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DIRAC GEOMETRY, QUASI-POISSON ACTIONS AND
D/G-VALUED MOMENT MAPS

HENRIQUE BURSZTYN & MARIUS CRAINIC

Abstract

We study Dirac structures associated with Manin pairs (9, g)
and give a Dirac geometric approach to Hamiltonian spaces with
D/G-valued moment maps, originally introduced by Alekseev and
Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures.
We explain how these two distinct frameworks are related to each
other, proving that they lead to isomorphic categories of Hamil-
tonian spaces. We stress the connection between the viewpoint
of Dirac geometry and equivariant differential forms. The paper
discusses various examples, including g-Hamiltonian spaces and
Poisson-Lie group actions, explaining how presymplectic groupoids
are related to the notion of “double” in each context.
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1. Introduction

In this paper, we study Dirac structures [16, 17, 36| associated with
Manin pairs (0,g) and develop a theory of Hamiltonian spaces with
D/G-valued moment maps based on Dirac geometry. Our approach
is parallel to the one originally introduced by Alekseev and Kosmann-
Schwarzbach [3] to treat Hamiltonian quasi-Poisson actions, and one of
our goals is to explain how these two points of view are related.

This paper is largely motivated by questions, set forth by Wein-
stein [42], concerning the existence of a unified geometric framework
in which recent generalizations of the notion of moment map (including
[3, 4, 5, 28, 32]) would naturally fit. As it turns out, a fruitful step
to address these questions consists in passing from Poisson geometry,
which describes classical moment maps, to Dirac structures, and our
guiding principle is that generalized moment maps should be seen as
morphisms between Dirac manifolds. Building on [10], we illustrate in
this paper how Dirac geometry underlies moment map theories arising
from Manin pairs, providing a natural arena for their unified treatment.

Our work was also stimulated by the theory of G-valued moment
maps, introduced in [4, 5] in order to give a finite-dimensional account
of the Poisson geometry of moduli spaces of flat G-bundles over surfaces
[1]. A characteristic feature of G-valued moment maps is that they ad-
mit two distinct geometrical formulations: the original approach of [5]
is based on twisted 2-forms and fits naturally into the framework of
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Dirac geometry, see [2, 10, 12|, whereas the description in [4] involves
quasi-Poisson bivector fields. Although each approach relies on a differ-
ent type of geometry, they turn out to be equivalent, see [4, Sec. 10] and
[10, Sec. 3.5]. This paper grew out of our attempt to explain the geo-
metric origins of these two formulations of G-valued moment maps as
well as the equivalence between them. We prove in this paper that the
equivalence between the Dirac geometric and quasi-Poisson approaches
to Hamiltonian spaces holds at the more general level of D/G-valued
moment maps. This elucidates, in particular, the connection between
the Hamiltonian quasi-Poisson spaces of [3] and the symmetric-space
valued moment maps, described by closed equivariant 3-forms, studied
in [25].

The paper is organized as follows.

In Section 2, we review the basics of Dirac geometry, including the
integration of Dirac structures to presymplectic groupoids, and the re-
lationship between Dirac structures and equivariant cohomology [12].
In particular, for a given Dirac manifold S, we recall the general notion
of Hamiltonian space with S-valued moment map [10].

We consider Dirac structures associated with Manin pairs in Section
3. Given a Manin pair (9,g) integrated by a group pair (D,G) (the
definitions are recalled in Section 3.1), we consider, following [3], the
homogeneous space S := D/G. We view S as a G-manifold with re-
spect to the dressing action, induced by the left multiplication of G
on D. While the theory of quasi-Poisson actions [3] is based on the
additional choice of an isotropic complement of g in ? (not necessarily
a subalgebra), making the Manin pair into a Lie quasi-bialgebra [23],
our starting point consists of a distinct choice. We instead consider
the principal G-bundle D — D/G, with respect to the action by right
multiplication, and choose an isotropic connection 6 € Q'(D,g), i.e.,
a principal connection whose horizontal distribution is isotropic in T'D
(with respect to the invariant pseudo-riemannian metric induced by ).
As it turns out, such connection  defines a closed 3-form ¢g € Q3(S) as
well as a ¢g-twisted Dirac structure Lg C TS @ T*S on S. This Dirac
structure is best understood in terms of Courant algebroids: as observed
by Severa [35] and Alekseev-Xu [6], the trivial bundle 95 := 9 xS over S
is naturally an exact Courant algebroid, and fixing € is in fact equivalent
to a choice of identification 0g = T'S®T™*S (under which Lg corresponds
to g). Upon an extra invariance assumption on 6, the Dirac structure
Lg turns out to be determined by a closed equivariant extension of the
3-form ¢g.

Starting from a Manin pair (9,g) together with the choice of an
isotropic connection § € Q'(D, g), we investigate in Section 4 the Hamil-
tonian theory associated with the Dirac manifold (S5, Lg, ¢s). In this
theory, moment maps are given by suitable morphisms J : M — S from
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Dirac manifolds M into S [10, 2]. We discuss how specific examples
of Manin pairs equipped with particular choices of connections lead to
many known moment maps theories, including G-valued and P-valued
moment maps [5], G*-valued moment maps [28], as well as symmetric-
space valued moment maps [25]. This section also includes an explicit
description of presymplectic groupoids integrating the Dirac manifold
(S, Lg, ¢s), explaining how they lead to the appropriate notion of “dou-
ble” in different examples. A final important observation in this section
is that the connection € determines an interesting 2-form wp on the Lie
group D. This 2-form makes D into a Morita bimodule (in the sense
of [43]) between the Dirac manifold S and its opposite S°P. We use
this Morita equivalence to define a nontrivial involution in the category
of Hamiltonian G-spaces with S-valued moment maps. In the particu-
lar cases where S = G or S = G*, this involution agrees with the one
induced by the inversion map on G or G*.

In Section 5, we revisit the quasi-Poisson theory developed in [3].
The main new ingredient in our point of view is the construction of a
Lie algebroid describing quasi-Poisson actions (particular examples of
this Lie algebroid have appeared in [29] and [10], and an alternative
construction was discussed in [11], see also [38]).

The aim of Section 6 is to relate the two approaches to Hamiltonian
theories associated with Manin pairs. The set-up is a Manin pair (9, g)
together with two extra choices: an isotropic connection 8§ € Q'(D, g),
which leads to a category of Hamiltonian spaces via Dirac geometry,
and an isotropic complement h of g C 0, which leads to a category of
Hamiltonian spaces described by quasi-Poisson structures. These extra
choices can always be made, and they are independent of each other.
We give an explicit geometric construction of an isomorphism between
the two types of Hamiltonian categories, generalizing [10, Thm. 3.16]
(following the methods in [2]). As we will see, the link between Dirac
structures and quasi-Poisson bivector fields lies in the theory of Lie
quasi-bialgebroids [34]. Under the identification 0g = T'S®T*S induced
by 6, the subspace h C 0 defines an almost Dirac structure Cg on S
transverse to Lg. Given a moment map J : (M,L) — (S, Lg) in the
Dirac geometric setting, the pull-back image of C's under J (in the sense
of Dirac geometry, see e.g. [2, 14]) defines an almost Dirac structure C'
on M transverse to L, so the pair L,C C TM & T*M is a Lie quasi-
bialgebroid. The bivector field on M naturally induced by this Lie
quasi-bialgebroid makes it into a quasi-Poisson space. This procedure
can be reversed and establishes the desired equivalence of viewpoints.
We note that many features of the Hamiltonian spaces are independent
of any of the choices involved, including the construction of reduced
spaces. Lastly, the main facts about Courant algebroids and Lie quasi-
bialgebroids used in the paper are collected in the Appendix.
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There is a more conceptual explanation for the equivalence between
the quasi-Poisson and Dirac geometric viewpoints to Hamiltonian spaces
associated with Manin pairs: as shown in [13], there is an abstract
notion of Hamiltonian space canonically associated with a Manin pair;
when additional (noncanonical) choices are made, these abstract Hamil-
tonian spaces take the two concrete forms studied in this paper.

Notation. Given a Lie group G with algebra g (defined by right-
invariant vector fields), the left /right vector fields in G defined by u € g
are denoted by u!,u” € X(G). Left and right translations by g € G
are denoted by I, and r,, and we write (u”)y = drg(u), or simply r,4(u)
if there is no risk of confusion (similarly for left translations). The
left /right Maurer-Cartan 1-forms on G are denoted by 6%, 6% ¢ Q'(G, g)
and defined by 0% (u!) = 0%(u") = u.

Acknowledgments. We would like to thank A. Alekseev, D. Iglesias
Ponte, Y. Kosmann-Shwarzbach, J.-H. Lu, E. Meinrenken, P. Severa,
A. Weinstein and P. Xu for helpful discussions, as well as the referee for
his/her comments.

2. Dirac geometry and Hamiltonian actions

In this section, we briefly recall the basics of Dirac geometry [16, 17,
36] and describe how to associate a category of Hamiltonian spaces to a
given Dirac manifold .S, obtaining a general notion of S-valued moment
map. We will mostly follow [10, 12].

2.1. Dirac geometry. Let M be a smooth manifold. Consider the
bundle TM :=TM & T*M equipped with the symmetric pairing

(1) (X1, 01), (X2,02)) = az(X1) + a1(X2).

An almost Dirac structure on M is a subbundle L C TM which
is lagrangian (i.e., maximal isotropic) with respect to (1). Since the
pairing has split signature, it follows that rank(L) = dim(M). Simple
examples of almost Dirac structures include 2-forms w € Q%(M) and
bivectors fields m € X2(M), realized as subbundles of TM via the graphs
of the maps TM — T*M, X — ixw and T*M — TM, a — i,7.

Let ¢ € Q3(M) be a closed 3-form on M. A ¢-twisted Dirac struc-
ture [36] on M is an almost Dirac structure L C TM satisfying the
following integrability condition: the space of sections I'(L) is closed
under the ¢-twisted Courant bracket

(2)  [(X1,00), (X2, 09)]¢ == ([X1,Xo], Lx a2 —ix,doy +ix,ix19),

where X1, Xy € X(M) and ay,as € QY(M). For a 2-form w € Q?(M),
the integrability condition amounts to dw + ¢ = 0, and for a bivector
field m € X2(M) it gives 1[m, 7] = 7%(¢) (here [-,-] denotes the Schouten
bracket). We will see many other examples later in this paper. We
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denote a Dirac manifold by the triple (M, L, ¢), or simply (M, L) if the
3-form is clear from the context. Given an ¢-twisted Dirac structure L
on M, we define its opposite as

(3) L = {(X,a) € TM| (X, —a) € L},

which is a —¢-twisted Dirac structure. We often denote (M, L°P, —¢)
simply by M°P.

The bracket (2), although not skew-symmetric, becomes a Lie bracket
when restricted to the space of sections of a Dirac structure L. The
vector bundle L — M inherits the structure of a Lie algebroid over
M, with bracket [-,-]4|r(z) and anchor given by pryy/|r, where pryy,
TM — TM is the natural projection. As a result, the distribution
proa (L) € TM is integrable and defines a singular foliation on M.
Each leaf « : O — M inherits a 2-form wp € Q%(0), defined at each
point x € O by

(4) wO(Xl,Xg) = a(Xg),

where o« € T M is such that (X1,a) € L, (the value of we is inde-
pendent of the particular choice of ). The integrability of L implies
that dwep + t*¢ = 0. This singular foliation, equipped with the leafwise
2-forms, is referred to as the presymplectic foliation of L. Note that
the leafwise 2-forms are nondegenerate if and only if L is the graph
of a bivector field, and the Lie algebroid of L is transitive (i.e., with
surjective anchor) if and only if L is the graph of a 2-form.

Given manifolds M and S and a smooth map J : M — S, we say
that the elements (X, a) € TM, and (Y, 3) € TSy, are J-related at
x if

Y =(dJ),(X) and o= (dJ).p.
A direct calculation shows the following (see [2, Sec. 2] and [37]):

Lemma 2.1. If (X;,a;) and (Y3, 5;) are J-related at x, i = 1,2,
then <(X1,041),(X2,042)>x = <(Y1,oz1),(Y2,oz2)>J(x). AZSO, Zf (XZ',OZZ') c
I(TM) and (Y;,5;) € T(J*TS) are J-related at all points in a
neighborhood of x € M, then [(X1,01), (X2, a2)]x¢g s J-related to
[[(Yi’al)v(y2va2)]]¢s at x.

Here J*TS denotes the pull-back vector bundle over M.
Consider the subbundle I'y C J*T.S & TM defined by

Ly ={{(Y,0),(X,a)) € JTS®TM | (X, «) is J-related to (Y, )}

Then I'; is lagrangian in J*TS @ TM, where TS is equipped with mi-
nus the pairing (1). We use I'j to define morphisms of almost Dirac
structures using composition of lagrangian relations, following [20, 42]
(c.f. [2, 14]). Let L and Lg be almost Dirac structures on M and S.
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We say that Lg is the forward image of L if I'jo L = J*Lg at each
x € M, that is, for all x € M,

and (X, (dJ);(P)) € La}.

In this case we call J a forward Dirac map (or simply f-Dirac map).
Similarly, we say that L is the backward image of Lg if L = (J*Lg)o
I'; at each x € M, which amounts to

Ly ={(X.(@7)3() | X € T,M, 5 Tj(,S.
and ((d']):v(X)vﬁ) € (LS)J(x)}

When both L and Lg are (graphs of) 2-forms, the notion of backward
image reduces to the usual notion of pull-back; on the other hand, when
both L and Lg are bivector fields, then the forward image amounts to
the push-forward relation.

Just as Poisson manifolds are infinitesimal versions of symplectic
groupoids [41] (c.f. [15, 18]), Dirac manifolds also have global counter-
parts. The objects integrating ¢-twisted Dirac structures are ¢p-twisted
presymplectic groupoids [12, 43], i.e., Lie groupoids G over a base
M equipped with a 2-form w € Q2(G) such that:

i) w is multiplicative, i.e., m*w = pjw + pbw, where m : G Xy G — G
is the groupoid multiplication and p; : G Xy G — G, @ = 1,2, are
the natural projections onto the first and second factors.

1) dw = s*¢ — t*¢, where s,t are source, target maps on G, and

¢ € Q(M).

i71) dim(G) = 2dim(M).

iv) ker(w), Nker(ds), Nker(dt), = {0}, for all z € M.
If w satisfies condition 4i), then we say that it is relatively ¢-closed.
Conditions i) and i) together are equivalent to w + ¢ being a 3-cocycle
in the bar-de Rham complez of the Lie groupoid G [8] (see also [43)]), i.e.,
the total complex of the double complex QP(G,) (here G, denotes the
space of composable sequence of g-arrows) computing the cohomology
of BG.

As proven in [12], any ¢-twisted presymplectic groupoid G over M
defines a canonical ¢-twisted Dirac structure L on M, uniquely deter-
mined by the fact that t is an f-Dirac map (whereas s is anti f-Dirac).
Moreover, there is an explicit identification (as Lie algebroids) of L with
the Lie algebroid of G. In this context, we say that the presymplectic
groupoid is an integration of the Dirac manifold (M, L, ¢). Conversely,
if a ¢-twisted Dirac structure L on M is integrable (as a Lie algebroid),
then the corresponding s-simply-connected groupoid admits a unique
¢-twisted presymplectic structure integrating L. We will see many con-
crete examples of presymplectic groupoids in Section 4.3.
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2.2. The Hamiltonian category of a Dirac manifold. The fact
that moment maps in symplectic geometry are Poisson maps indicates
that moment maps in Dirac geometry should be represented by f-Dirac
maps. Indeed, we need a special class of f-Dirac maps to play the role
of moment maps.

Given Dirac manifolds (M, L, ) and (S, Lg, ¢s), we call a smooth
map J : M — S a strong Dirac map if

1) ¢ =J"¢s,

2) J is an f-Dirac map: I'yo L = J*Lg,

3) Denoting ker(L) := LNT'M, the following transversality condition

holds:

(5) ker(dJ), Nker(L), = {0}, Vx € M.
(This is equivalent to the composition I'; o L being transversal.)

Strong Dirac maps are alternatively called Dirac realizations in [10] (see
also [2]). In particular, we will refer to a strong Dirac map J : M — §
for which the Dirac structure on M is a 2-form as a presymplectic
realization of S. An immediate example of a presymplectic realization
is the inclusion ¢ : O — S of a presymplectic leaf. More generally, since
the composition of strong Dirac maps is a strong Dirac map, the restric-
tion of a strong Dirac map M — S to leaves of M define presymplectic
realizations of S.

Definition 2.1. The Hamiltonian category of a Dirac manifold
(S, Lgs, ¢s) is the category M(S, Ls, ¢5) whose objects are strong Dirac
maps J : M — S and morphisms are smooth maps ¢ : M — M’ which
are f-Dirac maps and such that J' oy = J. We denote by M(S, Lg, ¢s)
the subcategory of presymplectic realizations.

This definition will be justified by general properties of strong Dirac
maps as well as concrete examples. First of all, a strong Dirac map
J : M — S induces a canonical action on M. Indeed, the properties of
J define a smooth bundle map [2, 10]

(6) pm J Ls — TM,

where X = pp(Y, ) is uniquely determined by the conditions
(7) (dJ)s(X) =Y and (X, (dJ]);(0)) € L.

Let us also consider the bundle map

(8) pu S Lg — L, (Y, 3) = (pu (Y, 8), (dJ)z(B))-

A direct computation shows that, at the level of sections, the induced
map par ¢ I'(Ls) — T'(L) preserves Lie brackets, and hence so does
oy T(Lg) — X(M). As a result, we have

Proposition 2.1. If J : M — S is a strong Dirac map, then the
map ppr (6) defines a Lie algebroid action of Lg on M.
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More on Lie algebroid actions can be found e.g. in [30].

It immediately follows from (7) that the action pys is tangent to the
presymplectic leaves of M. In particular, when L is defined by a 2-form
won M (i.e., J is a presymplectic realization), then the conditions in
(7), relating J and the action pys, take the form

dJ(pm(Y,03)) =Y and i, (yvgw =J"05,

which can be interpreted as an equivariance condition for J (with re-
spect to the canonical action of Lg on §) together with a moment map
condition. In this sense, we think of M as carrying a Hamiltonian ac-
tion and J : M — S as an S-valued moment map. Various properties of
usual Hamiltonian spaces are present in the framework of strong Dirac
maps. For example, as discussed in [10, Sec. 4.4], there is a natural
reduction procedure generalizing Marsden-Weinstein’s reduction [31] (a
particular case of which will be recalled in Section 4.1).

Let us recall some examples of Hamiltonian spaces defined by strong
Dirac maps [10].

_ Example 2.2. The identity map Id : § — S is always an object in
M(S, Lgs, ¢s), whereas inclusions of presymplectic leaves ¢ : O — S are
objects in M(S, Lg, ¢g).

Example 2.3. If (G,w) is a presymplectic groupoid integrating the
Dirac manifold (S, Lg, ¢g), then

(t,s): G — S x S°

is a strong Dirac map, i.e., it is an object in M(S x S,Lg x LY, ¢g X

(—¢s)).

Example 2.4. If Lg is the graph of a Poisson structure wg and
J : (M,L) — (S,mg) is a strong Dirac map, then the transversality
condition (5) implies that L must be (the graph of) a Poisson structure.
Hence M(S, Lg) is simply the category of Poisson maps into S (whereas
M(S, mg) is the category of Poisson maps from symplectic manifolds into
S). These are the infinitesimal versions of the Hamiltonian spaces stud-
ied by Mikami and Weinstein [32] in the context of symplectic groupoid
actions. For the specific choice of S = g*, equipped with its canon-
ical linear Poisson structure mg«, then M(S, Lg) (resp. M(S, Lg)) is
the category of Poisson (resp. symplectic) Hamiltonian g-spaces in the
classical sense.

Example 2.5. Let G be a Lie group whose Lie algebra g carries
an Ad-invariant, symmetric, nondegenerate bilinear form (-,-),. We

consider G equipped with the Cartan-Dirac structure (see e.g. [2, 12,
36])

(9) La :={(p(v),0(v)) | v € g} C TG,
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ol ._ 1/pL R : :
where p(v) =v" — ! and o(v) := 3(0% + 0 ,v>g. This Dirac structure
is integrable with respect to —¢g, where ¢¢ is the bi-invariant Cartan
3-form, defined by

1
o (u,v,w) == 5([u,v],w>g, u,v,w € g.

As shown in [10, 12] (see also [2]), M(G, Lg, ¢c) is the category of
g-Hamiltonian g-spaces in the sense of Alekseev-Malkin-Meinrenken [5]
(more general objects in M(G, Lg, ¢g) correspond to foliated spaces
whose leaves are g-Hamiltonian g-spaces).

We will return to Example 2.5 in Section 4.

We finally observe the behavior of the Hamiltonian category under
gauge transformations. There is a natural action of Q2?(9), the abelian
group of 2-forms on S, on the set of Dirac structures on S: if Lg is a
ps-twisted Dirac structure and B € Q%(S), we define

TB(Ls) = {(Y,ﬁ + in) | (Y, ﬁ) € Ls} C TS,

which is a (¢pg — dB)-twisted Dirac structure on S. We refer to 75 as a
gauge transformation by B. We use the notation 75(.5) for the Dirac
manifold (S, 75(Ls), s — dB).

Proposition 2.2. Let B € Q2(S), and let (M, L,¢), (S,Lg, $s) be
Dirac manifolds. Then J : M — L is a strong Dirac map if and only if
J:1pp(M) — 15(5) is a strong Dirac map. Moreover, this correspon-
dence defines an isomorphism of Hamiltonian categories

IB : H(S, Ls) = H(S, TB(Ls)),
which restricts to an isomorphism M(S, Lg) = M(S,78(Ls)).
The proof is a direct verification using the definitions (see also [14]).

Remark 2.6. (Global actions)

We have only defined the Hamiltonian category of a Dirac manifold at
the infinitesimal level. The global counterparts of the S-valued Hamil-
tonian spaces in M(S, Lg, ¢g) are manifolds M equipped with a 2-form
wyr € Q%(M) and carrying a left G-action pys : G xg M — M (where
(G,w) is a presymplectic groupoid integrating Lg) along a smooth map
J: M — S such that dwy; + J*¢s = 0, ker(dJ) Nker(wys) = {0} and

(10) PMWM = PIywir + Prow.

Here pr);, prg are the natural projections from G xg M on M and G.
Condition (10) is the global version of J being an f-Dirac map [12,
Sec. 7]. These global Hamiltonian spaces are studied in [43]. The
global counterparts of the more general objects in M(S, Lg) are simi-
lar, but now M carries a Dirac structure and (10) holds leafwise [10,
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Sec. 4.3]. In this paper, we will be mostly concerned with the infinitesi-
mal Hamiltonian category (but all results have global versions that can
be obtained by standard integration procedures).

2.3. Dirac structures and equivariant cohomology. Let (G,w)
be a ¢-twisted presymplectic groupoid integrating a Dirac manifold
(M, L,¢). As recalled in Section 2.1, w + ¢ defines a 3-cocycle in the
bar-de Rham complex of G. Let us assume that G = G x M is an action
groupoid, relative to an action of a Lie group G on M (i.e., s(g,z) = z,
t(g,z) = g.« and m((h,y),(g,x)) = (hg,x)). In this case, the bar-de
Rham complex of G becomes the total complex of the double complex
QP(G1 x M), which computes the equivariant cohomology of M in the
Borel model (see e.g. [8]). In particular, w + ¢ defines an equivariant
3-cocycle. We now discuss the infinitesimal counterpart of this picture,
which relates Dirac structures to equivariant 3-cocycles in the Cartan
model (see [12, Sec. 6.4]).

Let A be a Lie algebroid over M, with bracket [-,-]4 and anchor
p: A— TM. As proven in [12], the infinitesimal version of a multi-
plicative, relatively ¢-closed 2-form on a Lie groupoid is a pair (o, ¢)
where o : A — T*M is a bundle map, ¢ € Q3(M) is closed, and such
that

(11) <U(a)7p(a/)> = _<U(a/)ap(a)>7
(12) o(la, a/]A) = Ep(a)o-(a/) - Z'p(a’)da(a) + ip(a)/\p(a’)¢7

for all a,a’ € T'(A). Let us assume that the bundle map (p,0) : A - TM
has constant rank, and let L := (p,0)(A) C TM. Then (11) says that
L is isotropic, whereas (12) means that the space of section I'(L) is
closed under the Courant bracket [-,-]4. It immediately follows that if
rank(L) = dim(M), then L is a Dirac structure on M.

In this paper, we will be particularly interested in the following special
case of this construction. Suppose that a manifold S carries an action
of a Lie algebra g, denoted by p : g — X(5). Let A = g x S be
the associated action Lie algebroid, whose anchor is p and Lie bracket
on I'(A) = C*(S,g) is uniquely defined by the bracket on g (viewed
as constant sections) and the Leibniz rule (see Lemma 3.3). Assume
that we are given a bundle map o : g x S — TS and a closed 3-form
bs € Q3(9) satisfying (11) and (12). Let us also suppose that

(13) dim(g) = dim(S), and ker(p)Nker(c) = {0}.
The last two conditions guarantee that rank(Lg) = dim(.S), hence
(14) Ls :={(p(v),o(v)) | v € g}

is a ¢g-twisted Dirac structure on S. By construction, Lg is isomorphic
to A =g x S as a Lie algebroid (via (p,0) : A — Lg).
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Proposition 2.3. Given a strong Dirac map J : M — S, we have an
induced g-action ppr : g — X(M) uniquely determined by the conditions

dJopy =p, and (py(v),J*c(v)) €L, YveEg.

This is a direct consequence of Prop. 2.1: the action pjs is just the
restriction of (6) to g, viewed as constant sections in I'(Lg) = C*°(S, g).
We also have the associated bracket-preserving map

(15) pu g — (L), pu(v) = (pa(v), J7o(v)).

We can use the action pjps to give an alternative description of presym-
plectic realizations of S, phrased only in terms of the maps ¢ : g —
QL(S) and p : g — X(S), without any explicit reference to Dirac struc-
tures:

Proposition 2.4. Let M be equipped with a 2-form w. Equip S with
the Dirac structure Lg of (14), and let J : M — S be a smooth map.
Then J is a presymplectic realization of (S, Ls, ¢s) if and only if the
following is satisfied:

i) dw+ J*¢s =0;

i) At each x € M, ker(w), = {ppm(v)z : v € ker(o)};

iii) The map J : M — S is g-equivariant and satisfies the moment

map condition

oW = Jo(v), Yve g

Proof. The only condition that remains to be checked is i), which
follows from the transversality condition (5). The proof is identical to
the one in [12, Thm. 7.6] (c.f. [2, Sec. 5]). q.e.d.

An immediate consequence of conditions 7) and iii) in Prop. 2.4 is
that

(16) Loy wyw = J(d(0(v)) = ipw) P5)-
Hence the 2-form w on M will not be g-invariant in general unless o :
g — Q1(9) and ¢g € Q3(S) satisfy the extra condition

(17) d(O’(U)) = ip(v)(bS'
In this case, it immediately follows from (12) that
(18) 0([“7”]) = ‘Cp(u)a(’u)v v E g.
Note that (11) implies that i, o(v) = 0 and, by (17), L,u)¢s = 0.
These conditions together precisely say that o + ¢g defines an equivari-
antly closed 3-form, i.e., a 3-cocycle in the Cartan complex
(19)  Q&(S) = (Bairj= kSl( e 0(s)7,

da(P) = d(P(v)) = ip) (P(v)),
where P is viewed as a G-invariant Q°(S)-valued polynomial on g, and
G is a connected Lie group integrating g. Conversely, we see that an
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equivariantly closed 3-form o + ¢g on S satisfying (13) defines a par-
ticular type of Dirac structure Lg by (14). We will see in this paper
many concrete examples of this interplay between Dirac structures and
equivariant 3-forms.

Remark 2.7. When a Dirac structure Lg is determined by an equiv-
ariantly closed 3-form o + ¢g, then a gauge transformation of Lg by an
invariant 2-form B changes the equivariant 3-form by an equivariant
coboundary: o + ¢g — (0 +i,B) + (¢s — dB).

As we will see in Section 4.3, one has explicit formulas for the multi-
plicative 2-forms on G = G X S arising via integration of Dirac structures
defined by (14), and these formulas are particularly simple when o+ ¢g
is an equivariant 3-form. In this case, the integration procedure for
Dirac structures gives a concrete realization of the natural map from
the cohomology of the Cartan complex (19) into the equivariant coho-
mology of M in degree three.

3. Manin pairs and isotropic connections

3.1. Manin pairs. This section recalls the basic definitions in [3] and
fixes our notation.

A Manin pair is a pair (9, g), where 0 is a Lie algebra of dimension
2n, equipped with an Ad-invariant, nondegenerate, symmetric bilinear
form (-,-), of signature (n,n), and g C 0 is a Lie subalgebra which is
also a maximal isotropic subspace. (In Appendix A.2 we discuss the
more general notion of Manin pair over a manifold M.)

Throughout this paper we assume that a Manin pair (9, g) is inte-
grated by a group pair (D,G), where D is a connected Lie group
whose Lie algebra is 0, and G is a connected, closed Lie subgroup of D
whose Lie algebra is g. Given a group pair (D, G), one considers the
quotient space

S=D/G
with respect to the G-action on D by right multiplication. The action
of D on itself by left multiplication induces an action of D on S, called
the dressing action. We denote by

(20) ps 0 — X(5)
the induced infinitesimal action, and by
(21) pig— X(S)

its restriction to g. The following are two key examples from [3].

Example 3.1. Let g be a Lie algebra and consider 9 = g @ g*, with
Lie bracket given by

[(u, ), (0, V)]0 = ([u, v], ad, (v) — ady (),
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i.e. 0 = gx g* is the semi-direct product Lie algebra with respect to the
coadjoint action. If we set the pairing (-, -), to be the canonical one,

(22) <(u7 M)v (?}, V)>a = ((u7 M)? (U7 V)>can = V(u) + M(U)v

then (9,g) is a Manin pair. The Lie group integrating 9 is D = G x g*,
the semi-direct product Lie group with respect to the coadjoint action
of G on g*. Hence S = g*, and the infinitesimal dressing action of g on
S is the coadjoint action.

Example 3.2. Let g be a Lie algebra equipped with a symmetric,
nondegenerate, ad-invariant bilinear form (-, -) g Consider the direct
sum of Lie algebras 0 = g @ g, together with the pairing

((u1,v1), (U2, v2))y 1= (U1, u2)y — (v1,v2)

We also write g @ g to denote d with the pairing above. If we consider g
as a subalgebra of 0 through the diagonal embedding g — ?, v — (v, v),
then (9, g) is a Manin pair. The associated group pair is (D = Gx G, G),
where G is identified with the diagonal of D. In this case S = (G x
G)/G = G via the map [(a,b)] — ab~!. Under this identification, the
dressing action of D on S is

(a,b) - g =agb™*,

and, infinitesimally, we have

ps 0 — TG, (u,v)— u" —o,

so the dressing action restricted to G C D is the action by conjugation.

3.2. Connections and differential forms. We now introduce certain
differential forms on S = D/G and D which arise once a connection on
the principal G-bundle (with respect to right multiplication)

(23) p:D— S

is chosen. These differential forms play a central role in the definition
of D/G-valued Hamiltonian spaces in Section 4.

A principal connection on the bundle (23) is called isotropic if its
horizontal spaces are isotropic in T'D (with respect to the bi-invariant
pseudo-riemannanian metric defined by (-, -),)-

Proposition 3.1. A connection on (23) is equivalent to the choice
of a 1-form
s e QY(S,0)
satisfying ps(s(X)) = X, forall X € T'S, and the connection is isotropic
if and only if s has isotropic image in 0.

Proof. A principal connection is a G-equivariant bundle map H :
p*T'S — T'D such that dp o H = Id. We relate H and s by trivializing
TD using right translations: H(X,a) = dry(s(X)). Since the dressing
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action on S is pg(u)p) = dp(dre(u)), we have psos = dpo H. The last
assertion in the lemma follows from the invariance of (-, -),. q.e.d.

A connection on (23) can also be given in terms of a 1-form 6 €
OY(D, g) satisfying

0(dla(v)) = v, Oagdry = Ady-10,,
fora € D, g € G and v € g, and it is isotropic if and only if
(24)  (6(X),0%(Y)), + (6(Y),0"(X)), = (X,Y),, X,Y €TD.
The 1-forms § € QY(D, g) and s € Q1(S,0) are related by
(25) 0y = 0L — Ad,-1(p*s), a€D.

Once an isotropic connection is fixed, we have the following induced
differential forms on S:

(26) 6508, bsi= 5(dsis)y+ g 15l sho
and a g*-valued 1-form
(27) o€ (S, g%), o(X)(u) = (s(X),u),,

which we may alternatively view as a map g — Q'(S). We will also
write ¢§, o if we want to stress the dependence of these forms on the
given connection s € Q1(9,0).

These forms satisfy many nice properties, as illustrated below.

Proposition 3.2. The 3-form ¢g is closed, and o satisfies conditions
(11) and (12). Moreover, viewing S as a g-manifold with respect to the
dressing action p : g — X(S), conditions (13) hold, and hence Ls =
{(p(u),0(w)) |u € g} is a pg-twisted Dirac structure on S.

The proof of Prop.3.2 will be postponed to Section 3.4.

We conclude that the choice of an isotropic connection on p: D — S
places us in the context of Section 2.3, leading to a category of Hamil-
tonian spaces with D /G-valued moment maps.

An isotropic connection, given by 8 € Q(D, g), also induces an im-
portant 2-form wp € Q?(D),

(28) wp = 5 (0%, Tv*0), — (6%,0),).

where Inv : D — D denotes the inversion on the Lie group D. Since
Inv*9® = —0%, we have Inv*wp = wp. Let us consider p := poInv :
D — §. The main property of wp, to be proven in Section 4.1, is that

(p,P) : (D,wp) — (S x S, Lg x Lg)

is a presymplectic realization (i.e., it is an S x S-valued Hamiltonian
space).
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In order to prove the various properties of the differential forms intro-
duced in this section, we will resort to the theory of Courant algebroids
and Dirac structures (see the Appendix).

3.3. The Courant algebroid of a Manin pair. In this section we
recall how a Manin pair (9,g) gives rise to a Courant algebroid over
S = D/G. This fact goes back to unpublished work of Severa [35] and
Alekseev-Xu [6].

Given a Manin pair (9, g), let 95 := 0 X S be the trivial vector bundle
over S with fiber 0. The space of sections I'(dg) = C°°(S,0) contains
0 as the constant sections. There are several ways to extend the Lie
bracket on ? to I'(dg), and each way produces a different structure on
0g. The simplest possibility of extension is to use the bracket [-, ], of
0 pointwise. This makes dg into a bundle of Lie algebras. The second
possibility takes into account the infinitesimal action pg of 9 on S and
makes 0g into a Lie algebroid. This is described by the following well-
known construction.

Lemma 3.3. There is a unique extension of the Lie bracket of 0 to
a Lie bracket on T'(dg), denoted by [-,-|Lie, which makes 0g into a Lie
algebroid over S with anchor pg.

Proof. Uniqueness follows from Leibniz identity. For the existence,
we give the explicit formula at =z € S:

(29) [u7 U]Lie(x) = [U(Z'), U(x)]?l + ﬁps(u(w)) (?})(l’) - Eps(v(m))(u)(x)7
for u,v € C*°(S,0). q.e.d.

Finally, as observed in [6, 35], taking into account pg as well as the
bilinear form (-,-), on ?, we can view dg as a Courant algebroid (see
Sec. A.1). Analogously to Lemma 3.3, we have

Lemma 3.4. There is a unique extension of the Lie bracket of 0 to
a bilinear bracket on I'(dg), denoted by [-,-]s, which makes dg into a
Courant algebroid over S with anchor pg : 0g — TS and symmetric
pairing (-, -)y-

Proof. As in the previous lemma, the uniqueness follows from the
Leibniz identity (condition C5) in Section A.1). For the existence, we
have the explicit formula

([w, v]o, w)y == ([w, V] Lie, w)y + <£ps(w)(u),v>a, u,v,w € I'(0g).

Note that conditions C1)-C4) in Sec. A.1 follow from the fact that each
formula is C'°°(S)-linear in its arguments, and they are clearly satisfied
on constant sections. q.e.d.

Let us consider the trivial bundle gg = g x S over .S associated with
the Lie subalgebra g C 0.



DIRAC GEOMETRY AND D/G-VALUED MOMENT MAPS 517

Proposition 3.3. The following holds:

i) gs is a Dirac structure in the Courant algebroid dg.
ii) The Courant algebroid dg is exact, i.e., the sequence

0— TS 205 2518 — 0
is exact (see Sec. A.5).

Proof. Using the Leibniz rule, one immediately checks that the space
of sections I'(gs) C I'(dg) is closed under any of the extensions of the
Lie bracket on 9 to 0g. In particular, gg is a Dirac structure in ?g.

To prove ii), note that pg is onto. On the other hand, we have
that Im(p§) C Ker(pg), see (147). Since (-, -), has signature (n,n), it
follows that dim(g) = n, so S = D/G has dimension n. The rank of
Ker(pg) is n, which agrees with the rank of Im(p§) = p&(7*S). Hence
Im(pg) = Ker(pg). q.e.d.

3.4. Invariant connections and equivariant 3-forms. Given a Ma-
nin pair (9, g), let us consider its associated Courant algebroid dg as in
Lemma 3.4. Let us fix an isotropic splitting s : T'S — 0g of the exact
sequence

0— TS Lag 25 175 — 0.

(Isotropic splitings always exist, see Sec. A.2.) Since, according to
Prop. 3.1, s € Q1(S,0) is equivalent to the choice of an isotropic connec-
tion on the bundle p : D — S, we refer to s as a connection splitting.

It is a general fact about exact Courant algebroids (see Sec. A.5) that
an isotropic splitting s determines a closed 3-form ¢ € Q3(9) by

(30) ¢5(X,Y, Z) = ([s(X), s(Y)]a, 5(2)), X,Y,Z € X(5).
If s is clear from the context, we simplify the notation by just writing
¢g for this form.

Lemma 3.5. The 3-form ¢g in (30) agrees with (26).

Proof. By the definition of [-,-], in terms of the brackets [-, -], and
[, | Lie, We have
(1) ¢s(X,Y, Z) =([s(X), 5(Y)]Lie; s(Z))y + (L2(s(X)),s(Y)),

=([s(X), s(Y)]s + Lx (s(Y)) — Ly (s(X)), s(Z)),
+ (Lz(s(X)), s(Y)),-

Using that s is isotropic, we find the expression

(32)  ¢s(X,Y,Z) = ([s(X),5(Y)]o,5(2))y + Y (Lx(s(Y)), 5(2))y,
cycl

where ) ., denotes cyclic sum in X,Y and Z.

cyc
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On the other hand, using again that s is isotropic, we have

(ds(X,Y),5(2))y = (Lx(s(Y)),5(2))y = (Ly(s(X)),s(Z)),
= (Lx(s(Y)),5(2))y + (Ly (5(2)), 5(X))o,

and it follows that (ds,s),(X,Y,2) =23, (Lx(s(Y)),s(2)),. Simi-
larly, using that

([s,510(X,Y), 5(2))y = 2([s(X), s(Y)]o, 5(2)),

we obtain that ([s, s]o, 5),(X, Y, Z) = 6([s(X),s(Y)]s,s(Z)). Now (26)
follows from (32). q.e.d.

The previous lemma explains why the 3-form (26) is closed. To finish
the proof of Prop. 3.2, note that the connection splitting s induces an
identification of Courant algebroids

(33) (ps,s*) 05 — TS ®T*S,

where T'S @ T™*S is equipped with the ¢g-twisted Courant bracket (see
Sec. A.5). In particular, the image of gg under (33) is a ¢g-twisted
Dirac structure Lg on S. Defining

(34) s =5"g:95 = T"8,

where s* : 0 — T™S is dual to s after the identification 0 = 0*, we can
write

(35) 5= {(p(u),05(u)) |u € g}.

It is clear that the presymplectic leaves of Lg are the dressing g-orbits.
To simplify the notation, we may omit the dependence on s. Note that
(13) holds, and the integrability of Lg implies that o satisfies (11) and
(12), as claimed in Prop. 3.2.

We now discuss when o + ¢g is an equivariantly closed 3-form with
respect to the g-action p.

Let us suppose that the connection we have fixed on p : D — G is
invariant with respect to the action of G on D by left multiplication.
This is equivalent to the connection splitting s : T'S — g being G-
equivariant, where the G-action on 0g is given by

g-(x,u) = (9z,Ady(u)), g€ G,z €S, uen.
Infinitesimally, the equivariance of s becomes

(36) Lyw)(s(X)) +[v,5(X)]o — s([p(v), X]) =0, VX € X(5), veg.

Proposition 3.4. Suppose that the connection splitting s : T'S — 0g
is equivariant. Then o + ¢g defines an equivariantly closed 3-form on

S.
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Proof. Let us first show that o is g-equivariant, i.e., o([v,w]) =
Lywyo(w). Note that

(37) ﬁp(v) (U(w)v X>a = ﬁp(v) <3(X)7 w>a = <£p(v) (S(X))7 w>a'
On the other hand,

ﬁp(v) <U(w) <£p(v w)? > (w S([p(U),X])>D.

Using (36) and the invariance of (-, -),, we obtain
ﬁp(v) (U(w)v X>a = < ( (w)) > < P(U)(S(X))’ w>b

_<S(X)7 [Ua w]D>D'
Comparing with (37), the equivariance of o follows.
Since d¢g = 0, in order to check that o+ ¢g is an equivariantly closed
3-form, it remains to prove that
(38) ip(v)d(v) = O, and ip(v)(bs - dO’(U) = 0.
The equation on the left is a consequence of the fact that gg sits in

0g X TS & T*S as an isotropic subbundle. For the equation on the
right, first note that

(39) d(o(v))(X,Y)

= Lx(v,s(Y))y = Ly (v,8(X))y = (0,s([X, Y]),

= (0, Lx(s(Y)))y = (v, Ly (s(X)))y — (0, s([X, Y]))y.
Using (31), we have

$s(X, Y, p(v)) = ([s(X), 5(Y)]Lie, $(p(v)))y + (L) (3(X)), 5(Y)),-

Since spg = Id—p§s* and s is isotropic, we use (29) to write the previous
expression as

(40)  (Lx(s(Y)),v)y = (Ly (s(X)), v}y + ([s(X), s(Y)]o, v)y—
([s(X), 5(Y)]Lie, p5(5™(0)))g + (Lpw) (5(X)), (Y)),-

Note that pairing (36) with s(Y") and using that s is isotropic and
(,+)p is invariant, we obtain that (£, (s(X)), S(Y)>D + ([s(X), s(Y)]o
) >a = 0. On the other hand, using that pg o s = Id and that pg :
C>(S,0) — X(9) is a Lie algebra homomorphism with respect to
[, | Lie, We have

([s(X), s(Y)]Lie, 5 (s (0))y = (s([X, Y]), 0)y-
Hence (40) agrees with (39), and this concludes the proof. q.e.d.

The previous proposition could also be derived from the discussion
n [9, Sec. 2.2].

For a Manin pair (9,g), we have a short exact sequence associated
with the inclusion g — 0,

(41) g—0—g".
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Here the map on the right is the projection 0 — /g after the identifi-
cation 0/g = g* induced by (-,-),. Let us choose an isotropic splitting
j : g% — 0 of this sequence, which amounts to the choice of an isotropic
complement of g in 0. In general, such a splitting j does not define a con-
nection on p : D — S, but this happens under additional assumptions
(see also [6]).

Proposition 3.5. An isotropic splitting j : g* — 0 satisfying [g, j(g*)]
C j(g*) (i-e., Adg(j(g*)) C j(g%)) is equivalent to an equivariant con-
nection splitting s : T'S — 0g.

Proof. The right action of G on D is generated by the vector fields

u — ul, = dly(u), a € D. So dl,(j(g*)), a € D, defines a horizontal
distribution on the bundle p : D — S (which is automatically invariant
under the action of G on D by left multiplication). This distribution is
invariant under the right G-action on D if and only if j(g*) is Ad(G)-
invariant. On the other hand, if a given connection is left G-invariant, its
horizontal distribution is left invariant, and we get an Ad(G)-invariant
complement to g in 0 by left translation of the horizontal distribution.
q.e.d.

Splittings j with the additional invariance of Prop. 3.5 may not exist
in general, but they always exist if e.g. G is compact or semi-simple,
see Remark 5.2.

Given a Manin pair (9,g), Propositions 3.4 and 3.5 show that the
choice of an isotropic complement h of g satisfying [g, h] C bh determines
an equivariantly closed 3-form o + ¢g on S.

4. D/G-valued moment maps via Dirac geometry

In this section, we discuss a moment map theory associated with a
Manin pair (9, g) based on the additional choice of an isotropic connec-
tionon p: D — S = D/G. A different moment map theory [3], based
on the choice of splitting j of (41), will be discussed in Section 5.

4.1. The Hamiltonian category. Let us fix a connection splitting
s: TS — 0g of the exact Courant algebroid 0g.

The Hamiltonian category (or moment map theory) associated
with (0,g) and s is the Hamiltonian category of the Dirac manifold
(S, L%, ¢%), in the sense of Section 2.2:

(42) M;(0, ) := M(S, L, 63)-

We can similarly consider the subcategory of presymplectic realizations,
in which Hamiltonian spaces carry 2-forms rather than general Dirac
structures:

(43) Ms(a7g) = M(Sv Lg,@%)
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From Prop. 2.4, we obtain an explicit characterization of objects in
M(0, g) only in terms of the forms ¢, o, with no reference to Dirac
structures.
We refer to objects in M, (9, g) as S-valued Hamiltonian g-spaces
(or G-spaces if the action pps of Prop. 2.3 integrates to a G-action).
The reduction procedure for strong Dirac maps in [10, Sec. 4.4] im-
mediately leads to:

Proposition 4.1. Consider a strong Dirac map J : (M, L) — (S, Lg)
defining an S-valued Hamiltonian G-space. Suppose y € S is a reqular
value of J and the action of the isotropy group G, on J(y) is free and
proper, and let My, := J~1(y)/G,. Then:

i) The backward image of L to J~(y) is a smooth Dirac structure;
ii) The quotient M, acquires a Poisson structure uniquely character-
ized by the fact that the quotient map J~'(y) — M, is f-Dirac;

ili) The reduced Poisson structure on M, is symplectic if J is a presym-

plectic realization.

Given another connection splitting s’ : T'S — 0g, we have (see
Sec. A.5) an induced twist 2-form B € Q2(S), defined by

(44) B(X, ps(v)) = {(s — s’)(X),fu>D, XeTS veo.

The 2-form B relates L and LSS/ by a gauge transformation: 7p(L%) =
Lf’g/. As an immediate consequence of Prop. 2.2, we have

Proposition 4.2. If s and s' are isotropic splittings and B € Q?(S) is
as in (44), then the gauge transformation by B defines an isomorphism
of categories

Ip: MS(Dvg) = MS’(079)7
which restricts to an isomorphism Ms(0,9) = My (0, 9).

It is immediate to check that this functor preserves reduced spaces.

From the general theory of Section 2.2, we know some canonical ex-
amples of Hamiltonian spaces associated with the Manin pair (9, g) and
s. For example, the inclusion O — S of a dressing orbit is a presym-
plectic realization with respect to the canonical 2-form we,

wo(p(v), p(w)) = (a(v), p(w)).

On the other hand, presymplectic groupoids G = (G X S,wg) integrating
Lg = gx S define presymplectic realizations (t,s) : G—S x S°P. These
examples will be illustrated in concrete situations in Sections 4.2 and
4.3.

The remaining of this section presents a nontrivial object in Mg (0D
0,9 D g), i.e, an S x S-valued Hamiltonian space: the Lie group D,
equipped with the 2-form wp given by (28).
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Theorem 4.1. Consider the right principal G-bundle p : D — S =
D/G and let p = p o Inv, where Inv : D — D s the inversion map.
Then

(p7p) : (D,OJD) - (S X Sv LS X LS)

1$ a presymplectic realization, and the induced g x g-action on D is given

by (u,v) — u” — 2.

The proof will follow from three lemmas. First, we compare the pull-
back p*¢pg with the Cartan 3-form on D,

1
ép = E<[91“?,9R]D,93>D.

As in Section 3.2, we denote the connection 1-form on p : D — S
associated with the connection splitting s by § € QY(D, g).

Lemma 4.1. The following holds:
N 1
P'(¢s) = —6p + 5d(0,0),

Proof. Note that using the wedge product, the Lie bracket on 0 defines
a graded Lie bracket [-, -] on Q°(D, ), while the nondegenerate pairing
on 0 defines a pairing (-,-), on Q°(D,?). The de Rham differential d
also extends to Q°(D,?). Let us consider the following operation:

Q.(D7D) - Q.(D7D)7 n— 7/7\7
where 7,(X,) = Ady-1(1a(Xa)), @ € D. One can check that

@5) o =& @8o=mE)y and dn=di— (6% .

To prove the last formula in (45), one checks it directly when n = f is
of degree zero, and similarly when 1 = df is exact of degree 1, and use
the Leibniz identities to conclude that the formula holds in general.

In order to simplify our notation, we will identify forms on S with
forms on D via p*, so we will often abuse notation and denote p*n simply
by 1. With these conventions, formula (25) relating 6 and s becomes

(46) 6=0"—3
By (26) and the first two properties in (45), we have
1,~ 1,
s = §<d87§>0 + 6<[s78]07§>0
Using (46) and the last property in (45), we can write

1~ 1
5(ds,5) =5 ((do™, 0% — 0)y — (d6, 0" — 0)y — (07, 0% — 0]5, 0% — 0)5) .



DIRAC GEOMETRY AND D/G-VALUED MOMENT MAPS 523
Note that (df,0), = 0 since 6 takes values in the isotropic subspace

g C 0. Using the Maurer-Cartan equation df* = %[HL, 6%],, we obtain

(41) S Be = "0 60— 1076000,

1 1
_§<d07 0L>D - §<[9L7 0]07 0>D
Similarly, we have
1, 1 1 1
(18) (18,381 = — 5 {165, 0"1a, o < (19761, 61)a-+ 5 16, 01, 6o
Adding up (47) and (48), we obtain

1 1 1 1
~6p + 7(10%,0%0.0)0 — 5(d0,0%)0 = —bp + 5(d0”, B — 5(dh.0%)q

=—¢p + %d<eL,9>a,

proving the lemma. g.e.d.

The next result relates wp and o:

Lemma 4.2. For all u € g, we have
(49) i (wp) =p*(o(u)), and —iu(wp)=D"(o(u)),
where ul,u” € X(D) are the left, right invariant vector fields determined
by u.

Proof. As a first step, we prove the following expression for wp:
(50)  wp(X,Y) = (dla(0(X)) — dra(0(Inv(X))) — X, Y),,

YVae D, X,Y €T,D.

To prove this formula, we use (24) to write

<9L79>3(X7Y) = (dlafl(X)79(Y)>D - <dla*1(Y)70(X)>D
= (X,Y), = 2(dlf(X),Y),.

Using that dr,-1(X) = —dl,(Inv(X)), we can use again (24) to write
(07, Inv*0) (X, Y) =(dr,—1(X),0(Inv(Y))), — (dry-1(Y),0(Inv(X))),
= — (Inv(X), Inv(Y)), + (dlo(Inv(Y)), (Inv(X))),
— (drg— (Y)7 H(IHV(X)»D
= — (X, Y>D — 2(dr 1 (Y)7 H(IHV(X)»D

Comparing with the original expression (28) for wp, formula (50) fol-
lows.
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We now prove the first equation in (49) (the second one follows by
applying Inv*). For u € g and X = X, € T,D, we have (using (50))
that i,rwp(X) equals

—wp(X,u") = (X —dl,(0(X)),drq(u))y + (dro(Inv(X)), dre(u)),-
Looking at the r.h.s., we see that the last term vanishes since g C 0 is
isotropic. By (25), we have that X — dl,0(X) = drys(dp(X)), which
gives us

iwrwp(X) = (s(dp(X)), u)y = p o (u)(X),
as desired. q.e.d.

Finally, we will need

Lemma 4.3. At each a € D, we have
ker(wp) Nker(dp) = {dl(u)|u € g, 8(dr; *(u)) = 0},
ker(wp) Nker(dp) = {drq(v) |v € g, 8(dr,v) = 0}.

Proof. We prove the second one here. We have ker(dp), = drq(g).
By Lemma 4.2 it follows that, for v € g, drq(u) € ker(wp) if and only if
p*o(u) =0, ie.,

(s((dp)(X)),u)y =0, VX €T,D.
Using (25), the previous equation implies that
(X, dra(u))y = (0(X),dl; " dra(u)),
and, using (24) to re-write the r.h.s of the last equation, we get the
identity
(X, drq(u)), = (X, drq(u))y — (0(drq(u)),dle (X)), VX € T,D,
from which the statement follows. g.e.d.

Proof. (of Theorem 4.1) Since Inv*0% = —0%, Inv*¢p = —ép, and
p* = Inv*p*, Lemma 4.1 immediately implies that
(51) p*¢s + P ¢s = —dwp.

We now prove that p is an f-Dirac map from D into S (and this
automatically implies that the same holds for 7). It suffices to check
that Lg is contained in the forward image of L = graph(wp) under p
(since these bundles have equal rank), i.e.,

{(p(u),o(u)) |u € g} € {(dp(X),B)[p"B8 =ixwp}.
But this follows since, for u € g, p(u) = dp(u") and, from Lemma 4.2,
iur(wp) = p*(o(u)).
In order to conclude the proof of the theorem, it remains to check
that

(52) ker(wp) Nker(dp) Nker(dp) = 0.
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This is a consequence of Lemma 4.3: If X € T, D is in the triple inter-
section above, then

X =dly(u) = drqe(v), with 0(dr; (u)) =0 and 0(drq(v)) = 0.

Since 6 is a connection 1-form for the right G-action on D, we obtain
u=0(dl,(u)) = 6(dre(v)) =0, and hence X = 0. q.e.d.

Since a strong Dirac map preserves the kernels of the Dirac structures,
it follows from Thm. 4.1 that Lg is a Poisson structure on S if and
only if wp is a symplectic form on D (which is only the case when
0s: gg — TS is an isomorphism).

Theorem 4.1 has the following interesting consequence: since D car-
ries principal G-actions on the left and on the right (by left/right mul-
tiplication) which commute, the fact that (p,p) : D — S x S is a
presymplectic realization can be re-stated as saying that (D,wp) de-
fines a Morita equivalence between the Dirac manifold S and its opposite
S°P (i.e., a Morita equivalence of their s-simply-connected presymplectic
groupoids in the sense of Xu [43, Sec. 4]).

Proposition 4.3. Let J: (M,w) — S be a presymplectic realization
defining an S-valued Hamiltonian G-space. Then

1) The quotient (D x5 5y M)/G by the diagonal G-action is a smooth
manifold.
2) The pull-back of wp & (—w) to the submanifold D X g 5y M —
D x M is basic with respect to the G-action. The quotient space
(D x50y M)/G equipped with the resulting 2-form is denoted by
D ®g M°P.
3) The map D @G M°P? — S, a ® x — p(a) is a presymplectic real-
1zation making D ®g M°P into an S-valued Hamiltonian G-space.
Moreover, this procedure defines a self-equivalence functor Fp on the
category of S-valued Hamiltonian G-spaces satisfying Fp o Fp = 1d.

Proof. Since J : (M,w) — S is a presymplectic realization, so is J :

(M, —w) — S§°. Since S & (D,wp) L, S°P is a Morita bimodule, Xu’s
Morita theory for presymplectic groupoids [43, Sec. 4] directly implies
the assertions in parts 1, 2 and 3. The property Fp o Fp = Id follows

from the fact that the inverse of the bimodule S & (D,wp) 2, gop
is the Morita bimodule S & (D, —wp) 2, 8, which is isomorphic to

sor £ (D, —wp) L, S via the inversion Inv : D — D. Let us denote
this last bimodule by D°P. Then

FpoFp(M) =D ®¢ (D &g M?P)® =D g (D g M)
= (D®GDOP) ®GM§M.
q.e.d.
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More generally, Proposition 4.3 holds for Hamiltonian spaces given
by strong Dirac maps, not necessarily presymplectic realizations. The
proposition shows that D induces an involution in the category of S-
valued Hamiltonian G-spaces, which we illustrate in examples below.

4.2. Examples. We now discuss various concrete examples of D /G-
valued moment maps arising from specific choices of Manin pairs (9, g)
and connection splittings s : T'S — 0g.

Example 4.4 (g*-valued moment maps). Let us consider the Manin
pair (g x g*,g) of Example 3.1. In this case S = g*, and we have a
canonical equivariant connection splitting s : T'g* — (g @ g*) x g* given
by

s(pa) = ((0, ), ).
Theno =1d : gxg* — T"g" = gxg*, and (Ls), = {(ad},(n), u) | u € g},
1 € g*, is just the graph of the Lie-Poisson structure on g*. As we saw
in Example 2.4, M,(g x g*, g) is simply the category of Poisson maps
into g*, i.e., classical Hamiltonian g-spaces.

More generally, one can consider Manin pairs coming from Lie bial-
gebras (see e.g. [27]).

Example 4.5 (G*-valued moment maps). Let (g, g*) be a Lie bial-
gebra and 0 be its Drinfeld double (see Section 5.1). We consider the
Manin pair (0, g), assuming that an extra completeness condition [27,
Sec. 2.5] holds, as we now recall.

Let D be the simply-connected Lie group integrating 0, and G and G*
be the simply-connected Lie groups integrating g and g*, respectively.
The inclusion of g and g* into 0 integrate to Lie group homomorphisms
i1: G — D and iy : G* — D, and we obtain a local diffeomorphism

(53) GxG" =D, (g,z)— i1(9)iz(z).

We further assume that this map is a global diffeomorphism. To simplify
the notation, we identify G and G* with their images in D under the
maps 41 and io.

Any element in D can be written as gx or as x’¢’, for unique g, ¢’ €
G,z,x’ € G*. In this case, let us write ' = ¢g4(x). The map ¢ :
G x G* — G*, (g9,7) — @g(x) defines a left action of G on G*, and it
induces a diffeomorphism

S=D/G = G", [(g,2)] = py(2).

Under this identification, the action of D on itself by left multiplication
induces left actions of G* and G on S = G*: The G*-action is by left
multiplication, whereas the G-action (i.e., the dressing action) is ¢. In
particular, we have

pslg= 19" = TG, prp'
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It follows that there is a canonical choice of connection splitting by
(54) s:TG* =g, Vs 08.(V,) = dr;1(Vy).

Here 7, denotes the right multiplication by x on the Lie group G*. The
induced map o5 : gg — T*G* is given by

(55) os(v) = (dryH)*v.

Note that s(T'G*) = g& C 0g is transversal to gg, hence the kernel of

¢ is trivial. It follows that the Dirac structure Lg on G* is the graph
of a Poisson structure mg« (¢s = 0 since g* C 9 is a subalgebra) defined
by

(56) wh (dr; ) ) = p(v), v € g

This Poisson structure makes G* into the Poisson-Lie group dual to the
one integrating (g,g*). Since Lg is Poisson, the 2-form wp on D is
symplectic, and (D,wp) is the Heisenberg double (c.f. Example 4.11).
The Hamiltonian category M, (0, g) in this example is the category of
Poisson maps into G*, which are the Hamiltonian Poisson g-spaces in the
sense of [28]. In particular, when the Hamiltonian space is symplectic,
condition #i¢) in Prop. 2.4 becomes Lu’s moment map condition

lppr(0)& = J*<92* ) U>‘

With the identifications D = G x G* and S = G* (as manifolds), the
maps p,p: D — G* become

p(g,2) = pg(x), and P(g,x) = x~ L

A direct calculation shows that the involution Fp of Prop. 4.3 takes
a Poisson map J : M — G* to Invg« o J : M°? — G* (where Invg«
denotes the inversion map in G*).

Note that the connection (54) is not equivariant in general, so it
does not define an equivariant 3-form (we will return to this issue in
Section 4.3).

Although a connection splitting s exists even without the extra com-
pleteness assumption made in Example 4.5, in general D/G will not be
identified with G* and the choice of s is not canonical.

For a special class of Lie bialgebras, there is a different choice of
connection splitting which is equivariant and leads to a gauge equivalent
(in the sense of Prop. 4.2) Hamiltonian category:

Example 4.6 (P-valued moment maps). Let G be a connected,
simply-connected compact Lie group. We fix an Ad-invariant, nonde-
generate, symmetric bilinear form on g, and denote by (-, ) the induced
complex-bilinear form on g€. We view (0 = g©, g) as a Manin pair with
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respect to the pairing (-,-), = Jm(:,-)¢, given by the imaginary part of
(-,-)c- By the Iwasawa decomposition, we can write
g(c =gdadn,

where a = /—1t (t is the Lie algebra of the maximal torus T C G)
and n is the sum of positive root spaces. Then a @ n is an isotropic
complement of g in 9. Since g* = a@® n C 0 is a subalgebra, this defines
a Lie bialgebra and we are in the context of Example 4.5. At the global
level, we have the decomposition D = G® = GAN, and G* = AN.

In the present situation, however, one has another choice of isotropic
complement of g C 0, namely b := /—1g. Note that b is not a subal-
gebra, but it satisfies [g,h] C h. From Prop. 3.5, we have an induced
connection splitting which is equivariant (hence distinct from (54)). In
order to get a simple explicit formula for the connection, we follow [5,
Sec. 10] and choose a different realization of G€/G.

Let ¢ : G¢ — GC be the involution given by exponentiating the
complex conjugation v — T on gC, and consider the map G — GC
given by g — g¢' := (g7 ). Let

P:={acG"|a=4d}.

Then the map ¢ : G — P, a — aal, induces a diffeomorphism from
G* = D/G to P, identifying the dressing G-action on G* with conjuga-
tion on P by . Using that

gy = dlyqi (Adge (85 — @)),

and ps : 05 — TP, PS(u)a = dQ(dra(u)) = dranr (u) - dlaaT (u)7 one
can find the explicit expression for the equivariant connection splitting

induced by h =+/—1g:
1
(57) §:TP —0dg, Xt 5efé(X),

where 95 is the pull-back of ch to P — GT. The equivariant 3-form
oy + qSif is given by

oy (u) = %(9{5,@0 = % <%<u,0§ _@>c>

1 1
=5 <ﬁ<%0§ +91L3>C> ,
R

for u € g, and, using (26) and the Maurer-Cartan equation for 6., we
get

L1/
Ps =5 <5Jm<[6f§,9§],9f§>c> :

The description of Hamiltonian spaces in Prop. 2.4 reproduces the orig-
inal definition of P-valued moment maps in [5] (up to a factor of 2).
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By identifying G* and P (via q), we get two different connections split-
tings (54) and (57) for D = G® — G*. By Prop. 4.2, the associated
Hamiltonian categories are isomorphic by a gauge transformation, as
explicitly shown in [5, Sec. 10.3].

Example 4.7 (G-valued moment maps). Consider the Manin pair
(g @ g,9) of Example 3.2, where g sits in g @ g diagonally. The infini-
tesimal dressing action is

ps: (8@ g) xG—TG, (u,v)—u" —o.

The antidiagonal in g @ g gives an ad(g)-invariant isotropic complement
of g, hence it defines an equivariant connection splitting s : TG — 0g,
explicitly given by

1. _ 1.
5(X,) == <§drg 1(Xg),—§dzg 1(Xg)> .
The associated equivariant 3-form o® + ¢§ is defined by
1
os(u) = §<6R +9L,u>g, u€g,

and the Cartan 3-form ¢§ = —¢¢ = —1—12<[HR,9R],9R>E (using (26)).
Note that L% is exactly the Cartan-Dirac structure (9), and the condi-
tions in Prop. 2.4 reproduce the defining axioms of quasi-Hamiltonian
spaces in [5].

In this example, (D = G x G,wp), with p(a,b) = ab~! and p(a,b) =
a~1b, is easily seen to be isomorphic to the AMM-double of [5, Sec. 3.2]
(under (a,b) — (a,b™')). The involution Fp sends a quasi-Hamiltonian
space (M,w, par, J) to (M, —w, par, Invg o J) (c.f. [5, Prop. 4.4]).

Example 4.8 (Symmetric-space valued moment maps). The sym-
metric-space valued moment maps of [25] naturally fit into the Dirac
geometric framework of D/G-valued moment maps. The Manin sym-
metric Lie algebras in [25, Sec. 2| are examples of Manin pairs (9, g)
equipped with an ad(g)-invariant isotropic complement of g, which by
Prop. 3.5 define equivariant connection splittings. The associated equi-
variant 3-forms given by Prop. 3.4 agree with the moment forms of [25,
Sec. 3], and the corresponding moment spaces are exactly the objects

in M(0, g).

We will explain how all these moment map theories are related to
quasi-Poisson geometry in Section 6.

4.3. Presymplectic groupoids and doubles. Let (9, g) be a Manin
pair with the choice of a connection splitting s : 'S — 0g, and let

Lg = {(p(u)va(u))v u € g}
be the associated ¢g-twisted Dirac structure on S = D/G. In this
section, we will discuss the integration of the Dirac manifold (S, Lg, ¢g).
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As remarked in Section 2.3, Lg is isomorphic, as a Lie algebroid, to
the action algebroid g x S with respect to the dressing action. Hence,
as integration of Lg, we can use the action groupoid G = G x S. The
source and target maps are given by s(g,x) = z, t(g,x) = g.z, and the
multiplication is m((g, ), (h,y)) = (gh,y). It remains to describe the
2-form w € Q2(G) making it into a ¢g-twisted presymplectic groupoid
integrating Lg.

Consider A € C*(g, Q22(9)) given by (c.f. Section 2.3)

(58) )\(U) = dO’(U) - ip(v)¢5.
Using that o satisfies (12),

a([u, U]) = Ep(u)a(v) — z'p(v)da(u) + ip(u)/\p(v)¢5’7 u,v €9,
it is simple to check that A\ satisfies
/\([u7 U]) = ‘Cp(u)/\(v) - ﬁp(v)A(u)a

ie., it is a Q2(9)-valued Lie algebra cocycle. That is, the map g —
g x Q%(S), v (v,A\(v)) is a Lie algebra homomorphism.

Assume now that the cocycle (58) integrates to a Lie group cocycle,
ie. c€ C®(G,0N2%(S)) satisfying

c(gh) = h*c(g) + c(h),

where the pull-back h*c(g) is with respect to the dressing action of G on
S. This happens e.g. if G is simply-connected. It follows from Prop. 3.4
that if s is equivariant, then (58) vanishes and ¢ = 0.

The next result follows from [12, Sec. 6.4] and gives an explicit for-
mula for the multiplicative 2-form integrating Lg:

Proposition 4.4. The 2-form w € Q%(G x S) integrating Lg is ex-
plicitly given by

(59) g (V. X), (V! X)) = (0 (O£ (V), pu(82(V1)))
H{(oa (0L (V)), XY = (001 (V')), X) + (c(g), X A X'),

where V,V' € T,G, X,X' € T,S and 6L € QY(G, g) is the left-invariant
Maurer-Cartan 1-form. If s is equivariant, then ¢ = 0.

As mentioned in Example 2.3, this 2-form w on G x S makes it into a
S x S°P-valued Hamiltonian G x G-space. This space is closely related
to various well-known notions of “double”.

Example 4.9 (Cotangent bundles). Let us consider the Manin pair
(g,9 X g*) with connection s as in Example 4.4. Since the connection is
invariant, the cocycle ¢ vanishes and the 2-form on G x g* of Prop. 59
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reads
wgv/»‘((V7X)7(V/7X/))
= (Al (V) adgy s () ) + (i (V), X7 = (dig 1 (V'), X)
= u((0"(V), 05 (V)]) + (65 (V), X) = (8"(V"), X),

which is the canonical symplectic structure on T*G = G x g* (with
identification via left translations).

Example 4.10 (AMM groupoid). For the Manin pair (g,g® g) with
invariant connection s of Example 4.7, ¢ = 0 and the 2-form w on GX G
can be directly computed to be

wy((V, X),(V', X")) = [<Ad eL(V) eL(v’)> —<Adx6L(V’),0L(V)>
+<9L X)), — (05 (V),0%(X)),
+ (9H(V), 64(X)),, — <9L 08(X)),).

which can be re-written more conmsely as
1 * * >k *
woa = 5 ((Adapi0®, pi0%), + (pi0%. p3(0" +0%)) ).

where p;(g,2) = g and p2(g, ) = x are the natural projections G x G —
G.

The presymplectic groupoid (G = G X G,w) is closely related to the
double (D = G x G,wp) of Example 4.7: the change of coordinates
D — G, (a,b) — (g = a,z = b~ 'a) identifies wp with w. (Under this
identification, we have p =t and = s~ !, so D and G are not identified
as bimodules.)

g

Example 4.11 (Heisenberg groupoid). Let us consider the case of a
Lie bialgebra (g, g*) as in Example 4.5, where S = G* and the connec-
tion splitting s is (54). This connection is not equivariant in general, so
one has to consider the 1-cocycle of (58): A(u) = do(u) (in this example,
¢s = 0). Explicitly, we have

dor(u) (", ")
— L, (A ) = Lo (Y Ty — (Al o))
=~ F) ().
Here u”, " are the right translations of u,v € g* to TG*, and F : g —
g /g is the co-bracket (c.f. Section 5.1). The cocycle A € C™(g, Q%(G*))
is then given by
Mu)y = —(dry ) F(u) € TXG*.

We know that F': g — g A g is a 1-cocycle with respect to the adjoint
representation, and there is a unique multiplicative bivector field w¢ on
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G so that dlg_lTl'G : G — gAgis a l-cocycle integrating F, see e.g. [22].
Hence the following 1-cocycle ¢ € C™(G, Q?(G*)) integrates A:
c(9)s = —(dr;l)*dlg_lﬂg,
and we get the following expression for the 2-form on G x G* integrating
TG*:
wgw((V’ X)v (V/a X/))
= (dry 'm0 (V) N OG (V1) + (05 (V). 051(X7))
= {05 (V"),03(X)) = (dly 7g, 051(X) A 67(X)),
where we have used that
((drz )" (05 (V) pa (05 (V') = —(dry g, 05 (V) Abg (V).

The 2-form w agrees with wp in this example, so, as a symplectic
manifold, the groupoid (G x G*,w) is the Heisenberg double (D = G x
G*,wD).

5. D/G-valued moment maps via quasi-Poisson geometry

In this section we revisit the theory of D/G-valued moment maps in
the context of quasi-Poisson actions following [3]. This theory has as
starting point a Manin pair (9, g) together with the choice of an isotropic
complement of g in 0 or, equivalently, an isotropic splitting j of (41).
We refer to (0, g, j) as a split Manin pair. We now observe that quasi-
Poisson spaces, just as ordinary Poisson manifolds, can be understood
in terms of Lie algebroids. This leads to refinements of results in [3].

5.1. Quasi-Poisson g-spaces. Let (9,g) be a Manin pair. Following
Sections A.2 and A.3, we consider the exact sequence

(60) g0y
where ¢ : g < 0 is the inclusion and * is the projection 0 — /g after

the identification 9/g = g* induced by (-,-),. The choice of an isotropic
splitting j : g* — 0 defines elements

(61) Fj:g— /\2g, and x; € /\39
by the conditions
Fj*(lu’7y) :L*([](:u))](y)]D)v Xj(luvy) :]*([](,U),](V)]D), /L,T/Gg*,

see Sec. A.2. We will omit the subscript j whenever there is no risk

of confusion. Using the isometric identification of (0, (-,-),) with (g @

9%, (, ) ean) given by (¢, j), the Lie bracket on 9 takes the form:

(62) [(,0), (v, 0)]o = ([u, 2], 0),
(63) [(0,0), (0, )]0 = (i(F(v)), adyp),
(64) [(0, 1), (0, )]0 = (x(n,¥), ™ (1, v)),
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for u,v € g and u,v € g*.

As in Sec. A.3, we say that a triple (g, F, x) is a Lie quasi-bialgebra
[7, 19] if the bracket defined by (62), (63), (64) is a Lie bracket, in which
case (gdg*, g) is a split Manin pair. The resulting Lie algebra gdg* is the
Drinfeld double [7] of the Lie quasi-bialgebra (g, F,x). A Lie quasi-
bialgebra with xy = 0 is called a Lie bialgebra, in which case F' defines
a Lie algebra structure on g*. Note that there is a 1-1 correspondence
between split Manin pairs (9, g,7) and Lie quasi-bialgebras.

For a fixed isotropic splitting j : g* — 0 for the Manin pair (9, g),
and denoting by (g, F, x) the corresponding Lie quasi-bialgebra, we de-
fine a quasi-Poisson g-space [3] as a manifold M endowed with an
infinitesimal action of g, denoted by pas : g — X(M), and a bivector
field 7 € X2(M), such that

(65) L™= —pu(F(v)), forallveg,
1
(66) glm = pu(x),

where [-,-] is the Schouten bracket. If F' = 0 and x = 0, then (M, )
is a Poisson manifold, and 7 is invariant. In general F' controls how
fails to be invariant, whereas y controls how it fails to be integrable.

Remark 5.1. A different isotropic splitting 7, related to j by a twist
t € A%g (i.e., j — j' = t¥) leads, as discussed in Sec. A.5 (see [3]), to a
Lie quasi-bialgebra defined by

(67) F =P+t x’:X—dF(t)—l—%[t,t].

If (M, ) is a quasi-Poisson space for (g, F, x), then (M, 7’) is a quasi-
Poisson space for the Lie quasi-bialgebra (g, F’, x’) [3], where

(68) ' =m+pm(t).

Remark 5.2. The cobracket F' associated with j is a cocycle with val-
ues in A%g (see QO) in Sec. A.3), hence determines a class in H'(g, A%g).
It follows from the first formula in (67) that this class does not depend
on the splitting j. By (63), j has the property [g,7(g*)] C j(g*) if and
only if F' = 0, and such j exists if H'(g, A%g) = 0.

Remark 5.3. (Global actions) One can similarly consider global
quasi-Poisson G-actions, in which case the Lie quasi-bialgebra is re-
placed by its global counterpart, i.e., a quasi-Poisson Lie group [23]
(which arise in connection with [19]). Since our main constructions do
not require global actions, we will restrict ourselves to the infinitesimal
picture.

As shown in [3], the choice of an isotropic splitting j of (60) induces
a bivector field mg on S = D/G, which makes S into a quasi-Poisson
space with respect to the dressing g-action. To define mg, note that
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(0s,05) is a Manin pair over the manifold S (Sec. A.2), and j induces
a splitting of it. As in Sec. A.4, we have an associated bivector field g
defined by

(69) h = plpsj)” : T*S — T,

where p = pgt. If j' is another isotropic splitting and ¢ is the associated
twist, then 7y = mg + pg(t). Let us consider the map

(70) o= (psj)" :T*S — gs.

(As usual, if there is no danger of confusion, we will drop the dependence
on j in the notation and write simply 7.)

Remark 5.4. To see that g agrees with the bivector defined in [3],
consider the r-matrix v = t; € 0 ® 9, given by t(u",v") = (ju*(u),v),
for u,v € o (where u",v" € 0* are the dual of u, v with respect to (-, -),).
Note that v is not antisymmetric, since it satisfies

(71) v(u,vY) + (Y, u") = (u,v),.
But pg(t) is a bivector field, and 7 = —pg(t),

ps(v)f = pstipl = psji*ph = —pso = —,
in accordance with [3].

Since pg = —&*p* (which is the skew-symmetry of 7g), it follows that
mg can be restricted to any orbit of the dressing action of G on S: for
any such orbit O C S and any & € TS with 2 € O and {|1,0 = 0, then

p*(§) = 0. Hence 77?9(5) = 0. We denote by
To € T(A’TO)

the resulting bivector field. The next result follows directly from Prop.
A1, and it was first proven in [3].

Proposition 5.1. (S, 7g) and (O, 7o) are quasi-Poisson spaces with
respect to the dressing action of G on S.

Let us compute @ and 7g in examples.

Example 5.5. For a Lie bialgebra (g, g*), the inclusion g* — g & g*
is an obvious choice of isotropic splitting j. Since x = 0, the induced
bivector mg on S = D/G is a Poisson structure in this case. In the
context of Example 4.5, we have S = G* and pg|g- (1) = p", so

(72) o(a) = (dry)*a, a€T,G"

and 7g is defined by ﬂg(a)x = p(dr}a), which agrees with (56). So the
graph of g is Lg, the Dirac structure of Example 4.5. The bialgebra

in Example 3.1 is a particular case for which pglg« = Id, so @ = Id and

ﬂg(u)(u) = p(u)(p) = ad} (u) is the usual Lie-Poisson structure.
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Example 5.6. For Example 3.2, we consider the isotropic splitting
given by the anti-diagonal embedding,

J(p) == 5 (", —p"),

where 1 € g* and pV € g is its dual with respect to () g Lo, p =
(u",-) g~ Then a simple computation shows that F' = 0 and x is given
by

1
(73) X(M17ﬂ27/~‘3) = Z<[/‘L\1/7/~L\2/]7:u§/>g7
i.e., Y € A%g is the Cartan trivector [3]. In this case, 7 : T*G — g is
given by
_ 1 . . 1
7(0g) = 5(((17"9 + dlg)(ag))v = §(drg71 + dlgq)(ozv),

g
and the bivector field mg on S = G is

* * 1
ms(dly-2 (), dly1 (v)) = 5 ((Adgs = Adg)u, 1),

see [4]. Alternatively, if e; is a basis for g and f; is the dual basis with
respect to (-, -),, then mg = 5 E LA S

5.2. The Lie algebroid of a quasi-Poisson g-space. We now pre-
sent the construction of a Lie algebroid associated with any quasi-
Poisson space.

If M is a manifold equipped with a bivector field 7, one has an induced
bracket [-, -], on the space of 1-forms on M,

(74) [a B]W = Eﬂﬁ ﬂ ﬁwﬁ(ﬁ)a - dﬂ'( 5)

for a, 3 € QY(M). Then 7 is a Poisson structure if and only if [, ],
satisfies the Jacobi identity, making T*M into a Lie algebroid with
anchor 7f : T*M — TM. The symplectic leaves of a Poisson manifold
are precisely the orbits of this Lie algebroid.

Suppose now that M is equipped with a bivector field = as well as
an infinitesimal action pps : g — T'M. Consider the vector bundle
A=g@T*M, let

(75) r:A—TM, r(v,a):=py)+ 7 (a),

and consider the bracket on I'(4) = C*°(M, g) ® Q' (M) defined by
(76) [(u,0), (v, 0)]a = ([u,],0),

(77) [(v,0),(0,)]a = (=ips (@) (F(v), Ly ) @)

(78) [(0,a),(0,8)]a = (i3, (anp)X; [ Blx),

for o, € QY (M), and u,v € g, considered as constant sections in
C>°(M,g) (the bracket is extended to general elements by the Leibniz
rule). The main result in this section is the following:
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Theorem 5.1. (g ® T*M,r,[-,-]a) is a Lie algebroid if and only if
(M, ) is a quasi-Poisson g-space with respect to the action pyr = g —
xH(M).

The Lie algebroid in Theorem 5.1 has as special cases the Lie al-
gebroids previously introduced in [10] and [29], but our general proof
follows a different approach. The following result is a direct consequence
of Theorem 5.1.

Corollary 5.1. On a quasi-Poisson g-space (M, ), the generalized
distribution

(79) {ppy()+7%a) |veg, aec T*M} CTM
1s integrable.

The fact that (79) defines a singular foliation was first observed in
[3, 4], but under the additional assumptions of existence of a moment
map and that g is integrated by a compact Lie group.

In the theory of quasi-Poisson spaces, a particular role is played by
those with transitive Lie algebroid, i.e.,

(80) TM = {pp(v) +7*(a) |[veg, aeT M}

Note that, if the g-orbits are tangent to the distribution 7#(7* M), then
this transitivity condition implies that the bivector field 7 is nondegen-
erate (but this is not the case in general).

5.2.1. The proof of Theorem 5.1. In this subsection we present the
proof of Theorem 5.1; see [11] for an alternative discussion.

Asrecalled in Section A.1, describing a Lie algebroid structure on A =
g @® T*M is equivalent to finding a degree-1 derivation dy : T'(A*A*) —
L(A*TLA*) satisfying d4 = 0 [39]: the anchor r and bracket [-,-]4 are
recovered by the conditions
(81) daf(a) =L@l
(82) da&(a,b) = Ly)€(b) — Lrw)§(a) — &([a,b]a),
for f € C®°(M), a,b € T(A) and £ € T'(A*). We now present a con-
struction of a differential d4 leading to the bracket defined by (76), (77)
and (78).

Let (g, F,x) be a Lie quasi-bialgebra, and let X = @®,czX? be any
graded commutative algebra. We consider the tensor product of graded
commutative algebras Ag* ® X, which is itself graded commutative with
product

(p@w)- (vey) = ()" (pAv)® (z-y),
for p@x e NPg*®@X%, vy e APg*® X7, and grading (Ag* ® X)F =
Pprg=k N g° ® X9 We assume that X is equipped with an operator
d:X* — X**! which is a derivation of degree 1,

dz-y)=dz-y+ (-1)9z-dy, forze X9, yex?,
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but not necessarily squaring to zero. (The example to have in mind is
when X* is given by multivector fields on M, and d = [, ] for a quasi-
Poisson bivector m, where [-, -] is the Schouten bracket). We moreover
assume that g acts on X*® by derivations of degree 0, and that we are
given a g-equivariant map

(83) 0:g— X

with respect to the adjoint action of g on itself. The map ¢ induces an
equivariant map of graded algebras A®g — X°® which we also denote by
0.

In this framework, one can define various derivations of Ag*®X. First,
the Chevalley-Eilenberg operator (i.e., the Lie algebra differential) of g
with coefficients in X,

(84) D:Ng* X — ATt @ x°,
is a derivation of Ag* ® X of degree 1. Second, we define
(85) d:N\Ng" X — A°gF @ X!

to be the unique derivation of Ag* ® X extending the operator d : X* —
X**+! and vanishing on Ag*. Finally, associated with F' and , we define

aF . /\og* ® X - /\og* ® %O-‘rl and ax . /\og* ® X - /\o—lg* ® %O-‘:-Z

to be the unique derivations vanishing on X and defined on g* by the
conditions

(86)  Op:gt— g @X', Oppu(u) = —0(in(F(u))), u€g;
B7)  Oy:g"t— X% O =—0(inx).

We now consider the derivation

(88) §:=0+0r+0,+d: (AgF®X)* — (Ag" @ X)*T.

The following is a key example of this framework in which § is a differ-
ential, i.e., 82 = 0.

Lemma 5.7. Consider X = Ag, equipped with the adjoint action of
g, and let o =1d : g — g and d : \°g — A°Tlg be the Lie algebra
differential of the Lie bracket —F* : g* A g* — g* on g*. Then, under
the canonical isomorphism Ag* @ Ag = A(g* @ g), 0 is the Lie algebra
differential of the Drinfeld double of the Lie quasi-bialgebra (g, —F, x).

To prove the lemma, it suffices to compare how the derivation § de-
fined by (88) and the Lie algebra differential act on elements in g* and
g, and a direct computation using the definitions shows that they agree.
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Note that to check that 6> = 0 in general, it suffices to check that
62 = 0 on Ag* and X separately since, if u ® x € APg* ® X, we have

Puow) = 8- (10 )+ (1) - o) + (~1)75(n) - o(x)
H=DP(pe1) -6 ()
— () (102)+ (1e1) - R).

Lemma 5.8. On X, 62 =0 is equivalent to the conditions
(89) d0 + 0d+ 0p0 =0
(90) 0+ d* = 0.

Proof. A direct computation shows that
(91) 6% = 0d + dO + 90 + 0,0 + d*

on X, where we have used that 0 and 0, vanish on X and 0% = 0.
Splitting (91) according to degrees, one obtains (89) and (90). q.e.d.

Let us now focus on the case where (X, [+, ]) is a Gerstenhaber algebra
(see equations (148), (149) and (150) in Sec.A.1 for conventions) and
that o : g — X! is a Lie algebra homomorphism such that the g-action
on X is given by

(92) v-x:=ow),z], veEg xe€X.

Lemma 5.9. For all x € X and v € g, the following holds:

(93) 9\ 0(x) = —lo(x), zl;
(94) ((d0 + 0d)(z),v) = [o(v), dx] — d[o(v), z]
(95) (0r0(z),v) = [o(F(v)), z].

Proof. Let {e;} be a basis of g, and let {e’} be the dual basis. To
prove (93), take = € X, and recall that

(96) o(x) =Y e @oler),z], and (d(@),v) = [o(v), z].
l

By definition of 0, , we get

00w = = oliax)leler), ] = =3 xijnolei)oles)[o(er), 2],

l i,5,k
where we have written x = > Xijkei N\ e; A eg. On the other hand,
[o(x), z] = 2@ Xijklo(ei)o(ej)oler), ] = 3 2@ Xijro(ei)o(e;)[o(ex), x],
i3, 4.,

where the last equality follows from the graded Leibniz identity for [, -].
This proves (93).
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From the first formula in (96) and the derivation property of d, it
follows that diz = —>_ e @ d([o(e ) x]), and

(@0, v) = — 3 vidlo(es), ) = —dlo(v),al.

The second equation in (96) 1mphes that (Odz,v) = [o(v),dz], so (94)
follows.
To prove (95), note that, using (96) and the definition of O, we have

(Op0(z),v) =Y oliaF(v)]e(er) 2] = 2 Fjyvio(e))lo(er), ],
! .5,k
where we have written F'(v) = >, ;¢ F;kviej A eg. On the other hand,
an application of the Leibniz identity yields

Z k”z —22 k”zQey o(ex), ],

7] k 7] k
proving (95). q.e.d.

If we further assume that the derivation d : X* — X°**! has the
form d, = [, ] for some fixed 7 € X2, then combining (94) and (95),
and using the graded Jacobi identity for [, |, one checks that (89) is
equivalent to

(97) [[o(v), ], z] = —[o(F (v)),z] for all x € X.

Another application of the graded Jacobi identity shows that d2 =
[2[m, 7], ], so, using (93), one sees that (90) can be rewritten as

%[[7‘(,7‘(’],1’] = [o(x),z] for all z € X.

Let us now consider the specific situation where M is a manifold
equipped with a bivector field 7 € X2(M) as well as an infinitesimal
g-action py : g — XY(M) (playing the role of o (83)). We use (92)
to define a g-action on the Gerstenhaber algebra X* (M) of multivector
fields, and consider the derivation (88) in this context,

(99) §:=0+0r+0y+d: Ng"RX(M) — Ng" @ X(M),
with d = d; = [m, ]

(98)

Lemma 5.10. The action pyy makes (M,7) into a quasi-Poisson
g-space if and only if 62 = 0.

Proof. To prove the claim, as we have previously remarked, it suffices
to show that 62 = 0 on Ag* and X(M) separately. Using Lemma 5.9,
we saw that (90) is equivalent to (98), which is the same as

Sl = par(x)

when X = X(M). Similarly, (89) is equivalent to
(101) [ov (v), 7] = —pa (F(v)).

(100)
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It then follows from Lemma 5.8 that p,s is a quasi-Poisson action if and
only if 62 = 0 on X(M). To finish the proof of the lemma, we will check
that if 6> = 0 on X(M), then it automatically happens that 6> = 0 on
Ag*, i.e., (99) squares to zero.

Let 6° denote the d-operator (88) in the specific context of Lemma
5.7, and similarly for the derivations 9°, d°, 9% and 82. Consider the
homomorphism

U:Ag"®Ag— AgT@X(M), Y(p®v)=pn®pu(v).
We claim that (101) implies that
(102) Vod =600,

Indeed, recall that d° = F on g, and condition (101) is equivalent to
dep(v) = pp(F(v)), ie., ¥od® = d; o U. One can immediately check
that analogous relations automatically hold for 9, 0r and 9,. For p®@v €
Ag* ® Ag, we have

P ®v) = dg(p) @ v+ Z(ei Ap)®e;-v,
i
where {e;} is a basis of g, {e'} is the dual basis, and 9y denotes the Lie
algebra differential of g (with trivial coefficients). Using the equivariance
of par, we get

W(O (1@ v)) = (k) @ par(v) + D _(e A p) @ i par(v)

7

= 0(p® pm(v)) = (¥ (1 ®v)).
To see that Wo 8% = OJp o ¥, it suffices to check the equality on g*, and
this follows directly from the definitions. One checks that \Ilo(‘)g = 0oV
similarly.
To check that 62 = 0 on Ag*, note that

0(8(u @ 1x)) = 8(8(¥(n® 1)) = 6(x(8° (k@ 1)) = U((&°)*(p© 1)) = 0

since (6°)2 = 0 by Lemma 5.7. This completes the proof of the lemma.
q.e.d.

Proof of Theorem 5.1. Since Ag* ® X(M) can be identified with
I'(A(g* ® TM)), Lemma 5.10 shows that pys defines a quasi-Poisson
action on (M, ) if and only if § (given by (99)) defines a Lie algebroid
structure on A = (g* @ TM)* = g@® T*M. To complete the proof of
Theorem 5.1, it remains to compute the anchor and bracket of A using
(81) and (82).

Since Or and 0y vanish on X(M), it follows that, for f € C*(M) =
XO(M), we have

§f = 0f +dnf € (Ag" ® X(M))' = C(M,g*) ® X' (M) =T(A").
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For (v,a) € C®°(M,g) ® QY(M) = I'(A), a direct computation shows
that
5f(’l),04) = ﬁpM(v)f + ﬁwﬁ(a)fa
and, using (81), we conclude that the anchor is given by (75).
We now compute brackets. For a,b € T'(A), we write

[CL, b]A = ([CL, b]17 [a7 b]2)7

with [a,b]; € C®°(M,g) and [a,b]y € Q'(M). The first case is when
a = (u,0),b = (v,0) € T'(A), where u,v € g (considered as constant
elements in C*°(M,g)). If £ = (u,0) € F(A*) i € g*, then a direct
computation shows that 5£(a b) = Ogui(u,v) = —p([u,v]). From (82), it
follows that d¢(a,b) = —u([a,b]1), so [(u,0), (v,0)]; = [u,v]. A similar

computation shows that [(u,0), (v, 0)]2 = 0, proving (76).

Let u € g, « € QY(M) and p € g*, and consider a = (u,0),b = (0, )
and & = (i, 0). Using the definition of §, we obtain

0¢§(a,b) = ia(Opp(u)) = —iapm (iuF(w) = plipy, (@ F(w)-

On the other hand, by (82), we have 6{(a,b) = —&([a,b]) = —u([a,b]1),
which implies that [a,b]; = —ip: (a)F'(u). To compute [a,b]2, let { =
(0, X), where X € X'(M). Then one checks that §¢(a,b) = a([par(u),
X]). But, by (82), we have

6¢(a,b) = L) @yl X) — ix([a, b]2).
So ix([a,b]2) = L, w)ix® — i[pyw),x]0 = ix(Lyy ). This proves
(77).

In order to prove (78), let a = (0, ),b = (0, 3), where a, 3 € Q' (M).
If £ = (1,0), p € g%, then, by (82), we have d§(a,b) = —pu([a,b]1). On
the other hand,

55((17 b) = 8X(/L)(Oé,ﬁ) = _iaAﬁ(pM(iuX)) = _M(ip}‘v[(a/\ﬁ)X)'
It follows that [a,b]; = ip}i{(aAﬁ)X' To compute the second component
of [a,b], we let £ = (0,X), X € X}(M). Then 6(a,b) = d. X(a,8) =
Za/\,@([ﬂ-aX]) By (82)7
(103)  ix([a,bl2) = Lrsa)ixB — Lrsgyixa —ians([m, X])

= ixLorsa)B — ix Lz — (ian([m X]) = izi(0),x18 + izt(8), x])

On the other hand, ixd(m(«, 8)) = Lx(7(a, 3)) equals to
(Lxm)(a, B) + m(Lxa, B) + m(a, Lx )
= iaAﬁ[Xy 7'('] + iﬂﬁ(ﬁxa)ﬂ — iﬂu(ﬁxﬁ)a.
Using that 7#(Lxa) = [X, ()] — [X, ﬂ]ﬁ(a) it follows that
ixd(m(a, 8)) = dans([m, X]) —ijzi(a),x18 + ixt(8), x)0-
From (104), we see that [a, b]s = [« (] . q.e.d.
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5.3. The Hamiltonian category. Let (0,g,j) be a split Manin pair,
so that g acquires the structure of a Lie quasi-bialgebra. Let pps : g —
X (M) be an action making (M, ) into a quasi-Poisson g-space. A mo-
ment map [3] for this quasi-Poisson action is a smooth g-equivariant
map

J:M— S=D/G
with the property that
(104) I = puT,

where @ = G; : T*S — gg is defined in (70). In this case we say that
(M, 7, pr,J) is a Hamiltonian quasi-Poisson g-space with respect
to the split Manin pair (9, g, j) (or, equivalently, the Lie quasi-bialgebra
(9, Fj,x;))- If the g-action integrates to a G-action, we refer to a Hamil-
tonian quasi-Poisson G-space.

Combining the equivariance of J and (104), we have that dJn®J* =

po = ﬂg, ie., Jym =mg.

Remark 5.11. If j/ is another isotropic splitting and ¢t € A?g is
the associated twist, we saw in Remark 5.1 that (M, '), where 7’ =
7+ pum(t), is a quasi-Poisson space for (g, Fj, x;). Since

Gy = (psoj) =a;+t opk,

it follows that (7')*dJ* = (7% + par()¥)dJT* = (prTj + parttpldJ*) =
pMmTj, so the fact that pys is Hamiltonian is independent of the choice
of isotropic splitting.

Remark 5.12. The moment map condition (104) is equivalent to
the one in [3] using the notion of admissibility. An isotropic splitting j
is called admissible [3, Sec. 3.4] if the restriction pgl|p, : hs — T'S is
an isomorphism, where h = j(g*). This is equivalent to the bundle map
G : T*S — gg being an isomorphism, in which case the moment map
condition (104) can be written as

(105) (T () = paur(v), Yo €g.

Since admissible sections always exist locally, a quasi-Poisson action is
Hamiltonian if and only if it satisfies, possibly after a twist, (105) locally,
which is the original definition in [3, Def. 5.1.1].

Example 5.13. A canonical example of a Hamiltonian quasi-Poisson
action is given by the dressing G-action on S, in which case the moment
map is the identity S — S. This restricts to Hamiltonian actions on
dressing orbits, with moment maps given by the inclusion maps O — S.



DIRAC GEOMETRY AND D/G-VALUED MOMENT MAPS 543

We now have definitions parallel to those in Section 4.1: the Hamil-
tonian category (or moment map theory) associated with a split Ma-
nin pair (9,9, ;) is the category M, (0, g) whose objects are Hamilton-
ian quasi-Poisson g-spaces (M, m, par, J) (with respect to the Lie quasi-
bialgebra (g, Fj,x;)) and morphisms are smooth maps smooth maps
f: M — M’ satisfying f.(7) = 7" and J'f = J. We also consider the
subcategory M (9,g) consisting of Hamiltonian quasi-Poisson spaces
with transitive Lie algebroids, i.e., satisfying (80).

Example 5.14. Let us consider a Lie bialgebra as in Example 4.5,
where S = G* has the Poisson structure wg+. In this case, j is the
inclusion g* < 0, and it is admissible (in the sense of Remark 5.12). As
a result, the moment map condition (104) completely determines the
action pps, and one can check that Mj (0,9) is the category of Poisson
maps into G*. The subcategory M (0, g) consists of Poisson maps M —
G* for which M carries a nondegenerate Poisson structure, i.e., M is
symplectic. Comparing with the Hamiltonian categories associated with
the connection s in Example 4.5, we see that 7; = o1 and we have
natural identifications

Ms(a7 g) = Mj(av g) and Ms(av g) = Mj(a7 g)

Example 5.15. For the split Manin pair of Example 5.6, the objects
in M;(d, g) are the Hamiltonian quasi-Poisson g-manifolds of [4, Sec. 2],
i.e., manifolds M equipped with a g-action, an invariant bivector field
7 satisfying §[m, ] = par(x) (where x is the Cartan trivector (73)), and
an equivariant map J : M — G satisfying the moment map condition
(104), which reads

(106) 7 (0) = Sou((67 + 01)a),

where a € QY(G) and o¥ € X(G) is dual to o with respect to the
metric. Note that objects in M (9, g) may still carry degenerate bivector
fields, and the relationship between Hamiltonian spaces in Mj(a, g) and
M (0, g) is now less evident. Nevertheless, as proven in [4, 10] (see also
[2]), there is a (nontrivial) isomorphism M;(0,g) = M,(0,g), which
will be explained and generalized in Section 6.

Just as different choices of connections give rise to gauge transforma-
tions (see Prop. 4.2), different choices of isotropic splittings j, 5’ define
a twist t € A%g and, following Remarks 5.1 and 5.11, the operation
7 7+ pu(t) induces a functor M;(9,g) — M;(0,g9).

Proposition 5.2. If j and j' are two isotropic splittings of 0, then
the associated twist t = j — j' defines a natural isomorphism:

which restricts to an isomorphism of subcategories M;(0,g) = M; (0, g).
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Example 5.16. The Manin pair (g, g) of Example 4.6 admits two
natural splittings j and j’: one corresponds to the Lagrangian comple-
ment g* = a @ n and the other to v/—1g C g€. For the splitting j one
has x; = 0, whereas, for j', Fj; = 0. Prop. 5.2 establishes an isomor-
phism between the corresponding Hamiltonian categories. Notice that
Hamiltonian spaces associated with j are Poisson manifolds for which
the Poisson structure is generally not g-invariant, whereas for 7/ Hamil-
tonian spaces carry g-invariant bivector fields which generally fail to be
Poisson.

We close this section with remarks about Hamiltonian reduction for
D/G-valued moment maps in quasi-Poisson geometry. As proven in [4,
Thm. 4.2.2], if (M, ) is a quasi-Poisson G-space, then conditions (66),
(65) directly imply that the bracket defined by 7 makes the space of
G-invariant functions C°°(M)% into a Poisson algebra. In particular,
the orbit space of M by the G-action is a Poisson manifold whenever
the action is free and proper.

Let us assume that we are in the Hamiltonian situation, i.e., there is
a moment map J : M — S = D/G.

Proposition 5.3. Let (M, 7, pyr, J) be a Hamiltonian quasi-Poisson
G-space associated with (0,9,7). Lety € S be a regular value for J, and
let O be the dressing orbit through y. Then the G-invariant functions on
JY(O) form a Poisson algebra. (In particular, the quotient J~1(0)/G
is a Poisson manifold whenever the G-action on J~1(O) is free and

proper.)

Proof. Let f,g € C=(J~10)), and let f,ﬁ be arbitrary extensions
of f and g to M. It suffices to check that m(df,dg)|;-1(oy does not

depend on the extensions. Since df(pas(v)) = 0 over J~1(O), we use
the (adjoint of the) moment map condition, dJz! = —0"pys, to see

that Wﬁ(df)bq(o) € TJ1(0). Hence if gly-1(0) = 0, we must have
r(df, dg)|j-1(0) = 0. The fact that the bracket {f, g} = w(df,dg) is a
Poisson bracket on C*°(J~1(0))¢ is a direct consequence of conditions
(66) and (65). q.e.d.

It is immediate to check that twists (107) keep reduced spaces un-
changed.

The proof of Prop. 5.3 shows that the restriction C(M)¢ —
C>(J~Y0))% is a Poisson map. If the G-action on M is free and
proper, it follows that J~1(0)/G sits in M/G as a Poisson submani-
fold. We will see in Section 6.4 that the symplectic leaves of J~1(0)/G
are the projections of the leaves of the Lie algebroid associated with
(M, ) (in particular, the quotient is symplectic if the Lie algebroid of
(M, ) is transitive).
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6. The equivalence of Hamiltonian categories

We saw in Sections 4 and 5 two possible D/G-valued moment map
theories associated with a Manin pair (9, g): one depends on the choice
of an isotropic connection s on the G-bundle D — G and leads to Dirac
geometry (and equivariant 3-forms when s is invariant), and the other
depends on the choice of an isotropic splitting j of (41) and leads to
quasi-Poisson geometry. In this section we will show that, when both
s and j are chosen, there is an isomorphism between the corresponding
Hamiltonian categories:

(108) M,(0,9) — M;(2,9).

6.1. The linear algebra of the equivalence. We now recall the lin-
ear algebra underpinning the isomorphism (108), following [2, Sec. 1].

We consider the following set-up: V and W are vector spaces, and
J : V. — W is a linear map. The vector space W is equipped with
two transversal Dirac structures, i.e., two maximal isotropic subspaces
Ly,Cyw C W := W @ W* such that Ly N Cy = {0}. In particular,
W = Lw ® Cyw. Let us consider the following two sets of additional
data:

i) A Dirac structure L on V so that J : V — W is a strong Dirac
map with respect to Lyy:
Ly ={(J(v),8) | (v, J"B) € L}, ker(J)NLNV = {0}.
1) A bivector m € A2V and a linear map py : Ly — V such that
(109) J o py = pryy, 7o J" = py o7,
where pryy : W — W is the natural projection, and o : W* —
C}y = Lw is the linear map dual to pryy|c,, : Cw — W.
Recall that, given a strong Dirac map J : (V, L) — (W, Ly ), there is an

induced linear map (see Section 2.2)

(110) PV - LW - VY? PV(w,ﬁ) =,

where v in uniquely defined by the properties J(v) = w, and (v, J*(3) €
L. Also, a pair of transversal Dirac structures L,C C V @ V* defines a
bivector m € A2V (see Section A.4) by

(111) 7wt = pry o (pryle)”
Theorem 6.1. Let Ly ,Cw be transversal Dirac structures on W,

and let J : V — W be a linear map. The following holds:

1) Consider L as in i), and let C C V@ V™ be the backward image of
Cw by J. Then L,C are transversal Dirac structures on V', and
the induced map py (110) and bivector m (111) satisfy (109).
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2) Consider py and w as in ). Then the image of the map

LyoV —-VaVvh,

(1) = (7' (@) + pyv (1), J*pry-(1) + a — J*pry-pir(a)
is a Dirac structure L on V' for which J : (V,L) — (W, Ly) is a
strong Dirac map.

Moreover, these constructions are inverses of each other.

A proof of Thm. 6.1 can be found in [2, Sec. 1.8].
The correspondence in Theorem 6.1 is also functorial:

Proposition 6.1. Let J; : (V,L;) — (W,Lw) be a strong Dirac
map, i = 1,2, and let f : V3 — Va be a linear map which is f-Dirac and
satisfies J1 = Jao f. Then f o py, = py, and fom = mo.

Conversely, suppose that m; € A2V; and py. : Ly — V; satisfy (109),
i=1,2. Then if f: V1 — Vo is such that fumi = mo, Jyo f = J; and
fopv, = pw, then f is an f-Dirac map.

Proof. For the first part, the property f o py, = py, is a direct con-
sequence of f being an f-Dirac map. Let C; be the backward image of
Cw by J;, i = 1,2. Then Lo is the forward image of Ly by f while C;
is the backward image of Cy by f, using that J; = Jy o f. This implies
that f.m = ma, see [2, Sec. 1.8].

To prove the second part, we use that f o (m)f o f* = (m2)* and
f o pv, = py, to conclude that

(112) (m2)* () + pv (1) = f o (m} £*(c) + pva (1)

On the other hand, the conditions Ji = f*Jo and py, f* = py, imply
that

(113)

J*(Jgpry (D) +a—=Jypryypy, (@) = Jipry- () +f a—=Jiprypy, (f* ).
Note that (112) and (113) together say that Lo is contained in the
forward image of L;. Since both have the same dimension, they must
coincide, so f is an f-Dirac map. g.e.d.

6.2. Combining splittings. Let (0,g) be a Manin pair, and fix split-
tings s : T'S — 0g and j : g* — 0. We denote by (g, F,x) the Lie
quasi-bialgebra determined by j. We have the induced maps

og=0s:95s—=T"S, c=s5"0r and T=7;:T"S —g, =7 opg,

already considered in Sections 4 and 5. We have another map, which
depends on both s and j, given by

(114) p=0ps;: TS —gs, p=jos.
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We represent the two short exact sequences associated with (9,g) and
the maps defined by the splittings in the diagram below:

(115) gs

Zan

T*S ——= 0g —<T>TS

)

95
Decomposing pg and s (and their duals) with respect to 0 = g ® g*, we
get:

s=(p,0"),s" =(0,p"),ps = (p,T"),p5 = (7,p"),

where we always identify 0 = 0* via the inner product. Using that the
vertical and horizontal sequences are short exact, one obtains algebraic
identities relating the various maps. In particular, we have

(116) op = —p*c*, op" = —op", Go+pp=1dg, 0o+ (pp)" = Idp=s.

Since (pg,s*) : 0 — TS is an isomorphism of Courant algebroids
(where TS is equipped with the ¢g-twisted Courant bracket, and ¢g
is given by (30)), we immediately obtain (besides (12)) the differential-
geometric identities:

(117)

L) (P 1) = G5 udo (V) + ipyageu(Ps) =0 (i (F(v))) + 5" (ady (1)),
(118)

Lo, (pV) = ig,d(P" 1) + i5+ puroev (95) =0 (iunv (X)) + 2" (F* (1, v)),

where u,v € g, p,v € g*.

We know that s defines an isomorphism 0g = TS, and the Dirac
structure Lg on S is just g under this identification. The additional
splitting j defines an isotropic complement g* C 0 to g, and we let Cg
be its image in TS:

(119) Cs = {((ps 0 7)(), (s" 0 j) (1)), p € g"}.

Note that Cg is an almost Dirac structure which depends both on s and
j. The pair Lg, Cs C TS defines a Lie quasi-bialgebroid structure, which
determines elements xs € ['(A3Lg) and F¢ : T'(Cs) AT(Cs) — I'(Cs)
(see Sec. A.3). Under the identification g§ = Cg, it is clear that

xs(p1, 2, 13) = x(p, proy p3),  F(pr, p2) = F*(pr, p2),

where pq1, uo, us € g* (viewed as constant sections of Cs = (Lg)*), and
this completely determines Fg and yxg. The bivector field associated
with Lg,Cg (as in Sec. A.4) is just mg (69).
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6.3. The equivalence theorem. Let (9, g) be a Manin pair with fixed
s: TS — dg and j : g* — 0, as in Section 6.2. As we saw, S = D/G
inherits a Dirac structure Lg and an almost Dirac complement C's. We
now use the linear construction of Section 6.1 pointwise to define the
isomorphism (108).

Given a Hamiltonian quasi-Poisson g-space (M, 7, par,J) (with re-
spect to the Lie quasi-bialgebra (g, F, x) defined by j), let us consider
the maps

(120)  Pm:gm=gxM —TM, v+ (pu(v),J 0(v)),
(121) h:T*M — TM, o (rh(a), (1 = THa),

where T' = ppyp(dJ) : TM — TM. The next result generalizes [10,
Thm. 3.16], using the techniques in [2].

Theorem 6.2. The following holds:

i) Let J : (M,L) — (S, Lg) be a strong Dirac map, and let ppr : g —
X (M) be the induced g-action (as in Prop. 2.3). Then the pull-back
image C C TM of Cg under J is a smooth almost Dirac structure
transversal to L, and the bivector field m € X2(M) associated with
L and C is such that (M, m, ppr, J) is a Hamiltonian quasi- Poisson
g-space.

ii) Let (M,m, par,J) be a Hamiltonian quasi-Poisson g-space and con-
sider the maps par and h from (120) and (121). Then

(122) L:={pm)+h(a)|vegy, acT*M} C TM,

is a Dirac structure for which J : (M,L) — (S, Lg) is a strong
Dirac map.

Moreover, one construction is the inverse of the other.

Proof. Let us prove i). The fact that the backward image C of Cg
under J is smooth and transversal to L is shown in [2, Sec. 2.3]. Hence
the pair L,C' C TM defines a Lie quasi-bialgebroid over M. We denote
the associated 3-tensor by xs € T'(A3L) and cobracket by Fys : T'(L) —
I'(L) AT'(L), and let d¢ be the degree-1 derivation on I'(AL) defined by
C = L* (see Sec. A.2).

Lemma 6.1. Let (g, F,x) be the Lie quasi-bialgebra determined by
j. Then

(123)  pum(x) =xm, and pu(F(v)) = —dc(pm(v)), Vv € g,
where ppr: Ag — T'(AL) is the extension of (15) to exterior algebras.

Proof of Lemma 6.1. The proof of the equation relating x and xas
can be found in [2, Sec. 2]. We give here an alternative argument which
also proves the second equation in (123).

Let us consider the bundle map (8), pas : J*Lg — L, induced by J,
and its dual p}, : C — J*Cg, where we identify L* = C and L§ = Cs. It
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is clear from the definitions that (Y, 3) € J*Lg is J-related to pp(Y, 5);
similarly, given (X,a) € C at a point € M, there exists (a unique)
p € g* such that v = J*s*(p), and pj, (X, @) = (ps(p), 5™ (1)), so (X, a)
and p}, (X, a) are J-related. Given a section ¢’ of C' extending (X, a),
then p3},(¢’) is a section of J*Cg = J*g%, but if J has locally constant
rank at z, we can extend pj},(¢’) to a (local) section ( = p of Cg = g,
which is necessarily J-related to ¢’. It directly follows from Lemma 2.1

that xs(¢1,¢2,¢3) = xm(¢],¢h,¢5), which means that par(x) = xar at
z. Similarly,

par(F(0)) (¢ (), G(x))
(v, [ (J (@), p2(J (7))]o) o
= (0, [61: Lo — Losu@mhz + Log(uai@)) i)y — (Low)hts iz ),
= (v, [¢1,Clo)e = Los(ui (1)) (12(V)) + Lpg (o (5(2))) (11(V)),

where we used that g* C 0 is isotropic to conclude that <£ ()15 ”2>a =
0. On the other hand,

do(prr(v))(C1,C3)

= £X1 <Cé7 ﬁM(U)> - £X2<C{7 ﬁM(U)> - <Z)\M(,U)7 [[(iv Cé]]]*¢s>7
and the fact that py(F(v)) = —deo(pam(v)) at x is again a direct con-
sequence of Lemma 2.1. Since the points z € M where J has locally
constant rank forms an open, dense subset, we conclude that the equal-
ities in (123) hold everywhere in M. q.e.d.

Let 7 be the bivector field on M associated with the Lie quasi-
bialgebroid defined by L,C (as in Sec. A.4), and consider the g-action
pu induced by J. Then Lemma 6.1 and Prop. A.1 give

%[ﬂ',ﬂ'] = proa(xar) = propy (P (X)) = par(x)

and, for v € g,

Loy w)™ = prras(de(py(v))) = —prray (p(F(v))) = —pu(F(v)).
The moment map condition and the g-equivariance of J follow from
Thm. 6.1, part 1. Hence (M, m, par,J) is a Hamiltonian quasi-Poisson
g-space, finishing the proof of 7).

We now prove ii). Given a Hamiltonian quasi-Poisson g-space (M, T,
o, J), it follows from part 2 of Thm. 6.1 that the subbundle L C TM
defined in (122) is an almost Dirac structure, and (d.J), : TM; — TS,
is a strong Dirac map relative to L and Lg at all x € M. We let C be
the almost Dirac structure given by the pullback image of Cg under
J. Then L and C are transversal almost Dirac structures (see e.g. [2,
Sec. 1.7]). A direct computation shows that the bundle map h of (121)
agrees with the dual of pryy|lc: C — TM,

(124) h = (prryle) :T"M — C* = L,
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and hence the bivector field associated with L, C, defined by (pryas|z) o
(prraple) = T*M — TM, is m. To prove ii), it remains to check
that L is a J*¢g-twisted Dirac structure, i.e., that the associated 3-
tensor x4, € T(A3C), X411, 12,13) = ([l l2] =g, 3), vanishes for all
l1,la,l3 € F(L).

Lemma 6.2. Let [-,-] denote the J*¢g-twisted Courant bracket on
TM. Then

(125) [oa (w), pre (0)] = Paa([u, ), for u,v € g.
(126)  ([h(aq), h(az)], h(az)) =0, for a; € QY (M), i=1,2,3.
(127) [[ﬁM(U)7 h(a)]] = _ﬁM(ip’M(a)F(v)) + h(ﬁpM(v)a)a

for ac QY(M), veg.
Proof of Lemma 6.2. To prove (125), we have to show that
Jro([u,v]) = £PM(U)(J*O-(U)) - iPwI(v)d(']*U(u)) + iﬁwf(u)Aow(U)(J*¢S)‘

Using the equivariance of J, dJ o pyr = p, we see that this equation is
just the pull-back by J of condition (12) for o.

To prove (126), we use (124) to see that (126) is equivalent to the
condition pryys(x),) = 0. A computation as in Prop. A.1 (see [2, Sec. 2]
for an alternative argument) shows that the bivector field associated
with the transversal almost Dirac structures L and C, which is just ,
satisfies 2[m, 7] = proas(Xar) + prras(Xy)- It follows that pryy(x),) =
0 since, by assumption, 3[m, 7] = par(x) = prras(xm)-

We now prove equation (127). The T'M-component of this equation
gives

(128) ﬁpM(v)ﬂ'ﬁ(a) = pM(_ipRI(a)F(U)) -+ ﬂﬁ(ﬁpM(v)a).
Using the condition £, ,ym = —pa(F(v)), we see that the identity
‘CPM(U) (m(a, 8)) = (‘CPM(U)W)(Q’ B)+ 7T(‘szur(v)a’ B) + (e, ‘CPM(U)B)’

can be re-written as
EpM(v) (7‘((04, 5)) = _iﬁpM(ipjvj(a)F(U)) + Z‘57Tti(‘cpM(v)Oé) + inﬁ(a)‘cpM(v)ﬂ-

Using the identity iwu(a)ﬁpM(v)ﬁ = —iﬁﬁpM(U)ﬂ'ﬁ(Oé) + ﬁpM(U)Z'ﬁTrﬁ(Oz)
(which is an application of the general identity iy y] = Lxiy — iy Lx),
equation (128) immediately follows.
The T* M-component of equation (127) is equivalent to
(129) T*ﬁpM(v) (a) - EpM(v) (T*Oé)
= iwﬁaJ*d(U(v)) - J*U(iPRIQF(U)) - ipM(v)Awﬁ(a)(J*(bS)
= J*(—igrpdo(v) — o (i, F(v)) + ip(o)rau®s)s
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where, for the second equality, we used the g-equivariance of pps, the
moment map condition dJ7# = —5*p%, and the notation u = p},(a) €
C* (M, g").
Evaluating the left-hand side of (129) on a vector field X € X(M),
we obtain
— (o, [pa (), T(X)]) + (0, T([pas (v), X))
— (o par (0. PAT (X)) + Loy (AT (X)) + (1,5 ([pae (v), X]),

where we have used that pjs preserves the Lie algebroid bracket on gg.
So, at each point, (129) evaluated at X becomes:

(1, =10, B(dT (X))g — L) AT (X) + B(dT ([par (v), X])))
= <—25*“d0'(1)) — O'(Z‘MF(U)) + ip(v)Ag(u)gbs, dJ(X)>.
Since this equation makes sense for all x4 and is C°°(M)-linear on p, it

suffices to assume p € g* to be constant in order to prove this identity.
Using (117), the identity to be proven becomes:

(130) (1, — [0, AT (X)]g — LB (X) + 7T (Jonr (v), X]))

= <P ad,, ol — ﬁp(v)( ( ))7dJ(X)>
Let us consider the left-hand side of (130). Noticing that p € Q'(S, g),
we have the identity
T 5ot (0), X)) = Ly FX) — Lx T Bloas (0)) — d(TF) (par (), X).
Using that dJ(pa(v)) = p(v), it follows from this identity that the
left-hand side of (130) can be re-written as

<1u> _[Uvﬁd'](X)]g - EdJ(X)ﬁ(p(U)) - dﬁ(p(’[)), d'](X))>v

from where it becomes clear that it depends on dJ(X) only pointwise,
not locally. In particular, it makes sense to replace dJ(X) by an arbi-
trary vector field V' on S. So in order to prove (130), it suffices to prove
the identity

(131)

(1, =[0, (V)] = LvB(p(v)) — dp(p(v), V) = (p*adyp — L) (1), V),

for all V' € X(S). Now note that (p*ad;(n), V) = (i, [p(V),v]4) and

(132) (L)@, V) = Loyw(.p(V)) = (7" (1), [p(v), V])
(u, 0P(V) = 5(lp(v), V1))
V)

) —
= <u,£vp( (v)) + dp(p(v),
p(U,V)

where for the last equality we used that dp(U, V') = Lyp(V)—Lyp(U)—
p([U,V]). Now (131) follows directly. q.e.d.
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To conclude that L is integrable with respect to the J*¢g-twisted
Courant bracket, we must check that x,(l1,l2,13) = ([l1,12],13) van-
ishes for all ly,l3,l3 € T'(L). Clearly, it suffices to check this condition
when each [; is of the form p(v;) or h(w;), for v; € g and «; € T*M.

From (125), we obtain that ([l1,l2],l3) = 0 if any two of the [;’s are
of the form pas(v;). Equation (126) gives ([l1,[2],l3) = 0 when each ; is
of the form h(c;). The case where only two of the Is are of type h(«;)
follows from (127). This concludes the proof of part i) of Thm. 6.2.

q.e.d.

The constructions in parts i) and i) of Thm. 6.2 are functorial as
a consequence of Prop. 6.1. In particular, Thm. 6.2, part i), defines a
functor

(133) T: ﬂs(avg) - Mj(b,g),

which establishes the desired isomorphism of Hamiltonian categories;
its inverse is given by the functor M;(0,g) — M;(?,g) constructed in
part ii).

We have the following characterization of the quasi-Poisson bivector
field 7 constructed in Thm. 6.2, part i) (c.f. [10, Prop. 3.20]):

Corollary 6.1. Let J : (M,L) — (S,Ls) be a strong Dirac map,
and let ppr = g — X(M) be the induced g-action. The associated quasi-
Poisson bivector field w is uniquely determined by the following condi-
tions: given o € T*M, then

(134) dJ (7% (@) = —a*pis(e), (7*(a),(Id — T")a) € L.

Proof. The first condition in (134) is just (the dual of) the moment
map condition for the quasi-Poisson action, whereas the second condi-
tion is just saying that L contains the image of h given by (121). These
conditions uniquely define () as a direct consequence of ker(d.J) N
LNTM ={0}. q.e.d.

6.4. Properties and examples. We keep considering a Manin pair
(0,9) together with the choice of splittings s and j. We now discuss
several properties of the functor Z given in (133).

Foliations. Given a Hamiltonian quasi-Poisson g-space (M, 7, par, J),
its associated Dirac structure L is given by (122). The presymplectic
foliation of L is tangent to the distribution

prrar(L) = {pu(v) + 74(@), v € g, @ € T*M} = Im(r),
where r, given in (75), is the anchor of the Lie algebroid associated with
the quasi-Poisson action. In other words, the presymplectic foliation
of (M, L) coincides with the orbit foliation of the Lie algebroid of the

quasi-Poisson structure. In particular, the functor Z takes presymplectic
realizations to quasi-Poisson spaces with transitive Lie algebroids:
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Corollary 6.2. The functor I restricts to an isomorphism of subcat-
egories

I : Ms(a7g) ; Mj(bvg)'

Example 6.3. We saw that S has a bivector field 7g, ﬂﬁs = pg; (de-
pending on j) which makes it into a Hamiltonian quasi-Poisson g-space
with respect to the dressing action and with J = Id as moment map. It
is easy to check from the explicit formula (122) that the associated Dirac
structure is just Lg defined in (14). Moreover, the functor Z takes each
dressing orbit (O, wp), viewed as a presymplectic leaf of Lg, to (O, 7o),
where 7o is the restriction of mg to O.

Trivial equivalences. Given a Hamiltonian quasi-Poisson g-space (M,
™, pM,J), it may happen that the graph of = already defines a Dirac
structure, in such a way that the functor 7 is just the identity. From
(122), we see that this is the case if and only if the following two condi-
tions hold:

(135) 7o (J*0) = py, and wfoT* =0.

Example 6.4. Let us consider the G*-valued moment maps of Exam-
ple 4.5. By (55) and (72), we know that o5 = 5]-_1, so the moment map
condition (104) is exactly the first equation in (135). In this example,
p = 0 (hence T' = 0), so the second condition in (135) is also fulfilled.
So the functor Z produces no changes on the geometrical structures, as
already remarked in Example 5.14.

Note that the conditions in (135) do not hold in the case of G-valued
moment maps; in this case, the functor Z is nontrivial, and the corre-
spondence it establishes recovers [4, Thm. 10.3] and [10, Thm. 3.16].

Dependence on splittings. The functor 7 is determined by the split-
tings s and j, and we write 7 (s:7) to make this dependence explicit. Let
s’ be another connection splitting, and consider the 2-form B € Q2(S),
defined in (44), and the associated gauge transformation functor Zp of
Prop. 4.2. Similarly, given another splitting j/, let ¢ € A%g be the as-
sociated twist: t! = j — j' : g¢* — g. Then we have the functor Z; of
Prop. 5.2.

Proposition 6.2. The dependence of the functor T on the choice of
splittings is as follows:
76D = 769 o 7, T = T, 0 T(9),

Proof. Tt follows from the definition of B that o° — % = —i
hence

ps(v) B

¢ =7(L%), and C’;l’j = TB(Cg’j).

On the other hand, the pull-back images of C’;’j and TB(Cg’j ) under
J, denoted by C and C’, satisfy C' = 7;+5(C). A direct computation
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shows that the bivector field associated with L,C is the same as the
bivector field associated with 7«p(L),7;+5(C), and this proves that
7G0) = 76"9) o Tp.

For the second identity, we note that if t € A?g = A%2Lg is a twist
relating C’;’J and C’;’] ,, then the twist relating their pull-back images
under J is pps(t). The result now follows from part 3 of Prop. A.2.

q.e.d.

Hamiltonian vector fields and reduction. We now discuss the be-
havior of Hamiltonian vector fields and reduced spaces under the equiv-
alence functor 7.

Given a Dirac manifold (M, L), we call a smooth function f on M
admissible [16] if there exists a vector field X € X(M) such that
(X,df) € L. In this case X is a Hamiltonian vector field for f,
though X is not uniquely defined by this property in general. The
set of admissible functions is a Poisson algebra, with Poisson bracket
{f,9}L = Lx,g, where X is any Hamiltonian vector field for f. We

now consider Hamiltonian spaces in M,(0, g).

Proposition 6.3. Let J : (M,L) — (S, Lg) be a strong Dirac map,
let ppr be the induced g-action. Then any g-invariant function f is
admissible and has a distinguished Hamiltonian vector field Xy uniquely
determined by the extra condition dJ(Xy) = 0. In particular, C*°(M)8
1s a Poisson algebra.

Proof. Using the isotropic splitting j of (9,g), let m be the quasi-
Poisson bivector associated with L and j via Z. If f is g-invariant, then
T*df = 0, so the vector field X; := 7#(df) € X(M) satisfies h(df) =
(X¢,df) € L (where h is defined in (121)), i.e., it is a Hamiltonian vector
field. Also, dJ(Xf) = —o*p3;(df) = 0. Finally, note that there is at
most one vector field with these properties, since ker(L)Nker(dJ) = {0}
(in particular, Xy is independent of the splitting j defining 7). If f and
g are g-invariant, property (65) for the quasi-Poisson bivector field w
directly implies that the function {f,g}. = Lx,g9 = 7(df,dg) is again
g-invariant, so C°°(M)? is a Poisson algebra. q.e.d.

It immediately follows from the previous proof that the Poisson alge-
bra of Prop. 6.3 (using Dirac geometry) agrees with the one of Sec. 5.3
(using quasi-Poisson geometry). The previous proposition recovers [5,
Prop. 4.6] in the case of G-valued moment maps.

As we have discussed, one can perform moment map reduction either
in the framework of Hamiltonian quasi-Poisson spaces or Dirac geome-
try. We observe that the functor Z preserves the reduction procedures:

Proposition 6.4. The functor T commutes with moment map reduc-
tion.
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Proof. Let (M, 7, py,J) be the Hamiltonian quasi-Poisson G-space
associated with a strong Dirac map .J via Z. Let us fix a dressing orbit O
in S, and a point y € O which is regular for J. As we saw in Prop. 5.3,
if f,g € C®°(J7Y0))%, then we have a well-defined Poisson bracket
{fig}r = W(df, dg)|;-1(0), independent of the extensions f,ﬁ of f and
g. Since Fﬁ(df)’ J-1(0) does not depend on the extension fof f and lies
in the kernel of d.J, it gives a well-defined vector field X; on J~(O)
(which is tangent to J~1(y)).

Suppose that the isotropy subgroup of y, denoted by G, acts freely
and properly on J~!(y). We have a natural identification J~1(0)/G
~ J-(y)/G,, which gives an identification of C°°(J~1(0))¢ with
C>=(J Y(y))%. If L' denotes the Dirac structure on J~'(y) given by
the pull-back image of L under the inclusion ¢ : J~!(y) < M, then
the Poisson structure on J~!(y)/G, given in Prop. 4.1 is defined by
the identification of C*°(J~!(y))®¥ with admissible functions of L’ [10,
Sec. 4.4]. Let f € C®(J 1 (y))% = C®(J1(0))¢ and f be any local

extension of f to M. Since fis g-invariant at each point on J~1(0), it
follows that (7f(df),df) € L over J='(©). By definition of backward

image, it directly follows that X, = T (df)] J-1(0) (which is tangent

to J~1(y)) satisfies (X, df = ¢*df) € L. Hence X; is a Hamiltonian
vector field for f with respect to L’. By definition, we have

{f.9}r =Xp.9={f 9}n

which shows that we get the same reduced Poisson structure by using
Dirac reduction or quasi-Poisson reduction q.e.d.

For G-valued moment maps with transitive Lie algebroids, Prop. 6.4
recovers [4, Prop. 10.6]. Using Prop. 4.1, part éii), Cor. 6.2 and Prop.
6.4, we see that the reduction of quasi-Poisson spaces with transitive
Lie algebroids is symplectic.

The double (D,wp). Let us consider the Lie group D equipped with
the 2-form wp = w}, given by (28). As proven in Thm. 4.1, (p,p) :
D — S x S is a strong Dirac map (i.e., a presymplectic realization),
where S x S is equipped with the product Dirac structure Lg X Lg. The
choice of splitting j of (9,g) induces a splitting j x j of (0 x 0,g X g),
and we know from Thm. 6.2 that there is an associated bivector field
making D into a Hamiltonian quasi-Poisson g x g-space with moment
map J = (p,p). We consider the maps @ : T*(S x S) — g x g and
p:T(SxS)— gxg(as in Sec. 6.2) associated with the Manin pair
(0 x 0,9 x g) and the splittings s x s and j x j.

Let us consider the bivector field 7}, = 7p € X2(D), depending on j,
given by

(136) (e, B) = (a”,8Y), — (" +)(o, B),
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where a, 3 € Q1(D), oV, 8¥ € X(D) are the dual vector fields via (-,-),
and t € 0 ® 0 is the r-matrix of Remark 5.4. Note that the skew
symmetry of mp follows from (71).

Proposition 6.5. The quasi-Poisson bivector field corresponding to
wp via L is Tp.

Proof. We must show that the two conditions in (134) hold, i.e.,

(137) (dp, dp)a(7 () = =77 pp (@),
(138) Z'ﬂ.u(a)wD = (1 — T*Oé),
Yo € T,D, where pp(u,v) = u” —v'
TD — TD.

It suffices to prove the equations for a = (w")" = <w, 9§>D, for w € 0.
Let us start with the r.h.s. of (137). To simplify the notation, we always
identify 0 = 0* via (-,-),. A direct computation shows that

,u,v€g,and T = ppopo(dp,dp) :

(139) pplaa) = (1" (w), =" (Adg-1(w))), a € D,

where ¢* is an in Section 5.1. Using that pg = dp o dr,, we find

(140) 0 pplaa) = (=dp(raji*(w)), dp(raji* (Adg-1(w)))),

where o, = (dry(w))Y. (We may use ry,l, for dry,dl, in order to

simplify the notation.) On the other hand, a direct computation using
the definition of mp gives:

(141) ﬂﬁ(aa) = ro(w) = lejt* (Ady—1 (w)) — rejc*w
= lo(tj"Ad,—1(w)) — rejt*w,

where we used that ¢j*+j.* = 1. Since dpg(di,(u)) = 0 and dpg(dra(u))
= ps(u) if u € g, we obtain dp,(7?(ay)) = —dpa(raje*(w)). Similarly,
one checks that dp,(7%(ag)) = dpa(reji*(Ad,-1w)). Comparing with
(140), (137) follows.

In order to prove (138), it suffices to show that

(142) wp (), Xa) = aa(Xa) — aa(TX,),

for ag = (dry(w))Y and X, = dr,(v), where w,v € 9. Using the identity
jut =1—1j" in (141), we get:

(143) w%(aa) =1a(t7*Ady-1 (w)) — rejt*w = rerj w — lgjt" Ad -1 (w).
Using (50), we find

WD(Wﬁ(aa)v X,) = <_la9a(Xa) +74(0g-11Inv(Xy)) + X, W?ﬁ)(aawa
= — <la0a(7‘a(v)),7TﬁD(oza)>D — <ra0a71la71v,7r§)(aa)>a
+ <Ta(v)77rti[)(aa)> )

0
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where we have used that Inv(r,(v)) = —l,~1v. Using (141) and that 6
is isotropic, we have

<za9a(ra(v)),7rﬁ[,(%)>a = —(laBa(ra(v)), rajt W)y
—(Adgb4(ra(v)), jL*w>ay

and, using (143), we similarly obtain

<Ta9a71la71(v),7rg)(aa)>a = —(Ady-10,-10,-1(v), ju" Ad g1 (w)),.
Using (141), we get
(ral0)mh(an) ) = =(w, 1570}y = (17" Ady-1 (v), Adgoa (1)) + (v, w),.
Combining the last three equations, we find that wp(7(ay), X,) equals
(144) (17 Addua(ra(v)), why + (17" Ady18-sly 10, Adyr (),
—(w, 1j"v)y = (1" Adg-1(v), Adg-1(w))y + (v, W),

We now consider the r.h.s. of (142). Using that dp(r,(v)) =
—dp(lo-1(v)), we see that p o dJ(X,) = (j*s,j"s) o (dp,dp)(ra(v)) =
(*sdpldra(v)), —3* sdp(dly 1 (v)), s0

T(Xa) = pp(podJ(Xa)) = raj*sdp(ra(v)) + laj*sdp(lo-1(v)).
Using (25) to express s in terms of 6, we get
(145) aa(T(Xa))
= (w,j"sdp(ra(v)) + Ada (5" sq-1dp(lg-1v)))
<w7j*v>a - <w7j*Ada9a7‘a(U)>o + <Ada*1w7j*Ada*1U>a
—(Adg—1w, 75 Ady-10,-1l,-1v),.

Using that o,(X,) = (w,v), and (145), we see that the r.h.s of (142)
agrees with (144), and this concludes the proof. q.e.d.

In the case of G-valued moment maps, mp recovers the quasi-Poisson
structure on G' x G of [4, Ex. 5.3], and the previous proposition gener-
alizes [4, Ex. 10.5].

A result analogous to Prop. 6.5, relating the presymplectic structure
on the Lie groupoid G x S (integrating Lg) to quasi-Poisson bivectors
is discussed in [13].

Appendix A. Appendix

A.1. Courant algebroids and Dirac structures. A Courant alge-
broid [26] over a manifold M is a (real) vector bundle E — M equipped
with the following structure: a nondegenerate symmetric bilinear form
(-,+) on the bundle, a bundle map pg : E — TM (called the anchor)
and a bilinear bracket [-,-] on I'(E), so that the following axioms are
satisfied:



558 H. BURSZTYN & M. CRAINIC

C1) [er, [e2,es]] = [le1, 2], es] + [e2, [e1,es]], Ve1,e2,e3 € T(E);

C2) [e,e] = iD(e,e), Ve € I'(E), where D : C®°(M) — I['(E) is
defined by (Df,e) = L, ) [

C3) L, (e1,e2) = ([e, e1], e2) + (e, [e, e2]), Ve, e1,ea € T'(E);

C4) pr([er,e2]) = [pe(e1), prle)], Ver, ez € I(E);

C5) [[el,feg]] = f[[el,eg]]—i—(ﬁpE(el)f)eg, Vep,eg € P(E), fe COO(M)

Note that the bracket [, ] is not skew-symmetric, but rather satisfies
(146) le1, ea] = —[ea, e1] + Der, e2)

as a consequence of C2). (This is the non-skew-symmetric version of
the Courant bracket studied, e.g., in [33]; the original notion of Courant
bracket [26] is obtained by skew-symmetrization.) It also follows from
C2) that, upon the identification E = E* via (-, -), we have

(147) pe° pp = 0.
The model example of a Courant algebroid is the following:

Example A.1. Consider E = T*M & TM equipped with symmetric
pairing (X, @), (Y, 5)) cun, = B(X) + a(Y'). Any closed 3-form ¢ on M
determines a Courant algebroid structure on F with bracket

[[(X, a), (Y, ﬂ)]]d) = ([X, Y], Lxp —iyda+iyixo).

A detailed discussion about Courant brackets with original references
can be found in [24].

A subbundle L C E which is Lagrangian (i.e., maximal isotropic)
with respect to (-,-) is called an almost Dirac structure. It is a
Dirac structure if it is integrable in the sense that

[T(L), T(L)] € T(L).

For a Dirac structure L, (146) implies that the restriction [-,-|; :=
[',-]lrz) is a skew-symmetric bracket on I'(L), and axioms C1) and
C5) imply that this bracket makes L into a Lie algebroid with anchor
pr = pe|r. The bracket [-, |1, can be extended to a bilinear bracket on
I'(AL), [,-]r : T(APL) x T'(AYL) — T'(APT97LL), by the conditions
(148) [, 12) = (1)@=, 1],
(149) [, 1ols]z = [l Do) nls + (—1) P~ D051y, 1s]
for Iy € I'(APL), ly € T(AYL), and I3 € T'(A"L). The Jacobi identity on
I'(L) translates into the graded Jacobi identity for the extended bracket:
(150) [, [la. 5]l + (= 1)@=V, 13, B ] +

()@ 1y, 15] ] = 0,

In other words, I'(AL) becomes a Gerstenhaber algebra.
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The bracket [-, -]z and anchor py, also define a degree-1 derivation d,
on the graded commutative algebra I'(AL*),

(151) dr(&1&2) = di(&1)&2 + (—1)P&d L (§2),
for & € T(APL*) and & € I'(AZL*), by the conditions:
(152) dpf(l) =L, o f, 1€l(L), feC®(M)
(153) dré(li,le) = L, 0)62) — L4, 12)61) — &1, 2] L),

li,ls € F(L),f S F(L*).
In this case the Jacobi identity of [+, -], translates into d2 = 0.

A.2. Manin pairs over manifolds and isotropic splittings. A
Manin pair over a manifold M is a pair (E,L) consisting of a
Courant algebroid E over M for which (-,-) has signature (n,n), and
a Dirac structure L C FE. It follows from the signature condition that
rank(L) = n = grank(E). When M is a point, we recover the notion
discussed in Section 3.1.

Given a Manin pair (F, L) over M, there is an associated exact se-
quence of vector bundles given by

(154) 0—L-“E L0,

where ¢ : L < FE is the inclusion and ¢*(e)(l) = (e, ¢(l)). We consider
henceforth the identification £ = E* induced by (-,-). The map ¢*
coincides with the projection E — E/L after the identification £/L =
L* induced by (-,-), proving the exactness of the sequence (154).

An isotropic splitting of the exact sequence (154) is a linear split-
ting s : L* — E of (154) whose image is isotropic in E, i.e., (-, )|sz) =
0. A Manin pair over M together with the choice of an isotropic splitting
is referred to as a split Manin pair over M.

Lemma A.2. Let (E,L) be a Manin pair over M. Then the exact
sequence (154) admits an isotropic splitting. Moreover, any isotropic
splitting s : L* — E defines an isomorphism

(155) (t,8): Lo L* —E

with inverse (s*,1*), which identifies the pairing (-,-) in E with the
canonical symmetric pairing in L & L* given by

(156) (1, 60)5 (12,€2)) e = S2(l) + & (l2).

Proof. If s : L* — E is any linear splitting of (154), then a direct
computation shows that s’ = s — %LS*S is an isotropic splitting. It is
straightforward to check that (155) is an isometric isomorphism with
respect to (-,-) and (-, -). q.e.d.

can
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An immediate consequence of Lemma A.2 is that the following iden-
tities hold:

(157) s's =0, f's=1, st =1, st" +1s"=1.

Let us fix an isotropic splitting s : L* — FE. Under the induced
identification £ = L & L*, the maps s* and ¢* become the natural
projections pry : L & L* — L and pry. : L & L* — L*, respectively.
Then s induces the following geometrical structures:

i) A cobracket
(158) F,:T(L) — I(L) AT(L),
1) A 3-tensor
(159) xs € T(AL),
ii1) A bundle map
(160) pie = pilazey : LY — TM.

We will omit the s dependence in the notation whenever there is no risk
of confusion.

The cobracket F' is defined in terms of its dual, F* : I'(L*) AT'(L*) —
I'(L*), by

(161) F*(&1,82) = pr«([s(61), s(&2)])-

We also denote the skew-symmetric bracket F* on I'(L*) by [-, ]+ (the
skew-symmetry of (161) is a consequence of s(L*) C E being isotropic).
Similarly, we define x : I'(L*) AT(L*) — I'(L) by the condition

ig,ie, X = pri([s(61), s(€2)])-

By axiom C3) in the definition of a Courant algebroid, the expression

igsprr([s(61), 8(€2)]) = ([s(61), 5(£2)], 5(€3))

is skew-symmetric in &1, &2, &3. Since it is clearly C°°(M)-linear in &3, it
is C°°(M)-trilinear and therefore defines (159).

We also have an extension of [-,-]z- to a bilinear bracket on I'(AL*)
satisfying (148), (149) as well as a degree 1 derivation dp+ on I'(AL)
defined by [, |z+ and pr+ via (152), (153). In general, [-, ]z~ does not
satisfy the graded Jacobi identity and dp- is not a differential, as a
consequence of the failure of integrability of L* C E.

A.3. Lie quasi-bialgebroids. Let us consider a split Manin pair, iden-
tified with (L & L*, L), where L @ L* is equipped with the symmetric
pairing (-, )., (as in Lemma A.2). Fixing this identification, one ob-
tains a formula for the Courant bracket [-,-] on L& L* in terms of F™*, x
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and pp=:

(162) [(11,0), (I2,0)] = [l1,2]L,

(163) [(1,0),(0,8)] = (—igdr~l, Li£),

(164) [(0,&1), (0,&)] = (x(&1,&2), F*(§1,62)),

where [, = [, llr@y, Ltz € T(L), §,61,6 € T'(L*) and £; =
dri; + i;dy,.

Conversely, one may start with a Lie algebroid (L, [-, |1, pr) together
with a skew-symmetric bracket F* on I'(L), an element y € T'(A3L)
and a bundle map pr« : L* — TM. This set of data is called a Lie
quasi-bialgebroid [33, 34] if the bracket defined by (162), (163) and
(164) makes L & L* into a Courant algebroid with pairing (-,-),,, and
anchor pg = pr + pr+. This requirement is equivalent to the following

explicit compatibility conditions [34]:
QO) dL* [ll,lg]L = [dL*ll, ZQ]L + [ll,dL*lg]L, for all ll,lg S F(L).

(Using the Leibniz identity for [-,-|z, one can check that dp« is
actually a derivation of [-,-]p on I'(AL): dp«[l1,ls]r = [dr+l1,12] +
(_1)p—1[l1’ dL*lQ], l1 € F(/\pL),lg € F(/\qL).)

Q1) pr+(F*(&1,€2)) = [pr+(&1), pr+(&2)] — pLligyie; (X)), for all £1,& €
L(L*).

Q2) F*(&1, f&2) = fF*(§1,&)+L,, . (e)(f)é2, forall §1,6 € (L), f €
C>(M).

Q3) For all §1,8,& € I'(L"),

F* (&, F7(&2,83)) +cp. =

drx(§1,82,83) + iy (er,64)ALEL = Ty(ey,65)ALE2 + Ty(ey £2)dLES-
Q4) dr=x = 0.

The resulting Courant algebroid L ¢ L* is called the double of the Lie
quasi-bialgebroid. Hence we see that there is a natural correspondence
between split Manin pairs and Lie quasi-bialgebroids over M.

A.4. Bivector fields. Given a Courant algebroid E over M and a pair
of transversal almost Dirac structures L, C, with £ = L ® C, it follows
from (147) that

pr o (pc)" + pco(pL)" =0,

where pr, := pg|L, pc := pelc, and we identify C' = L* via the pairing
on E. Hence the bundle map 7 := pp, o (pc)* : T*M — TM defines a
bivector field on m on M, depending on L and C'. In particular, any Lie
quasi-bialgebroid over M defines a bivector field 7 € X2(M) [21].
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Proposition A.1. For a given Lie quasi-bialgebroid E = L& L*, the
bivector field m € X%(M) defined by 7' = pr, o (pp+)* satisfies
1

(165) Sl = p1.00),

(166) ﬁpL(l)ﬂ- = pL(dL* (l)), Vil e P(L)

Proof. For f,g,h € C*(M), let Jac(f,g,h) = {f,{g,h}}+c.p., where
{-,-} is the bracket defined by m. It then follows that (see e.g. [10,
Sec. 2.2])

(167) gl 7](df, dgdh) = Jac(f,g,h)

= ([7(df),n*(dg)] — 7 (d{ . g}, dh ).
Using Q1) we see that pr(x)(df,dg,dh) equals

<PL(ipz (dg) 07, (df) X)» dh>

= ([7*(df), 7(dg)], dh ) — (pr- (F* (o5 (df) . (dg))). dh),
and, by (167), this last expression equals
(168)  Jac(f,g,h) + {{f, g}, h} — (F*(pr(df), p1.(dg)), pi- (dh)).
Using the identity (153) for the bracket F*, we can rewrite (168) as
(dr~(pr-dh))(prdf, pr.dg) + {{g, 1}, f} + {{h, [}, g}

+Jac(f, g, h) +{{f, 9}, h},
which equals (dz«(p}.dh))(p} df, p}dg). Hence
(169)
pL()(df, dg, dh) = (dr+ (pL-dh))(pLdf, pLdg) = (d1-h)(pLdf, pLdg).
On the other hand, since dp+[dr+f, gL = [d%. f, gL + [dr~ f, dr+g]L (by
QO0)), applying pr and using the definition of = we get
EpL(dL* [dL*ﬁg]L)h = {{f7 g}a h} = ﬁpL([di*f,g})h—i_{fa {97 h}}+{g7 {h7 f}}

A direct computation shows that L, (a2 ;b = —pr(d2. f)(dg, dh),
hence
Jac(f, 9, h) = PL(d2 *f)(d.g7 dh) = d2 *f(pzdgv Pzdh)
Using the skew-symmetry of Jac and (169), equation (165) follows.
To prove (166), we use that dp«[l, f]r, = [dr=<l, f]r + [I, dr~ f] for all

[ € T(L). Applying pr, to this expression, it follows that

Lovw 9} = Lop(ap.00)9 + Lipp 7 an)9

= Lo(ar-1.00)9 + Lo {9} = {f Lo}

Hence

(Lo ym)df,dg) = L, A fr 9y — Loy fr 9} — S Loy9)
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= =Ly, (ldp+1,f]1)9-

Using the general identity £, (n 9 = —pr(A)(df,dg), for f,g €
C>(M) and X\ € T'(A%L), we conclude that

=Ly ({dpt.f11)9 = pr(dr-1)(df, dg),

as desired. q.e.d.

A.5. Twists and exact Courant algebroids. Let (F, L) be a Manin
pair over M, and suppose that we have two splittings of (154), s and s’
The image of the difference s — s’ : L* — FE lies in L, hence it defines
an element t € A’L, called a twist, by

s—s=th:L* S LCE,
where t#(£1)(&2) = t(£1,&). A direct calculation shows the following:

Proposition A.2. The following holds:

1) Let dj. be the derivation on I'(AL) associated with the bracket F;
on I'(L*) and bundle map pj.. Then

i* — dSI* + [t, ']L.

2) Xs = Xs' T di*t - %[t7t]L'
3) 7 =7+ pr(t).

An important class of examples of Manin pairs is given by exact
Courant algebroids. Following P. Severa [35], a Courant algebroid is
called exact if the sequence

(170) 0—T*M L5 ELETM — 0

is exact (by (147), it is always true that pgpy = 0). Viewing T*M as
a subbundle of E via p},, (E,L =T*M) is a Manin pair. Using axioms
C3) and C4) in Sec. A.1, one can check that [,-]p = [-,]|r¢-ar) = 0.
Since p;, = 0, we must have d;, = 0. Once we choose an isotropic
splitting s and identify E with TM & T*M, it is simple to check that
the bracket F} on I'(L*) = I'(T'M) is just the Lie bracket of vector
fields. From Q4), we see that ys is a closed 3-form, and the general
bracket (162), (163), (164) becomes the bracket of Example A.1. From
Prop. A.2, part 2, we see that a different splitting changes x5 by an
exact 3-form. These observations lead to the following result of Severa:

Corollary A.1. Ezact Courant algebroids over M are classified by
H3(M,R).
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