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Let M be a (connected) hyperbolic 3-manifold, namely a complete 
Riemannian manifold of dimension 3 and of constant sectional curva­
ture — 1, with finitely generated fundamental group. We exclude the 
somewhat degenerate case where 7ri (M) has an abelian subgroup of fi­
nite index. A fundamental subset of M is its convex core C M, which 
is the smallest non-empty convex subset of M. The condition that the 
volume of C M is finite is open in the space of hyperbolic metrics on M, 
provided we restrict attention to cusp-respecting deformations. In this 
paper, we give a formula which, for a cusp-preserving variation of the 
hyperbolic metric of M, expresses the variation of the volume of the 
convex core C M in terms of the variation of the bending measure of its 
boundary. 

This formula is analogous to the Schlarii formula for the volume of 
an n-dimensional hyperbolic polyhedron P; see [19], [12], [1] and §1. If 
the metric of P varies, the Schlarii formula expresses the variation of 
the volume of P in terms of the variation of the dihedral angles of P 
along the (n — 2)-faces of its boundary and of the (n — 2)-volumes of 
these faces. 
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The analogy stems from the fact that the boundary dC M of C M is 
almost polyhedral, in the sense that it is totally geodesic almost every­
where. However, the pleating locus , where BC M is not totally geodesic, 
is not a finite collection of edges any more. Typically, it will consist of 
uncountably many infinite geodesics. In addition, the topology of this 
pleating locus can drastically change as we vary the metric of M. So 
the situation is much more complex. 

The path metric induced on the surface OC M by the metric of M 
is hyperbolic with finite area. On this hyperbolic surface, the pleating 
locus A forms a compact geodesic lamination , namely is compact and is 
the union of disjoint simple geodesics. The surface OC M is bent along 
A, and the amount of this bending can be measured, not by dihedral 
angles any more, but by a transverse measure for A. Endowing A with 
this transverse measure, we get a measured lamination b, called the 
bending measured lamination of M; see [21], [10]. 

Let M be a hyperbolic 3-manifold which is geometrically finite, 
namely such that the convex core C M has finite volume and the funda­
mental group 7Ti (M) is finitely generated. Consider a deformation of 
M, namely a differentiable 1-parameter family of hyperbolic manifolds 
M t, t G [0,e[, such that MQ = M; when M has cusps, we also require 
that the cusps of each M t precisely correspond to the cusps of M. Then, 
M t is also geometrically finite for t small enough [13]. We showed in [6] 
that , if b t is the bending measured lamination of M t, then the family 
b t, t G [0, e[, admits a tangent vector bo at t = 0, in the piecewise linear 
manifold MC (8C M) of all measured geodesic laminations on 8C M- In 
addition, in [3], [4], we showed that such a tangent vector can be geo­
metrically interpreted as a geodesic lamination endowed with a certain 
type of transverse distribution, called a transverse Holder distribution. 

On a hyperbolic surface, a geodesic lamination with transverse dis­
tribution a admits a certain length [4], [5]. This length is designed so 
that it varies continuously with a and coincides with the usual length 
when a consists of a simple closed geodesic endowed with the Dirac 
transverse distribution. In particular, on the hyperbolic surface <9C M 0 , 
we can consider the length lo(bo) of the tangent vector bo-

M a i n T h e o r e m . With the above data, the volume V t of the convex 

core C M t admits a right derivative Vo at t = 0, and 

V o = 1 l b0), 

where lQ (bo) is the length of the vector bo tangent to the family of bending 
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measured laminations b t-

In the case of a differentiable deformation M t, t G ]—e, e[, the right 
and left derivatives of the volume of C M t may not necessarily agree at 
t = 0, as shown for instance by the example of [6, §6]. 

An application of this theorem is the following corollary, proved in 
§4-

Corollary. Given a geometrically finite hyperbolic 3-manifold M, 
consider the volumes of the convex cores of the cusp-preserving defor­
mations of M. If the boundary of the convex core C M is totally geodesic, 
then M corresponds to a local minimum of this volume function. 

We prove the Main Theorem in two steps. One step, proved in §3, 
is to show that the volume of the convex core of M t has the same right 
derivative at t = 0 as the volume enclosed in M t by a pleated sur­
face whose pleating locus is constant and contains the pleating locus of 
8C M0- This step heavily relies on the arguments of [6]. The other step, 
proved in §2, is devoted to a Schlarii formula for the volume enclosed 
by a pleated surface whose pleating locus is constant. This simpler for­
mula is proved by cutting the enclosed volume into small pieces and 
applying the usual Schlarii formula to the pieces. The formal aspects 
of this part of the proof are relatively natural. However, much care 
is needed to justify these formal arguments, owing to the subtleties of 
the convergence of transverse distributions and to the fact that one has 
to estimate derivatives of dihedral angles, and not just dihedral angles. 
The cancellation of the contributions of internal edges is also non-trivial. 

This article was written while the author was holding visiting po­
sitions at the Centre Emile Borel, the Institut des Hautes Etudes Sci­
entifiques and the California Institute of Technology. He would like 
to thank these institutions for their productive hospitality. He is also 
grateful to Steve Carlip for asking the question which originally moti­
vated his interest in these problems, and to Alberto Candel for help in 
the proof of Lemma 9. 

1. The Schlarii formula for hyperbolic cycles in 3-manifolds 

The classical Schlarii Formula is a crucial tool in the proof of the 
Main Theorem. Although it holds in any dimension and in any space 
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of non-zero constant curvature, we state it here only for hyperbolic 3 -
dimensional geometry since this is the only case which we will use. See 
[19], [12], [1, Chap. 7, §2.2] for a proof. 

Consider a differentiable 1-parameter family of hyperbolic polyhedra 
P t, t G [0, e[, in hyperbolic 3-space H 3 . This means that the polyhedra 
P t all have the same combinatorial type, that their faces and edges are 
totally geodesic in H3 , and that their vertices vary differentiably with t. 

T h e o r e m 1 (Schlarii Formula). Let P t, t G [0, e[, be a differentiable 
1-parameter family of polyhedra in H 3 . Then the right derivative of the 
volume V t of P t at t = 0 is 

(1) Vo = h E l o ( e ) b e ) , 
e edge of Po 

where lo (e) denotes the length of the edge e in Po, and bo (e) is the right 
derivative at t = 0 of the external dihedral angle b t (e) of P t along this 
same edge. q.e.d. 

Here, the external dihedral angle b t (e) is n minus the internal dihe­
dral angle of P t at e. In particular, the external dihedral angle is equal 
to 0 when the boundary of P t is flat at e, and is equal to n when the 
two faces that are adjacent to e locally coincide near e. 

There is a convenient notation, which already appeared in the In­
troduction and in the above statement, which we will consistently use 
throughout the paper: When a quantity A t depends on t, we will denote 
by A to its right derivative with respect to t at t = to- For instance, bo (e) 
is the right derivative of b t (e) at t = 0. 

Also, before going any further, we should observe that it suffices to 
prove the Main Theorem for orientable manifolds. Indeed, passing to the 
orientation cover multiplies each side of the equality by 2. Consequently, 
we will henceforth assume that all manifolds considered are orientable, 
and often oriented. 

We can give a homological flavor to the formula of Theorem 1 in the 
following way. Let M t, t G [0, e[, be a differentiable 1-parameter family 
of connected oriented hyperbolic 3-manifolds. By definition, the differ­
entiability condition means that there is a fixed group T and orientation-
preserving discrete faithful representations pt : T —> I som+ (H3) into the 
isometry group of H3 such that each M t is isometric to H3 /pt ( r ) and 
Pt (7) depends differentiably on t for every 7 G T. Fix a compact tri­
angulated surface S without boundary, not necessarily connected, and 
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consider polyhedral maps f t : S —> M t, namely continuous maps whose 
restriction to each edge and face of the triangulation of S is a totally 
geodesic immersion. In addition, we require these maps f t'.S—ï M t = 
H3//9t ( r ) to depend differentiably on t in the sense that , if we lift them 
to maps f t : S —> H3 de e ined on the universal covering S of S, the 
images of the vertices of S under f t depend differentiably on t. 

Corollary 2. Given a triangulated compact oriented surface S, 
let f t : S —>• M t, t G [0,e[, be a differentiable l-parameter family of 
polyhedral maps from S to oriented hyperbolic 3-manifolds M t. Assume 
that the f t are homologous to 0 in M t and that the M t are non-compact, 
so that the volume V t of a 3-chain bounding f t in M t is well defined. 
Then the right derivative of the volume V t at t = 0 is 

e edge of S 

where, for each edge e of S, lo (e) denotes the length of fo (e) and b t (e) is 
the external angle between the two faces of f t (S) meeting along f t (e). 

Proof. Since fo is homologous to 0, we can extend it to a map 
fo : S —> MQ where E is a simplicial complex with boundary S. We 
can choose this extension to be polyhedral. Then, since the hyperbolic 
manifolds M t and the maps f t • S —> M t depend differentiably on t, 
we can easily extend them to a differentiable l -parameter family of 
polyhedral maps f t : S —> M t for t small enough. 

Let P i , . . . , P n be the 3-simplices of E. Apply Theorem 1 to each 
hyperbolic 3-simplex f t\P{ : P i —> H 3 . Note that the volume V t i of this 
simplex is negative when f t\P i is orientation reversing. Then, 

n n 

V& = X V = 3 X X lo(e)b i(e) 
i = l i=l e edge of P i 

= \ X l (e) X b i(e)> 
e edge of E P i containing e 

where b i (e) is the external angle between the two faces of f t\P{ meeting 
along the edge f t\e (counted negative if f t\P i is orientation reversing). 

For every edge e of E that is not in S, 

X b i (e) = 0 mod n, 
P i containing e 
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and it follows that the corresponding derivative is equal to 0. On the 
other hand, for every edge e of S, 

J2 b t (e) = b t (e) mod TT. 

P i containing e 

The formula of Corollary 2 immediately follows. q.e.d. 

2. Cyc les b o u n d e d by p leated surfaces in hyperbol ic 
3 -mani fo lds 

Let M t, t G [0,e[, be a differentiable 1-parameter family of hyper­
bolic 3-manifolds, associated to the representations pt : T —> I som+ (H3 ) . 
We require that this deformation of MQ is cusp-preserving , in the sense 
that every element of T which is sent to a parabolic element by po is 
also sent to a parabolic element by each pt. We also assume that MQ 
is geometrically finite , namely that T is finitely generated and that the 
convex core C M0 has finite volume. Then, the same also holds for every 
C M t with t small enough [13, §9]. In addition, the topology of M t and 
dC M t remains constant for t small enough, provided we use the follow­
ing convention: When C M0 is 2-dimensional, namely when the group 
Po ( r ) C Isom+ (H3 ) respects a hyperbolic plane in H3 , we define 8C M0 

as the orientation covering of C M0, namely as the two sides of C M0 in 
MQ (in contrast to the topological convention for which 8C M0 should be 
equal to C M0 in this case). 

We want to compute the variation of the volume of the convex core 
C M t-, namely of the part of M t bounded by the pleated surface dC Mf As 
t varies, the pleating locus of dC M t usually changes, which is a source of 
technical difficulties. In this section, as a first step towards our goal, we 
consider a simpler situation by substituting to dC M t a pleated surface 
in M t whose pleating locus is independent of t, and by considering the 
variation of the volume bounded by this pleated surface. The fact that 
the pleating locus is constant makes the situation reminiscent of that of 
the classical Schlafli formula of Theorem 1. 

Let S be an oriented surface of finite topological type, without 
boundary but possibly infinite and not necessarily connected. Consider 
a pleated surface fo : S —> MQ. We refer to [21], [8, §5] for basic facts 
about pleated surfaces. In particular, an important convention is that 
fo is proper, and sends each end of S to a cusp of MQ; as a consequence, 
the hyperbolic metric mQ of S obtained from the metric of MQ by pull 
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back under fQ has finite volume, and each end of S corresponds to a cusp 
of this metric. Although this is not absolutely necessary (see Remark 2 
at the end of this section), we also require that fo is totally geodesic 
near the ends of S. 

Let A be a pleating locus for fQ, namely a compact geodesic lami­
nation in S such that fo sends each leaf of A to a geodesic of MQ and 
such that fo is a totally geodesic immersion on S — A. Such a pleating 
locus may not be unique; an extreme example occurs when fQ is totally 
geodesic, in which case every compact geodesic lamination in S is a 
pleating locus for fQ. Increasing A without loss of generality (compare 
[8, §4]), we can assume that A is maximal among compact geodesic 
laminations, namely that every component of S — A is either an ideal 
triangle, bounded by 3 leaves of A, or an open annulus bounded on one 
side by a leaf of A with one spike and leading to a cusp on the other 
side. Then, for every t small enough, there is a unique pleated surface 
f t'.S—> M t with pleating locus A such that , for every leaf g of A, f t (g) 
is the geodesic of M t that is asymptotic to the image of fo (g) under the 
quasi-isometric homeomorphism ipt : MQ —> M t; see [21], [8, §5.3]. 

In [5], we describe the local geometry of the pleated surface f t by 
the pull back hyperbolic metric it induces on S1, as well as a bending 
transverse cocycle b t G H (A; R/2-KZ) for the geodesic lamination A, 
valued in R/2nZ, which measures the bending of the pleated surface f t-
This bending transverse cocycle associates a number b t (k) G R/2nZ to 
each arc k transverse to A, which measures the bending of the pleated 
surface f t along the leaves of A meeting k. This b t (k) is invariant under 
homotopy of k respecting A, and behaves additively if we split k into 
two subarcs. We also prove in [5] that this bending cocycle depends 
differentiably of the representation pt : F —> I som+ (H3) associated to 
M t. In particular, there exists a right derivative bo G H (A;R), which is 
an R-valued transverse cocycle for A. 

In [3], we showed that every real-valued transverse cocycle b G 
H (A; R) defines a transverse distribution for A. In particular, given a 
finite area hyperbolic metric m on S, we can define a length l m (b) G R 
by, first making A an m-geodesic lamination, and then locally inte­
grating with respect to the transverse distribution associated to b the 
1-dimensional Lebesgue measure along the leaves of A; see [4], [5]. 

Finally, we assume that the pleated surfaces f t separate M t. When 
S is non-compact, this means that the locally finite 2-chain defined by 
f t bounds a locally finite 3-chain. We also require that this 3-chain 
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has finite volume V t. If M t has infinite volume, this finite volume V t 
is uniquely defined, namely is independent to the finite volume 3-chain 
bounding f t. If M t has finite volume, V t is defined only modulo the 
volume of M t; however Mostow's Rigidity Theorem implies that the M t 
and f t are independent of t up to isometry, so that the theorem below 
is trivial in this case. 

T h e o r e m 3. Given an oriented surface S of finite topological type, 
let f t : S —> M t, t G [0, e[, be a differentiable l-parameter family of 
pleated surfaces in oriented geometrically finite hyperbolic 3-manifolds 
M t, with pleating locus a fixed compact geodesic lamination A in S. 
Assume that f t bounds a finite volume (locally finite) 3-chain in M t 
and that M t has infinite volume, so that we can consider the volume V t 
of an arbitrary chain bounded by f t in M t. Then, 

(3) VQ = ±l0{bo), 

where b t EH (A; R /2nZ) is the bending cocycle of the pleated surface f t, 
and the right-hand term denotes one half of the length of bo G H (A; R) 
with respect to the hyperbolic metric mo on S defined by pull back under 
fo of the hyperbolic metric of Mo-

Proof of Theorem 3 when there are no cusps. As traditional in 3 -
dimensional hyperbolic geometry, the presence of cusps introduces some 
local technicalities which are not difficult, but tend to dilute attention 
away from the main points of the proof. For this reason, we will first 
restrict ourselves to the case where the hyperbolic manifolds M t have no 
cusps, and we will later explain how to extend the proof in the presence 
of cusps. 

Consequently, assume that the surface S is compact and that the 
manifolds M t have no cusps. 

For every t, let m t be the hyperbolic metric on S obtained by pulling 
back the metric of M t under f t, and let At denote the m t-geodesic lami­
nation of S corresponding to the geodesic lamination A. By hypothesis, 
A is a maximal geodesic lamination, and the complement S — Xt consists 
of ideal triangles. 

We can cover Ao by a family of rectangles R,\ , R2 , • • • , R m with 

mo-geodesic sides, with disjoint interiors, and such that the components 

of Ao n R i are all parallel to (and disjoint from) two opposite sides of 

the rectangle R i , for each i. These rectangles more or less form a train 

track carrying AQ. If we collapse each rectangle R i to an edge that is 



a SCHlaflI-TYPE f o r m u l a 33 

parallel to the components of Ao fl Fi , we obtain a graph embedded 
in S. Extend this graph to a triangulation T of S and choose a map 
go : S —> MQ which is homotopic to fo, is polyhedral with respect to 
T , and sends to a geodesic arc the image of each rectangle R j in the 
1-skeleton of T• 

For t small, we similarly construct rectangles R[ , R2 , . . . , R m 

with m t-geodesic sides and disjoint interiors such that the components 

of each \t n R i are parallel to one side of R i . In addition, we require 

these R i to vary differentiably with t. In particular, collapsing the 

R i defines the same graph embedded in S, up to isotopy. Choose a 
map g t : S —>• M t that is homotopic to f t, is polyhedral with respect to 
the triangulation T , sends the image of each rectangle R j under the 
collapsing process to a geodesic arc, and varies differentiably with t. 

The Schlarii formula of Corollary 2 determines the variation of the 
volume enclosed by the polyhedral map g t- To compute the variation of 
the volume enclosed by f t, it is therefore sufficient to analyze the volume 
of a homotopy between f t and g t- In the definition of the triangulation 
T , we implicitly used a map h t : S —>• S homotopic to the identity and 
collapsing each rectangle R i to an arc contained in the 1-skeleton of 
T• Since there is a volume 0 homotopy between g t and g t°h t, it suffices 
to determine the volume of a homotopy H t : S x [0,1] —> M t such that 
H x { i } = f t and H t\Sx{0} = g t ° h -

Let us focus attention on a rectangle R i . We 'straighten' the ho­

motopy H t on R i x [0,1] in the following way. Identify R i to a stan­

dard rectangle [a, b] x [c, d] by an orientation-preserving homeomorphism 

such that each component of At fl i corresponds to an arc {x} x [c, d]. 

Cut each rectangle {x} x [c, d] x [0,1] in i i x [0,1] into two triangles 

along the diagonal line joining (x, c, 1) to (x, d, 0), foliate the upper tri­

angle by line segments originating from (x,d,0), and foliate the lower 

rectangle by line segments originating from (x,c,0). This decomposes 

R ' x [0,1] = [a,b] x [c,d] x [0,1] into a family of arcs; see Figure 1. 

We can now deform the restriction of H t to R i x [0,1] so that it sends 

each of these arcs to a geodesic arc. 

By construction, H t ̂  R i x {!}) is equal to f t(R i ) , and 

t \ (n(th H t R i x { 0 } = g toh t R i 
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( b ,c,1 

(a ,c ,1 

(a ,c ,0 
R(i

t ) × [0,1 H t R
(
i
t ) × [0,1 ] 

Figure l 

is a geodesic arc with end points 

x i } =H t([aib]xfcgxf0g) 

and 

The face 

(t) H t([a,b}xfdgxf0g). 

[a, b] x fcg x [0,1] 

>(t) of R i x [0,1] is sent by H t to a 'pleated fan' which is the joint of the 

arc f t {[a,b] x fcg) and the point x i , namely H t ([a,b] x fcg x [0,1]) 

consists of all geodesic arcs that join f t([a,b] x fcg) to x i ' and are 

in the appropriate homotopy class. Similarly, [a, b] x fdg x [0,1] is 

sent to the joint of f t {[a,b] x fdg) and y i . The remaining two faces 

fag x [c, d] x [0,1] and fbg x [c, d] x [0,1] of R i ' x [0,1] are each sent to 
the union of two totally geodesic triangles. 

In particular, this analysis of the restriction of H t to the faces [a, b] x 
fcg x [0,1] and [a, b] x fdg x [0,1] shows that we can globally deform H t 
so that it is of the above type on each rectangle R (t) 

(t) To evaluate the volume of the restriction of H t to R i t> x [0,1], 

we decompose it into pieces. For each component R of R i — Xt, 

H t (R x [0,1]) is the union of a pyramid with square basis, namely the 
joint of f t (R) and y i , and of the tetrahedron formed by the joint of 
the two geodesic arcs f t (R fi [a, b] x fcg) and i . For each component 
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k of At fi R i , H t(k x [0,1]) is the union of the two totally geodesic tri­

angles which are, respectively, the joint of f t (k) and y i and the joint of 

f t {k n ([a, b] x {c})) and i . For the metric m t, Xt has 2-dimensional 

Lebesgue measure 0 in S, and Atnfa, b] x {c} has 1-dimensional Lebesgue 

measure 0 in the transverse arc [a,b] x {c}; see [9], [16], [2]. It follows 

that H t((\t n i ) x [0,1]) has 3-dimensional Lebesgue measure 0. 

Therefore, we can focus only on the contribution of the components of 

R i - At. 

We can now sketch the proof of Theorem 3. Let R t' C S denote the 
union of the rectangles R i . By construction, H t ((S — R t') x [0,1]) 
is bounded by a polyhedral surface, and the variation of its volume is 
given by Corollary 2. We observed that the volume of H t (R^' X [0,1]) is 
equal to the sum of the volumes of certain pyramids and tetrahedra. We 
can therefore expect that the variation of the volume of H t (R t> x [0,1]) 
is equal to the sum of the variations of the volumes of these pyramids 
and tetrahedra, as given by Theorem 1. Altogether, this expresses the 
variation of the volume of H t as the sum of lengths of edges multiplied 
by the variation of dihedral angles at these edges. As in the proof 
of Corollary 2, the contributions of the internal edges cancel out, as 
well as the contribution of the edges that are contained in the sides 
of the rectangles R i . This leaves the contributions of the edges of 
the polyhedral map g t, which will cancel out with the variation of the 
volume enclosed by g t, and the contribution of the edges contained in 
f t (Xt), which can be re-interpreted as the length of the variation of the 
bending cocycle of the pleated surface f t-

These ideas easily lead to a formal proof of Theorem 3, but numerous 
points need to be justified. First of all, to be able to apply Corollary 2, 
we need to know that the shapes of the pyramids and tetrahedra of 
the decomposition are non-degenerate and vary differentiably with t. 
Then, because there are (in general) infinitely many such pyramids and 
tetrahedra, we have to show that the infinite sums involved do converge. 
Because the internal edges are not locally finite, the proof that their 
contributions cancel out is not as simple as in the proof of Corollary 2. 
Finally, we have to identify the contribution of the edges contained in 
f t (Xt) with the length of the variation of the bending cocycle of the 
pleated surface f t-

L e m m a 4. Given a component Ro of R i — XQ, let R t be the 

corresponding component of R i —Xt- Then, the vertices of the rectangle 
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f t (R t) vary differentiably with t in M t. 

Proof of Lemma 4- Recall that we are given a family of representa­
tions pt : r —> I som+ (H3) depending differentiably on t and of isome-
tries M t = H3/pt (Y). We want to show that f t (R t) C M t = H3/pt (Y) 

lifts to a rectangle depending differentiably on t in H 3 . 
In [5, §10], we showed that the restriction of f t to each compo­

nent of S — At depends differentiably on t. Namely, if we lift f t to 
a pleated surface f t : S —> H3 defined on the universal covering S, 

then for every component P of the complement of the preimage e of A 
in e, the ideal triangle f t (P t) in H3 depends differentiably on t, where 
P t denotes the corresponding component of S — e t- (Strictly speaking, 
we proved this property only if we replace the isometric identification 
M t = H3 jpt (Y) by another identification M t = H3 /p't (Y) where there 
exists A t G Isom+ (H3) such that p't (7) = A t pt (7) A t for every 7 G Y. 

For every 7 G 7Ti (S) C T, the fact that f t (P t) and f t ("fP t) depend dif­
ferentiably on t for an arbitrary component P of S — e shows that p't (7) 
depends differentiably on t. Looking at the fixed points of the isometry 
groups pt (ni (S)) and p't (ni (S)), we conclude that A t depends differ­
entiably on t. Using the identification H3 /pt (Y) = H3 / ' t ( r ) induced 
by A t, we can therefore assume that t = pt) 

[5] also shows that the pull back metric m t on S depends differ­
entiably on t. Again, [5, §5] provides a representation at : 7Ti (S) —> 

Isom+ (Hf) depending differentiably on t and an isometric identifica­
tion (ft : (S,m t) —> H21ut (ni (S)) such that , for every component P of 
S — e , the image îe t (P t) of the corresponding component P t of S — e t 

under a lift (e t : S -> H2 is an ideal triangle which varies differentiably 
with t. We assumed that the vertices of the rectangles R i depend 
differentiably on t for the metric m t, namely that , if we lift R i to 
R i C S, the vertices of <e t(e i ) C H2 depend differentiably on t. If 
P t is the component of S — e t that contains the lift R t C e \ of R t, 

and we m t-isometrically identify P t with a fixed ideal triangle, then 
R t = îe~t~ (ie t e i ) H fe t (P t)) depends differentiably on t in this fixed 
ideal triangle e 

Because f t (P t) depends differentiably on t, we conclude that f t(R t) 

depends differentiably on t in H 3 , so that f t (R t) depends differentiably 
on t in M t. q.e.d. 

Lemma 4 shows that each of the pyramids and tetrahedra of the 

decomposition of H t(R i x [0,1]) varies differentiably with t. 
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We need to precise Lemma 4, using the estimates of [5]. When R t 

does not contain one of the sides of R i , the two leaves of At that it 

touches follow each other for a while, crossing the same rectangles R j . 

However, in some direction, they must diverge and cross different R j 

after a while, since they would otherwise stay within bounded distance of 
each other and therefore be equal. Let the divergence radius r (R t) ^ 1 
be the number of R j which they cross in common before diverging. By 

convention, r (R t) = 1 when R t contains one of the sides of R i . 

L e m m a 5. With the data of Lemma 4, the derivative a t of each 
vertex a t of f t (R t) with respect to t is an O (r (R t)) = O (r (Ro))- In 
addition, for any two vertices a t, b t, the distance between the vectors a t 
and b t is an O (d(a t, b t) r (R t))-

Proof. To give a sense to this statement, we need to choose a 

lift of f t (R t) C M t =* H3Ipt ( r ) to H 3 , as in Lemma 4. For this, we 

first choose a lift of f t (R i ) to H 3 , and then restrict it to a lift of each 

f t (R t)- The statement of Lemma 5 implicitly assumes that the lifts of 

the f t (R t) are chosen in such a consistent way. The constants hidden in 

the symbols O ( ) will then depend on the choice of the lift of f t(R i ) , 

but not on the components R t-

Let us use the notation of the proof of Lemma 4. In [5, §10], we give 
explicit formulas expressing the restriction of f t+h to each component 
of S - e t limit of rotation-translations along geodesics of f t (e t ) . 
In addition, we show that the convergence is holomorphic, so that we 
can differentiate in the limit. Differentiating with respect to h and 
applying to the derivative the estimates of [5, §5] and [5, Lemma 6], 
it easily follows that the derivative of the ideal triangle f t (P t) is an 
O (r (R t))- Similarly, the derivative of îe t (P t) is also an O (r (R t))- The 
first statement of Lemma 5 immediately follows. 

For the second statement, we can restrict attention to the case where 
a t and b t are on the same side of f t (R i ); indeed, d(a t,b t) is otherwise 
bounded away from 0, and the result is trivial. Then, a t and b t are the 
images under f t o (<fe t\P t) of the intersection points of îe t (9P t) with an 
arc k t in H2 which varies differentiably with t (and corresponds to a side 

of i i ). Because f t\P t and te t\P t are isometries, their differentials are 
uniformly Lipschitz, and the C 1 -norm of their derivatives with respect 
to t is an O (r (R t)) by the previous estimate. The second statement of 
Lemma 5 then follows from the chain rule. q.e.d. 
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Figure 2 

To apply the Schlafli formula to these pyramids and tetrahedra, we 
need to make sure that their faces are not collapsed to arcs or points 
(otherwise, dihedral angles do not make sense). This means that for 
every t the points x i and y i avoid a countable union of geodesic arcs 
of bounded length in M t. By Lemma 4, these geodesic arcs depend 
differentiably on t. As a consequence, their lifts sweep a domain of 
Lebesgue measure 0 in Hf. We can therefore choose the polyhedral 
maps g t generic enough so that the pyramids and tetrahedra are never 
degenerate. Actually, we only need this property for the sake of the 
exposition, since the estimate of Lemma 6 below would enable us to 
deal with degenerate pyramids and tetrahedra as well. 

Also, the image f t (At) of the pleating locus has Hausdorff dimen­
sion 1 [2], and varies continuously with t; see [21, §8][8, §5] or [5]. 
Therefore, we can arrange that the points x i and y i stay at distance 
bounded away from 0 from f t (At). 

Let R t be a component of R i —At, and let p t, q t, r t, s t be the vertices 
of the totally geodesic rectangle f t (R t) where, for the identification 
R i = [a, b] x [c, d], the points p t, q t occur in this order in f t ([a, b] x {c}) 
and the points r t, s t occur in this order in f t ([a,b] x {d}). Then, the 
pyramid P t associated to R t has vertices p t, q t, r t, s t and y i . See 
Figure 2. 

The Schlafli formula gives that dvol (P t) jdt is the sum of the terms 

d 
(4) \l(p t q t)-dtpt{p t q t), 
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(5) hnr t s t)dt P t{r t s t), 

(6) è ( l p y t ) ) ^ P t ( p y ) + l ( q t y i ) ) d P t(q t y i ) ) ) , 

(7) l i r y i j d i r y i ) + l(s t y i ) d teP t(s t y(i))), 

and 

(8) \(l (jp t r ) -dt P t {p t r ) + l {s t q t) -dt-^ P t {s t q t}) 

where l ( ) denotes the length of the edge indicated, and P t ( ) is the 
external dihedral angle of the boundary dP t at the edge indicated. For 
this, we orient dP t so that the restriction f t\P t : R t —>• f t (R t) C dP t 
is orientation-preserving and we orient P t accordingly (so that vol (P t) 
may be negative). 

The grouping of the terms is here important, because it will guar­
antee the convergence of the series when we sum over all components 
R t of R i — Xt- It is not hard to see that this sum will not converge if 
we do not use this grouping. 

We first sum the terms of type (4). By the second part of Lemma 5, 
d P t (p t q t) /dt = O (r (Ro))- Also, there is a constant A > 0, depending 

only on the length of the components of At fl R i (and therefore uni­
form in t), such that the leaves of At passing through p t and q t stay at 
uniformly bounded distance from each other over a length of at least 
Ar (R t) = Ar (Ro); since the metric m t is hyperbolic, it follows that 
l (p t q t) = O (e~Ar(R°>). Finally, for r ^ 1 large enough, the number of 
components RQ of R i — XQ such that r (Ro) = r is uniformly bounded 
by the number of spikes of S — Ao- It follows that, as we sum over all 
components R t of R i — Xt, the series 

(9) è E ^ p q ) d P t(pq t) 
R t 

is convergent. 
The same arguments show the convergence of the sum of the terms 

of type (5), namely of 

(io) èE l ( r t s t)d P r t s)-
R t 
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x. 

Figure 3 

To show the convergence of the sum of the terms of type (6), we first 
estimate the quantity 

For this, choose an isometric embedding ipt : P t —>• H3 such that 
tpt(f t(R t)) is contained in Hf C H3 , iptip t r t) is contained in a fixed 
geodesic g of H 2 , and ipt (p t) is a fixed point p G g. Since the two leaves 
of At touching R t are asymptotic, the geodesic of H2 that contains ipt (q t) 

and ft (s t) has an end point x at infinity in common with g. We can 
now consider the tetrahedron T with vertices p = <pt (p t), q = ft (q t)? 
y = (ft (y i ) and x; see Figure 3. 

L e m m a 6. Let g be a geodesic ofH 2 c H f , let p be a fixed point of 
g, and let x be one of the end points of g on the circle at infinity ^ H 2 . 
Given two constants A > 0 and B > 0, consider two points q G H2 

and y G H3 such that the distances from y to p and from p to q are at 
most A, and such that the distance from y to g and to the geodesic ofH2 

containing q and x is at least B. Finally, in the tetrahedron T of vertices 
p, q, x, y, let 0 (q,y) denote the sum of the internal dihedral angles ofT 
along the edges py and qy. Then, 0 (q,y) is a differentiable function of 
q andy. In addition, if q varies with velocity q and y varies with velocity 
y , the derivative @(q,y) of@(q,y) is an O (\\q\\ + d(p, q) \\y\\), where 
the constant hidden in the symbol O ( ) depends only on the constants 
A and B. 

Proof. Note that our definition of 0 (q, y) does not make sense 
when the tetrahedron T is degenerate, namely when the three points p, 
q and y are on the same geodesic (since B > 0, the triangles xpy and 
xqy cannot be degenerate). We first extend it to this case, by using a 
different point of view. 

At the point y, consider the unit vectors v p, v q, v x pointing in the 
direction of p, q, x, respectively. These vectors draw a triangle v x v p v q 



a SCHlaflI-TYPE f o r m u l a 41 

on the visual sphere at y. Then, 0 (q, y) is the sum of the angles of 
this spherical triangle at v p and v q, when these angles make sense. By 
the Gauss formula, 0 (q, y) is therefore equal to n plus the area of the 
spherical triangle v x v p v q minus the angle of the triangle at v x. Since y 
stays away from g and the geodesic containing x and q, the edges v x v p 
and v x v q of the triangle are never reduced to a point. This formula for 
0 (q, y) consequently makes sense for every q, y satisfying the conditions 
of the Lemma, and shows that 0 (q, y) is an infinitely differentiable 
function of q and y. 

The positions allowed by the conditions of Lemma 6 for the point 
(q, y) form a compact subset of H2 x H f . If we let q vary with velocity 
q while y stays fixed, the corresponding derivative 0 (q, y) of 0 (q, y) 
depends linearly on q and continuously on (q, y). It follows that 0 (q, y) 
is an O (\\q\\) in this case. 

If we let y vary with velocity y while q stays fixed, the corresponding 
derivative @(q,y) depends linearly on y and differentiably on (q,y). 
In addition, if q is equal to p, 0 (q, y) is constantly equal to n under 
such a variation, so that 0 (p, y) is equal to 0. The same compactness 
arguments as above now shows that 0 (q, y) is an O (d (p, q) \\y\\) in this 
case. 

The case of a general variation follows from these two cases by lin­
earity of the differential of 0 . q.e.d. 

We can apply Lemma 6 to the tetrahedron T with vertices p = 

ft (p t), q = <Pt (q t), y = ftiy i ) and x, where x is the end point at 
infinity that is common to the geodesic containing ipt (p t) and ipt (r t) 
and the geodesic containing (ft(q t) and ft(s t)- In the pyramid P t, 
P t {p t y i ) + P t {q t y i ) is equal to 0 (q, y) or to 2TT - 0 (q, y), according 

as x sits with respect to ft (p t) and ipt (r t). When we differentiate with 
respect to t, the variation p of p is equal to 0, since p is constant. 
By Lemma 5, the variation q of q is an O (d(p t,q t) r (Ro)), and the 
variation y of y is an O (r (Ro))- Since there is a constant A > 0 such 
that d(p t,q t) = O(e~Ar(R°>) and the distance from y i ' to f t (At) is 
bounded away from 0, Lemma 6 shows that 

( i i ) d t PÂp t y i ) + d t P q t y i ) ) = O(r(Ro)e-ArR). 

The lengths l(p t'i ) and l(q t'i ) are uniformly bounded, and 

l{p t y i t]) -l(q t y i t]) =O(l (p t q t)) = O(e~Ar^). 
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Since d P t(q t'i )/dt = O (r (Ro)) by Lemma 5, it follows that 

(12) lpy dMpyVlqy dMqy) 
= O(r(Ro)e-Ar(R°î). 

Since, for every r ^ 1, the number of components RQ of R i — Ao such 
that r (Ro) = r is uniformly bounded, (12) guarantees the convergence 
of the series 

(13) è E l p y ^ d ^ p y t ) + l (qy ) )d P(q t y i ) ) , 

as we sum over all components R t of i i — At. 
The convergence of the sums 

(i4) è E ( l r y ^ d ^ r y V l s y ) d ^ s y ) ) > 
R t 

and 

(is) Ì Y, (l ̂  d (p*r t) + l (s t q) d sq ) 
R t 

is proved by arguments which are, identical to the above one for (14), 
and very similar for (15). 

Now, consider the tetrahedron T t, with vertices p t, q t, x i , y i , 
which is also associated to R t- Orient the boundary dT t so that the 
orientation induced on the triangle p t q t'i is opposite to the orientation 
induced by the boundary dP t, and orient T t accordingly. The Schlarii 
formula expresses dvol (T t) jdt as a sum of terms corresponding to its 
edges. Summing over all components R t of R i — At, we obtain the 
following four sums, whose convergence is proved by arguments similar 
to the ones used for P t. 

(16) \ E l ip t q t) -dtOT t ip t q t), 
R t 

:«•> èEl (xy* )d T x y ) . 
R t 
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R t 

and 

(19) è X l p y f d ^py) + lqy t ))dMqy t))) • 
R t 

converge, by arguments similar to the ones used for P t. 
Since the convergence of all these sums is uniform in t, we conclude 

that the volume of H t ^ R i x [0,1]) is differentiable in t, and that 

d l(H t(R i x [0,1])) = d X vol(P) + d X vol(T t) 
R t R t 

is equal to the sum of all terms (9-10), (13-15) and (16-19) as R t ranges 

over all components of R i —\t (We are here using an abuse of notation, 

where H t{R i x [0,1]) represents the chain defined by restriction of H t 

to R i x [0,1] and not the image of this map. In particular, the volume 
is computed by taking into account the sign of the Jacobian of H t, and 
may very well be negative. We will use the same abuse of notation 
below when considering the boundary of this chain.) 

The term (17) is particularly simple. Indeed, consider the corners 
p i = f t (a> c)-> q = f t {b, c), r i ] = f t (a, d), s i> = f t (b, d) of the image 
of the rectangle R i = [a, b] x [c, d] under f t, as in Figure 1. Then, the 
sum (17) is equal to 

where H / it) . ,\ (x i y i ) is the external dihedral angle between the 

trian 
that 

(21) ^ H R ' x M i x y V X h T x 

triangles x i y i p i and x i y i q i . Indeed, this follows from the fact 

^ ^ M x S y p y x ^ 
R t 

in R/27rZ (because f t (([a, b] x {c}) fl At) has 1-dimensional measure 0) 
and that the convergence of the sum (17) is uniform in t. 
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It turns out that the terms (13) and (19) almost cancel out. Indeed, 

they both involve edges of the form p t y i and q t y i . In general, the 

contributions to (13) and (19) of each individual edge p t y i or q t y i do 
not add up to 0. However, we will show that only four terms remain 
when we sum these contributions over all rectangles R t- This will require 
the consideration of the bending cocycle of a certain pleated fan. 

Consider the closure P i C H t{R i x [0,1]) of the union of the pyra­

mids P t. It is partially bounded by the joint F i of the point y i and 

the arc f t {[a, b] x {c}). This F i is a pleated fan whose pleating locus 

is the joint ßi ' of y i ' and f t (([a, b] x {c}) n At). We orient F i ' so that 

the boundary orientation it induces on f t (([a, b] x {c}) n At) coincides 

with the one coming from the natural orientation of [a, b]. Using the 

methods of [5, §7], we can measure the bending of F i along //i by an 

R/2-7rZ-valued transverse cocycle ßt for //i ; the crucial property here 
is that the curve f t([a,b] x {c}) is rectifiable. We now interpret the 
quantity (13) as, essentially, the length of the derivative of this bending 
cocycle. 

L e m m a 7. As we differentiate in t, the bending cocycle ßt of the 

pleated fan F i admits a derivative ßt, which is an R-valued transverse 

cocycle for the pleating locus fj,i . In addition, ßt has a well defined 

length l{ßt) in M t, and the quantity (13) is equal to 

(22) èl t + è l p y ) d p t̂  

Proof. For every x G At H i , consider the tangent plane at 

f t (x) G M t that is tangent to the geodesic arc f t (x) y i and to the 
image under f t of the leaf of At containing x; this plane is a Lipschitz 
function of x. Consequently, the expression of the bending cocycle given 
by Lemma 36 of [5] shows that , for every arc k in [a, b] x {c} whose end 
points are disjoint from At, 

ßt(k)= Yl P t(p t y i ) - ^ + P t{q t y i ) 
(23) R tnk?$ 

- P r ( p y i ) + K - o P + q y i ) i 

where the sum is taken over all components R t of R i — At that meet k, 
and P t , p t , q t denote the pyramid and vertices associated to f t (R t ) 
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by the usual labelling conventions, R t and R t being the components of 

R i — At that respectively contain the positive and negative end point 

of k. From Lemma 4 and (11), we conclude that ßt(k) has a derivative 

ßt (k) G R with respect to t, given by 

(24) RÉnk^0 

Since the finite additivity with respect to k is immediate, this defines 

a transverse R-valued cocycle ßt for the pleating locus ni of the pleated 

f a n F . 

In [3], we showed how an R-valued transverse cocycle for a geodesic 
lamination /z on S defines a transverse Holder distribution for /z. How­
ever, this construction depended in a crucial way on some global prop­
erties of /z. Associating a transverse Holder distribution for /zi to the 
transverse cocycle /?t is therefore not automatic. However, by (24), 
(11) and Lemma 5, ßt (k) = O (r (R t ) ) + O (r (R t~)) for every k, and 
d(p t,q t) = O (e~Ar(R t>) for every R t, with the usual notation. Since, 
for every r ^ 0, the number of R t with r (R t) = r is uniformly bounded, 
this is exactly what we need to use the techniques of [3] and associate 
to ßt a transverse Holder distribution for /zi '; compare (25) below. In 
particular, we can integrate with respect to this distribution the length 
of the leaves of fj,i , which defines the length l (ßt). 

Theorem 11 of [3] provides an explicit expression for the transverse 
distribution ßt, which gives 

l(t) = 5 t ( k R ) ) l(pyf])-l(qy 
(25) R t 

+ ßt(f t([aib]x{c}))l(q)y i ) ) i 

where k (R t) denotes the arc in [a, b] x {c} that joins (a, c) to an arbitrary 
point in the interior of ([a, b] x {c}) fl R t- Also, the Gap Lemma of [3] 
shows that 

(26) l(q t y i ) = E l p y t ) - l q y P ) ) + l q y ) . 
R'tnk(R t)=a> 

where the sum is over those components R't of R i — At which do not 
meet the arc k(R t), and p't, q't, r't, s't denote the vertices of f t (R't) 
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with the usual labelling conventions. Combining (24), (25), (26) and 
rearranging terms, we conclude that 

(27) R t 

This completes the proof of Lemma 7. q.e.d. 

Similarly, if T*i denotes the closure of the union of the tetrahedra 
T t, quantity (18) is equal to 
(28) 

-it+èlp}yodt T > p } y ; + h l q ' y n T q y n 

where the negative sign comes from the fact that F i now occurs with 
the opposite orientation. Combining (22) and (28) yields that the infi­
nite sums (13) and (19) add up to the finite sum 

l[p i y i )dt&H t{RVx[0,l])p i y i ) 

+ l q i Ì i d t H R ) x [ o , i ] ) q y ) • 

Similarly, many terms cancel out as we take the sum of all terms (9), 

(10), (14), (15), (16) and (18) over the finitely many rectangles Rl . 

For the terms (9), (10) and (16), this occurs in term by term can­

cellations. Indeed, with finitely many exceptions, the edge p t q t of the 

rectangle f t (R t) corresponding to the component R t of R i — At coin­

cides with an edge p't q t or r t s't of a rectangle f t (R't) corresponding to a 

component R't of R j — At, for some rectangle R j possibly (and usually) 

different from i i '. The exceptions occur for those p t q t which fall at the 

junction between two f t(R j ) and f t(R k )• If p t q t coincides with such 

a r't s't, then 

P t (p t q t) + T t (p t q t) + P . {r't s't) = 2vr. 

It follows that the derivatives of these angles add up to 0, and that 
the contributions ofp t q t = r t s't to (9-10) and (16) cancel out. A similar 
argument holds when p t q t is equal to p't q't, and when r t s t is equal to some 
p t q t or r t s't. Thus as we take the sum of all terms (9), (10) and (16) over 
all rectangles R i , we are left with only finitely many boundary terms. 
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By an argument analogous to Lemma 7, the sum (14) can be inter­

preted in terms of the bending cocycle of the pleated fan that is the 

joint of y i and the arc f t ([a,b] x {c}). A similar interpretation holds 

for the sum (18). It follows that , as we sum over all rectangles R i , the 
terms (14) and (18) add up only to the sum of finitely many boundary 
terms. 

Finally, it remains to consider the sum (15). The same arguments as 

in Lemma 7 express (15) as ^ times the length of the derivative of the 

bending cocycle of the pleated rectangle f t(R i ) , plus two boundary 

terms. Thus, as we sum over all rectangles R i , the terms (15) add up 
to the sum of finitely many boundary terms and ^l[ßt). 

Combining these analyses, we conclude that 

dvol(H t(R t x [0,1])) J dt 

is the sum of \l{ßt) and finitely many boundary terms corresponding 

to the edges of the polyhedral surface H t (dR t x [0,1]). 
The volume bounded by f t is the sum of the volume of 

H t (R t x [0,1]), the volume of H t ((S - R t ) x [0,1]), and the volume 
bounded by g t- The last two of these volumes are bounded by polyhe­
dral surfaces, and their variation is therefore given by Corollary 2, as 
the sum of finitely many boundary terms. We saw that the volume of 
H t (R (t ) x [0,1]) is the sum of \l{ßt) and finitely many boundary terms. 
The boundary terms cancel out as in the proof of Corollary 2, and we 
conclude that the derivative of the volume enclosed by f t is equal to 

This completes the proof of Theorem 3 when there are no cusps. 
q.e.d. 

Proof of Theorem 3 in the presence of cusps. Each cusp of MQ has 
a neighborhood of the form B/Ti, where B is a horoball of H 3 , and 
Ti is a parabolic subgroup of Y that is isomorphic to Z (for a rank 1 
cusp) or Z 2 (for a rank 2 cusp). In addition, because the pleating locus 
of fo is compact, we can choose these cusp neighborhoods so that the 
intersection of fo with the cusp neighborhoods consists of finitely many 
totally geodesic annuli leading to the cusps. The fact that fo bounds 
a finite volume 3-chain implies that , in each cusp neighborhood B/Ti, 
these annuli bound a locally finite 3-chain relative to the boundary. If, 
in fo, we chop off these annuli along piecewise geodesic simple closed 
curves, we suitably reconnect the pieces by polyhedral annuli, and we 
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add a few polyhedral tori separating the rank-2 cusps from the rest of 
Mo, we obtain a compact surface go which is (compactly) homologous 
to 0 in Mo, and whose pleating locus consists of A and finitely many 
polyhedral edges. The symmetric difference between fQ and go gives 
a polyhedral surface ho which bounds a finite volume locally finite 3-
chain, and such that the 2-chain fo — go — ho bounds a finite 3-chain of 
volume 0. 

From f t in M t, we can similarly define g t and h t in such a way that 
they depend differentiably on t. Then, the proof of Theorem 3 in the 
case without cusps immediately extends to show that the derivative at 
t = 0 of the volume enclosed by g t is equal to 

(30) klo(b) + hJ2lo(e)èo(e), 
e 

where the sum is over the edges e of the polyhedral part of go, and 
6t (e) is the external dihedral angle of g t at e. Note that every edge e 
of g t occurs as an edge of h t with external dihedral angle n — 9t (e). We 
can then invoke an easy extension of the Schlaffi formula to polyhedral 
surfaces that have a compact set of edges and bound a finite volume 
locally finite 3-chain (Possible hint for a proof: cut off this locally finite 
extension by polyhedral surfaces that are arbitrarily close to the cusps, 
apply Theorem 2, and pass to the limit), which says that the derivative 
at t = 0 of the volume enclosed by h t is equal to 

(31) - i J l ( e ) M e ) . 
e 

Since the 2-chain f t — g t — h t bounds a volume 0 chain, adding up (30) 
and (31) completes the proof. q.e.d. 

Remark 1. A more attractive approach to the proof of Theorem 3 
would be to approximate the pleated surface f t by polyhedral surfaces f t 
and to show that, as the approximation gets better, the derivative given 
by the Schlafli formula for the volume enclosed by f t gets arbitrarily 
close to ^l t(ßt)- This would decrease the cumbersome administration 
of building blocks in the above proof, and eliminate the consideration of 
internal edges whose contributions are eventually shown to cancel out. 
However, the author was unable to develop an approximation scheme 
where he could rigorously prove that this really happens. 

Remark 2. Theorem 3 easily generalizes to the case where the 
pleating locus A of f t is non-compact. Indeed, there is a neighborhoood 
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of the cusps of S which meets only finitely many leaves of A; see for 
instance [8, Theorem 4.2.8]. The bending cocycle 

b e H (A; R/2TTZ) 

has the additional property that, for every cusp, the b^-masses of the 
finitely many leaf ends of A converging to that cusp add up to 0. Since 
the same property holds for the derivative bo G H (A; R), this enables 
one to define a finite length loibo) as the contributions of the leaf ends 
converging to the cusps cancel out in the limit. The proof of Theorem 3 
immediately generalizes to show that the equality Vo = \lo ibo) also 
holds in this case. 

3. Proof of the main theorem 

We now prove the main theorem. 

Theorem 8. Let M t, t G [0, e[, be a cusp-preserving deformation of 
the geometrically finite hyperbolic 3-manifold MQ. Let b t G M L (dC M0) 
be the bending measured geodesic lamination of the boundary dC M t of 
the convex core of M t (using the convention that dC M t is the unit normal 
bundle of C M t when the convex core C M t is 2-dimensional). Then, the 
volume V t of the convex core C M t admits a right derivative at t = 0, 
and 

where lo bo) is the length of the vector bo tangent to the family of bending 
measured laminations b t (whose existence is proved by [6]). 

Proof of Theorem 8 when there are no cusps. Let S denote the 
surface 8C M0- Then, the bending measured geodesic laminations b t 
belong to the space ML (S) of measured geodesic laminations on S. 
Let f t : S —> M t be the pleated surface whose image is the boundary 
dC M t-, and let At be a pleating locus for f t which is maximal among 
compact geodesic laminations. Note that At contains the support of the 
bending measured geodesic lamination b t-

We first prove Theorem 8 under the additional assumption that, as 
t tends to 0+ , the geodesic lamination At tends to a geodesic lamination 
A for the Hausdorff topology. In particular, this is always the case when 
the support of bo is maximal. The fact that the At are maximal imply 
that A is also maximal. 
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As in [4], we identify the tangent vector b0 with a compact geodesic 
lamination endowed with a certain transverse cocycle. Note that the 
support of bo is necessarily contained in the Hausdorff limit A (see for 
instance [4, §2]), so that bo can be interpreted as a transverse cocycle 
for A. For every t, let f t' : S —)• M t be the (unique) pleated surface with 
pleating locus A. We will prove Theorem 8 by comparing the volume V t 
of C M t to the volume V t enclosed by f t in M t. Note that fÓ = fo, but 
that the pleating locus t of f t varies while the pleating locus A of f t is 
constant. 

We will use the Stokes Formula to compare the volumes respectively 
enclosed by the pleated surfaces f t and f t . Since the theorem is other­
wise trivial by Mostow's Rigidity Theorem, we can assume that the M t 
are non-compact. Then, H3 (M t;R) = 0, and there exists a differential 
2-form cot such that dtot is the volume form of M t. We first show that 
the u>t can be chosen to depend differentiably on t. 

L e m m a 9. There is a family of differential 2-forms u>t such that duot 
coincides with the volume form of M t on a neighborhood of the convex 
core C M t; and such that u>t depends differentiably on t in the following 
sense: If we pull back the form tot on M t = H3 /pt (T) to a form Zot on 
H 3

; then u>t depends differentiably on t. 

Proof. We will use a celebrated result of J. Moser [14]. By [13, 
§9], there is for every t a diffeomorphism ipt : Mo —> M t. In addition, 
the proof of this result makes it clear that ipt can be chosen to depend 
differentiably on t, in the sense that it lifts to a family of diffeomorphisms 
îpt : H3 —7- H3 which depend differentiably on t. 

If ut denotes the volume form of M t, the (ft (ft) give a 1-parameter 
family of volume forms on Mo which are all cohomologous (to 0). Then, 
Moser's Lemma [14] asserts that these volume forms are all isotopic: 
For every compact K C Mo, there are diffeomorphisms tßt '• Mo —> Mo 
depending differentiably on t such that (p*t (vt) = ipt (uo) on K and 
ipo = Id (Moser's proof provides a vector field, and one needs to restrict 
to a compact subset K to integrate it). 

Pick a 2-form LOO on Mo such that du>o = vo-, and a compact K C 
Mo which contains a neighborhood of all the (pt (C M t)- Then ojt = 
(p~t~ ) it (LOO) satisfies the properties required. q.e.d. 

For every t, the image of f t is contained in C M t and, because the 
complement M — dC M t is homeomorphic to a product S x R (see for 
instance [10, §1]), f t is homologous to 0 in C M t- Stokes' Formula then 
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shows that the volumes respectively enclosed by f t and f t are equal to 

(32) V t= Z f t t and V t = Z (f/)* (cot). 
S S 

(We let the reader check, for instance through an approximation by 
polyhedral surfaces, that Stokes' formula holds for pleated surfaces). 

By a suitable partition of unity, u>t coincides on a neighborhood of 
C M t with a finite sum s^n=iLOt •> where each t ' is the push forward 

e(i) 1, 

of a compactly supported 2-form wt on HP. In addition, using the 
e(i) 

diffeomorphisms (ft : MQ —> M t, we can arrange that the Lt depend 
differentiably on t. Consider the covering S —> S, pull back of the 
covering H3 —> MQ by the map fo : S —> MQ, and the canonical lift 
fo : b —> H3. Recall that S consists of all pairs (x,y) G S x H f such 
that fo (x) is equal to the projection of y in MQ. In particular, the 
homotopy from fQ to f t and f t uniquely defines lifts f t, f t '• S —> H3. 
Note that, because the group pt (ni b S)) acts properly discontinuously 
on H3, the pleated surfaces f t and f t are proper. The definitions are 
specially designed so that 

n n 

(33) V t=X Z bz?)and V i = X Z b n e y 
i=i S i=i S 

Lemma 10. For every compactly supported differential 2-form ue 
on H3

 ; the following two right derivatives exist and are equal: 

(34) d Z S b ( 3 ) M = 3 F Z S ( b ) - P W 

Proof. It clearly suffices to restrict attention to each component 
S b of S, projecting to a component Si of S. Because f t and f t depend 
continuously on t, we can use a partition of unity to assume, without loss 
of generality, that there is a compact subset B of the universal covering 
S of S b (and Si) such that the projection S —> S b is injective on B b and 
such that the intersection of the support of te with each f t(S e ) or f t S b ) 
is contained in f t(B) or f t{B)e respectively, where f t and f t denote the 
composition of the projection S —> S b with the restrictions of f t and f t 
to S b . We now have 

(35) Z f b (5) = Z. f t (3) and Z {b t) * (5) = Z f't * (5). 
Si B Si B 
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Then, the property of Lemma 10 is essentially proved in [6, §2], 

where we compare the two pleated surfaces f t, f t : S —> H 3 . However, 

minor adjustments are necessary because the pull back metrics m t and 

m't induced on Si by f t and f t may be different, and also because we 

used a normalization which we now have to take into account. 

Pick a base frame at some point of S — e , or more precisely at some 

point of the complement in S of the mo-geodesic lamination correspond­

ing to A f l S i . Changing the identification of the universal covering of 

M t with H3 (and conjugating the representation pt : F —> I som+ (H3) 

accordingly), we can arrange that each f t coincides with fQ at this base 

frame. 

For every t, there is a unique isometry A t G Isom+ (H3) such that 

the pleated surface ge t = A t o f t also coincides with fQ at the base frame. 

Note that eg t has the same pull back metric m't and the same bending 

transverse cocycle b t G H (A fl S i e R /2nZ) as f . 

As an interpolation between f t and ge t, consider the pleated surface 

'g't : S —> H3 which has the same pull back metric m t as f t, but has 

the same pleating locus A and the same bending transverse cocycle b t G 

H (A fl Sie R/2-KZ e as ge t, and which coincides with fQ at the base frame. 

Since f t and f t are equivariant with respect to the same representa­

tion pt : F —> I som+ (H 3 ) , from Propositions 5 and 10 of [6] it follows 

that mo = m 0 and bo = b0 G H (\n Si;R). In particular, the two 

pleated surfaces f t and ge coincide when t = 0, coincide for every t at 

the base frame, have the same pull back metric m t, and have the same 

variation bo = b'0 of bending data at t = 0. Under these conditions, 

we show in [6, §2] that f t and g t' are infìnitesimally close as t tends to 

0, and this uniformly on compact subsets of S — e . In particular, the 

arguments of [6, §2], and most notably the key growth estimate of [6, 

Lemma 7], show that 

Similarly, the pleated surfaces ge t and ge t' coincide when t = 0, coin­
cide for every t at the base frame, have the same pleating locus A fl Si 
and the same bending transverse cocycle b't G H (A fl Si; R/27rZ), and 
have the same variation mo = m 0 for their pull back metrics. The much 
easier arguments of [5, §5] show that these two surfaces are infinitesi-
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mally close, and that 

By construction, 

(38) Z ( e Y ( 2 ) = Z ( e g A r ( 2 ) -
B B 

Note that ge t : S —> H3 is equivariant with respect to the representation 
p't = A t pt A t : r —> Isom+ (H3), while f t is equivarant with respect to 
pt. From the fact that these two pleated surfaces are infnitesimally close 
as t tends to 0+ , we conclude that po = p'0. Looking at fixed points, 
for instance, it follows that AQ = 0, while AQ = Id by construction. 
Combining (36-38) gives 

[ ' d Z e 

which concludes the proof by (35). q.e.d. 

From (33) and the existence of the derivative in Lemma 10, we find 
that 

<«> V = n ^ Z s f (e i | ) t=„+n Z ç f ( ^ e",«), 
i=\ S i=\ S 

where the chain rule is justified by the fact that the map t >->• f t* (to) 
S 

is continuous, uniformly on compact sets for the 2-form Le. The last 
term of (40) is equal to 

(41) Z f o ( E ^ t°|t=o) = Z f ' W = Z d*> = 0, 

since the lift of duot to H3 is constant, equal to the volume form of H3. 
Therefore, 
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Similarly, 

(43) Vi=Y,d Z fypP)^ 
i=i S 

Combining (42), (43), Lemma 10 and Theorem 3 yields 

which completes the proof of Theorem 8 under the assumption that , 
as t tends to 0 + , the geodesic lamination Xt converge to a geodesic 
lamination A for the Hausdorff topology. 

In the general case, choose a sequence t n converging to 0 such that 
Xt n converges to some geodesic lamination A. Then, the arguments of 
the special case apply to show that (V t n — Vo) /t n tends to lo(bo) as n 
tends to infinity. Since this holds for any such sequence t n, we conclude 
that Vo = lo {bo) in the general case as well. q.e.d. 

Proof of Theorem 8 in the presence of cusps. When the manifolds 
M t have cusps, the boundary dC M t is totally geodesic near the cusps 
of M t. Therefore, we can use the same technique as in the proof of 
Theorem 3, and chop off pieces of C M t by polyhedral surfaces near the 
cusps. The proof in this case then follows from the proof in the case 
without cusps, as for Theorem 3. q.e.d. 

4. Convex cores w i t h to ta l ly geodes ic b o u n d a r y 

We conclude this paper with an application of Theorem 8. 

Corollary 11. Let M be a geometrically finite hyperbolic 3-manifold 
whose convex core C M has totally geodesic boundary, but is not 2 -
dimensional. Consider the volumes of the convex cores of the cusp-
preserving deformations of M. Then M is a strict local minimum for 
this volume function. 

Proof. Let QV (M) denote the space of hyperbolic 3-manifolds 
obtained by cusp-preserving deformations of M. Theorem 8 deter­
mines the tangent map T M V : T M QX> {M) —> R of the function V : 
QV (M) —> R + defined by consideration of the volumes of convex cores, 
in terms of the tangent map of the bending measured lamination map ß : 
QV (M) - • MC (dC M) analyzed in [6]. Namely, T M V = \l9C M O T Mß, 
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where loC M denotes the length function on the hyperbolic surface 8C M-
Note that these tangent maps are not necessarily linear; see [6, x1]. 

Suppose that M is not a strict local minimum for the volume func­
tion V. Then, from a sequence M n G QD (M) converging to M with 
V (M n) ^ V (M), we can construct a non-zero tangent vector 
v G T M QD(M) such that T M V (v) < 0. Now, Theorem 8 says that 
T M V (v) = ^lQC M{T Mß{v)). Since the boundary of C M is totally 
geodesic, ß (M) = 0 and T Mß (v) is a vector tangent to ML (S) at 
0. By [4, Theorem 21], T Mß(v) is therefore a geodesic lamination with 
a transverse (positive) measure. The main consequence of this is that 
T Mß (v) has positive length if T Mß (v) T^O. Since T M V (v) ^ 0, we must 
have T Mß (v) = 0. The proof is thus completed by the following lemma. 

L e m m a 12. Under the hypotheses of Corollary 11, there is no non­
zero tangent vector v G T M QD (M) such that T Mß(v) = 0. In other 
words, there is no infinitesimal deformation of M which infinitesimally 
keeps the boundary of C M flat-

Proof. Suppose there is such a tangent vector v. Consider the 
manifold DM obtained by taking the double of C M along its boundary. 
Namely, DM is obtained by gluing two copies of C M along their bound­
aries by the natural identification. Because 8C M is totally geodesic, the 
hyperbolic metric of M gives a finite volume complete hyperbolic metric 
on DM. 

First suppose that , in addition, there is a 1-parameter family of 
deformations M t, t G [0, e[, such that MQ = M, MQ = v and the convex 
cores C M t all have totally geodesic boundary. Then, the hyperbolic 
manifolds DM t give a non-trivial cusp-preserving deformation of DM, 
which is excluded by Mostow's Rigidity Theorem [15]. The general case 
follows this heuristic line of argument. 

In general, the fact that T Mß(v) = 0 only means that , for a 1-
parameter family of deformations M t, t G [0, e[, with MQ = M and 
MQ = v, the bending measured geodesic lamination b t G M L (8C M) of 
M t is such that bo = 0 and bo = 0. We will use an infinitesimal version 
of the heuristic argument, based on the Calabi-Weil Rigidity Theorem 
[7], [22] which is an infinitesimal version of Mostow rigidity. Indeed, 
interpreting QD (M) as a space of representations 

p : 7 T i ( M ) ^ I s o m + ( H 3 ) , 

the Weil machinery (see for instance [17]) expresses the tangent space of 
QD (M) at M as a subspace of the cohomology group H1 (ni (M), Ad), 



56 f r a n c i s b o n a h o n 

where Ad denotes the adjoint representation of 7ri (M) in the Lie al­
gebra of Isom+ (H3) defined by the holonomy of M. The reason why 
T M Q£>{M) is only a subspace of Hl (ni (M), Ad) is that we restrict 
attention to cusp-preserving deformations. If S is a component of 3C M, 
let M S be the covering of M with 7TI (M S) = 7ri (S). The metric of M 
lifts to a Fuchsian hyperbolic metric on M S- Because T Mß(v) = 0, 
[6, Proposition 5] shows that the differential of the restriction map 
QV (M) ->• QV (M S) sends v to a vector 

v S G T M S QV (M S) = H1 (Tri (S), A d ) , 

that is tangent to the submanifold of Fuchsian deformations of M S-
In particular, v S is invariant under the automorphism of T M S QV (M S) 
induced by the isometry that reflects M S across the totally geodesic 
surface C M S- Since this holds for every component S of 8C M, a Mayer-
Vietoris type argument shows that v provides a non-trivial element 
of H1 (vri (DM), Ad) which keeps the cusps parabolic. However, the 
Calabi-Weil Rigidity Theorem [7], [22], as improved by Garland [11] for 
the case with cusps, says that there is no such non-trivial element of 
H 1 (TTI (DM),Ad). q.e.d. 

This concludes the proof of Corollary 11. q.e.d. 

When C M is 2-dimensional, M is of course a global minimum for V 
since V (M) = 0. In this case, M is Fuchsian or twisted Fuchsian, and 
there are many deformations which keep the convex core 2-dimensional. 
Therefore, M is only a weak local minimum. 

There presumably is a converse to Corollary 11: If M is a local 
minimum for the convex core volume function V, then the boundary 
8C M is totally geodesic. This would follow from Theorem 8 and a 
conjectural extension to convex cores of Cauchy's Rigidity Theorem for 
polyhedra; compare [18]. 
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