a(t) =
λ

1− e2λ(t+µ)
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for some constants λ > 0 and µ. Since limt→0 p(θ, t) = +∞, we must
have µ = 0; hence p is of the form (2.1). q.e.d.

We will prove the theorem by introducing a monotone functional
along the flow. Denote by

α(θ, t) := pθ(θ, t).

By using (1.5) it easily follows that

(2.2) αt = p (αθθ + 4α).

We introduce the functional

I(α) =

∫ 2π

0
(α2

θ − 4α2) dθ.

The following lemma shows the monotonicity of I(α) in time.

Lemma 2.2. I(α(t)) is decreasing along the flow (2.2). Moreover,

d

dt
I(α(t)) = −2

∫ 2π

0

α2
t

p
dθ.

Proof. We compute

d

dt
I(α(t)) =

∫ 2π

0
(2αθαθt − 8ααt) dθ

= −2

∫ 2π

0
2αθθαt dθ − 8

∫ 2π

0
ααt dθ

=

∫ 2π

0

2(αt − 4αp)αt

p
dθ − 8

∫ 2π

0
ααt dθ

= −2

∫ 2π

0

α2
t

p
dθ.

q.e.d.

An easy computation shows that I(α(t)) ≡ 0 on both the circles and
the Angenent ovals, which motivates the following:

Proposition 2.3. For any ancient convex solution to (1.5), we have

I(α(t)) ≡ 0, for all t ∈ (−∞, 0).

The proof of the proposition will be given in two steps. In the first
step we will show that lim inft→−∞ I(α(t)) ≤ 0, and in the second step
we will prove that limt→0 I(α(t)) = 0. The monotonicity of I(α(t))
shown in Lemma 2.2 will then readily imply that I(α(t)) ≡ 0, for all
t < 0.

Lemma 2.4. We have

lim inf
t→−∞

I(α(t)) ≤ 0.
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Proof. We follow a simplified proof which was suggested to us by the
referee. On an ancient solution we have kt ≥ 0, which gives pt ≥ 0.
Hence, p(·, t) ≤ C < ∞, for all t < −1 < 0.

If we differentiate (1.5) in θ, we get

(2.3) (pθ)t = p(pθ)θθ + 4ppθ,

which implies
1

2p
(p2θ)t = pθ(pθ)θθ + 4p2θ

and therefore
(

p2θ
2p

)

t

=
(p2θ)t
2p

− p2θ pt

2p2
≤ pθ(pθ)θθ + 4p2θ

where we used that pt ≥ 0. Integrating the above inequality gives

d

dt

∫ 2π

0

p2θ
2p

dθ ≤
∫ 2π

0
( pθ(pθ)θθ + 4p2θ ) dθ,

and after integration by parts, we get

(2.4)
d

dt

∫ 2π

0

p2θ
2p

dθ =

∫ 2π

0
(−p2θθ + 4p2θ) dθ = −I(α(t)).

On the other hand, from the inequality

p pθθ −
1

2
p2θ + 2 p2 = pt ≥ 0,

dividing by p and integrating, we obtain
∫ 2π

0
−1

2

p2θ
p

+ 2 p dθ ≥ 0

or
∫ 2π

0

p2θ
2p

dθ ≤ 2

∫ 2π

0
p dθ ≤ C

since p is bounded for t < −1 < 0. Combining this with (2.4) implies
that

lim inf
t→−∞

I(α(t)) ≤ 0,

finishing the proof of the lemma. q.e.d.

We will next analyze behavior of the functional I(α(t)) as t → 0. For
this we will use the following result shown by Gage and Hamilton in
[4]. Consider the evolution of the normalized curvature κ̃, where the
normalization is chosen so that the related convex curve encloses an
area π. The rescaled curvature κ̃ is defined by

(2.5) κ̃(θ, τ) = k(θ, t)
√
−2t, with τ = −1

2
log(−t).

The evolution equation for κ̃ is

(2.6) κ̃t = κ̃2κ̃θθ + κ̃3 − κ̃.
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Theorem 2.5 (Gage, Hamilton). If Γ0 is a closed convex curve em-
bedded in the plane R

2, the curve shortening flow shrinks Γt to a point
in a circular manner. Moreover, the curvature and all its derivatives
of the rescaled curve shortening flow converge exponentially to 1 and
0, respectively, with the rate e−2ητ , where τ is the new time variable
introduced above and η is any constant in (0, 1).

We will now prove:

Lemma 2.6. We have

lim
t→0

I(α(t)) = 0.

Proof. To prove the lemma we will analyze the normalized flow (2.6)
since due to Theorem 2.5 we have good decay estimates on κ̃ − 1 and
the derivatives of κ̃. Notice that

I(α(t)) = e4τ
∫ 2π

0
(α̃2

θ − 4α̃2) dθ,

with α̃ denoting the corresponding rescaled α = pθ. By Theorem 2.5
we have

(2.7) |κ̃− 1| ≤ C(η) e−2ητ , |∂
mκ̃

∂θm
| ≤ Cm(η) e−2ητ , ∀η ∈ (0, 1).

These estimates imply the bounds |α̃| ≤ Ce−2ητ and |α̃θ| ≤ Ce−2ητ and
show that I(α(t)) = O(1). To conclude the lemma we will need to show
that I(α(t)) = o(1). We will do so by analyzing the linearization of

(2.6) around κ̃ = 1. For this reason we set w := k̃ − 1. It is easy to see
that

wτ = wθθ + 2w + wwθθ(w + 2) + w2 (w + 3),

which we can rewrite as

wτ = L(w) +R(w),

where

L(w) = wθθ + 2w and R(w) = wwθθ(w + 2) + w2 (w + 3).

Note that R(w) is an error term that is quadratic in w and its deriva-
tives. Hence, by (2.7) we have |R(w(θ, τ))| ≤ Ce−4ητ . The spectrum
for L on an interval [0, 2π] is given by

λl = 2− l2, l ≥ 0,

with corresponding eigenvectors fl(θ) = cos(lθ) and gl(θ) = sin(lθ). The
semigroup representation formula for w gives

(2.8) w(θ, s) = esLw(θ, 0) +

∫ s

0
e(s−τ)L R(w(θ, τ)) dτ.

Since the system of functions { cos(lθ)√
π

}l≥0 and { sin(lθ)√
π

}l≥0 is an orthonor-

mal basis (of the space of continuous and periodic functions with period
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2π) with respect to the inner product given by (f, g) =
∫ 2π
0 f(θ) g(θ) dθ,

we have
(2.9)

w(θ, 0) =
∑

l≥0

(αl fl + βl gl), R(w(θ, τ)) =
∑

l≥0

(αl(τ) fl + βl(τ) gl).

We have

(2.10) esLw(θ, 0) = α0 e
2s +

∑

l=1,2

[αl cos lθ + βl sin lθ] e
λls + o(e−2s).

Also, setting

Al(s) =

∫ s

0
αl(τ)e

−λlτ dτ and Bl(s) =

∫ s

0
βl(τ)e

−λlτ dτ,

we may write

(2.11) R(w(θ, τ)) = A0(s) e
2s +

∑

l≥1

[Al(s) cos lθ +Bl(s) sin lθ] e
λls

where λl < −2, for l ≥ 3.
We have

(2.12) |
∑

l≥3

[Al(s) cos lθ +Bl(s) sin lθ] e
λls | = o(e−2s), as s → ∞.

Indeed, since |R(w(θ, τ))| ≤ Ce−4ητ , for η ∈ (0, 1), from the Fourier
representation (2.9) for R(w(·, t)), we get the bounds

(2.13) |αl(τ)| ≤ Ce−4ητ , |βl(τ)| ≤ Ce−4ητ , for all l ≥ 1.

Note that for l ≥ 3 the above implies

eλls |Al(s) cos l θ +Bl(s) sin l θ| ≤ C eλls

∫ s

0
e(−λl−4η)τ dτ ≤ o(e−2s)

l2 − 2− 4η

since λl < −2 and −4η < −2 for η ∈ (12 , 1). This finishes the proof of

(2.12), since the series
∑

l≥3
1

l2−2−4η
converges.

Combining (2.8), (2.10), (2.11), and (2.12), we conclude that

w(θ, s) = Ā0(s) e
2s + [ Ā1(s) cos θ + B̄1(s) sin θ ] e

s

+ [ Ā2(s) cos 2θ + B̄2(s) sin 2θ ] e
−2s + o(e−2s),

(2.14)

with Āl(s) = αl+Al(s) and B̄l(s) = βl+Bl(s).We will next estimate the
first two terms in the above expansion. By definition we have κ̃ = 1+w,
where w = O(e−2ηs), with η ∈ (0, 1), by (2.7). Hence,

1

κ̃
= 1− w +O(w2).(2.15)

By (1.4), multiplying (2.15) by cos θ or sin θ, integrating it over θ ∈
[0, 2π], and using (2.14) and (2.7), we obtain

Ā1(s) e
s = o(e−2s) and B̄1(s) e

s = o(e−2s).
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The above discussion implies that
(2.16)
κ̃(θ, s) = 1 + Ā0(s) e

2s + [Ā2(s) cos(2θ) + B̄2(s) sin(2θ)]e
−2s + o(e−2s).

Therefore, the pressure p̃ := κ̃2 satisfies

p̃(θ, s) = (1 + Ā0(s) e
2s)2 + 2 [ Ā2(s) cos 2θ + B̄2(s) sin 2θ ] e

−2s

+ 2Ā0(s) [ Ā2(s) cos 2θ + B̄2(s) sin 2θ ] + Ā0(s) o(1) + o(e−2s).

(2.17)

By the decay of w and (2.14) we have |Ā0(s)e
2s| ≤ C e−2ηs, which

implies the bound Ā0(s) = O(e−2s(1+η)). Similarly, we can see that

Ā2(s) and B̄2(s) are of the order O(e2(1−η)s), which shows that

Ā0(s) [ Ā2(s) cos 2θ + B̄2(s) sin 2θ ] = o(e−2s).

Differentiating (2.17) in θ and using the above estimates, we finally
conclude that

α̃(θ, s) = p̃θ(θ, s) = 4 [ B̄2(s) cos 2θ − Ā2(s) sin 2θ] e
−2s + o(e−2s),

which easily yields to

I(α(t)) = e4τ
∫ 2π

0
(α̃2

θ − 4α̃2) dθ = o(1)

since
∫ 2π
0 (sin2 2θ− cos2 2θ) dθ = 0 and

∫ 2π
0 sin 2θ cos 2θ dθ = 0, finishing

the proof of the Lemma. q.e.d.

We will now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.3 we have

I(α(t)) ≡ 0, for all t < 0.

Lemma 2.2 implies that αt ≡ 0, that is,

p (αθθ + 4α) = 0,

which means (since p > 0) that

αθθ + 4α = 0

and therefore

α(θ, t) = a0(t) cos 2(θ + γ(t)) + b0(t) sin 2(θ + γ(t))

for some functions in time a0(t), b0(t), and γ(t). Since α = pθ, by
integrating in θ we obtain

(2.18) p(θ, t) = a(t) sin 2(θ + γ(t)) + b(t) cos 2(θ + γ(t)) + c(t)
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for a(t) = a0(t)
2 , b(t) = − b0(t)

2 , and another function in time c(t). If we
plug p(θ, t) back to equation (1.5), we find that a, b, and c satisfy the
ODEs

(2.19) a′(t)− 2 b(t) γ′(t) = 0, b′(t) + 2 a(t) γ′(t) = 0,

and

(2.20) c′(t) = 2 c(t)2 − 2 (a(t)2 + b(t)2).

Equations (2.19) imply that

d

dt
(a2(t) + b2(t)) = 0.

Hence we can set

a2(t) + b2(t) = λ2

for a parameter λ ≥ 0. We distinguish between two cases.

Case 1. We have λ = 0. By (2.18) the pressure p(θ, t) becomes
p(θ, t) = c(t), which satisfies

c′(t) = 2 c2(t).

Using that the limt→0 p(θ, t) = +∞, we get

p(θ, t) = c(t) =
1

(−2t)
,

which corresponds to contracting circles by the curve shortening flow.

Case 2. We have λ > 0. If we express

a(t) = λ sin(2h(t)), b(t) = λ cos(2h(t))

for some function h(t) and plug them back to the equations (2.19), we
find

2λ sin(2h(t)) (γ′(t)− h′(t)) = 0, 2λ cos(2h(t)) (h′(t)− γ′(t)) = 0,

which implies that γ(t) = h(t) − γ, for a parameter γ. We conclude
from (2.18) that

(2.21) p(θ, t) = λ cos 2(θ + γ) + c(t).

We will now compute c(t). It follows from (2.20) that c(t) satisfies the
ODE

c′(t) = 2 (c(t)2 − λ2).

Solving this ODE and using that limt→0 p(θ, t) = +∞ (which implies
the limt→0 c(t) = +∞), we obtain

c(t) = −λ coth 2λt.
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Combining the above, we conclude the desired formula

p(θ, t) = λ

(

1

1− e2λt
− sin2(θ + γ)

)

for two parameters λ > 0 and γ.

This concludes the proof of the Theorem. q.e.d.
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