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SELF-SIMILAR SOLUTIONS AND
TRANSLATING SOLITONS FOR

LAGRANGIAN MEAN CURVATURE FLOW

Dominic Joyce, Yng-Ing Lee & Mao-Pei Tsui

Abstract

We construct many self-similar and translating solitons for La-
grangian mean curvature flow, including self-expanders and trans-
lating solitons with arbitrarily small oscillation on the Lagrangian
angle. Our translating solitons play the same role as cigar soli-
tons in Ricci flow, and are important in studying the regularity of
Lagrangian mean curvature flow.

Given two transverse Lagrangian planes Rn in C
n with sum of

characteristic angles less than π, we show there exists a Lagrangian
self-expander asymptotic to this pair of planes. The Maslov class
of these self-expanders is zero. Thus they can serve as local mod-
els for surgeries on Lagrangian mean curvature flow. Families of
self-shrinkers and self-expanders with different topologies are also
constructed. This paper generalizes the work of Anciaux [1], Joyce
[12], Lawlor [15], and Lee and Wang [18, 19].

1. Introduction

Special Lagrangian submanifolds in Calabi–Yau n-folds have received
much attention in recent years, as they are key ingredients in the Strom-
inger–Yau–Zaslow Conjecture [25], which explains Mirror Symmetry of
Calabi–Yau 3-folds. Thomas and Yau [26] defined a notion of stability
for graded Lagrangians L in a Calabi–Yau n-fold M , and conjectured
that if L is stable then the Lagrangian mean curvature flow of L exists
for all time and converges to a special Lagrangian submanifold L∞ in
M , which should be the unique special Lagrangian in the Hamiltonian
equivalence class of L.

Rewriting this in terms of the derived Fukaya category DbFuk(M)
of M , as in Kontsevich’s Homological Mirror Symmetry program [14],
and using Bridgeland’s notion of stability condition on triangulated cat-
egories [4], one can state an improved (but still over-simplified) version
of the Thomas–Yau conjecture as follows: for any Calabi–Yau n-foldM ,
there should exist a Bridgeland stability condition (Z,P) on DbFuk(M)
depending on the holomorphic (n, 0)-form Ω on M , such that a graded
Lagrangian L inM is (Z,P)-stable, regarded as an object inDbFuk(M),

127



128 D. JOYCE, Y-I. LEE & M.-P. TSUI

if and only if the Lagrangian mean curvature flow of L exists for all
time and converges to a special Lagrangian submanifold L∞ in M ,
which should be unique in the isomorphism class of L in DbFuk(M).
A related method for constructing special Lagrangians by minimizing
volume amongst Lagrangians using Geometric Measure Theory was pro-
posed by Schoen and Wolfson [23].

To carry these programs through to their conclusion will require a
deep understanding of Lagrangian mean curvature flow, and of the pos-
sible singularities that can occur during it in finite time. Singularities in
Lagrangian mean curvature flow are generally locally modelled on soli-

ton solutions, such as Lagrangians in Cn which are moved by rescaling
or translation by mean curvature flow. There are two important results
in this area. The first one is due to Wang [27], who observed that mean
curvature flow for almost calibrated Lagrangians in Calabi–Yau n-folds
cannot develop type I singularities. And the second one is due to Neves
[20], who (loosely) proved that singularities of such flows are modelled
to leading order on special Lagrangian cones when applying central blow
up near the singularities.

In this paper, we construct many examples of self-similar solutions
and translating solitons for Lagrangian mean curvature flow. Our La-
grangians L in Cn are the total space of a 1-parameter family Qs, s ∈ I,
where I is an open interval in R, and each Qs is a quadric in a La-
grangian plane Rn in Cn, which evolve according to an o.d.e. in s. The
construction includes and generalizes examples of Lagrangian solitons
or special Lagrangians due to Anciaux [1], Joyce [12], Lawlor [15], and
Lee and Wang [18, 19].

The authors believe that two of our families of examples may have
particular significance for future work on Lagrangian mean curvature
flow. Firstly, in Theorems C and D of §3.2, we show that if L1, L2

are transverse Lagrangian planes in Cn and the sum of characteristic
angles of L1, L2 is less than π, and α > 0, then we can construct a unique
closed, embedded Lagrangian self-expander L with rate α diffeomorphic
to Sn−1 ×R and asymptotic to L1 ∪L2. These examples could be used
as local models for surgeries during Lagrangian mean curvature flow.

As in the Ricci flow proof of the Poincaré conjecture [22], it seems
likely that to get long-time existence for Lagrangian mean curvature
flow, it will be necessary to allow the flow to develop singularities,
and continue the flow after a surgery which changes the topology of
the Lagrangian. Research by the first author (unpublished) indicates
that an important condition in the improved Thomas–Yau conjecture
described above is that the Lagrangians should have unobstructed La-

grangian Floer homology, in the sense of Fukaya, Oh, Ohta and Ono
[6, 7]. But mean curvature flow amongst nonsingular, immersed La-
grangians can cross ‘walls’, on the other side of which Lagrangian Floer
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homology is obstructed. When this happens, the correct thing to do is
to do a surgery, and glue in a Lagrangian self-expander from Theorems
C and D.

Secondly, in Corollary I of §3.4 we give an explicit family of closed,
embedded Lagrangian translating solitons L in Cn for n > 2, which
are diffeomorphic to Rn, and asymptotic in a weak sense to a union
L1∪L2 of Lagrangian planes L1, L2

∼= Rn in Cn, with L1∩L2
∼= R. The

oscillation of the Lagrangian angle of L can be chosen arbitrarily small.
If these examples can arise as local models for finite time singularities
for Lagrangian mean curvature flow, they may represent a kind of bad
behavior, which could cause difficulties with the Thomas–Yau program
even in dimension 2.

As well as these two families, we construct new examples of compact,
immersed Lagrangian self-shrinkers in Cn diffeomorphic to S1 × Sn−1,
of closed, immersed Lagrangian self-expanders and self-shrinkers dif-
feomorphic to S1 × Sm−1 × Rn−m for 0 < m < n, of non-closed,
immersed Lagrangian self-expanders diffeomorphic to Sm × Rn−m for
0 < m < n − 1, of non-closed, immersed Lagrangian self-shrinkers dif-
feomorphic to Sm × Rn−m for 0 < m < n, and of closed, embedded
Lagrangian translating solitons diffeomorphic to Rn with infinite oscil-
lation of the Lagrangian angle. These examples include those of Anciaux
[1] and Lee and Wang [18, 19], and approach the special Lagrangians
of Joyce [12] and Lawlor [15] in a limit.

We begin in §2 with some background material. Our main results
are stated and discussed in §3, which is the part of the paper we intend
most people to actually read. The proofs are given in §4–§6.
Acknowledgements. Part of this paper was completed while the au-
thors were visiting Taida Institute of Mathematical Sciences (TIMS)
in National Taiwan University, Taipei, Taiwan. The authors wish to
express their gratitude for the excellent support provided by the center
during their stays. The first author would like to thank Richard Thomas
and Tom Ilmanen for useful conversations. The second author would like
to express her special gratitude to Mu-Tao Wang for many enlighten-
ing discussions and collaborations on the subject over the years, which
benefitted her a lot. The calculation techniques used in the proof of
Theorem A were first observed in [18, 19]. She would also like to thank
André Neves for his interests in this work and enlightening discussions.
The third author would like to thank Duong Hong Phong, Shing-Tung
Yau and Mu-Tao Wang for their constant advice, encouragement, and
support.

2. Background material

Our ambient space is always the complex Euclidean space Cn with
coordinates zj = xj+iyj, the standard symplectic form ω =

∑n
j=1 dxj∧
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dyj, and the standard almost complex structure J with J( ∂
∂xj

) = ∂
∂yj

.

A Lagrangian submanifold is an n-dimensional submanifold in Cn on
which the symplectic form ω vanishes. On a Lagrangian submanifold
L, the mean curvature vector H is given by

(1) H = J∇θ,

where θ is the Lagrangian angle and ∇ is the gradient on L. The angle
function θ : L → R or θ : L → R/2πZ can be defined by the relation
that dz1 ∧ · · · ∧ dzn|L ≡ eiθ volL. When cos θ ≥ ǫ on L for some positive
ǫ > 0, L is called almost calibrated. The Maslov class on L is defined by
the cohomology class of dθ. Hence L is Maslov zero when θ is a globally
defined function from L to R.

By the first variation formula, themean curvature vector points in the
direction in which the volume decreases most rapidly. Mean curvature

flow deforms the submanifold in the direction of the mean curvature
vector. As special Lagrangians are volume minimizing, it is natural to
use mean curvature flow to construct special Lagrangians. Equation (1)
implies that mean curvature flow is a Lagrangian deformation, that is,
a Lagrangian submanifold remains Lagrangian under mean curvature
flow, as in Smoczyk [24].

A Lagrangian submanifold L in Cn is fixed by mean curvature flow if
and only if the Lagrangian angle θ on L is constant, that is, if and only if
L is special Lagrangian with phase eiθ, as in Harvey and Lawson [9, §III].
A Lagrangian L in Cn is called Hamiltonian stationary if the Lagrangian
angle θ on L is harmonic, that is, if ∆θ = 0 on L. This implies that the
volume of L is stationary under Hamiltonian deformations.

In geometric flows such as Ricci flow or mean curvature flow, singu-
larities are often locally modelled on soliton solutions. In the case of
mean curvature flows, two types of soliton solutions of particular inter-
est are those moved by scaling or translation in Euclidean space. We
recall that solitons moved by scaling must be of the form:

Definition 2.1. A submanifold L in Euclidean space Rn is called
a self-similar solution if H ≡ αF⊥ on L for some constant α in R,
where F⊥ is the projection of the position vector F in Rn to the normal
bundle of L, and H is the mean curvature vector of L in Rn. It is called
a self-shrinker if α < 0 and self-expander if α > 0.

It is not hard to see that if F is a self-similar solution, then Ft defined
by Ft =

√
2αt F is moved by the mean curvature flow. By Huisken’s

monotonicity formula [10], any central blow up of a finite-time singu-
larity of the mean curvature flow is a self-similar solution. When α = 0,
the submanifold is minimal. The submanifolds which are moved by
translation along mean curvature flow must be of the form:
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Definition 2.2. A submanifold L in Euclidean space Rn is called a
translating soliton if there exists a constant vector T in Rn such that
H + V ≡ T on L, where V is the component of T tangent to L, and
H is the mean curvature vector of L in Rn. An equivalent equation
is H ≡ T⊥. The 1-parameter family of submanifolds Lt defined by
Lt = L + t T for t ∈ R is then a solution to mean curvature flow, and
we call T a translating vector.

Definition 2.3. A translating soliton is called a gradient translating

soliton if V = ∇f for some smooth function f : L→ R.

Any translating soliton for mean curvature flow in Rn must be a
gradient translating soliton. Since this simple fact does not appear in
the literature, we include a proof here for completeness.

Proposition 2.4. A translating soliton in Rn that satisfies H+V =
T where T is a constant vector must be a gradient translating soliton.

In fact, H +∇〈T, F 〉 = T, where F is the position vector.

Proof. Let F = (F1, . . . , Fn) be the position function and ∇ be the
standard connection in Rn. Then ∇Fi = ei. We may write T =
∑n

i=1 T
iei = ∇〈T, F 〉. Then (∇〈T, F 〉)⊤ = V and ∇〈T, F 〉|L = V ,

where (∇〈T, F 〉)⊤ is the orthogonal projection of ∇〈T, F 〉 to TL. This
shows L is a gradient translating soliton. q.e.d.

Here is a counterpart of this result for Lagrangian translating solitons.

Proposition 2.5. A connected Lagrangian L in Cn is a translating

soliton with translating vector T if and only if θ ≡ −〈JT, F 〉|L + c
for some c ∈ R, where F is the position vector. Thus a Lagrangian

translating soliton is Maslov zero.

Proof. Suppose L is a translating soliton with translating vector T .
We have J ∇θ ≡ H ≡ T⊥ as sections of the normal bundle of L
in Cn. Applying −J gives ∇θ ≡ −J

(

T⊥) = −(JT )⊤, as sections
of the tangent bundle of L. We then have ∇θ = −∇〈JT, F 〉 as in
the proof of Proposition 2.4. Because L is connected, it follows that
θ ≡ −〈JT, F 〉|L + c for some c ∈ R. Hence θ can be lifted from R/2πZ
to R, and L is Maslov zero. Conversely, suppose θ ≡ −〈JT, F 〉|L + c.
Then ∇θ = −∇〈JT, F 〉 = −(∇〈JT, F 〉)⊤ = −(JT )⊤. It follows that
H = J∇θ = T⊥, and L is a translating soliton with vector T . q.e.d.

3. Statements of main results

We now state and briefly discuss the main results of this paper. The
results of §3.1, §3.2, and §3.3 will be proved in sections 4, 5, and 6,
respectively. The proofs of results in §3.4 are brief, and are included
there.
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3.1. An ansatz for self-similar Lagrangians. The following ansatz
describes the class of n-submanifolds of Cn amongst which we will seek
examples self-similar solutions for Lagrangian mean curvature flow.

Ansatz 3.1. Fix n > 1. Consider n-submanifolds L in Cn of the
form

(2) L =
{(

x1w1(s), . . . , xnwn(s)
)

: s ∈ I, xj ∈ R,
∑n

j=1 λjx
2
j = C

}

,

where λ1, . . . , λn, C ∈ R\{0} are nonzero constants, I is an open interval
in R, and w1, . . . , wn : I → C \ {0} are smooth. We want L to satisfy:

(i) L is Lagrangian;
(ii) the Lagrangian angle θ : L → R or θ : L → R/2πZ of L is a

function only of s, not of x1, . . . , xn; and
(iii) L is a self-similar solution under mean curvature flow in Cn, that

is, H ≡ αF⊥ on L as in Definition 2.1.

The motivation for this ansatz is that it includes, and generalizes,
several families of examples in the literature. For special Lagrangian
submanifolds, with θ ≡ 0 in (ii) and α = 0 in (iii), the ansatz includes
the examples of Lawlor [15] with λ1 = · · · = λn = C = 1, and Joyce [12,
§5–§6]. For more general Lagrangian self-similar solutions, it includes
the examples of Abresch and Langer [2] when n = 1, the examples of
Anciaux [1], which have λ1 = · · · = λn = C = 1 and are symmetric
under the action of SO(n) on Cn, and the examples of Lee and Wang
[18, §6], [19], which have wj(s) ≡ eiλjs. M.-T. Wang and the second
author also tried to study an ansatz of a similar form to (2) before.

It is a long but straightforward calculation to find the conditions on
λ1, . . . , λn, C,w1, . . . , wn for L in (2) to be Lagrangian, to compute its
Lagrangian angle θ and mean curvature H, and to work out whether
L is a self-similar solution to Lagrangian mean curvature flow. In this
way we prove the following theorem.

Theorem A. Let λ1, . . . , λn, C ∈ R \ {0} and α ∈ R be constants,

I be an open interval in R, and θ : I → R or θ : I → R/2πZ and

w1, . . . , wn : I → C \ {0} be smooth functions. Suppose that

(3)

dwj
ds

= λje
iθ(s) w1 · · ·wj−1wj+1 · · ·wn, j = 1, . . . , n,

dθ

ds
= α Im(e−iθ(s)w1 · · ·wn),

hold in I. Then the submanifold L in Cn given by

(4) L =
{(

x1w1(s), . . . , xnwn(s)
)

: s ∈ I, xj ∈ R,
∑n

j=1 λjx
2
j = C

}

,

is Lagrangian, with Lagrangian angle θ(s) at (x1w1(s), . . . , xnwn(s)),
and its position vector F and mean curvature vector H satisfy αF⊥ =
CH. That is, L is a self-expander when α/C > 0 and a self-shrinker

when α/C < 0. When α = 0 the Lagrangian angle θ is constant, so
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that L is special Lagrangian, with H = 0. In this case the construction

reduces to that of Joyce [12, §5].
We can simplify the equations (3), generalizing [12, §5.2].
Theorem B. In the situation of Theorem A, let w1, . . . , wn, θ satisfy

(3). Write wj ≡ rje
iφj and φ =

∑n
j=1 φj , for functions rj : I → (0,∞)

and φ1, . . . , φn, φ : I → R or R/2πZ. Fix s0 ∈ I. Define u : I → R by

u(s) = 2

∫ s

s0

r1(t) · · · rn(t) cos
(

φ(t)− θ(t)
)

dt.

Then r2j (s) ≡ αj+λju(s) for j = 1, . . . , n and s ∈ I, where αj = r2j (s0).

Define a degree n polynomial Q(u) by Q(u) =
∏n
j=1(αj + λju). Then

the system of equations (3) can be rewritten as

(5)















































du

ds
= 2Q(u)1/2 cos(φ− θ),

dφj
ds

= −λjQ(u)1/2 sin(φ− θ)

αj + λju
, j = 1, . . . , n,

dφ

ds
= −Q(u)1/2(lnQ(u))′ sin(φ− θ),

dθ

ds
= αQ(u)1/2 sin(φ− θ).

The Lagrangian self-similar solution L in Theorem A may be rewritten

L =
{

(x1
√

α1 + λ1u(s) e
iφ1(s), . . . , xn

√

αn + λnu(s) e
iφn(s)) :

x1, . . . , xn ∈ R, s ∈ I,
∑n

j=1 λjx
2
j = C

}

.
(6)

Moreover, for some A ∈ R the equations (5) have the first integral

(7) Q(u)1/2eαu/2 sin(φ− θ) ≡ A.

Remark 3.2. There is a lot of freedom to rescale the constants in
Theorems A and B without changing the Lagrangian L. In particular:
(a) Set

λ̃j = Cλj/|Cλj |, C̃ = 1, α̃ = α/C, Ĩ = C|C|−n/2∏n
j=1 |λj |1/2 · I,

s̃ = C|C|−n/2∏n
j=1 |λj |1/2s, θ̃ = θ, w̃j = |C|1/2|λj |−1/2wj,

x̃j = |C|−1/2|λj |1/2xj, r̃j = |C|1/2|λj |−1/2rj , φ̃j = φj , φ̃ = φ,

ũ = Cu, α̃j = |C||λj |−1αj , Ã = |C|n/2∏n
j=1 |λj |−1/2A,

where we regard w̃j , θ̃, r̃j , φ̃j , φ̃, ũ as functions of s̃ rather than s, so that

w̃j(s̃) = |C|1/2|λj |−1/2wj(C
−1|C|n/2∏n

j=1 |λj |−1/2s̃), for instance. Then

these λ̃1, . . . , Ã satisfy Theorems A and B, with the same Lagrangian
L. Thus without loss of generality we can suppose λj = ±1 for all j
and C = 1.
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(b) Translations of I in R, so that I 7→ I + c, s 7→ s + c also do not
change L. Thus we can fix 0 ∈ I and s0 = 0 in Theorem B.
(c) Changing s 7→ −s and θ 7→ θ + π gives a solution with the same L,
but the opposite orientation.
(d) Changing w1 7→ −w1, s 7→ −s, φ1 7→ φ1+π, φ 7→ φ+π, and A 7→ −A
gives a solution with the same L. When A = 0, as Q(u) = r1 · · · rn > 0
equation (7) gives sin(φ−θ) ≡ 0, so (5) implies that φj , φ, θ are constant.
Thus L is an open subset of the special Lagrangian n-plane

{

(eiφ1x1, . . . , e
iφnxn) : x1, . . . , xn ∈ R

}

in Cn. As we are not interested in this case, we will either take A > 0
or A < 0. For the case of explicit Lagrangian self-expanders in §5, we
choose A < 0 to make the solutions have a similar expression to Lawlor’s
examples, while we take A > 0 in §6.
(e) If t > 0, changing α 7→ t−2α, I 7→ tn−2I, s 7→ tn−2s, wj 7→ twj ,
rj 7→ trj , u 7→ t2u, αj 7→ t2αj, A 7→ tnA gives another solution for the
Lagrangian tL rather than L. Thus, by allowing rescalings L 7→ tL,
we can also set α to 1,−1, or 0. But we shall retain the parameter α,
since taking limits α → 0 shows how our Lagrangian self-expanders or
self-shrinkers are related to special Lagrangian examples.

3.2. A class of explicit Lagrangian self-expanders. As in Remark
3.2, in Theorems A and B we may without loss of generality suppose
that λj = ±1, C = 1 and A < 0. We now consider the case in which
λ1 = · · · = λn = C = 1, α > 0 and A < 0. Then the Lagrangians L we
get are embedded and diffeomorphic to Sn−1×R. When α = 0 they are
the special Lagrangian ‘Lawlor necks’ found by Lawlor [15] and studied
by Harvey [8, p. 139–143], and Theorem C below generalizes Harvey’s
treatment. For α > 0 they are Lagrangian self-expanders. When α > 0,
a1 = · · · = an and ψ1 = · · · = ψn in Theorem C, the self-expander L is
invariant under SO(n), and is one of the examples found by Anciaux [1].

Theorem C. In Theorems A and B, suppose that λ1 = · · · = λn =
C = 1, α > 0 and A < 0. Then any solution of (3), or equivalently

of (5), on an interval I in R can be extended to a unique largest open

interval Imax in R. Take I = Imax. Then by changing variables from s
in Imax to y = y(s) in R, we may rewrite the Lagrangian self-expander L
of (4) and (6) explicitly as follows. Conversely, every L of the following

form comes from Theorems A and B with λ1 = · · · = λn = C = 1, α > 0
and A < 0.

For given constants α > 0, a1, . . . , an > 0 and ψ1, . . . , ψn ∈ R, define
wj(y) = eiφj(y)rj(y) for j = 1, . . . , n and y ∈ R by

rj(y) =
√

1
aj

+ y2 and φj(y) = ψj +

∫ y

0

dt

( 1
aj

+ t2)
√

P (t)
,
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where P (t) = 1
t2

(
∏n
k=1(1 + akt

2)eαt
2 − 1

)

. Then

(8) L =
{(

x1w1(y), . . . , xnwn(y)
)

: x1, . . . , xn ∈ R,
∑n

j=1 x
2
j = 1

}

is a closed, embedded Lagrangian diffeomorphic to Sn−1 × R and satis-

fying αF⊥ = H. If α > 0 it is a self-expander, and if α = 0 it is one

of Lawlor’s examples of special Lagrangian submanifolds [15]. It has

Lagrangian angle

(9) θ(y) =
∑n

j=1 φj(y) + arg
(

y + iP (y)−1/2
)

.

We can describe the asymptotic behavior of these Lagrangians:

Theorem D. In the situation of Theorem C, there exist φ̄1, . . . , φ̄n ∈
(0, π2 ] with φ̄j =

∫∞
0

dt

( 1

aj
+t2)

√
P (t)

for j = 1, . . . , n, such that the La-

grangian L is asymptotic at infinity to the union of Lagrangian planes

L1 ∪ L2, where

L1 =
{

(ei(ψ1+φ̄1)t1, . . . , e
i(ψn+φ̄n)tn) : t1, . . . , tn ∈ R

}

,

L2 =
{

(ei(ψ1−φ̄1)t1, . . . , e
i(ψn−φ̄n)tn) : t1, . . . , tn ∈ R

}

.

We have 0 < φ̄1+ · · ·+ φ̄n < π
2 if α > 0, and φ̄1+ · · ·+ φ̄n = π

2 if α = 0.

Fix α > 0. Then Φn : (a1, . . . , an) 7→ (φ̄1, . . . , φ̄n) gives a diffeomor-

phism

Φn : (0,∞)n −→
{

(φ̄1, . . . , φ̄n) ∈ (0, π2 )
n : 0 < φ̄1 + · · ·+ φ̄n <

π
2

}

.

That is, for all α > 0 and L1, L2 satisfying 0 < φ̄1 + · · · + φ̄n < π
2

as above, Theorem C gives a unique Lagrangian expander L asymptotic

to L1 ∪ L2.

When α = 0, it is studied by Lawlor in [15]. The map Φn : (a1, . . . , an)
7→ (φ̄1, . . . , φ̄n) gives a surjection

Φn : (0,∞)n −→
{

(φ̄1, . . . , φ̄n) ∈ (0, π2 ]
n : φ̄1 + · · ·+ φ̄n = π

2

}

,

such that (a1, . . . , an) and (a′1, . . . , a
′
n) have the same image (φ̄1, . . . , φ̄n)

if and only if a′j = taj for some t > 0 and all j = 1, . . . , n, and the

corresponding special Lagrangians L,L′ satisfy L′ = t−1/2L.

By applying an element of U(n), Theorem D also shows that we can
construct a unique Lagrangian self-expander with constant α asymptotic
to any pair of Lagrangian planes in Cn which intersect transversely at
the origin and have sum of characteristic angles less than π. As the
union of a pair of planes is volume minimizing if and only if the sum of
characteristic angles is greater or equal to π [15], our result is sharp.

The Lagrangian self-expanders in Theorems C and D have arbitrarily
small oscillation of the Lagrangian angle. That is, if

∑n
j=1 φ̄j =

π
2 − ǫ

in Theorem D, then (9) implies that L in (8) has Lagrangian angle
varying in (

∑n
j=1 ψj+

π
2 − ǫ,

∑n
j=1 ψj+

π
2 + ǫ), an open interval of width
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2ǫ, which can be made arbitrarily small. Thus these self-expanders are
almost calibrated, and Maslov zero.

The ‘Lawlor necks’ [15] have been used as local models in resolving
intersection points of special Lagrangians; see for example, Butscher
[5], Joyce [13], Dan Lee [16], and Yng-Ing Lee [17]. We expect the
Lagrangian self-expanders found here will also play an important role
in surgeries during Lagrangian mean curvature flow.

3.3. Other self-similar solutions from Theorems A, B. We now
discuss the remaining solutions from Theorems A and B. As in Re-
mark 3.2, without loss of generality we may take λj = ±1, C = 1 and
A > 0. Section 3.2 dealt with the case λ1 = · · · = λn = 1 and α > 0.
There remain the cases (a) λ1 = · · · = λn = 1 and α < 0, and (b) at
least one λj is −1. In (b), we reorder w1, . . . , wn if necessary so that
λ1 = · · · = λm = 1 and λm+1 = · · · = λn = −1. We exclude m = n,
as this is covered by §3.2 and case (a), and we exclude m = 0, as then
L = ∅. So we may take 1 6 m < n, and the following theorem covers
all the remaining cases.

Theorem E. In Theorems A and B, suppose that either:

(a) λ1 = · · · = λn = C = 1, α < 0 and A > 0; or
(b) λ1 = · · · = λm = 1 and λm+1 = · · · = λn = −1 for some 1 6 m <

n, C = 1, A > 0, and α ∈ R.

Then solutions exist for all s ∈ R, and we take I = R. In each of cases

(a), (b) we divide into two subcases:

(i)
∑n

j=1
λj
αj

+ α = 0 and α1 · · ·αn = A2; or

(ii) otherwise.

In case (i), we have explicit solutions to (5) and obtain

L =
{(

x1
√
α1 e

i(ψ1−λ1As/α1), . . . , xn
√
αn e

i(ψn−λnAs/αn)
)

:

x1, . . . , xn ∈ R, s ∈ R,
∑n

j=1 λjx
2
j = 1

}

,
(10)

which is Hamiltonian stationary in addition to being self-similar, and in-

variant under a subgroup R or U(1) of diagonal matrices
{

diag(eiλ1t/α1 ,

. . . , eiλnt/αn) : t ∈ R
}

in U(n).
In case (ii), u and φ− θ are periodic in s with period S > 0, and

u(s+ S) = u(s), φj(s+ S) = φj(s) + γj ,

φ(s+ S) = φ(s) +
∑n

j=1 γj , θ(s+ S) = θ(s) +
∑n

j=1 γj ,

for some γ1, . . . , γn ∈ R and all s ∈ R. In case (b) with α = 0 we have

θ(s) ≡ θ(0) and
∑n

j=1 γj = 0.

The Hamiltonian stationary self-similar solutions in (10) were ob-
tained and studied by Lee and Wang in [19]. If we require the La-
grangian self-similar solutions in (6) to be Hamiltonian stationary, then
they must be of the form (10) by some simple arguments.
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The solutions wj obtained in Theorem E are bounded and periodic or
quasi-periodic. The periodic ones are much more interesting, as then L
is compact in case (a), and closed in case (b). Our next result explores
this periodicity, and shows there are many periodic solutions.

Theorem F. In Theorem E, we say that (w1, . . . , wn) is periodic if

there exists T > 0 with wj(s) = wj(s+T ) for all s ∈ R and j = 1, . . . , n.
If (w1, . . . , wn) is periodic then in case (a), L is a compact, immersed

Lagrangian self-shrinker diffeomorphic to S1 × Sn−1, and in case (b),
L is a closed, noncompact, immersed Lagrangian diffeomorphic to S1 ×
Sm−1 × Rn−m, a self-expander if α > 0, a self-shrinker if α < 0, and
special Lagrangian if α = 0.

In case (i), (w1, . . . , wn) is periodic if and only if
λj
αj

= µqj with µ > 0

and qj ∈ Q for j = 1, . . . , n. In case (ii), (w1, . . . , wn) is periodic if and

only if γj ∈ πQ for j = 1, . . . , n. In both cases, for fixed m,α, there is

a dense subset of initial data for which (w1, . . . , wn) is periodic.

If (w1, . . . , wn) is not periodic, then L is a noncompact, immersed
Lagrangian diffeomorphic to Sn−1×R in case (a) and to Sm−1×Rn−m+1

in case (b). It is not closed in Cn, and the closure L̄ of L in Cn has
dimension greater than n.

One can use the solutions obtained in Theorem F to form eternal
solutions of Brakke flow without mass loss, which generalize some of
Lee and Wang’s earlier results [18, 19]. Recall that Brakke flow [3] is
a generalization of mean curvature flow to varifolds, measure-theoretic
generalizations of submanifolds which may be singular. And an eternal
solution is a solution which is defined for all t.

For t ∈ R, define

Lt =
{

(x1
√

α1 + u(s) eiφ1(s), . . . , xm
√

αm + u(s) eiφm(s),

xm+1

√

αm+1 − u(s) eiφm+1(s), . . . , xn
√

αn − u(s) eiφn(s)
)

:

x1, . . . , xn ∈ R, s ∈ R/TZ, x21 + · · ·+ x2m − x2m+1 − · · · − x2n = t
}

,

where u, φ1, . . . , φn are periodic with period T > 0. Then Lt is a closed,
nonsingular, immersed Lagrangian self-expander in Cn diffeomorphic to
S1 × Sm−1 × Rn−m when t > 0, and a closed, nonsingular, immersed
Lagrangian self-shrinker in Cn diffeomorphic to S1×Sn−m−1×Rm when
t < 0, and L0 is a closed, immersed Lagrangian cone in Cn with link
S1 × Sm−1 × Sn−m−1, with an isolated singular point at 0.

The fact that Lt form an eternal solution of Brakke flow without mass
loss is proved in Lee and Wang’s paper [19].

3.4. Translating solutions. In §3.1–§3.3 we have considered only cen-
tered quadrics centered at 0, and only Lagrangian self-expanders and
self-shrinkers. It is an obvious question whether we can generalize the
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constructions to non-centered quadrics on the one hand, and to La-

grangian translating solitons on the other. In fact it seems to be natu-
ral to put these ideas together, and to construct Lagrangian translating
solitons using non-centered quadrics whose favoured axis is the direction
of translation. Here is the class of n-submanifolds of Cn amongst which
we will seek Lagrangian translating solitons.

Ansatz 3.3. Fix n > 2. Consider n-submanifolds L in Cn of the
form:

L =
{(

x1w1(s), . . . , xn−1wn−1(s), xn + β(s)
)

:

s ∈ I, x1, . . . , xn ∈ R,
∑n−1

j=1 λjx
2
j + 2xn = 0

}

,
(11)

where λ1, . . . , λn−1 ∈ R\{0} are nonzero constants, I is an open interval
in R, and w1, . . . , wn−1 : I → C \ {0}, β : I → C are smooth functions.
We want L to satisfy:

(i) L is Lagrangian;
(ii) the Lagrangian angle θ : L → R or θ : L → R/2πZ of L is a

function only of s, not of x1, . . . , xn; and
(iii) L is a translating soliton under mean curvature flow in Cn, with

translating vector (0, . . . , 0, α) ∈ Cn, for α ∈ R.

One motivation for this is the special Lagrangian submanifolds found
by the first author [12, §7], which are of the form (11). Another is
the limiting argument used to prove Theorem G below, which recovers
Ansatz 3.3 as a limit of Ansatz 3.1. Here is the analogue of Theorem A
for this ansatz.

Theorem G. Let λ1, . . . , λn−1 ∈ R\{0} and α ∈ R be constants, I be

an open interval in R, and θ : I → R or θ : I → R/2πZ, w1, . . . , wn−1 :
I → C \ {0} and β : I → C be smooth functions. Suppose that

(12)



























dwj
ds

= λje
iθ(s) w1 · · ·wj−1wj+1 · · ·wn−1, j = 1, . . . , n− 1,

dθ

ds
= α Im(e−iθw1 · · ·wn−1),

dβ

ds
= eiθ(s) w1 · · ·wn−1,

hold in I. Then the submanifold L in Cn given by

L =
{

(x1w1(s), . . . , xn−1wn−1(s),−1
2

∑n−1
j=1 λjx

2
j + β(s)) :

x1, . . . , xn−1 ∈ R, s ∈ I
}

(13)

is an embedded Lagrangian diffeomorphic to Rn, with Lagrangian angle

θ(s). When α 6= 0, it is a Lagrangian translating soliton with translating

vector (0, . . . , 0, α) ∈ Cn. When α = 0, it is special Lagrangian, and the

construction reduces to that of Joyce [12, §7].
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We can prove this directly, following the proof of Theorem A in §4.
This is straightforward, and we leave it as an exercise for the interested
reader. Instead, we give a somewhat informal proof which obtains The-
orem G from Theorem A by a limiting procedure, since this gives more
insight into why the construction should generalize in this way.

Proof of Theorem G, assuming Theorem A. Let λ1, . . . , λn−1 ∈ R \ {0}
and α ∈ R be constants, I be an open interval in R, and θ : I → R or
θ : I → R/2πZ, w1, . . . , wn−1 : I → C \ {0} and β : I → C be smooth

functions. Let R > 0. Define constants λ̃1, . . . , λ̃n, C̃ ∈ R \ {0} and

α̃ ∈ R, an open interval Ĩ, and smooth θ̃ : Ĩ → R or θ̃ : Ĩ → R/2πZ,

w̃1, . . . , w̃n : Ĩ → C \ {0} by

(14)

λ̃j = λj , j = 1, . . . , n− 1, λ̃n = R, C̃ = R, α̃ = α, Ĩ = R−1I,

s̃ = R−1s, w̃j(s̃) = wj(Rs̃) = wj(s), j = 1, . . . , n− 1,

w̃n(s̃) = R+ β(Rs̃) = R+ β(s), θ̃(s̃) = θ(Rs̃) = θ(s).

We suppose that β 6= −R so that w̃n maps Ĩ → C \ {0}.
Apply Theorem A to this new data λ̃j, C̃, α̃, Ĩ , θ̃, w̃j . This yields

o.d.e.s (3) upon w̃j , θ̃, in terms of derivatives with respect to s̃, and

defines (4) a self-similar Lagrangian L̃ in Cn when these o.d.e.s hold.

Define L = L̃ − (0, . . . , 0, R), that is, L is L̃ translated by the vector
−(0, . . . , 0, R). Rewriting the o.d.e.s (3) in terms of R,λj, α, I, θ, wj , β
using (14) yields

(15)











dwj

ds = λje
iθ(s) w1 · · ·wj−1wj+1 · · ·wn−1 (1 +R−1β(s)), all j,

dθ
ds = α Im

(

e−iθw1 · · ·wn−1(1 +R−1β(s))
)

,
dβ
ds = eiθ(s) w1 · · ·wn−1.

Rewriting L̃ in (4) in terms of R,λj , α, I, θ, wj , β, translating by −(0,
. . . , 0, R) to get L, and replacing xn in (4) by 1 +R−1x̄n, yields

L =
{(

(x1w1(s), . . . , xn−1wn−1(s), x̄n + β(s) +R−1β(s)x̄n
)

:

x1, . . . , xn−1, x̄n∈R, s∈I, ∑n−1
j=1 λjx

2
j+2x̄n +R−1x̄2n=0

}

.
(16)

The conclusion of Theorem A is that L̃ satisfies αF⊥ = RH. Since L
is the translation of L̃ by −(0, . . . , 0, R), and this subtracts (0, . . . , 0, R)
from F , we see that L satisfies α

(

F + (0, . . . , 0, R)
)

⊥ = RH. Dividing
by R and setting T = (0, . . . , 0, α), this shows that L satisfies H =
T⊥ +R−1αF⊥.

Now let us take the limit R→ ∞. Then (15) reduces to (12), as the

R−1 terms disappear, and (16) reduces to (13), as x̄n = −1
2

∑n−1
j=1 λjx

2
j

in the limit. The equation H = T⊥ +R−1αF⊥ for L becomes H = T⊥,
so L is a Lagrangian translating soliton with translating vector T =
(0, . . . , 0, α).
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It remains to show that L is embedded, that is, the immersion ι :
(x1, . . . , xn−1, s) 7→ (x1w1(s), . . . , xn−1wn−1(s),−1

2

∑n−1
j=1 λjx

2
j + β(s))

is injective. Combining (15) with equation (7) of Theorem B gives

Im dβ
ds ≡ −Ae−αu/2 for some A ∈ R. Thus Imβ is strictly decreas-

ing in s if A > 0, and strictly increasing if A < 0. In both cases, if
ι(x1, . . . , xn−1, s) = (z1, . . . , zn) then Im zn determines s, and given s,
we have xj = wj(s)

−1zj for j = 1, . . . , n − 1. So ι is injective if A 6= 0.
When A = 0 we can solve explicitly and show ι is injective. q.e.d.

Note that the first two equations in (12) are exactly the same as (3),
replacing n by n − 1. Having chosen some solutions w1, . . . , wn−1, θ to
the first two equations of (12), the third equation of (12) determines
β uniquely up to β 7→ β + c, by integration. Actually we can write β
explicitly in terms of u, θ: in the notation of Theorem B, if α 6= 0 then
(5) and the last equation of (12) give dβ

ds = 1
2
du
ds − i

α
dθ
ds , which integrates

to β(s) = 1
2u(s)− i

αθ(s) +K, for K ∈ C. So we deduce:

Corollary H. In the situation of Theorem G, when α 6= 0, the La-

grangian translating soliton L may be rewritten

L=
{(

x1
√

α1+λ1u(s) e
iφ1(s), . . . , xn−1

√

αn−1+λn−1u(s) e
iφn−1(s),

1
2u(s)− 1

2

∑n−1
j=1 λjx

2
j − i

αθ(s) +K
)

: x1, . . . , xn−1 ∈ R, s ∈ I
}

,
(17)

where K ∈ C and u, α1, . . . , αn−1, φ1, . . . , φn−1 are as in Theorem B

with n− 1 in place of n, and satisfy (5) and (7) for some A ∈ R.

Proposition 2.5 implies that the Lagrangian angle θ of L should be of
the form −α Im zn|L+ c, where (z1, . . . , zn) are the complex coordinates
on Cn. The imaginary part of the last coordinate in (17) is − 1

αθ(s) +
ImK, so the proposition holds with c = α ImK.

Theorems C, D, E, and F give a good description of solutions of (5),
and hence of the Lagrangian translating solitons L from Theorem G
and Corollary H. In the authors’ opinion, the most interesting case of
Theorem G is when λ1, . . . , λn−1 > 0 and α > 0. (This is equivalent
to the case λ1, . . . , λn−1 < 0 and α 6 0, changing the sign of the last
coordinate in Cn.) The following result combines Theorems C, D with
n− 1 in place of n, Theorem G, and Corollary H. For simplicity we set
ψ1 = · · · = ψn−1 = 0 and K = −1

2u∗, where u∗ is defined in the proof
of Theorem C (see Figure 1 on page 147).

Corollary I. For given constants α > 0 and a1, . . . , an−1 > 0, define

φj(y) =

∫ y

0

dt

( 1
aj

+ t2)
√

P (t)
, where P (t) =

1

t2

(

n−1
∏

k=1

(1+ akt
2)eαt

2 − 1
)

,
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for j = 1, . . . , n− 1 and y ∈ R. Then when α 6= 0,

L=
{(

x1

√

1
a1
+y2 eiφ1(y), . . . , xn−1

√

1
an−1

+y2 eiφn−1(y), 12y
2− 1

2

∑n−1
j=1 x

2
j

− i
α

∑n−1
j=1 φj(y)− i

α arg(y + iP (y)−1/2)
)

: x1, . . . , xn−1, y ∈ R
}

(18)

is a closed, embedded Lagrangian in Cn diffeomorphic to Rn, which is a

Lagrangian translating soliton with translating vector (0, . . . , 0, α) ∈ Cn.

When α = 0,

L=
{(

x1

√

1
a1
+y2 eiφ1(y), . . . , xn−1

√

1
an−1

+y2 eiφn−1(y), 12y
2− 1

2

n−1
∑

j=1
x2j

+ i

∫ y

0

dt
√

1
t2

(
∏n
k=1(1 + akt

2)− 1
)

)

: x1, . . . , xn−1, y ∈ R
}

is a closed, embedded Lagrangian in Cn diffeomorphic to Rn, which is

special Lagrangian.

There exist φ̄1, . . . , φ̄n−1 ∈ (0, π2 ] such that φj(y) → φ̄j as y → ∞
and φj(y) → −φ̄j as y → −∞ for j = 1, . . . , n − 1. These satisfy

φ̄1+· · ·+φ̄n−1 <
π
2 if α > 0, and φ̄1+· · ·+φ̄n−1 =

π
2 if α = 0. For fixed

α > 0, the map (a1, . . . , an−1) 7→ (φ̄1, . . . , φ̄n−1) is a 1–1 correspondence

from (0,∞)n−1 to
{

(φ̄1, . . . , φ̄n−1) ∈ (0, π2 )
n−1 : φ̄1 + · · · + φ̄n−1 <

π
2

}

.

When α = 0, the map has image
{

(φ̄1, . . . , φ̄n−1) ∈ (0, π2 ]
n−1 : φ̄1+ · · ·+

φ̄n−1 =
π
2

}

.

The Lagrangian angle of L in (18) varies between
∑n−1

j=1 φ̄j and π −
∑n−1

j=1 φ̄j . Thus, when α > 0, by choosing
∑n−1

j=1 φ̄j close to π
2 , the

oscillation of the Lagrangian angle of L can be made arbitrarily small.

We can give the following heuristic description of L in (18). If y ≫ 0

then φj(y) ≈ φ̄j and
√

1
aj

+ y2 ≈ y, and the terms − i
α

∑n
j=1 φj(y) −

i
α arg(y + iP (y)−1/2) are negligible compared to 1

2y
2 in the last coordi-

nate. Thus, the region of L with y≫0 is in a weak sense approximate to

{(

x1ye
iφ̄1 , . . . , xn−1ye

iφ̄n−1 , 12y
2 − 1

2

n−1
∑

j=1
x2j
)

: x1, . . . , xn−1 ∈ R, y > 0
}

.

But this is just an unusual way of parametrizing

L1 =
{(

y1e
iφ̄1 , . . . , yn−1e

iφ̄n−1 , yn) : yj ∈ R
}

\
{

(0, . . . , 0, yn) : yn 6 0
}

,

the complement of a ray in a Lagrangian plane. Similarly, the region of
L with y ≪ 0 is in a weak sense approximate to

L2=
{(

y1e
−iφ̄1 , . . . , yn−1e

−iφ̄n−1 , yn) : yj ∈R
}

\
{

(0, . . . , 0, yn) : yn60
}

.

So, L can be roughly described as asymptotic to the union of two
Lagrangian planes L1, L2

∼= Rn which intersect in an R in Cn, the yn-axis
{

(0, . . . , 0, yn) : yn ∈ R
}

. To make L, we glue these Lagrangian planes
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by a kind of ‘connect sum’ along the negative yn-axis
{

(0, . . . , 0, yn) :

yn 6 0
}

. Under Lagrangian mean curvature flow, L1, L2 remain fixed,
but the gluing region translates in the positive yn direction, as though
L1, L2 are being ‘zipped together’.

Note too that when the oscillation of the Lagrangian angle of L is
small compared to |α|, we see from Proposition 2.5 that Im zn|L is con-
fined to a small interval, where (z1, . . . , zn) are the complex coordi-
nates on Cn. That is, L is close to the affine R2n−1 in Cn defined
by Im zn = − π

2α .

Question 3.4. Can the translating solitons with small Lagrangian
angle oscillation in Corollary I arise as blow-ups of finite time singular-
ities for Lagrangian mean curvature flow, particularly when n = 2?

It is important to answer this question in developing a regularity the-
ory for the flow. Such relations have been observed before in codimen-
sion one mean curvature by White [28, 29], and Huisken and Sinestrari
[11], and in Ricci flow by Perelman [22]. See also the recent work by
Neves and Tian [21] for related discussions.

We can also ask about the Lagrangian translating solitons from The-
orem G and Corollary H coming from Theorem E with n − 1 in place
of n. As in Theorem E, we take I = R. Using the notation of Theorem
B for w1, . . . , wn−1, θ, observe that the third equation of (12) gives

(19) Im
dβ

ds
= −Q(u)1/2 sin(φ− θ) = −Ae−αu/2.

As in Remark 3.2(d), when A = 0 the Lagrangian L is an open subset
of an affine Lagrangian plane Rn in Cn, which is not interesting, so we
restrict to A 6= 0. Then (19) shows that either Im dβ

ds > 0 for all s ∈ R,

or Im dβ
ds < 0 for all s ∈ R. Thus β can never be periodic, so we have no

analogue of Theorem F in the translating case. We can also deduce from
this that the Lagrangians are closed, embedded, diffeomorphic to Rn,
and when α 6= 0 have infinite oscillation of the Lagrangian angle. This
implies that these Lagrangian translating solitons from Theorems G and
E cannot arise as blow-ups of finite time singularities for Lagrangian

mean curvature flow.

4. A construction for self-similar Lagrangians

We now prove:

Theorem A. Let λ1, . . . , λn, C ∈ R \ {0} and α ∈ R be constants,

I be an open interval in R, and θ : I → R or θ : I → R/2πZ and
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w1, . . . , wn : I → C \ {0} be smooth functions. Suppose that

(20)

dwj
ds

= λje
iθ(s) w1 · · ·wj−1wj+1 · · ·wn, j = 1, . . . , n,

dθ

ds
= α Im(e−iθ(s)w1 · · ·wn),

hold in I. Then the submanifold L in Cn given by

(21) L =
{(

x1w1(s), . . . , xnwn(s)
)

: s ∈ I, xj ∈ R,
∑n

j=1 λjx
2
j = C

}

,

is Lagrangian, with Lagrangian angle θ(s) at (x1w1(s), . . . , xnwn(s)),
and its position vector F and mean curvature vector H satisfy αF⊥ =
CH. That is, L is a self-expander when α/C > 0 and a self-shrinker

when α/C < 0. When α = 0 the Lagrangian angle θ is constant, so

that L is special Lagrangian, with H = 0. In this case the construction

reduces to that of Joyce [12, §5].

Proof. Define Σ =
{

(x1, . . . , xn) ∈ Rn :
∑n

j=1 λjx
2
j = C

}

. Then Σ

is a nonsingular quadric in Rn, an (n − 1)-manifold. Define a smooth
map ι : Σ× I → Cn by ι :

(

(x1, . . . , xn), s
)

7−→
(

x1w1(s), . . . , xnwn(s)
)

.
Then L = ι(Σ × I). The determinant calculation below implies ι is an
immersion, and so L is a nonsingular immersed n-submanifold in Cn.

Fix x = (x1, . . . , xn) ∈ Σ and s ∈ I. We will find the tangent
space Tι(x,s)L, show that it is Lagrangian, and compute its Lagrangian
angle. Let e1, . . . , en−1 be an orthonormal basis for TxΣ in Rn, and write
ej = (aj1, . . . , ajn) in Rn for j = 1, . . . , n−1. Let en =

(
∑n

j=1 λ
2
jx

2
j

)

−1/2 ·
(λ1x1, . . . , λnxn). Then en is a unit normal vector to Σ at x in Rn. Let
e1, . . . , en−1 be chosen so that e1, . . . , en−1, en is an oriented orthonormal
basis for Rn. Then det(e1 . . . en) = 1, regarding e1, . . . , en as column
vectors, and (e1 . . . en) as an n× n matrix.

Now e1, . . . , en−1,
∂
∂s is a basis for T(x,s)(Σ× I). Define fj = dι(ej) ∈

Cn for j = 1, . . . , n − 1 and fn = dι( ∂∂s) ∈ Cn. Then f1, . . . , fn
is a basis for Tι(x,s)L, over R. From the definitions we have fj =
(

aj1w1(s), . . . , ajnwn(s)
)

for j < n, and fn =
(

x1ẇ1(s), . . . , xnẇn(s)
)

.
Therefore

〈fj , Jfk〉 = Re
(

−i∑n
l=1 ajlakl|wl|2

)

= 0, for j, k = 1, . . . , n− 1,

〈fj, Jfn〉 = Re
(

−i w1 · · ·wne−iθ
∑n

j=1 ajlλlxl) = 0, for j=1, . . . , n−1,

where in the second equation we use the first equation of (20) to sub-
stitute for ẇl(s), and the fact that (λ1x1, . . . , λnxn) is normal to Σ at
x, and so orthogonal to ej = (aj1, . . . , ajn).

Thus 〈fj, Jfk〉 = 0 for j, k = 1, . . . , n, so the symplectic form ω(∗, ∗) =
〈∗, J∗〉 on Cn vanishes on 〈f1, . . . , fn〉R = Tι(x,s)L, and Tι(x,s)L is a
Lagrangian plane in Cn. Hence L is Lagrangian. To compute the La-
grangian angle, write wj(s) = rj(s)e

iφj(s) and φ(s) =
∑n

j=1 φj(s), where
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rj(s) = |wj(s)|. Then
det(f1 · · · fn)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11r1e
iφ1(s) · · · a(n−1)1r1e

iφ1(s) x1λ1r2 · · · rnei(φ1(s)+θ(s)−φ(s))

a12r2e
iφ2(s) · · · a(n−1)2r2e

iφ2(s) x2λ2r1r3 · · · rnei(φ2(s)+θ(s)−φ(s))

...
...

...
...

a1nrne
iφn(s) · · · a(n−1)nrne

iφn(s) xnλnr1 · · · rn−1e
i(φn(s)+θ(s)−φ(s))

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r21 · · · r2neiθ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 · · · a(n−1)1
x1λ1

r2
1

a12 · · · a(n−1)2
x2λ2

r2
2

...
...

...
...

a1n · · · a(n−1)n
xnλn

r2
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
r21 · · · r2neiθ
√

∑n

l=1 λ
2
l x

2
l

n
∑

l=1

λ2l x
2
l

r2l
.

Here in the second step we extract factors of rje
iφj(s) from the jth

row for j = 1, . . . , n, and a factor r1 · · · rnei(θ(s)−φ(s)) from the nth col-
umn. The factors eiφ1(s)eiφ2(s) · · · eiφn(s)e−iφ(s) cancel to give 1. In
the third and final step, we note that the first n − 1 columns of the
matrix on the third line are e1, . . . , en−1, and e1, . . . , en are orthonor-
mal with det(e1 . . . en) = 1, so we project the vector (λ1x1

r2
1

, . . . , λnxn
r2n

)

to en to calculate the determinant. This shows that the Lagrangian
angle on L at (x1w1(s), . . . , xnwn(s)) is θ(s), as we have to prove.
Also, as it shows that det(f1 · · · fn) 6= 0, this calculation implies that
dι : T(x,s)(Σ×I) → Cn is injective, and ι is an immersion, as we claimed
above.

The matrix (gab) of the metric on L w.r.t. the basis f1, . . . , fn is

(22) gnn=r
2
1 · · · r2n

∑n
l=1

λ2l x
2
l

r2l
, gjn=gnj=0, and gjk=

∑n
l=1 ajlaklr

2
l

for j, k = 1, . . . , n− 1. Hence by (20) the mean curvature vector is

(23) H = J∇θ = θ̇

gnn
Jfn =

αr1 · · · rn sin(φ− θ)

gnn
Jfn.

The normal projection of the position vector F is computed by

〈F, Jfl〉 = Re
(

−i∑n
j=1 r

2
jxjalj

)

= 0,

〈F, Jfn〉 = Re
(

−ir1 · · · rnei(φ−θ)
∑n

j=1 λjx
2
j

)

= Cr1 · · · rn sin(φ− θ).

It follows that

(24) F⊥ =
Cr1 · · · rn sin(φ− θ)

gnn
Jfn.

Equations (23) and (24) give αF⊥ = CH, as we have to prove. q.e.d.

We can rewrite, simplify, and partially solve the equations (20).

Theorem B. In the situation of Theorem A, let w1, . . . , wn, θ satisfy

(20). Write wj ≡ rje
iφj and φ =

∑n
j=1 φj , for functions rj : I → (0,∞)
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and φ1, . . . , φn, φ : I → R or R/2πZ. Fix s0 ∈ I. Define u : I → R by

(25) u(s) = 2

∫ s

s0

r1(t) · · · rn(t) cos
(

φ(t)− θ(t)
)

dt.

Then r2j (s) ≡ αj+λju(s) for j = 1, . . . , n and s ∈ I, where αj = r2j (s0).

Define a degree n polynomial Q(u) by Q(u) =
∏n
j=1(αj + λju). Then

the system of equations (20) can be rewritten as

(26)















































du

ds
= 2Q(u)1/2 cos(φ− θ),

dφj
ds

= −λjQ(u)1/2 sin(φ− θ)

αj + λju
, j = 1, . . . , n,

dφ

ds
= −Q(u)1/2(lnQ(u))′ sin(φ− θ),

dθ

ds
= αQ(u)1/2 sin(φ− θ).

The Lagrangian self-similar solution L in Theorem A may be rewritten

L =
{

(x1
√

α1 + λ1u(s) e
iφ1(s), . . . , xn

√

αn + λnu(s) e
iφn(s)) :

x1, . . . , xn ∈ R, s ∈ I,
∑n

j=1 λjx
2
j = C

}

.
(27)

Moreover, for some A ∈ R the equations (26) have the first integral

(28) Q(u)1/2eαu/2 sin(φ− θ) ≡ A.

Proof. Using equations (20) and (26), for j = 1, . . . , n we have

d(r2j )

ds
=

d(|wj|2)
ds

=wj
dw̄j
ds

+w̄j
dwj
ds

=λje
−iθw1 · · ·wn+λjeiθw1 · · ·wn

= 2λj Re(e
i(φ−θ)r1 · · · rn) = 2λj cos(φ− θ) r1 · · · rn = λj

du

ds
.

Thus r2j − λju is constant in I, and at s = s0 we have r2j (s0) = αj and

u(s0) = 0, so r2j (s) ≡ αj + λju(s) for j = 1, . . . , n and s ∈ I, as we have
to prove.

Differentiating (25) gives du
ds = 2r1 · · · rn cos(φ − θ). But r2j = αj +

λju and the definition of Q imply that Q(u) =
∏n
j=1 r

2
j , so du

ds =

2Q(u)1/2 cos(φ− θ), the first equation of (26). As wj = rje
iφj we have

dwj
ds

=
drj
ds

eiφj + irje
iφj

dφj
ds

.

Thus rj
dφj
ds = Im(e−iφj

dwj

ds ), and the second equation of (26) follows

from the first equation of (20), wj = rje
iφj , φ =

∑n
j=1 φj and Q(u)1/2 =

r1 · · · rn.
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Summing the second equation of (26) over j = 1, . . . , n gives

dφ

ds
= −Q(u)1/2

n
∑

j=1

λj sin(φ− θ)

αj + λju
= −Q(u)1/2(lnQ(u))′ sin(φ− θ),

the third equation of (26). The final equation of (26) follows from

the second equation of (21), wj = rje
iφj , φ =

∑n
j=1 φj and Q(u)1/2 =

r1 · · · rn. Equation (27) is immediate from (21) and wj = rje
iφj . Finally,

using (26) we find that

d

ds

(

Q(u)1/2eαu/2 sin(φ− θ)
)

= 1
2Q(u)1/2 ln(Q(u))′

du

ds
eαu/2 sin(φ− θ)

+Q(u)1/2
α

2
eαu/2

du

ds
sin(φ− θ) +Q(u)1/2eαu/2 cos(φ− θ)

d(φ− θ)

ds

= Q(u)1/2eαu/2
[

sin(φ− θ)
(

1
2 ln(Q(u))′ + α

2

)

2Q(u)1/2 cos(φ− θ)

+cos(φ−θ)
(

−Q(u)1/2(lnQ(u))′ sin(φ−θ)−αQ(u)1/2 sin(φ−θ)
)]

=0.

So the left-hand side of (28) is a constant, say, A in R. q.e.d.

5. Self-expanders diffeomorphic to Sn−1 × R

We now prove Theorems C and D of §3.2.
Theorem C. In Theorems A and B, suppose that λ1 = · · · = λn =

C = 1, α > 0 and A < 0. Then any solution of (20), or equivalently

of (26), on an interval I in R can be extended to a unique largest open

interval Imax in R. Take I = Imax. Then by changing variables from s in
Imax to y = y(s) in R, we may rewrite the Lagrangian self-expander L of

(21) and (27) explicitly as follows. Conversely, every L of the following

form comes from Theorems A and B with λ1 = · · · = λn = C = 1,
α > 0 and A < 0.

For given constants α > 0, a1, . . . , an > 0 and ψ1, . . . , ψn ∈ R, define
wj(y) = eiφj(y)rj(y) for j = 1, . . . , n and y ∈ R by

rj(y) =
√

1
aj

+ y2 and φj(y) = ψj +

∫ y

0

dt

( 1
aj

+ t2)
√

P (t)
,(29)

where P (t) = 1
t2

(
∏n
k=1(1 + akt

2)eαt
2 − 1

)

. Then(30)

L =
{(

x1w1(y), . . . , xnwn(y)
)

: x1, . . . , xn ∈ R,
∑n

j=1 x
2
j = 1

}

(31)

is a closed, embedded Lagrangian diffeomorphic to Sn−1 × R and satis-

fying αF⊥ = H. If α > 0 it is a self-expander, and if α = 0 it is one

of Lawlor’s examples of special Lagrangian submanifolds [15]. It has

Lagrangian angle

(32) θ(y) =
∑n

j=1 φj(y) + arg
(

y + iP (y)−1/2
)

.
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Proof. Suppose we are in the situation of Theorems A and B, with
λ1 = · · · = λn = C = 1, α > 0, A < 0 and I = Imax. Define G(u) =
Q(u)eαu and β = −minj=1,...,n

αj

λj
< 0. Then G(β) = 0, and

(33)
d

du
ln(G(u)) =

n
∑

j=1

λj
αj + λju

+ α,

which is positive for u > β. Therefore G is an increasing function
on [β,∞) with G(β) = 0 and limu→∞G(u) = ∞. Note that G(0) =
∏n
j=1 αj > A2, since (28) at s = s0 gives (

∏n
j=1 αj)

1/2 sin(φ − θ) = A

and | sin(φ − θ)| 6 1. Hence there exists u∗ ∈ (β, 0] with G(u∗) = A2

(see Figure 1).

β u
*

z = A2

z = G(u)

Figure 1. the case that λ1 = · · · = λn = C = 1, α > 0,
and A < 0.

Since | sin(φ − θ)| 6 1, equation (28) implies that G(u(s)) > A2 for
all s ∈ I, and so u(s) > u∗ for all s ∈ I. Also, combining (26) and (28),
we have du

ds = 0 ⇔ cos(φ− θ) = 0 ⇔ | sin(φ− θ)| = 1 ⇔ G(u(s)) = A2

⇔ u(s) = u∗. If u is a constant function, then u(s) ≡ 0 as we have
u(s0) = 0, and also φ − θ ≡ −π

2 as A < 0. From (26) and (28), it

follows that φj = ψj − As
αj

and θ = θ0 + αAs for some constants ψj and

θ0. As αj > 0 and α > 0, it contradicts to the fact that φ − θ ≡ −π
2 .

Now suppose s1, s2 are distinct, adjacent zeroes of
du
ds in I. Then du

ds has
constant sign in (s1, s2), but u(s1) = u(s2) = u∗, giving a contradiction
by the Mean Value Theorem. Hence du

ds has at most one zero in I.
Write I = (a, b) for a, b ∈ R ∪ {±∞}. We claim that u(s) → ∞ as

s → a+ or s → b−. When a or b are finite this follows from I = Imax,
since the only way the solution could not extend over a or b is if u→ ∞.
When a or b are infinite, u is monotone near infinity as du

ds has at most
one zero, so u(s) must approach infinity or some finite limiting value u′

as s → ±∞. If u(s) → u′ as s → ±∞ then du
ds → 0 as s → ∞, forcing

u′ = u∗ from above. We can exclude this possibility by showing that
d2u
ds2

6→ 0 as s → ∞. Thus u(s) → ∞ as s → a+ or s → b−, and u has

at least one minimum at s∗ in I. Then du
ds (s∗) = 0, so s∗ is unique from

above, and u(s∗) = u∗.
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Combining the first equation of (26), (28), and the fact that u is
decreasing in (a, s∗) and increasing in (s∗, b), we have

(34)
du

ds
=

{

− 2
√

Q(u)−A2e−αu , a < s 6 s∗,

2
√

Q(u)−A2e−αu , s∗ 6 s < b.

This gives

(35)

∫ u(s)

u∗

dv

2
√

Q(v)−A2e−αv
= |s− s∗|.

Thus a, b are finite when n > 2 and a = −∞, b = +∞ when n 6 2.
Equation (35) defines s explicitly as a function of u. Inverting this

gives u as a function of s. Then from (28) we obtain sin(φ − θ), and
hence cos(φ− θ), as functions of s. Thus we have the right-hand side of
each equation in (26) as functions of s, and integrating (26) gives φj, φ
and θ as functions of s.

To make this more explicit, not depending on inverting the integral
function (35), we shall change from s to a new variable y defined by

y(s) =

{

−
√

u− u(s∗), a < s 6 s∗,
√

u− u(s∗), s∗ 6 s < b.

Then y : (a, b) → R is a smooth diffeomorphism, and u = u(s∗) + y2, so
that r2j = αj+u = αj+u(s∗)+y

2 = a−1
j +y2, where aj = (αj+u(s∗))

−1.

This gives rj(y) =
√

1
aj

+ y2, as in (29). Computing
dφj
dy from

dφj
ds and

dy
ds yields

dφj
dy =

(

( 1
aj

+ y2)
√

P (y)
)−1

, for P (y) as in (30). This implies

the second equation of (29), with ψj = φj |y=0 = φj|s=s∗ .
Theorems A and B now imply that L is Lagrangian with αF⊥ = H,

with Lagrangian angle (32). Equation (31) implies that L is diffeomor-
phic to Sn−1 × R, and closedness of L follows from rj(y) → ±∞ as
y → ±∞. That L is embedded follows from the fact that each φj(y) is
strictly increasing, and has image an interval of size at most π, as we
will show in the proof of Theorem D. When α = 0 our formulae reduce
to those of Harvey’s treatment [8, p. 139–143] of Lawlor’s examples [15].
This completes the proof. q.e.d.

Theorem D. In the situation of Theorem C, there exist φ̄1, . . . , φ̄n ∈
(0, π2 ] with φ̄j =

∫∞
0

dt

( 1

aj
+t2)

√
P (t)

for j = 1, . . . , n, such that the La-

grangian L is asymptotic at infinity to the union of Lagrangian planes

L1 ∪ L2, where

L1 =
{

(ei(ψ1+φ̄1)t1, . . . , e
i(ψn+φ̄n)tn) : t1, . . . , tn ∈ R

}

,

L2 =
{

(ei(ψ1−φ̄1)t1, . . . , e
i(ψn−φ̄n)tn) : t1, . . . , tn ∈ R

}

.
(36)

We have 0 < φ̄1+ · · ·+ φ̄n < π
2 if α > 0, and φ̄1+ · · ·+ φ̄n = π

2 if α = 0.
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Fix α > 0. Then Φn : (a1, . . . , an) 7→ (φ̄1, . . . , φ̄n) gives a diffeomor-

phism

(37) Φn : (0,∞)n −→
{

(φ̄1, . . . , φ̄n) ∈ (0, π2 ]
n : 0 < φ̄1+ · · ·+ φ̄n < π

2

}

.

That is, for all α > 0 and L1, L2 satisfying 0 < φ̄1 + · · · + φ̄n < π
2

as above, Theorem C gives a unique Lagrangian expander L asymptotic

to L1 ∪ L2.

When α = 0, it is studied by Lawlor in [15]. The map Φn : (a1, . . . , an)
7→ (φ̄1, . . . , φ̄n) gives a surjection

(38) Φn : (0,∞)n −→
{

(φ̄1, . . . , φ̄n) ∈ (0, π2 )
n : φ̄1 + · · ·+ φ̄n = π

2

}

,

such that (a1, . . . , an) and (a′1, . . . , a
′
n) have the same image (φ̄1, . . . , φ̄n)

if and only if a′j = taj for some t > 0 and all j = 1, . . . , n, and the

corresponding special Lagrangians L,L′ satisfy L′ = t−1/2L.

Proof. From the definition of φj(y) in (29), it is clear that the integral
converges as y → ∞ which is denoted by φ̄j > 0. Here φ̄j depends on
a1, . . . , an > 0 and α > 0. The limit of the integral as y → −∞ is
then −φ̄j. This shows that L is asymptotic to L1 ∪ L2. It is also easy
to see that when α > 0, the convergence of L to L1 ∪ L2 at infinity is
exponential.

Since P (y)−1/2 > 0 and |y| ≫ P (y)−1/2 for large y by (30), we see that
limy→−∞ arg

(

y + iP (y)−1/2
)

= π and limy→∞ arg
(

y + iP (y)−1/2
)

= 0.
Thus (32) implies that

(39) lim
y→−∞

θ(y) =
n
∑

j=1
ψj −

n
∑

j=1
φ̄j + π, lim

y→∞
θ(y) =

n
∑

j=1
ψj +

n
∑

j=1
φ̄j .

But the last equation of (26), (28), and A < 0 imply that θ is strictly de-
creasing when α > 0 and constant when α = 0. Hence limy→−∞ θ(y) >
limy→∞ θ(y) when α > 0 and limy→−∞ θ(y) = limy→∞ θ(y) when α = 0.
By (39), this gives

∑n
j=1 φ̄j <

π
2 when α > 0, and

∑n
j=1 φ̄j =

π
2 when

α = 0. As each φ̄k > 0, this implies that φ̄j 6 π
2 , and completes the

first part.
Write the map Φn in the theorem as Φn = (Φn1 , . . . ,Φ

n
n). Then (29)–

(30) and the definition of Φn imply that

(40) Φnj (a1, . . . , an) =

∫ ∞

0

aj dy

(1 + ajy2)
√

1
y2

(
∏n
l=1(1 + aly2)eαy

2 − 1
)

.

Computation shows that for y ∈ (0,∞) we have

∂

∂ak

[

aj

(1 + ajy2)
√

1
y2

(
∏n
l=1(1 + aly2)eαy

2 − 1
)

]

< 0 for k 6= j.
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Integrating this over (0,∞) and using (40) thus gives

(41) ∂
∂ak

(

Φnj (a1, . . . , an)
)

< 0 for k 6= j.

Let t > 0. Replacing aj by taj for j = 1, . . . ,m in (40) and changing

variables from y to t−1/2y shows that
(42)

Φnj (ta1, . . . , tan) =

∫ ∞

0

aj dy

(1 + ajy2)
√

1
y2

(
∏n
l=1(1 + aly2)et

−1αy2 − 1
)

.

The integrand here is a strictly increasing function of t for α > 0, and
constant for α = 0. Thus, d

dtΦ
n
j (ta1, . . . , tan) is positive for α > 0 and

zero for α = 0. Setting t = 1 yields

(43)
n
∑

k=1

ak
∂

∂ak

(

Φnj (a1, . . . , an)
)

{

> 0, α > 0,

= 0, α = 0.

Combining (41) and (43) implies that

(44)
∂

∂aj

(

Φnj (a1, . . . , an)
)

> 0.

Also, taking the limit t→ ∞ in (42) we see that limt→∞Φnj (ta1, . . . , tan)

exists, and equals φ̄j with the same a1, . . . , an but with α = 0. But we
have already shown that φ̄1 + · · ·+ φ̄n = π

2 when α = 0. Therefore

(45)
∑n

j=1 limt→∞Φnj (ta1, . . . , tan) =
π
2 .

Fixing α > 0, we first show that the differential of Φn is nonsingular.
Suppose there exist λ1, . . . , λn ∈ R not all zero such that for j = 1, . . . , n
we have

∑n
k=1 λk

∂
∂ak

(

Φnj (a1, . . . , an)
)

= 0. Pick j such that |λj |/aj is

greatest. Then (41) and (43) imply that

aj
∂
∂aj

(

Φnj (a1, . . . , an)
)

> −∑k 6=j ak
∂
∂ak

(

Φnj (a1, . . . , an)
)

and

|λj |
aj
aj

∂
∂aj

(

Φnj (a1, . . . , an)
)

> −∑k 6=j
|λk|
ak

ak
∂
∂ak

(

Φnj (a1, . . . , an)
)

.

It follows that
∣

∣λj
∂
∂aj

(

Φnj (a1, . . . , an)
)∣

∣ >
∣

∣

∑

k 6=j λk
∂
∂ak

(

Φnj (a1, . . . , an)
)∣

∣,

contradicting
∑n

k=1 λk
∂
∂ak

(

Φnj (a1, . . . , an)
)

= 0. Thus no such λ1, . . . , λn
exist, and dΦn|(a1,...,an) : Rn → Rn is invertible. So Φn in (37) is a
local diffeomorphism. The same argument when α = 0 shows that
the only possible (λ1, . . . , λn) are multiples of (a1, . . . , an). So in (38),
dΦn|(a1,...,an) : Rn → Rn−1 has kernel 〈(a1, . . . , an)〉, and is surjective.

We will now show that when α > 0, the map Φn of (37) is sur-
jective. Embed the domain (0,∞)n of Φn in RPn by (a1, . . . , an) 7→
[1, a1, . . . , an]. The closure of (0,∞)n in RPn is an n-simplex ∆n. It has
faces ∆n−1

j for j = 0, . . . , n on which xj = 0 in homogeneous coordi-

nates [x0, . . . , xn]. The closure in Rn of the range of Φn in (37) is also an
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n-simplex ∆̃n with faces ∆̃n−1
j for j = 0, . . . , n, where φ̄1+ · · ·+ φ̄n = π

2

on ∆̃n−1
0 and φ̄j = 0 on ∆̃n−1

j for j = 1, . . . , n. Note that ∂∆n =

∪nj=0∆
n−1
j and ∂∆̃n = ∪nj=0∆̃

n−1
j .

We claim that Φn extends to a continuous map Φ̄n : ∆n → ∆̃n,
which maps ∆n−1

j → ∆̃n−1
j for j = 0, . . . , n. To see this, note that

lim
aj→0

Φnk(a1, . . . , an) exists for all k by (40), and lim
aj→0

Φnj (a1, . . . , an) = 0.

Thus Φn extends continuously to ∆n−1
j for j = 1, . . . , n, and maps

∆n−1
j → ∆̃n−1

j . Also, the fact above that limt→∞Φnj (ta1, . . . , tan) exists

shows that Φn extends to ∆n−1
0 , and (45) implies that this extension

maps ∆n−1
0 → ∆̃n−1

0 .
We will prove surjectivity of (37) and its extension Φ̄n by induction

on n. The map is clearly onto when n = 1 since it is continuous and
Φ̄1([1, 0]) = 0, Φ̄1([0, 1]) = π

2 by (45). Suppose Φ̄n−1 is surjective.

Since Φ̄n reduces to Φ̄n−1 when ak = 0, this implies that Φ̄n|∆n−1

k
:

∆n−1
k → ∆̃n−1

k is surjective for k = 1, . . . , n. Now consider Φ̄n|∆n−1

0

:

∆n−1
0 → ∆̃n−1

0 . Since Φ̄n|∆n−1

k
is surjective for k = 1, . . . , n, we see

that Φ̄n|∆n−1

0
∩∆n−1

k
: ∆n−1

0 ∩ ∆n−1
k → ∆̃n−1

0 ∩ ∆̃n−1
k is surjective for

k = 1, . . . , n. So Φ̄n takes ∂∆n−1
0 surjectively to ∂∆̃n−1

0 , and is of degree

one. Using algebraic topology, it follows that Φ̄n|∆n−1

0
: ∆n−1

0 → ∆̃n−1
0

is surjective. Hence Φ̄n takes ∂∆n surjectively to ∂∆̃n, and is of degree
one, so again, Φn is surjective.

Therefore by induction, Φn in (37) is surjective for all n. But Φn is

a local diffeomorphism, and extends to a map ∆n → ∆̃n taking ∂∆n →
∂∆̃n, so Φn is proper, and thus Φn is a covering map. As the domain
of Φn is connected and the range simply-connected, it follows that Φn

in (37) is a diffeomorphism, as we have to prove. The final part for
(38) follows by a similar argument; one way to do it is to show that the
restriction of Φn in (38) to

{

(a1, . . . , an) ∈ (0,∞)n : a1 + · · ·+ an = 1
}

is a diffeomorphism. q.e.d.

In the last two parts of Theorem D, the proof that Φn is surjective is
based on Lawlor [15, Lemma 10].

6. Other self-similar solutions

Finally we prove Theorems E and F of §3.3.

Theorem E. In Theorems A and B, suppose that either:

(a) λ1 = · · · = λn = C = 1, α < 0 and A > 0; or
(b) λ1 = · · · = λm = 1 and λm+1 = · · · = λn = −1 for some 1 6 m <

n, C = 1, A > 0, and α ∈ R.
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Then solutions exist for all s ∈ R, and we take I = R. In each of cases

(a), (b) we divide into two subcases:

(i)
∑n

j=1
λj
αj

+ α = 0 and α1 · · ·αn = A2; or

(ii) otherwise.

In case (i), we have explicit solutions to (26) and obtain

L =
{(

x1
√
α1 e

i(ψ1−λ1As/α1), . . . , xn
√
αn e

i(ψn−λnAs/αn)
)

:

x1, . . . , xn ∈ R, s ∈ R,
∑n

j=1 λjx
2
j = 1

}

,
(46)

which is Hamiltonian stationary in addition to being self-similar, and in-

variant under a subgroup R or U(1) of diagonal matrices
{

diag(eiλ1t/α1 ,

. . . , eiλnt/αn) : t ∈ R
}

in U(n).
In case (ii), u and φ− θ are periodic in s with period S > 0, and

(47)
u(s+ S) = u(s), φj(s+ S) = φj(s) + γj,

φ(s+ S) = φ(s) +
∑n

j=1 γj , θ(s+ S) = θ(s) +
∑n

j=1 γj,

for some γ1, . . . , γn ∈ R and all s ∈ R. In case (b) with α = 0 we have

θ(s) ≡ θ(0) and
∑n

j=1 γj = 0.

Before the proof of Theorem E, we first derive the following lemma
and proposition:

Lemma 6.1. In the situation of Theorem E, G(u) = Q(u)eαu has a

unique critical point u∗ on the interval (β1, β2), where β1 < 0 < β2 are

defined by

(48) β1=

{

−min1≤j≤n αj, in (a),

−min1≤j≤m αj , in (b),
β2=

{

∞, in (a),

minm+1≤j≤n αj, in (b).

Also limu→β1 G(u) = limu→β2 G(u) = 0, G(u) > 0 on (β1, β2), G
′(u) >

0 on (β1, u
∗), G′(u) < 0 on (u∗, β2), and u(s) ∈ (β1, β2) for all s ∈ I.

Proof. The first derivative of lnG is given in (33). Differentiating
yields

d2

du2 ln(G(u)) = −∑n
j=1

λ2j
(αj+λju)2

< 0.

Hence d
du ln(G(u)) is strictly decreasing, and d

du ln(G(u)) can have at
most one zero in any interval on which G(u) > 0 so ln(G(u)) is defined.
By definition of G we see that limu→β1 G(u) = limu→β2 G(u) = 0 and
G(u) > 0 on (β1, β2). Thus G must have a global maximum u∗ in
(β1, β2). Then u

∗ is a zero of d
du ln(G(u)) in (β1, β2), so u

∗ is unique, and

G′(u) > 0 on (β1, u
∗) and G′(u) < 0 on (u∗, β2) follow as d2

du2 ln(G(u)) <

0. Finally, since r2j (s) = αj + λju(s) > 0 for all s ∈ I and j = 1, . . . , n,

we see that u(s) ∈ (β1, β2) for all s ∈ I from (48). q.e.d.
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Proposition 6.2. In case (ii), there exist unique, finite u1, u2 with

β1 < u1 < u∗ < u2 < β2 and G(u1) = G(u2) = A2 and G(u) > A2 on

(u1, u2). We have u(s) ∈ [u1, u2] for all s ∈ I, and solutions exist for

all s ∈ R.

Proof. Since sin2(φ−θ) 6 1, equation (28) implies that G(u(s)) > A2

for all s ∈ I. By Lemma 6.1, if s ∈ I then u(s) ∈ (β1, β2), so G(u(s)) 6
G(u∗). Thus G(u∗) > A2. If G(u∗) = A2 this forces u(s) = u∗ for
all s ∈ I, so u∗ = u(s0) = 0, giving G(u∗) = α1 · · ·αn = A2, and
d
du ln(G(u))|u=0 = 0, giving

∑n
j=1

λj
αj

+α = 0 by (33). Thus G(u∗) = A2

implies we are in case (i).
Since we restricted to case (ii), we have G(u∗) > A2. So Lemma

6.1 and the Intermediate Value Theorem imply that there exist unique
u1 ∈ (β1, u

∗) and u2 ∈ (u∗, β2) with G(u1) = G(u2) = A2, and that if
u ∈ (β1, β2) then G(u) > A2 if and only if u ∈ [u1, u2], with G(u) > A2

on (u1, u2). Thus G(u(s)) ∈ [u1, u2] for all s ∈ I, by Lemma 6.1. This
is illustrated in Figure 2.

β
1

u
1 u* u

2

z = G(u)

z = A2

z = G(u)

z = A2

β
1

u
1 u* u

2 β
2

Figure 2. Case (a) Case (b)

Suppose that in Theorem E we have solutions on some interval I in
R. These must extend to some maximal open interval Imax = (a, b) in R,
for a, b ∈ R ∪ {±∞}. We could only have a > −∞ if either u(s) → ∞
as s → a+ or αj + λju(s) → 0 as s → a+ for some j = 1, . . . , n, so
that the right-hand side of some equation in (26) becomes singular as
s→ a+, and the solutions do not extend past a. But this is impossible
because it can only happen when u(s) approaches β1 or β2, and u(s) is
confined to [u1, u2], which lies strictly inside (β1, β2) from the discussion
above. Therefore a = −∞, and similarly b = ∞, and solutions exist for
all s ∈ R. q.e.d.

Now we are ready to prove Theorem E.

Proof of Theorem E. In case (i), G(0) = G(u∗) = A2, equation (28)
implies sin2(φ− θ) ≡ 1. It is easy to verify that solutions to (26) are of
the form

(49)
u(s)=0, Q(u(s))=α1 · · ·αn = A2, θ(s)=

∑n
j=1 ψj− π

2+αAs,

φj(s)=ψj− λjAs
αj

, φ(s)=
∑n

j=1 ψj−
∑n

j=1
λjAs
αj

=
∑n

j=1 ψj+αAs
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for some ψ1, . . . , ψn ∈ R, which exist for all s ∈ R. From (27) we obtain
L as described in (46) and have the induced metric on L described in
(22). Therefore, θ is harmonic and L is Hamiltonian stationary.

In case (ii), we already proved that solutions exist for all s ∈ R in
Proposition 6.2. It remains to show the solutions are periodic. The
proof of (34) implies that

(

du
ds

)2
= 4(Q(u) −A2e−αu

)

= 4e−αu
(

G(u)−A2
)

.

Thus du
ds = 0 if and only if G(u) = A2, that is, if and only if u = u1

or u = u2. So du
ds cannot change sign except at s with u(s) = u1 or

u(s) = u2, and
du
ds is determined up to sign by u(s). As for (35), the

interval in s taken for u(s) to increase from u1 to u2, or to decrease from
u2 to u1, is

S

2
=

∫ u2

u1

dv

2
√

Q(v)−A2e−αv
,

which is finite, since G′(u1) > 0 and G′(u2) < 0 by Lemma 6.1, so
Q(v)−A2e−αv has only simple zeroes at v = u1 and v = u2.

Therefore u is periodic with period S > 0, as it must increase from
u = u1 to u = u2 in an interval S/2, then decrease back to u = u1 in an
interval S/2, and repeat. Hence du

ds has period S, so cos(φ−θ) is periodic
with period S by (26). Thus φ − θ changes by an integral multiple of
2π over each interval S. But (28) implies that sin(φ− θ) > 0, and φ− θ
is continuous, so this multiple of 2π is zero, and φ− θ is periodic with
period S.

Equation (26) now implies that
dφj
ds is periodic with period S. In-

tegrating gives φj(s + S) = φj(s) + γj for all j = 1, . . . , n and s ∈ R,

where γj =
∫ S
0

dφj
ds (s)ds. Summing over j = 1, . . . , n gives φ(s + S) =

φ(s) +
∑n

j=1 γj for all s ∈ R. Since φ− θ is periodic with period S this

implies that θ(s+ S) = θ(s) +
∑n

j=1 γj, proving (47). In case (b) with

α = 0 we have dθ
ds ≡ 0 by (26), so θ(s) ≡ θ(0), and

∑n
j=1 γj = 0. This

completes the proof of Theorem E. q.e.d.

Theorem F. In Theorem E, we say that (w1, . . . , wn) is periodic if

there exists T > 0 with wj(s) = wj(s+T ) for all s ∈ R and j = 1, . . . , n.
If (w1, . . . , wn) is periodic then in case (a), L is a compact, immersed

Lagrangian self-shrinker diffeomorphic to S1 × Sn−1, and in case (b),
L is a closed, noncompact, immersed Lagrangian diffeomorphic to S1 ×
Sm−1 × Rn−m, a self-expander if α > 0, a self-shrinker if α < 0, and
special Lagrangian if α = 0.

In case (i), (w1, . . . , wn) is periodic if and only if
λj
αj

= µqj with µ > 0

and qj ∈ Q for j = 1, . . . , n. In case (ii), (w1, . . . , wn) is periodic if and

only if γj ∈ πQ for j = 1, . . . , n. In both cases, for fixed m,α, there is

a dense subset of initial data for which (w1, . . . , wn) is periodic.
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Proof. The first parts are straightforward. If (w1, . . . , wn) is periodic
with period T then L is the image of an immersion Q × R/TZ → Cn,
where Q is the quadric

{

(x1, . . . , xn) ∈ Rn : x21 + · · · + x2n = 1
}

in (a),

which is diffeomorphic to Sn−1, and the quadric
{

(x1, . . . , xn) ∈ Rn :

x21 + · · ·+ x2m − x2m+1 − · · · − x2n = 1
}

in (b), which is diffeomorphic to

Sm−1 × Rn−m. Since R/TZ is diffeomorphic to S1, L is diffeomorphic
as an immersed submanifold to S1×Sn−1 in (a), which is compact, and
to S1×Sm−1×Rn−m in (b), which is noncompact. It is a self-expander
if α > 0, a self-shrinker if α < 0, and special Lagrangian if α = 0. We
can also easily verify that L is closed when (w1, . . . , wn) is periodic.

The necessary and sufficient conditions for periodicity in the last part
are also easy. In case (i), if (w1, . . . , wn) is periodic with period T

then eiφj(s+T ) = eiφj(s) for j = 1, . . . , n, so (49) gives
λjAT
αj

∈ 2πZ

for j = 1, . . . , n, and the condition holds with µ = 2π
AT > 0 and qj =

λjAT
2παj

∈ Z ⊂ Q. Conversely, if
λj
αj

= µqj for µ > 0 and qj ∈ Q then

we may write qj = pj/r for j = 1, . . . , n, pj ∈ Z and r ∈ N the lowest
common denominator of q1, . . . , qn. Then (w1, . . . , wn) is periodic with
period 2πr

Aµ .

In case (ii), since u is periodic with period S, if (w1, . . . , wn) is periodic

with period T then T = rS for some r ∈ N. But then eiφj(s+T ) = eiφj(s)

for j = 1, . . . , n, so (47) gives eirγj = 1, and γj ∈ 2πZ/r ⊂ πQ for
j = 1, . . . , n, as we want. Conversely, if γj ∈ πQ for j = 1, . . . , n then
we may write γj = 2πpj/r for j = 1, . . . , n, pj ∈ Z and r ∈ N, and then
(w1, . . . , wn) is periodic with period T = rS.

It remains to show that in both cases, for fixed m,α, there is a dense
subset of initial data with (w1, . . . , wn) periodic. In case (i) this is
straightforward: by Theorem E, for fixed λ1, . . . , λn and α, solutions are
in 1–1 correspondence with choices of α1, . . . , αn > 0 and ψ1, . . . , ψn ∈ R

satisfying
∑n

j=1
λj
αj

+α = 0, and by the previous part, the corresponding

solution is periodic if and only if
λj
αj

= µqj for µ > 0 and qj ∈ Q for
j = 1, . . . , n. It is easy to see that the set of such αj , ψj is dense in the
set of all allowed αj , ψj .

So we restrict to case (ii). In the special Lagrangian case α = 0,
the first author [12, §5.5] showed that periodic solutions are dense in
all solutions, so we suppose α 6= 0. Given some solution in Theorem
E, Lemma 6.1 found a unique u∗ ∈ [u1, u2] ⊂ (β1, β2) where G(u) is
maximum in (β1, β2), and Theorem E showed that u : R → R cycles
between u1 and u2 and so realizes all values in [u1, u2], including u

∗.
Thus, in Theorem B we can choose the base point s0 ∈ I = R so that
u(s0) = u∗; effectively, this changes αj 7→ αj + λju

∗, u 7→ u − u∗,
and u∗ 7→ 0.
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We will work for the rest of the proof with this normalization, so that
u∗ = 0. Then G(u) has a maximum at u = 0, so that (33) gives

(50)
∑n

j=1
λj
αj

+ α = 0.

The remaining variables are α1, . . . , αn > 0 which satisfy (50), A

which satisfies 0 < A < (α1 · · ·αn)1/2 by (28) and (ii), and ψ1, . . . , ψn ∈
R. Now γ1, . . . , γn are independent of ψ1, . . . , ψn, so we can regard them
as functions of α1, . . . , αn and A. Define

Ψm,n :
{

(α1, . . . , αn, A) ∈ (0,∞)n+1 :
∑n

j=1
λj
αj

+ α = 0, A < (α1 · · ·αn)1/2
}

−→ Rn, where(51)

Ψm,n = (Ψm,n
1 , . . . ,Ψm,n

n ) : (α1, . . . , αn, A) 7−→ (γ1, . . . , γn).

To compute Ψm,n
j explicitly, note that in one period S of s, u goes

from u1 up to u2 and back down again, and ψj increases by
γj
2 in each

half-period. So changing variables from s to u in [u1, u2] we see that

γj = 2
∫ u2
u1

dφj
du (u)du, taking the branch of

dφj
du on (u1, u2) for which

du
ds > 0. Computing

dφj
du from (26) and using (28) to eliminate terms in

sin(φ− θ), cos(φ− θ) gives

(52) Ψm,n
j (α1, . . . , αn, A) = −

∫ u2

u1

Aλj dv

(αj + λjv)
√

Q(v)eαv −A2
,

where u1 < u∗ = 0 < u2 are the closest roots of Q(v)eαv = A2 to zero.
We must prove that Ψm,n(α1, . . . , αn, A) ∈ (πQ)n for a dense subset

of (α1, . . . , αn, A) in the domain of Ψm,n. To do this we will use the
method of Joyce [12, §5.5]. We first compute various limits of Ψm,n.

Proposition 6.3. Regarding α1, . . . , αn > 0 satisfying (50) as fixed,

for all j we have

(53) lim
A→(α1···αn)

1/2
−

Ψm,n
j (α1, . . . , αn, A)=−2πλjα

−1
j

(

2
n
∑

k=1

λ2kα
−2
k

)−1/2
.

Proof. Recall that (α1 · · ·αn)1/2 sin(φ − θ) = A at u = 0 from (7).

When A is close to (α1 · · ·αn)1/2, u is small and sin(φ− θ) is close to 1,
so φ− θ remains close to π/2. Write φ− θ = π

2 + ϕ, for ϕ small. Then,
setting Q(u) ≈ α1 · · ·αn,

cos(φ−θ) ≈ −ϕ, sin(φ−θ) ≈ 1, and

n
∑

k=1

λk
αk + λku

+α ≈ −u
n
∑

k=1

λ2kα
−2
k
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via linear approximation, taking only the highest order terms, equation
(26) implies that

du

ds
≈ −2(α1 · · ·αn)1/2ϕ,

d(φ− θ)

ds
=

dϕ

ds
≈ u(α1 · · ·αn)1/2

n
∑

k=1

λ2kα
−2
k .

It follows that

d2u

ds2
+ (2α1 · · ·αn

n
∑

k=1

λ2kα
−2
k )u ≈ 0 and

d2(φ− θ)

ds2
+ (2α1 · · ·αn

n
∑

k=1

λ2kα
−2
k )(φ− θ) ≈ 0,

so that u and φ−θ undergo approximately simple harmonic oscillations

with period S = 2π
(

2α1 · · ·αn
∑n

k=1 λ
2
kα

−2
k

)−1/2
. Then (26) shows that

dφj
ds

≈ −λjα−1
j (α1 · · ·αn)1/2,

which is approximately constant. Hence

γj =

∫ S

0

dφj
ds

ds ≈ dφj
ds

S = −2πλjα
−1
j

(

2
∑n

k=1 λ
2
kα

−2
k

)−1/2

This proves (53). q.e.d.

For an inductive step needed later, we have to compute what happens
when αn → ∞ or α1 → ∞ and include the case m = 0 when α > 0,
which is also well-defined using (51) and (52). So we allow 1 6 m 6 n
when α ≤ 0, and 0 6 m < n when α > 0.

Proposition 6.4. Suppose
(

α1(t), . . . , αn(t), A(t)
)

, t ∈ (1,∞), is a

continuous path in the domain of Ψm,n in (51), such that

(54)

lim
t→∞

αj(t) = α̃j for j = 1, . . . , n − 1, lim
t→∞

αn(t) = ∞,

and lim
t→∞

A(t)αn(t)
−1/2 = Ã.

Then (α̃1, . . . , α̃n−1, Ã) is in the domain of Ψm̃,n−1, with m̃ = min(m,
n− 1), and

lim
t→∞

Ψm,n
j

(

α1(t), . . . , αn(t), A(t)
)

=

{

Ψm̃,n−1
j (α̃1, . . . , α̃n−1, Ã), j <n,

0, j=n.

Similarly, suppose
(

α1(t), . . . , αn(t), A(t)
)

, t ∈ (1,∞), is a continuous

path in the domain of Ψm,n such that

lim
t→∞

αj(t) = α̃j for j = 2, . . . , n, lim
t→∞

α1(t) = ∞,

and lim
t→∞

A(t)α1(t)
−1/2 = Ã.
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Then (α̃2, . . . , α̃n, Ã) is in the domain of Ψm̃−1,n−1, with m̃=max(m, 1),
and

lim
t→∞

Ψm,n
j

(

α1(t), . . . , αn(t), A(t)
)

=

{

Ψm̃−1,n−1
j−1 (α̃2, . . . , α̃n, Ã), j >1,

0, j=1.

Proof. We have Q(v) =
∏n
j=1(αj(t)+λjv). Write Q̃(v) =

∏n−1
j=1 (α̃j+

λjv). Then in the case of (54) we see that the integrand in (52) satisfies

lim
t→∞

Aλj

(αj + λjv)
√

Q(v)eαv −A2

= lim
t→∞

1

αj(t)+λjv
lim
t→∞

A(t)(αn(t) + λnv)
−1/2λj

√

∏n−1
l=1 (αl(t)+λlv)e

αv−A(t)2(αn(t)+λnv)−1

=







Ãλj
√

∏n−1

l=1
(α̃l+λlv)eαv−Ã2

· 1
α̃j+λjv

, j = 1, . . . , n− 1,

0, j = n.

Applying the Dominated Convergence Theorem to (52), and noting that
u1(t) → ũ1, u2(t) → ũ2, gives

lim
t→∞

Ψm,n
j

(

α1(t), . . . , αn(t), A(t)
)

= −
∫ ũ2

ũ1

Ãλj dv

(α̃j + λjv)
√

Q̃(v)eαv − Ã2

= Ψm̃,n−1
j (α̃1, . . . , α̃n−1, Ã)

if j = 1, . . . , n − 1, and shows that the limit is 0 if j = n. This proves
the first part of the proposition, and the second part is similar. q.e.d.

Note that when α > 0 and m = n − 1, from (50) we always have αn
bounded. Similarly, when α < 0 andm = 1 we always have α1 bounded.
Hence the first and second parts of Proposition 6.4, respectively, cannot
apply. In the following, we only need the first part of Proposition 6.4
when α < 0, and the second part when α > 0.

Proposition 6.5. For Ψm,n as in (51) and (52), where we allow

m = n only if α < 0 and m = 0 only if α > 0, the image ImageΨm,n

is n-dimensional, and for a dense open subset of (α1, . . . , αn, A) in the

domain of Ψm,n, the following derivative is an isomorphism,

(55) dΨm,n|(α1,...,αn,A) :
{

(x1, . . . , xn, y)∈Rn+1 :
∑n

j=1
λjxj
α2
j
=0
}

→Rn,

so that Ψm,n is a local diffeomorphism near (α1, . . . , αn, A).

Proof. By Proposition 6.3 the closure ImageΨm,n contains the set
{(

−2πλ1α
−1
1

(2
∑n

k=1 λ
2
kα

−2
k )1/2

, · · · , −2πλnα
−1
n

(2
∑n

k=1 λ
2
kα

−2
k )1/2

)

: αj > 0 for all j

}

,
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which is a nonempty open subset of the (n− 1)-dimensional real hyper-
surface

H =
{

(γ1, . . . , γn) ∈ Rn :
∑n

j=1 γ
2
j = 2π2

}

in Rn. This implies that ImageΨm,n is at least (n − 1)-dimensional.
Since Ψm,n is real analytic and its domain is nonsingular and connected,
there are only two possibilities:

(A) ImageΨm,n is n-dimensional, or
(B) ImageΨm,n lies in the (n − 1)-dimensional real hypersurface H

in Rn.

We shall use Proposition 6.4 and induction on n to eliminate possibil-
ity (B), so that (A) holds. The first step n = 1 is studied by Abresch and
Langer [2], and translated into our notation, [2, Th. A & Prop. 3.2(v)]

implies that when α < 0 and m = n = 1, ImageΨ1,1 = (−
√
2π,−π).

Changing signs of λ1, α we deduce that when α > 0, m = 0, and n = 1,
ImageΨ0,1 = (π,

√
2π). Thus in both cases ImageΨm,n is n-dimensional

when n = 1.
Suppose by induction that n > 2, and that ImageΨk,l is l-dimensional

whenever l < n, allowing k = l only if α < 0, and k = 0 only if
α > 0. First suppose α < 0, and let 0 < m 6 n. Set m̃ = min(m,n −
1). Then all of the domain of Ψm̃,n−1 arises as limits of the domain
of Ψm,n as in (54), so the first part of Proposition 6.4 implies that
ImageΨm̃,n−1 × {0} ⊂ ImageΨm,n. But by induction ImageΨm̃,n−1

is (n − 1)-dimensional, so ImageΨm̃,n−1 × {0} is not contained in the
hypersurface H in Rn because

(

ImageΨm̃,n−1 × {0}
)

∩ H is at most
(n− 2) dimensional. So (B) does not hold.

Similarly, if α > 0 then for 0 6 m < n and m̃ = max(m, 1) the
second part of Proposition 6.4 implies that {0} × ImageΨm̃−1,n−1 ⊂
ImageΨm,n, and {0} × ImageΨm̃−1,n−1 is (n − 1)-dimensional and not
contained in H, so (B) does not hold. Thus in both cases (A) holds,
so ImageΨm,n is n-dimensional, proving the inductive step. The final
parts follow as Ψm,n is real analytic and its domain is nonsingular and
connected. q.e.d.

We can now complete the proof of Theorem F. By Proposition 6.5,
Ψm,n is a local diffeomorphism near (α1, . . . , αn, A) for (α1, . . . , αn, A)
in a dense open subset U in the domain of Ψm,n. As (πQ)n is dense in
the range Rn of Ψm,n, it follows that (Ψm,n)−1

(

(πQ)n
)

is dense in U ,
and hence in the domain of Ψm,n, since U is dense. But a choice of initial
data gives a periodic solution if and only if Ψm,n(α1, . . . , αn, A) ∈ (πQ)n,
by a previous part of the theorem. Since this holds for a dense subset
of allowed (α1, . . . , αn, A), a dense subset of choices of initial data yield
periodic solutions. q.e.d.
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