
J. DIFFERENTIAL GEOMETRY
2 (1968) 77-114

HOMOGENEOUS SPACES DEFINED BY
LIE GROUP AUTOMORPHISMS. I

JOSEPH A. WOLF & ALFRED GRAY

1. Introduction

This paper is a study of the structure and geometry of coset spaces X = G/K
where G is a reductive Lie group and K is an open subgroup of the fixed
point set Gθ of a semisimple automorphism θ of G. The symmetric spaces
are the case θ2 = 1. There the structure and classification theory for θ is well
known, and the geometry of X basically comes down to a knowledge of the
linear isotropy representation of K and the "Cartan decomposition" of the
Lie algebra of G into eigenspaces of θ. We follow this general outline, start-
ing with a structure theory for θ, obtaining full classifications (including the
linear isotropy representations) in the cases which we know to have significant
geometric interest, and then turning to geometric applications utilizing the θ-
eigenspace decomposition of the Lie algebra. The geometric applications
which we pursue are concerned with G-invariant almost complex structures
and almost hermitian metrics on X. The almost complex structures themselves
are used as a technical tool in passing from compact G to reductive G in the
structure theory for θ.

§ 2 gives the structure theory for an inner automorphism θ of a compact
Lie algebra ®. Choosing a Cartan subalgebra and simple root system for ©,
we obtain a normal form for θ (Proposition 2.6). This gives us a simple root
system for the fixed point set ©' (Proposition 2.8), a criterion for whether ©'
is the centralizer of a torus (Proposition 2.11), and a method for enumerating
all θ of any given fixed finite order (Proposition 2.11). §3 applies these
results to a classification of inner automorphisms of order 3 (Theorem 3.3)
and a classification of subalgebras ©* c © which are not centralizers of tori
(Theorem 3.5).

§ 4 is a complete classification and structure theory for invariant almost
complex structures on coset spaces GjK where K is a connected1 subgroup of
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1 We show that the existence of an invariant almost complex structure on G/K im-
plies connectedness of K.
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maximal rank in a compact connected Lie group G. A result of Kostant [11]
gives information on the linear isotropy representation of K (Theorem 4.3)
which gives a new short proof of Passiencier's criterion [9] on (G, K) for the
existence of an almost complex structure (Theorem 4.4), a unified treatment
of integrability of almost complex structures on G/K (Theorem 4.5), a shorter
sharper version of Hermann's classification [8] of the G/K which admit
almost complex structures and for which K is not the centralizer of a torus
(Theorem 4.10), and a complete enumeration (Theorems 4.7 and 4.11) of
the almost complex structures.

§ 5 gives the structure theory of an outer (not inner) automorphism θ of a
compact Lie algebra ®. This comes down to a matter of some permutations
of simple factors and the case where © is simple with θ of order 3 (Lemma
5.3). In that case © is of type Z>4 and we show that either θ is the usual
triality with ©' of type G2, or θ is an (apparently new) modification of the
usual triality with ©* of type A2 (Theorem 5.5). The section ends with a
synthesis which classifies the pairs (®,0) for which θ Φ 1, θm is outer if
θm Φ I, and © contains no proper ^-invariant ideal (Theorem 5.10).

§ 6 summarizes and reformulates globally, results of earlier sections for
coset spaces X = G/K where G is a compact connected Lie group acting
effectively and S = ©* for an automorphism θ of order 3. § 7 transforms the
results of § 6 by Cartan involutions, changing the compactness hypothesis on
G to the hypothesis that the Lie group G be reductive. Theorems 6.1 and
7.10 cover the cases where X is simply connected and © has no proper θ-
invariant ideal. Theorems 6.4 and 7.17 cover the (much more general) cases
where X carries a G-invariant almost complex structure. § 7 ends with some
minor results, useful in §8, extending results of § 4 to the "noncompact
case".

§§ 8 and 9 are a study of invariant almost hermitian metrics ds2 on a reduc-
tive homogeneous space M = G/K, mostly concerned with the properties
"hermitian", "semi-kaehlerian", "almost kaehlerian", "kaehlerian", "quasi-
kaehlerian" and "nearly kaehlerian" for those metrics. The results of § 8 are
general in that ds2 is not required to be positive definite and at most we
assume that G is reductive. Under various assumptions, such as the require-
ment that the almost complex structure of ds2 be induced from an automor-
phism θ of © such that ί£ = ®* or that the riemannian metric of ds? be
induced by a bi-invariant bilinear form on ®, Theorems 8.9, 8.11, 8.12 and
8.13 explore relations between, and existence questions for, these possible
properties of {M, ds2) some of those results are based on a characterization
(Theorem 8.2) for certain types of almost complex structures based on auto-
morphisms of order 3. Theorems 8.14, 8.15 and 8.16 are specific to the case
where K is irreducible on the tangent space or ® = ®* with θ of order 3.
The results of § 9 concern only positive definite ds2 where G is compact and
K is of maximal rank they are much deeper than those of § 8 in that they
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describe the various possible properties of ds2 in terms of the root patterns of
the compact Lie groups G and K. The semi-kaehlerian property is automatic,
the kaehler and almost kaehler properties turn out to be equivalent and easily
characterized, and the quasi-kaehlerian and nearly kaehlerian properties are
characterized after a delicate computation based on the interplay between root
patterns and covariant derivatives; this comprizes Theorems 9.4, 9.15 and
9.17. We work out the root pattern criteria for the quasi-kaehler and nearly
kaehler conditions, ending up with a complete analysis of the quasi-kaehler
metrics in Theorem 9.24. The problem is more delicate for nearly kaehler
metrics and we are only able to work it out in some special cases (Proposi-
tions 9.20, 9.21, 9.22, 9.23, 9.26 and 9.27, and the cases where K is semi-
simple). We end with the conjecture: Let M = G/K where G is a compact
connected Lie group acting effectively, K is a subgroup of maximal rank, M
carries a G-invariant almost complex structure, and G/K is not a hermitian
symmetric coset space. Then M carries a G4nvariant almost hermitian metric
ds2 which is nearly kaehler but not kaehler, if and only if & = ®* for some
automorphism θ of order 3.

2. Canonical forms of inner automorphisms

In this section we find canonical forms for inner automorphisms of com-
pact Lie algebras, and also describe the fixed point sets of these automor-
phisms. Any such algebra decomposes as © = ®0 Θ ©x Θ Θ ®t where ®0

is an abelian ideal and the other ®? are simple ideals any inner automor-
phism of © decomposes as θ = 1 X θλ X X θt where θi is an inner
automorphism of ©*. Thus we need only consider the case where © is
simple.

Let © be a compact simple Lie algebra, G the corresponding connected
centerless Lie group, and T a maximal torus of G. Then Z is a Cartan sub-
algebra of ©. Let A denote the root system and choose a system Ψ =
{ψu '' - j φι} of simple roots, so

(2.1) ® c = Zc + Σ ®i a n d ® = 2 + Σ ® Π (©a + ®-j)

is the Cartan decomposition. We have the "dual root lattice" in S* = N

! ^ Ί Z
given by

Γ = * -(kernel exp: Z — T) = {x € 2*: φt(x) 6 Z for 1 < i </} .
2π\' — 1

The maximal root μ = Σ mχφ% defines the simplex

®0 = {x eZ* :φi(x) > 0, μ(x) < 1}
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in 2* with vertices {v0, vl9 , vt} given by

(2.2) v0 = 0 , ψt(vj) = 0 for i ψ j , 0,(t>«) = 1/mt .

Then S)β has the property that every element of G is conjugate to element of
Ί

Let x € 2*, g = exp (2ττ>/—1 JC) and 0 = ad(g). Then we write ®* for the
fixed point set of θ in © it is immediate that
(2.3) © = 2 + Σ ® Π (©, + ©.;) ,

ί
where Ax = {λeΛ:λ(x)eZ}.

Let W be the Weyl group of ® viewed as the transformation group on 2*
generated by the reflections in the root hyperplanes λ = 0, λ € A. Now the
semidirect product W Γ (called the extended Weyl group) acts on 2* by
(w, γ): x -* w(x) -j- ;-. We write xtzy if JC, y e Z* are inthesameTF Γ-orbit.

We denote by W the Cartan group of © while W is the group of trans-
formations of 2* defined by inner automorphisms of © which preserve 2 , W
is defined to be the corresponding group defined by all automorphisms of ©
which preserve 2 . Thus W is a normal subgroup of W and the quotient of
the two is the "group of outer automorphisms". W preserves Γ and the
semidirect product W-Γ (called the extended Cartan group) acts on 2* as
above. We write x — y if *, y € 2* are in the same fF Γ-orbit. Obviously
x « y implies x ~ y, and the converse is true if © has no outer automor-
phisms.

2.4. Lemma. Let *<€£* (i = 1,2) and define θt = αd(exρ 2 ^ ^ 1 * 0 •
771672

(i) jtj « x, Ϊ/ and only if θλ is conjugate to θ2 in the group of inner auto-
morphisms of ©

(ii) xτ ~ x2 if and only if θx is conjugate to θ2 in the group of all automor-
phisms of ©.

Proof, (i) is just the application to ad(G) of the fact that two elements θt
in a maximal torus ad(T) are conjugate if and only if they are equivalent
under the Weyl group, (ii) follows from the definition of the Cartan group.

q.e.d.
The simple root system Ψ = {ψl9 , ψt} of © gives the Dynkin diagram

of © we denote by Aut (Ψ) the automorphism group of the Dynkin diagram.
Adjoining ψ0 = — μ to Ψ we have an "extended" system Ψ; starting with Ψ
and following the rules for the Dynkin diagram we construct the extended
Dynkin diagram of ©. Then Aut (Ψ) denotes the automorphism group of the
extended Dynkin diagram.

In the following proposition we set mQ = 1 then 2 m^ = 0.
t = 0
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2.5. Proposition, (i) We have

Aut (?) ^ {a € W'Γ: α(3>0) = So}

via a canonical isomorphism. The isomorphism is given by w* —*> a where
w * e A u t ( ? ) is given by w*(φ€) = φrw-1 (i = 0, ••-,!) and a e ^ Γ is
defined by <x(x) = ΉT^JC) + v * / o r * e £* w/zere vfc iy ί/ze vertex 0/ 3)0 with
mk = 1 M̂C/Z ί/za/ w*(^Λ) = ^ 0. // w*(ψi) = ^ a ί and a: € W-Γ corresponds to
w* under the isomorphism, then a(Vi) = va. (0 < i < /).

(ii) Γ/ẑ  canonical isomorphism, when restricted to the subgroup Aut (Ψ)

of Aut (W), yields

Aut (SO = {a: € ϊF:ar(S)0) = S)o} .

Proof. Let w* € Aut (Ψ) and define w" 1: £* -> S* by 0 r w 1

for / = 1, , / and linearity. A calculation shows that ^o w 1

also. Define a: Z* ~> £* by αr(^) = w*1^) + t;fc for x € £*, where w*(^ t) =
φQ. Then αr(O) = vk, ψk(<x(Vj)) = 0 for / Φ 0; and for 7 ̂ 0 , pφkwt have
ψP(a(Vj)) = tf*(.ψp)(Vj) = m^"1^^ where ^ i s such that w*(^p) = 0 β . Thus α
is a rigid motion of S* which permutes the vertices of S)o and so α(®0) = ®o
This automatically implies that α € PF Γ [11, Theorem 8.11.2],

Conversely, it aeW-Γ preserves S)o it permutes the faces of S)o> inducing
a permutation of the vertices of the extended Dynkin diagram. As or is an
isometry on £*, the permutation of the vertices of the diagram preserves in-
ner products of roots, so it is an automorphism of the extended Dynkin
diagram. q.e.d.

We reformulate Proposition 2.5 as a conjugacy criterion.

2.6. Proposition. // JCX = 2 M< 6 S)o

 α n ^ 2̂ = Σ c i v i € ^OJ Λeπ ίΛe

following conditions are equivalent:
(i) ^ - x2.
(ii) ΓΛere w α/2 isometry of S)o w/zic/i ^enrfj ^ ro x2.

(iii) ^ Γ Λαs an element a such that a(S)0) = S)o a/ztZ a ^ ) = x2.
(iv) Z>e/zn̂  ̂ o = -μ, b0 = 1 - //(^) and c0 = 1 - μ(x2). Then Aut (?) has

an element γ, γ(ψi) = φav such that bι = cai for 0 < / < /.
Equivalence of (ii) and (iii) is the fact that the root system determines the

semisimple compact Lie algebra up to isomorphism. Lemma 2.4 is the
equivalence of (i) and (iii). Now we need only prove the equivalence of (iii)
and (iv).

Let a e W'Γ such that αr(£>0) = S o and let w* be the corresponding element
of Aut(?). w*(φi) = ψa. and a{vt) = vai. Decompose a into a linear trans-

1

formation w e W and a translation t e Γ, a(x) = w(x) + t. Using 2 *i = 1»

a consequence of the definition of fc0, we compute
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«(*ύ = «(Σ bfid = «(Σ MO = w(Σ MO + ί = Σ btw(vt) + t
i=l i=0 i=0 ΐ=0

= Σ biiHVi) + 0 = Σ biocivi) = 2 btvai .
i=0 i=0 α{=l

Thus afxj = *2 if and only if bt = c α r This proves equivalence of (iii) and
(iv).

In §3 we will need a special case of Proposition 2.6. Let &> 1 be an integer.
Let x, y € 2)0 such that the automorphisms

ad(txp 2π4^ΐ x) and ad(txp 2π J^T j)

of ® have order /:. Suppose that x and 3> lie on edges of S)o which meet the
origin v0, i.e. that x = (m^/k^i and y = (mjS/k)Vj where r and $ are positive
integers prime to k. Then x ~ y if and only if

(i) m* = mό = 1, r = s or r + 5 = k, and 7(4^) = φj for some ^e Aut(?f)
or

(ϋ) rrii = rrij > 1, r = s < fc/m^, and ^(^i) = ^ for some 7 € Aut (W) or
(iii) mi = /Πĵ  > 1, r = j = Λ/m<, and ^(^ί) = ψj for some 7 € Aut (¥).
A basic step in our normalization is:
2.7. Proposition. Let x € £*, and k> 0 be an integer such that x$Γ but

kx € 7\ Replace x by a transform w(x) + p € S>0, w 6 JF fl/id 7* € Γ, and

decompose x = — 2 n^Vi where nt = ot(kx) 6 Z. Λfa/:e ί/iw transjorma-
k ϊ=i

m 5MC/I a way as to minimize J] Wim̂ . Then
ι = l

(i) 0 < « i </: and 0 < 2 " ί ^ i ^ * , a Λ ^ Σ w*mi = ^ implies that m3

whenever nsΦθ\
(ϋ) Λj < */2 if mό, = 1 and

(iii) ίΛe jeίs /f = {/: n< ̂  ί} Aav̂  cardinality |/i| ;> 1 and |/f | < Λ/r,
7f is empty for t > k/2.

Proof. By Proposition 2.6 and the conjugacy property of S)o let us trans-

form x into S>0. That done, φi(x) > 0 and μ(x) < 1. x = -- 2 "i™^* g i v e s

Z, so nt > 0 and 1 > -i- 2 Λ i m i N o w * ^ Σ nimi N o t e

AC

nt <k; for ni=z k would imply m* = 1 and x = Vi^Γ.
Re-order Ψ so that nt Φ 0 for 1 < ί < r and n± = 0 for r < i < I. If

2 Λί^ί = /:, i.e. if μ(;c) = 1, then x is interior to an (r — l)-face of the
(/ — l)-face μ = 1 of S)o. If some mό = 1 where 1 < / < r, we apply the
translation z —»z •— Vj from 71 and then the Weyl group element which carries
S)o — vs back to S)o; this carries the (r — l)-face with vertices {vu , vr}
which has J: in its interior, to an (r— l)-face {v09viχ, - - '9vir^}. In other
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words, if 2 KiMi = k then we may assume that mt = 1 implies nt = 0. Now
(i) is proved.

Let rrij = 1 with Πj > A/2. We now have 2 m Λ < &, so x is interior to
the r-face of S o with vertices {vo> î> > r̂} which include Vj. We again
apply a FT-/^-equivalence

γ , $fy) = Vo = 0 ,

Now, as in the last step of the proof of Proposition 2.6,

= 4- έ ni^iΦo + τ(* - έ
A: <=i A <=i

Write q(vx) = vβ <; for Oψiψ j , nti = m α i ; and m f fo = 1 because ^(v0) =

vqo € Γ now

^ .vQi , π 0 = k - 2] Λt/n^ < y .

r

If b were another index with mb=l and «6 > Λ/2 then 2 «tmί > wĵ  + Λ& > *»
i = l

which is absurd; thus / was the only index with m ; = 1 and nj > kβ. Now
(ii) is proved.

i
xψQ shows /j nonempty so \lλ\ > 1. And /: > Σ " ^ ^ Σ w t m * ^

ί Σ mi > * IΛI shows I /ί I < */ί. If we had equality then

k = 2 w i w i J so nέ 9t 0 implies /Πi > 1

2 ŵ/Wi = Σ π i w i , so ΠiΦO says w* > ί;

2 m< = \ltI, so «i > t gives m^ = 1

which are inconsistent. Thus | It \ < Λ/r. If t > A/2 and π* e /£, then Πi > kβ
som ί = l ; but that says nt < kβ. Thus /̂  is empty for t > A/2. q.e.d.

Next we determine the root system of the fixed point set of an inner auto-
morphism of a compact simple Lie algebra.

2.8. Proposition. Let © be a compact simple Lie algebra with simple root
system Ψ = {ψl9 -, ψ{\y and θ an inner automorphism of ©. Normalize θ,

so θ = ad(exp 2TΓN^T X) where x = 2 c ^ € S)o. / / μ = 2 m *^* & ^ e

maximal root of © so that μ(x) = 2 c*> then Ψx, defined as follows, is a
simple root system for ®*:
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(2.9) Ψx = {φieΨ:ci = 0}, if

(2.10) Ψx = [φt € Ψ:ct = 0} U {-/*} ,

Proof. Let λ = £ e*^ be a positive root of ©. Then 0 < at < mt and

λ(x) = 2 — ^t, so 0 < Λ(*) < 1. Now, using (2.3), λ is a root of © if and
m

only if λ(x) is 0 or 1 λ(x) = 0 if and only if c* ̂  0 implies at = 0 and
Λ(*) = 1 if and only if c* =£ 0 implies α* = mt. If μ(*) < 1, then λ(x) < 1
and it follows that λ is generated by the root system of (2.9). If λ{x) = 1
then μ(x) = 1 and there is a chain {λ = λθ9 λl9 , λq = μ) of positive roots
such that λi+1 = ;kί + φj. with c ;. = 0, so —λ = 1(—μ) + Σ (mi — αO0* is

generated by the root system of (2.10). Now we have proved Ψx contains a
simple root system of ®*. As φ(x)eZ for every φ 6 Ψx, the converse follows
and the proposition is proved.

Using the normalization given by Proposition 2.7 we determine necessary
and sufficient conditions that an inner automorphism have a given order or
that its fixed point set is the centralizer of a torus.

2.11. Proposition. Let θ = Λi(exp2τr'vj— 1 JC) be an inner automorphism
of a compact simple Lie algebra ® with maximal root μ^Σmiψi, in a simple

root system ψ = {ψl9 , φ{\. Normalize x = £ £&% in accordance with Pro-

position 2.7.

1. θ has finite order k> 0 if and only if (la) the numbers nt = kc^mi =
φi(kx) have the property that {nt :ct> 0} is a nonempty set of relatively prime
integers or (lb) x = 0, k = 1.

2. ®β is the centralizer of a torus if and only if (2a) μ(x) < 1 or (2b)
μ(x) = 1, Ci > 0 implies that mt > 1, and {mi: ct > 0} is a set of r> 2
relatively prime integers.

3. ®e is not the centralizer of a torus if and only if and only if (3 a) μ(x)
= 1, (3b) Ci > 0 implies mt > 1 , and (3c) {m îCi > 0} either has just one
element or is a set of r> 2 integers with greatest common divisor p = 2,3,
or 4. In the former case of (3c), x = v$ and θ has order mά> l\ in the
latter case of (3c) // θ has order k then p divides k.

Proof. For (1) we have θk = ad(txp2π t~^Tkx), so θ* = 1 if and only if
the ni = kcjmi = φiikx) are integers. Factor k = tu, u > 1 again, θ* = 1
if an only if the Π</M are integers. Let βk = 1 now 0 has order A if and only
if the set {nt: ct t̂ 0} is a set of relatively prime integers. This proves (1).

Let I = {i:Ci> 0} be enumerated as {zl9 . . , ir}. If JC = 0 then & = ®,
centralizer of the toral subalgebra {0} c 2 , and 0 = μ(x) < 1. In the proof
of (2) and (3) we may now assume r > 1.

If μ(x) < 1, so ¥x is given by (2.9), then ®° is the centralizer of the toral
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algebra {J^Ί 2 hsvis: ti$ real}. In the proof of (2) and (3) we may now as-

sume μ(x) = 1.
If mis = 1 then the second paragraph of the proof of Proposition 2.7 gives

us a W-Γ-conjugate J ' C S Q oi x such that μ(x*) < 1. As ®' and ®5' are
conjugate by Lemma 2.4, where θ' = αd(exp 2τr4^ΓΪ *'), ®tf is the centralizer
of a torus. In the proof of (2) and (3) we may now assume each mis > 1.

If r = 1, then * = t?^ and θ has order mίχ, and ©' cannot be the centralizer
of a torus because it is a proper (by miχ > 1) semisimple (by (2.10)) sub-
algebra of ®. In the proof of (2) and (3) we may now assume r > 1.

Re-order Ψ so that / = {1, . -.,r}; then Ψx = {ψr+li - ,ψt, —/ι}. Define
z = Vj € £>0 so that Ψz = {^2, - , φu — μ) is the simple root system for ®p, y> =

Let S)Q be the fundamental simplex of the semisimple algebra ©*. Then
i

S)ό has vertices {v'Q, vΊ, , #|}, where mί(—^) + 2 m ί^ i i s * e maximal root
i-2

of ®<% where vό = 0, where v[ = 7v^ and where v̂  = ^-(Vi — vθ for

2<i<l. Let @ be the toral subalgebra {4^1 Σ t^: tt e R} of ®* then ®*

is the centralizer of @ in ©<". Further @ is the center of ®* because @ c ®*
and both @ and that center have the same dimension r — 1. Let S be the
centralizer of @ in ®. Now @* c 8, and & is the centralizer of a torus if
and only if ®* = S.

Let λ = Σ 0*0* be a root. Then Λ is a root of S if and only if 2(vt) = 0

for 2 < ί < r. In that range, i ( ^ = Jϋi (ϋί ίL). Thus λ is a root of

S if and only if aι/m1 = ajm2 = = ar/mr. In other words, ©* = S if and
only if ®* has root system given by

(2.11) Λx = {Λ = 2 fli^i € il: all the β<t/ιπt# are equal} ,

where we revert to the notation / = {il9 , fr}.
Suppose {mix, , m i r} relatively prime. Then there are integers ui$ with

2 wismίίf = 1. Let ^ = 2 αί0ί ^ e a r o o t 0 * S? s o ^ ^ ^s a r e a l number t

such that ai$ = ίmi5 for 1 < s < r. It t = 0 then >l is a linear combination of
1 r

the roots in Ψ Π Ψx. It tψO then -- 2 uifli9 = 1. As the sum is an integer

and |/| < 1 this says t = ± 1 , so λ(x) = teZ. In either case, now, λ is a
root of ©*. Thus ®* is the centralizer of the toral algebra ©.

Conversely suppose {mil9 > , mίχ} not relatively prime, let p > 1 denote
the greatest common divisor, and let q be a prime divisor of p. Now #
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divides each mis and we write mi$ = qais. By classification the only possibili-
ties for q are 2 and 3; here 5 is excluded because r > 1. If each of the

mig = 2 we define λ = £ φt. If some m i s Φ 2, then © is of type F4, E7 or E8,

and we define Λ = λq where

# 7

Es

2 4 3 2

£ £ iζ *•

j £ 3 4 3 2

2 4 6 5 4 3 2

2̂ = ^3=^2 + ̂ 3 + 2^4 + ̂ 5 + ̂ 6 + ̂ 7

^=Λ+2Λ+8# 8+8#4+2Λ+2Λ+#7+2Λ

^3=02 + 203 + 04 + 05 + 06 + 08

Now we have a root Λ = £ α ^ of © with m*s = gα is. Λ satisfies the criterion
of (2.11), but λ is not a root of ©' because λ(x) = \\q. Thus ©' is not the
centralizer of a torus. If p ψ 2 then a glance at F4, E7 and E8 above shows

I r

p = 3 or p = 4. In any case, if 0 has order k, then A: = T. ΠiiΠi = 2 n i m ί
i« l 5-1 *

= p Σ Πi^niijp) so p divides k.

This completes the proof of (2) and (3).

3. Classifications involving inner automorphisms

We apply the results of § 2 on an inner automorphism θ of a compact Lie
algebra ©, obtaining classifications both for the case where θ is of order 3 and
for the case where ©* is not the centralizer of a torus. We start with two
lemmas which allow us to avoid duplication for the case where β is of order 3.

We specialize the remark just after Proposition 2.6:
3.1. Lemma. Let x, y e S)o such that ad(txp iπf^A x) and ad(exp 2π^^ϊ y)

are automorphisms of order 3 on ©. Suppose that x and y are on edges of
S)o containing v0, i.e. x = (mfβtyi and y = (mjS/3)Vj. Then x ~ y if and
only if

(i) mt = mj = 1, 1 < r,s < 2, and γ(ψi) = φs for some γ e Aut (Ψ) or
(ii) mt = mά, = 2, r = s = 1, and γ(ψi) = ^ /or some γ € Aut (?Γ) or

(iii) mi = wij( = 3, r = s = 1, α«<2 f ( ^ ) = 0 7 /or Λ?m£ p € Aut (F).
Now we need something which is less obvious:
3.2. Lemma. Let © be simple. Suppose that x = %(Vi + #;) with i Φ j

and mtz= ntj = 1, and y = £(#r -f Ί;S) wiίΛ r Φ s and mr=zms= 1. Then
(i) © is <?/ type DL or E6 and x ~ y\ or
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(ii) © is of type Al9 and x ~ y if and only if, assuming £
i < j and r < s, and assuming the ψk ordered as at the
right, {r — 1,5 — r — 1, / — s] is a permutation of {i — 1,

Proof. As there are two distinct indices /, / with mt = ~μ=φ°
m ; = 1, © must be of type AL(l > 1), Dt(l> 3) or E6. We run through these
cases.

1 2 3 2 1

If © is of type Eβ the mk are given by o-o-<p-o-o, so x = y, so x ~ y.
O2

l θ ^ 2 2 2/θi

pO-O θ(

= mt = 1 and m A = 2 for 2 < £ < /. First suppose c = ^ ( ^ -f v 2). If y =
JC then x ~ y; otherwise y is $(vaor2) -j-i?i) and we may apply an element of
Aut(?P") and assume y = ^{vλ + ^ ) . We then apply an element of Aut(?F)
which interchanges ψ0 and ψl9 sending y to x, and see * — y. Now suppose
x :£ ^ ( ^ + t;2) ^ y. Then we apply elements of Aut (Ψ) sending x and y to
^ ( ^ + V z ) and see x ~ y. Thus t — y in any case.

If © is of type At the mk are all 1. Following the numbering in the state-
ment of the lemma, x ~ y if and only if there is either a cyclic permutation
of {0,1, , /} or a cyclic permutation followed by reversal of order, sending
{0, z, /} to the set {0, r, s}. T h e assertion follows.

We now have the classification for inner automorphisms of order 3.

3.3. Theorem. Let φ be an inner automorphism of order 3 on a compact
or complex simple Lie algebra ©. Choose a Cartan subalgebra and let Ψ =
{ψi> '' 9 Φι} be a simple root system for ©. Then ψ is conjugate in the inner
automorphism group of © to some θ = ad(exp 2π4^ϊ x) where either x =
fyriiVi with 1 < mt < 3 or x = %(Vi + Vj) with m £ = ms = 1. A complete
list of the possibilities for x, the fixed point set ©* and a simple root system
Ψx of ©*, up to conjugacy in the automorphism group of ©, is listed in the
table below.

Remark. To separate the table entries into conjugacy classes under the
group of inner automorphisms of © we operate as follows.

Al9 / > 2 : distinguish between %vt and ^vt^i+1 for 2/ Φ I + 1 between
K v * + VJ) 0' < ί) a n d Uvr + Vs) (r < 5)i if {r - 1, s - r - 1,
/ — 5} is an oΛ/ permutation of {i — 1, / — i — 1, / — ;}.

Z>4: distinguish between %vl9 %v3 and %v4.
Dl9 l>5: distinguish between $vt and ^Vw
E6: distinguish between $vx and | v 5 ; between \v^ and ft;4.

In any case, conjugacy of θ in the full automorphism group of © results in
conjugacy of @* by the inner automorphism group of ©.
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i f,

[~Uvr+vs) if

4^

4(i7l + V3)

iVl [-iVi-i]

empty X1

{Φ\* * * * » Φi—\'

Φί+1 ' ' ' Φl\

Φi + ly ' ,Φj-l'y

Φi+ly ' y φ l }

\Φli ' ' * y Φi—ly

Φi+ly ' * * y Φlί

{A> A> A}

{A» Φΐ\

{A» A t •• » A - i }

A+i» » A )

{At A» •••! A-»>

-as-

*****
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©

©2

-M 2 3

2 4 3 2 -̂ »

1 1

%6-μ

i

3o ψ

I

X

v3

§"<

to l~tol

Vn+vύ

Ά^2

s..

VΌ J

{Φύ

{φi> Ψs* ΦΔ

{Φu Φi', Φt, -μ)

{Φl, Φi, Φz}

{φι, φ3, Φ*, Φi, Φi}

{φ\\ Φz, Φt, Φi, Φe}

8r s®a s

axθa.θϊ'

{Φi,---,Φi} j « 5 ® ϊ >

{Φiy Φzy Φ*f Φβ}

(Φ>,-,Φr}

{Φly '"yφbf Φl)

[Φly Φ2'y

Φiy Φby Φ*y Φly ~μ)

{Φly ' * ' y Φ%y Φs}

Φiy yφbyΦ*}

{Φly '",Φ7y ~μ}

S2^|j **2 \i9 **2

Shifts2
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Proof. Conjugating ψ in the inner automorphism group of ®, we take it
to θ = ad(cxp 2π4— 1 *), x = £ L n^Vi e S>o> a s ώ Proposition 2.7. Now
1 < |/i| < 2, 0 < |/2 | < 1, and It is empty for t > 2. If some «, = 2 then
Proposition 2.7(i) says m, = 1, contradicting Proposition 2.7(ii); thus /2 is
empty. Now either x is of the form ^m^i with \I^ = 1, or JC is of the form
^(m^i -f rπjVj) with i ^ /and | Zx | = 2. In the former case Proposition 2.7(i)
says 1 < mi < 3 in the latter case it says mt = 1 = m ; . Now the proof of
the theorem is reduced to checking the lists in the table and to verifying the
remark.

The list of possibilities for x in the table is clear, the stated equivalences
being the content of Lemmas 3.1 and 3.2. Proposition 2.8 gives Ψx and thus
®9. This checks the table. To check the remark for At and Dt, the reader
need only write out some matrices. To check it for E6 he must take the

standard involutive outer automorphism σ:o-o<^:~: with fixed point set of

type F4, follow it by an inner automorphism sending σ(©*) back to ®β, and
verify that the composite acts on the center of ®* by z —> — z. q.e.d.

Note that the situation is much simpler for ψ of order 2, i.e. for symmetric
spaces. There either x = vt with m* = 2 (non-hermitian symmetric space)
O Γ Λ = h)t with rrii = 1 (heπnitian symmetric space).

The classification is still feasible for ψ of order 5, although it becomes
somewhat more complicated:

3.4. Proposition. Let 0 be an inner automorphism of order 5 on a com-
pact or complex simple Lie algebra @, and & the fixed point set of θ. Then
θ is conjugate, by an inner automorphism of ®, to ad(exp2π4^ϊx) where

(i) x = —t-Vi with 1 < mt < 5, or x = | v t with mt = 2, or x = \Vι with

/?!*= 1 or

(ii) x = %(Vi + Vj) with mt = mό = 1, or x = %(2Vi + v3) with 1 = mά <
mi<2, or x = ^ ( 3 ^ + Vj) with mόr = 1, mt = 3, or x = f ( ^ + v3) with
1 < rn, <; mi <: 2, or x = £(3t?i + 2vό) with mt = 3 and mά = 2; or

(iii) JC = i(t?i + ^ + ^*) ">*'*/* m f = m7- = mk = 1, or J: = i(2Vi + vd + vk)

with 1 = mk = mj < mt < 2; or
(iv) x = %(Vi + Vj + ^ + i?£) with mt = m̂  = mk = mt = 1.

/Λ2 particular, if ®0 is not the centralizer of a torus, then ® is of type Es

~ ~~ i ~~ΦΓ -P with x = Vi, mt = 5, and ®° of type A4 φ Ak.

Proof. Proposition 2.7 shows that (i) through (iv) is a complete list of the
possibilities for x. If ®9 is not the centralizer of a torus, now Proposition 2.11

shows x = Vi with mt = 5. In that case © is of type E8 ~~ i H ~ ~ ~~-r

with ®β of type Λ4 φ A4 by classification. q.e.d.
Now we go on to a somewhat different type of classification. The follow-

ing is immediate from Propositions 2.7, 2.8 and 2.11.
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3.5. Theorem. Let % be a compact or complex simple Lie algebra with
simple root system ¥ = {φl9 , φt}9 xe&o, θ = ad(txip2π^^Ίx), ®° the
fixed point set of θ, and Ψx a simple root system of ®*.

// © is of classical type then the following is a complete list of the cases for
which ©' is not the centralizer of a torus:

* = Σ chvis

 w i t h cis > ° a n d Σ ch = i

Ψ = { — /i, φl9 "9φi^ιl 0<1 +i,

type Au I > 1: does not occur,
1

type Bu I > 2, ^ 4 i

type D^

<fr3

φir+l9 - -,φι}l and

2 < iτ < . . . <ir <> I and <3° is of

type d, I > 2, αb -i- --m=D : here 1 < iτ < . < ir < I — 1 and ®β is

of type C^φAu.^,® Λ . ®Air-ir^1@Cι.ir®T^\

type Dt, I > 4, ° ) o - b - "<)VO x : Λ^re 2 < ix < . . < i < I — 2 and ©'
-AΌ 2 2 2 O 1

is of type D^

If ® is of exceptional type then the following table is a complete list up to
automorphism of © of the cases for which ©' is not the centralizer of a torus;
for each entry, the ci listed are arbitrary positive numbers with sum 1.

© 2

3 2 -μ

ΨX92

^ 3U3

X

v1

Vi

Vi

v2

v4

CιV1 + C2V!t

c2v2+c4v4

C1V1+C2V2+C4V4

Ψx I ®*

{02, -μ)

IΦi; -μ}

{Φz> Φz, ΦA, —μ]

{ΦI',ΦZ>ΦA, —μ}

{Φiyφ2;φ4, —μ}

{φi,φ2,φ3; —μ}

{^3, φ4, -μ)

W2, Φz\ —μ}

{ΦuΦz -μ}

{Φz\ -μ}

%4

H2©2ί2

sr3®sii

Kz®*1

sίΣΘSTiθsε1

sriθsfiθίίiθs:1

STi@2ίi@S:2
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Y

2<L

X

C2V2-τ~C4V4

\^*C2V2 + C4V$~-'C4V4 4" C^Vfίl

C3V3 + C5V5

C2V2 4* Cβ^β

c4v44-c7v7

c2v2+c6t;6+c7v7

c2v24-c4i;4H-C7V7

[^c4i;44-C2i;6+c7v7]

c 2 V2 4- C4V4+c6v6 4- c7τ;7

Ψx

{Φl,

Φz, ΦA, Φi, Φβ, —μ]

{Φi,φi,

ΦΊ, -f)

ΦΊ, —t>]

{Φl, Φi, Φϊ,

Φi, Φt, —μ; Φi)

{Φl, Φi, Φί,

Φt, Φr', Φt, —μ}

{Φι, Φί, Φi, Φt, ΦΊ',

-ri
{A;

Φί, Φt, Φi, Φe, -f)

{Φl', Φi', ΦΊ',

Φi, Φ», —μ]

{ψlt Φt, Φi,

Φi,φβ,—μ]

{Φi, Φi, Φi, Φt, —μ)

{Φi, Φi, Φi, ΦΊ', —μ]

{ψι, Φi, Φt, Φe, —μ)

{Φi\ Φί, Φi, -μ)

* * * * *

%β»β»*g

*****

*Ί

M****9*

* * * * * * *

******

* * * * * * * *

* * * * * * * *
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3

©8

4 j *

T

v7

c e V t + c t V t

C3V3+C6V6

c3v3+c6v8

C\V\ 4* C7V7

C1V1+C0V2

C2V2 + C7V7

to,

to ŝ,

tot Φ2,

{Φl, Φ2,

Φδ,4

{Φu -

4

to,

to,

to,

« , -

to, ^2;

to,

{Φz,

to,Λ,

to, 2̂»

,Λ,-M

,Λ,-rt

Λ , ΦB',

>6,φ7,-μ}

'β, ^ 7 , — μ)

ΦΊ, -μ)

9 -μ)

, ΦΊ, —μ)

ΦΊ, -μ}

^ 4 , 05*»

, 06,0β;

,08,-,}

ΦA, 0β;

'6,07, - M

0s; —μ]

Φz, ΦA, 08*,

0β; —μ}

UK**
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<S8 (cont.)

*° 1

4<L

205&7

~MOΨ0

X

CιVι+c3υz

c3v3+c7v7

C2V2 + CbVs

c2v2+c3v3

c3v3+c5v5

CιV1+C2V2 + C7V7

CiOi+CsVs+C7V7

CiVi + C3V3+C7V7

CιVι + C2V2 + CSVi

c2v2+cδvδ+c7v7

CιVι + C2V2 + C3V3

c2v2+c3v3+c7v7

C1V1+C3V3+C5V5

C3Vz + CsVs + C7V7

C2V2 + C3V3+CsVs

CiV! + C2V2 + C3VZ + C5 V5

CιVι + CtV2 + CzVz+C7V7

Ψx

{ΦϊyΦs;

Φ*y Φby Φβ, Φ?> —μ)

{ΦlyΦ2'y

Φ4y Φ&y Φβ'y —μ\ Φi)

{Φl,ΦzyφAyΦ%\

Φβyφly—μ}

{φi yφ*;

ΦA> Φby Φ*y Φ?y —/«}

{φ\yφ2'yΦ\\

Φ$;Φ(iyφ7>—μ}

{Φzy Φk> Φ$y Φβ> Φύ

{ψ2y Φzy Φiy ΦBI

Φ*; -μ)

{ΦϊyφB,

—μ ΦiyφδyΦβ}

{Φ&y Φ$y Φil

Φβ, Φ7, —μ)

{ΦlyΦϋyΦzyφϊy

Φs'y -μ)

{Φi, Φi, Φ<i> Φ'ty —μl

ΦB}

{φl'yφs'y

— μ,Φ4yφ*yφ<i}

{φϊyφs Φi',

Φs,Φly -μ]

{ΦlyΦϊ,

Φt'y Φi', Φβ'y - μ }

{φl'yΦslΦi'y

Φβyφly —μ]

{φs'yφAlΦβyΦ'y —μ}

{—μ Φs ΦtyΦsyφii}

2r2®sr3

a s®aiθ«i
©srs®^:1

2t5®ai©s;2

2>4©3ίie$ίi®£:2

ai®»i®«i

@st3@5ε2

κ3®%®%2

δίi®ai©STi

©sr 3θs: 2

βββaiφa?

a^aiφai

©a3®5ε2

a 1 ® a 1 ® a 1

Θ2r3@5ε2

ajφβiφax

®2ίi©2ίi®5ε2

Sli®2ίi®2ri

®sr 3 ®s 2

2Ti®2Ti®2l3©5:3

Sίi©2ίi®St3©S3
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<δ8 (cont.)

29*1

3<Uβ

-M6Φ0

X

CχVι+c2v2 H- c 5 v δ + c 7 i ; 7

C1V1+C3V3 + C5V5 + C7V7

C2 V2+C3V3+C5 V5 + C7V7

C lVi + C2172 + C3173

+c5v5+c7v7

{&; Ψ%\ Φύ Φ&; —μ}

{Φi φs Φi'tΦfii-μ}

{φsi ΦA\ Φβ; -μ}

$ti@2ii02l303:3

Sίi®^©*!

®2ίiθSίi@S;3

®sri©5ε4

4. Almost complex coset spaces of positive characteristic

In this section we find all almost complexm anifolds (X, /), X=zG/K, where
G is a compact connected Lie group acting effectively on X, K is a subgroup
of maximal rank, and / is a G-invariant almost complex structure on X.

The preliminary step is to show that K is a closed connected subgroup of
G:

4.1. Proposition. Let G be a compact connected Lie group, and K a sub-
group of maximal rank. Then K is a closed subgroup, so X = G/K is a
manifold. If X carries a G-invariant almost complex structure, then K is
connected and X is simply connected.

Proof. The identity component Ko is a closed subgroup of G, according
to Borel and de Siebenthal [3, p. 220]. Let Z be the center of Ko; so Ko is
the identity component of the centralizer of Z. Z is the product of a finite
abelian group and a torus, so KQ is the identity component of its normalizes
Let N be that normalizes N/Ko is finite because N is closed in G thus K/Ko

is finite because KcN; this shows that K is closed in G. It follows that X =
G/K is a manifold.

It is standard that connectedness of K implies simple connectedness of X,
for the maximal rank condition shows that the full inverse image of Ko in the
universal covering group of G is connected.

Let / be a G-invariant almost complex structure on X, and k e K9 a = ad(k).
Then a is an automorphism of G which preserves K; thus acts (as K) on
G/K, and preserves /. Now k s Ko, proving K connected, as a consequence of

4.2. Proposition [12, Theorem 13.3(1)]. Let X = G/K where K is a
connected subgroup of maximal rank in a compact connected Lie group G.
Let a be an automorphism of G which preserves K, thus acts on X, and
preserves some G-invariant almost complex structure on X. Then the follow-
ing conditions are equivalent, and each implies that a preserves every G-in-
variant almost complex structure on X:

(i) a is an inner automorphism of G.
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(ii) a \κ is an inner automorphism of K.
(iϋ) a = ad(k) for some element kzK.
This completes the proof of Proposition 4.1. q.e.d.
We now obtain some information on the linear isotropy representation

which will allow us to give a systematic treatment of invariant almost complex
structures.

4.3. Theorem. Let K be a connected subgroup of maximal rank in a
compact connected Lie group G, © = ® -f 27Ϊ, orthogonal decomposition
under the Killing form of ©, and χ be the linear (isotropy) representation of
& on S£flc. Let Z be the center of K9 and {αj the distinct unitary characters
on Z such that 2JΪC = 2 21^ where 3X1̂  ̂ = 0 and adG\z is a multiple of at on
Wit. Then

1. adG\κ preserves 37lt, acting there by inequivalent irreducible representa-

tions χi9 andχ= ΣXi>
2. the following conditions are equivalent: (2a) G/K has a G-invariant

almost complex structure, (2b) none of the at is real valued, (2c) {α*} can be
enumerated {al9 a^\ at9 a-t) with &i = <*-* Φ ocu and (2d) fo} c a n be
enumerated {&, χ β l ; χt, χ . J such that χt=zχ^φ χy9

3. in the case and notation of (2) the G-invariant almost complex
structures J on G/K are precisely the tensor fields constructed as follows:

3DΪ = 2 5Ki where ^ is the real form 5DΪ Π (3Kt + 2)1-0 of 2)1* + 3K_ί9 / is
i l

the linear transformation 2 £ί^t WΛ^Γ^ e{ = ± 1 and Jt acts on 5ϋii as the
i = l

transformation of square — 1 with Wit as 4— l-eigenspace and 2K_t &s — J— 1-
eigenspace, 2Ti w identified with the tangent space to G/K at a point, and J
is extended to an invariant tensor field J by the action of G;

4. in the case and notation of (2), there are precisely 2C G-invariant
almost complex structures on G/K.

Proof. (1) is the statement (for the case A = Z) of Kostant's theorem
[11, Theorem 8.13.3], Now enumerate {«4} = {al9 α . x ; at9 «_*; α ί + 1,
• , <xr} with oii = a.i Φ at for 1 < i < t and α^ = cij for ί + 1 < / < r.

Then 2Jί = Σ 5Ki + 2 2Λί w h e r e 5Kί = 2R n (2Kt -f 2R-0 and 2K; =

2Jί Π 2)1 .̂ As {χt} are mutually inequivalent, the commuting algebra of χ on
t r *

2Jί is A = 2 Ai + 2 Aj where /4̂  ^ C acts on 2)1* and /4y ̂  i? acts on

2Jiy. In particular, A has an element of square — 1 if and only if there no

aj = aj9 and in that case the elements J of square — 1 are the 2 ^ i 9 εt =
± 1 , Λ acting on 2Ji* with 2Jί±ΐ as ±4—l-eigenspace. There are 2 ί choices of
{e*} q.e-d.

Our first consequence of Theorem 4.3 is a short proof of the criterion for
the existence of an almost complex structure.
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4.4. Theorem (Passiencier [9]). Let K be a connected subgroup of
maximal rank in a compact connected Lie group G. Then G/K has a G-in-
variant almost complex structure, if and only if & = ©*, a fixed point set for
some finite group θ of odd order of inner automorphisms of ©.

Proof. Adopt the notation of Theorem 4.3. If $ = © β where θ is an odd
order finite group of inner automorphisms of ©, then θ = ad(A) for a finite
subgroup A c Z, and each at(A) has odd order > 1. Now no αr* is real and
Theorem 4.3(2) gives almost complex structures.

Conversely suppose that G/K carries a G-invariant almost complex struc-
ture, so none of the on is real. Choose a finite subgroup AcZ such that
ίΐ = ®ad(Λ) decompose A=.EχF where E is the Sylow 2-subgroup and
the order \F\ is odd. Let θ = ad(F), odd order finite group of inner auto-
morphisms of ©. We must prove $ = ®*.

If Sϊ ψ ®θ there is an a% which annihilates F. Then u > 0 where we define
2U to be the highest of the orders of the at(e) such that e € E and α^F) = 1.
For that at and that e, we define 9^ = 2JI* and ϊ ί p + 1 = [%, %], and have
αd(e) = — 1 on S t ^ . Then we take 3K, c 5Rtt_i and have α/F) = 1, aό{E)
= {±1}, contradicting the fact that ccj{A) is not real. The contradiction
shows & = ®β. q.e.d.

A second application of Theorem 4.3, systematizing certain result of A.
Frδlicher [4], H.-C. Wang [10] and Borel-Hirzebruch [1], is the integrability
criterion:

4.5. Theorem. Let X = G/K where K is a connected subgroup of maximal
rank in the compact connected Lie group G. Let J be a G-invariant almost
complex structure on X, and {SSSl^ 3JLi; 2JΪ*, SDi-J the irreducible repre-
sentation spaces of K on 2KC, as in Theorem 4.3, ordered so that 3Jί+ =

2 2Ki is the {^Λ)-eigenspace of J and 3Ji- = £ aJL* is the (— ^^ϊyeigen-

space. Then the following conditions are equivalent:
1. J is integrable, i.e. / is induced by a complex structure on X.
2. ®c + 3K+ is a subalgebra of © c .
3. 2ft+, 2R-, Sϊc + 3K+ and $tc + 2R- are subalgebras of © c .
4. Lei Z &e ίλe center of K. Then K is the centralizer of the torus Zo and

there is a maximal torus T of G, Z (Z T a K, and a system ¥ = {ψl9 , ^}
of simple T-roots of G, such that

(4a) Ψκ = { r̂+1, , ψι) is a system of simple T-roots of K,

(4b) 2R+ = 2 ©

(4c) ί/ze 3K£ are the spaces 2 ®; where each At is a nonempty subset of

Λ, Λ.i = — Λiy consisting of all roots of the form J] a$$ for fixed integers
{au , ar}9 not all zero and depending on z, and variable integers
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Proof. (1) implies (2) because 2ft* is the holomorphic tangent space; for
the Poisson bracket of two holomorphic vector fields on a complex manifold
is a holomorphic vector field.

Assume (2). Conjugation means conjugation of © c over @. 2ft ~ is the
conjugate of 2ft+ and SF + 2ft" is the conjugate of SF + 2ft+. For (3) now
we need only check that 2ft + is a subalgebra of ® c . Let £ = Stc Π [2ft+, 9ft+].
2 is an ideal in ® c if £ Φ 0 now the representation of $ c on £ has zero-
weights. That says that we have 1 <*i<]<t such that cct = ah contradict-
ing the hypothesis on indexing the {2ftr} which says όCj = α:_;. Thus £ = 0
and 2ft+ is an algebra. We have proved that (2) implies (3).

Assume (3). Let Z be the center of K and suppose (Xi(Z0) = 1. Then
any subalgebra of © c containing 3ftt has nonzero intersection with ftc. Now
(3) says α<(Z0) Φ 1. Thus K is the centralizer of the torus Zo. It follows
that $ c + 2ft+ is a parabolic subalgebra of ® c with reductive part Stc and uni-
potent radical 2ft+; (4a) and (4b) are immediate, and (4c) follows from
Theorem 4.3(1). Thus (3) implies (4).

(4) implies G/K ^ Gc/P, where P is the complex parabolic subgroup with
Lie algebra Stc + 2DI", the isomorphism gK \-+gP sending / to the natural
complex structure on Gc/P. Thus (4) implies (1).

4.6. Corollary. Let G be a compact connected Lie group, K the centralizer
of a toral subgroup, S the identity component of the center of K, and NG(K)
the normalizer of K in G. Let T c K be a maximal torus of G, Wκ C WG

the Weyl groups of K and G relative to T, and NG(WK) the normalizer of Wκ

in WG. Then
(i) Wκ is the centralizer of @ in WGy NG(Wχ) is the normalizer of © in

WG, and so NG(WK)/WK is the group of linear transformations of @ by Weyl
group elements of G;

(ii) NG(K) = NG{WxyK, normalizer of S in G, and Nΰ(K) ->NQ(K)/K
restricts to the projection NG(WK)-+NG(WK)/WK; in particular NG(K)/K s
NG(WK)IWK;

(iii) the common order of NG(K)/K and NG(WK)/WK is the number of
distinct G-invariant complex structures on G/K.

Proof. Statements (i) and (ii) are clear, and they show that the order
I NG(K)/K I is the number of decompositions 2WC == 2ft+ + 3ft" such that some
system of simple Γ-roots of G has properties (4a) and (4b) of Theorem 4.5.

q.e.d.
The third application of Theorem 4.3 is a counting of almost complex

structures comparable to Corollary 4.6; it refines a result [1, Prop. 13.4] of
Borel-Hirzebruch.

4.7. Theorem. Let K be the centralizer of a torus in a compact connected
Lie group G and let S be the identity component of the center of K. Decom-
pose © = $ + 2ft.

1. There is a maximal torus TcG and a simple root system Ψ =
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{ψu ' ' * > Ψι)sucn that K has simple root system ΨK<ZΨ and © = {x e S : ψ{x)
= 0 for every ψzΨκ}.

2. Enumerate the complement ψ — Ψκ = {0<x, , ψir}. Let {ais} be
r

integers such that there is a root of the form 2 atsφi 4- Σ bjφj and ^et

$flail, aUt..., β< denote the sum of all root spaces ©2 with λ of that form. Then

Zc + 2KOr..., o = ®c, ® acts by an irreducible representation χaiv ...# β< on

any other SWβ<1..... α< r, e n d χ β < l i . . . . air = χ . β i l - β < r ^ χ β < l i . . . . α ί r if some
aU Φ 0.

3. Lei / Z?e /Λ̂  number of nonzero linear functionals on the center @ o/
$ obtained by restriction of positive roots2. Then G/K has precisely 2ι G-
invariant almost complex structures, as defined in Theorem 4.3.

Proof. (1) is the standard result on the existence of consistent orderings
for the roots of G and K. For (2), observe that we may replace the center of
K by S in applications of [11, Theorem 8.13.3], hence in Theorem 4.3,
because K is the connected centralizer of S in G. And for (3) observe that t
is the number of SKαir ..., air, ai$ 2> 0, distinct from 3ROf ...t 0. q.e.d.

In order to proceed we need a few trivial remarks. Let X = G/K where K
is a connected subgroup of maximal rank in the compact connected Lie
group G. Assume that G acts effectively on X. As K contains the center of
G, this means that G is semisimple and centerless. Now

(4.8a) G=G,χ . . - X Gr , K = K, x - -. x Kr, X = Xx x . . . x Xr,

where

(4.8b) G, is simple, ^ = ^ 0 ^ , Z, = GJK,.

For lack of a better term, we refer to (4.8) as the "decomposition of X =
into simple factors". The point is that, in Theorem 4.3, each <2Slj must be
contained in one of the ©f. Now Theorem 4.3 gives us

4.9. Proposition. Let £Γ be the class of tensor fields of one of the types:
complex structure, almost complex structure, riemannian metric, almost her-
mitian metric or hermitian metric. Then the GΛnvaήant tensor fields of type
3~ on X are just the tensor fields ξ = ξτ® ®ξr where, in the notation
(4.$), ξi is an arbitrary G^-invariant tensor field of type &~ on Xt.

Now we can reduce questions of classification to the case where G is simple.
Our next application does this for the case where K is not the centralizer of
a torus, shortening and sharpening a classification of R. Hermann [8]:

4.10. Theorem. Let G be a compact connected simple Lie group and let
K be a connected subgroup of maximal rank which is not the centralizer of a
torus. Suppose that G/K has an invariant almost complex structure, i.e.

2 These linear functionals are, of course, just the positive (restricted) ©-roots of ©.
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$ = © θ where Θ is an odd order finite group of inner automorphisms of ©.
1. Suppose that ® has an automorphism with fixed point set $ϊ. Then S

is conjugate to ®* where θ = ad(exp 2π»f^ΐx)9 x € S)o, has odd order k > 1
all possibilities are listed in the following table; there the nt are positive
integers, arbitrary up to the specified relatively prime conditions and the
condition under k.

2. Suppose that K is not conjugate to one of the ®* listed above. Then
ί£ = ® β where

(i) θ is the product of cyclic subgroups {a} and {β} of orders 3, a = ad(a)
and β = ad(b), K having center {a, b: a* == bz = 1, ab = ba)

o—

-μ 2
o—o-

1

2

2

3
-CEZ

$

©7

1

2

3

4

3

- !

=»

4 2

B

1

9*i

S>*3

| *

όφ5

t.

X

5

3

(» S ,» S )=1

« . . .

{Φly Ψi'y Φ

{Φly Φί'y ΦA

{Φly Φi'y ΦA

-„

» * * * y

Φi, —μ)

yφl\

Φey —μ}

3

3

3

sr2Θ2r2

k

3

3

3

3

3n3
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©

e 8

29*1
4<W2

0 Φ
* Γ

4<W

3<U
20Φ7

X

Vs

γ(nβvβ+n6va)

(Λ 6 , π 8 ) - l

-£(2n3v3+n6vt)

("3,rt*)=l

- |(2rt 3 i? 3 +

ΛβVβ+Λβ^β)

(π 3,π 6,/z 8)=l

{~μyφl\Φly "y
ΦtyΦs}

{Φly'-yΦly-μ}

{Φly Φly Φ%y Φ%\

Φhy Φβy Φly - r f

{-μyφllΦly

--yφ*}

{φ\yφϊyφ*y "y

Φiy -μ)

{-μyφl'yΦlyΦl,

Φiyφhyφ*}

{φly Φt\ Φ*y Φs'y

Φly ~μ]

©*

« 8

st2®2ί2θδr2

®sr205ε2

3

3

5

3

3

3

3

k

3

3

5

3/I6

+ 3 Λ 8

6n3

+3π8

6π3

+3nβ

6n3

+3π6

+3π8

(ii) X c L c G with © 0/ typ« JE8, with 2 = ®β 0/ rypβ ^ 2 Θ £ : 6 ^ d a =
έ3wf(exp 2^4^Tt;6) nwrfer (£8 in ί/ze ίαZ?/̂  above, and with $ = fi^ 0/ fype
^42 θ (^2 θ ^2 θ A2) and β = ad(txp 2π4^Tt?3) linger ©β in the table.

Proof. (1) is immediate from Propositions 2.8 and 2.11. We go on to
prove (2).

Let Z be the center of K. Then the identity component of Z is a torus S,
and $ = $ ' © @ where ' denotes derived group or algebra. Let H denote
the centralizer of S in G. Now SS ̂  φ by hypothesis. As $ ' c φ', now φ =

Let F c Z be an odd order finite group with S = ©Λ t f ( F ) and define Φ =
ad(F) \H,. Let {^1? - , ψr) c Φ and define Φί to be the subgroup generated
by {?i> , <Pi}> such that

» = fio ̂  Si ^ ξ Sr = C , Si = $ / Φ ί .

As each Si is semisimple, each inclusion 2^ c 2 { + 1 is a "direct sum" of in-
clusions % c 93,21 semisimple and S3 simple, listed under the chart of (1).
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Those s i c S3 a r e s r 2 c ® 2 , 2 T 2 e s r 2 c g 4 , sr2®2r2®sr2 c «,, 2r 2θsr 5c®7,
ST8 c ©8, 2ί2® ®6 c @8 and 2ί4® 2T4 c ©8.

First suppose S = {1} so £ ' = © and Λ' = S. We have r > 1 because we
are in case (2) of the theorem. Now §' is simple and we have a composition
of the inclusions Sί c S3 just listed. The only possibility is

ft = sr2Θ(sr2®2r2®sr2) c sr2®©6 c e, = ©,

which is the conclusion of (2).
If S φ {1} then & Φ § but Dynkin diagrams satisfy Δn, c J$. The listing

of 21 c S3 now shows that £ ' has a simple ideal $ such that § c ® is given by

(a) @6C@7, (b) © β C<£ 8 , or (c) (SrCββ.

In case (a), φ' = 3 and ft is of type 2t2©2r20ST2; then ft c © is 2T2® 2T2®
2Γ2 ® 2? c ©7 which comes under (1). In case (b) there are two subcases,

# = 3,ftc© is 2ί2®sr2®sr2©s;2c68,

# * 3 , f t c © is

which both come under (1). In case (c), £ ' = % and ^ c © is Si2®SI5® S 1

C @β, which again comes under (1). In case (2) of the theorem, now, S = {1}
and our statement is proved. q.e.d.

Finally we work out the linear isotropy representation and number of in-
variant almost complex structures of the spaces of Theorem 4.10.

4.11. Theorem. Let G be a compact connected simple Lie group, and K
a closed connected subgroup of maximal rank which is not the centralizer of
a torus. Let © = S + ίSRand let χ be the linear isotropy representation of ®
on (SRC. If GjK admits an invariant almost complex structure, then χ and the
number 2r of such structures are given in the following table:

[Here χ = Σ Xi a s *n Theorem 4.3. χ£ has some greatest weight Λ£. We

describe χt by writing the integer ^ u *&- at the vertex ψv of the Dynkin dia-

gram of K, except that we do not write the zeroes; we extend that diagram
by an x for every circle factor of K, writing x* if χ* gives the s tensor power
of the usual representation of that circle.)

Proof. If G/K is of type G2/A2, FJA2A2, EJA^A^ E7/A2A5, ES/A2E, or
EJA8, then the assertion on χ is contained in [12, Theorem 11.1]. We now
run through the list of the other spaces in Theorem 4.10.

E7/A2A2A2T\ We label local factors so that K = A^Ai/Γ c L = A2Ab

C G with AίAί'T1 c A5. L acts on (©/£)* by π® ft where π = a2

= o-o (g) o-ό-o-o-o here ar:Ar-»SU(r+l) denotes the usual vector

representation o - o — o and Λk denotes A -th alternation. Now αr5U^:>iis
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©

c

s s®2r2

a,@as

as@asea2@s'

r

-r

Xi: O-O

Xi: O-O ® O-O

Xi: O-O ® O-O ® O-O

1 1

Xi: O-O ® O-O-O-O-O
1 1

Xi: O-O® O-O® O-O®*2

χ2: O-O ® O-O ® O-O ® x~2

χ3: O-O ® O-O ® O-O ® x

«.
1

Xi: O-O-O-O-O-O-O-O

Xi: O-O ® O-O-O-O-O

o
1 1

Xi: O-O-O-O ® O-O-O-O

χ2: O-O-O-O ® O-O-O-O

Xi

X2

X3

X4

x>

Xi

X2

X3

X4

O-O ® O-O-O-O-O ® x6

1 1

O-O ® O-O-O-O-O ® JC3

1 1

O-O ® O-O-O-O-O ® x
1

O-O ® O-O-O-O-O ® Λ:"3

1 1

O-O ® O-O-O-O-O ® x1

1 1 1

. O-O ® O-O ® O-O ® O-O
1 1 1

• o-o ® o-o ® o-o ® o-o
: O-O ® O-O ® O-O ® O-O

: O-O ® O-O ® O-O ® O-O

Xi: O-O ® O-O ® O-O ® 0 ® x

χ2: O-O ® O-O ® O-O ® O ® JC1

χ3: O-O ® O-O ® O-O ® O ® x'2

X4 *
1 1 1

O-O ® O-O ® O-O ® O ® x1

2r

2

2

2

2

16

2

2

4

32

16

256
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•

(cont.)

*

(cont.)

$r2®sr2®sr2©5ε2

r

-r

1 1
Xb: O-O ® O-O ® O-O ® O ® x-2

1 1 1

*6 O-O ® O-O ® O-O ® O ® Λ1

χ7: O-O ® O-O ® O-O ® O ® X'2

Xϊ O-O ® O-O ® O-O ® O ® x1

Xi: O-O ® O-O® O-O ®x ®x
1 1

χ2: O-O ® O-O ® O-O ® x1 ® x
1 1

Xi. O-O ® O-O ® O-O ® x ® x1

χ4: O-O ® O-O ® O-O ® x-1 ® x~ι

1 1
Xb- O-O ® O-O ® O-O ® x1

 ®JC
1 1

χ6: O-O ® O-O ® O-O ® x (&X1

χ7: O-O ® O-O ® O-O ® x"1 ® x'1

χ8: O-O ® O-O ® O-O ® x1 ®x

χ9: O-O ® O-O ® O-O ® x φx1

χio*. O-O ® O-O ® O-O ® X'1 ® JC-1

χni O—O ® O—O ® O—O ® x1 ® x'1

Xi2: O-O ® O-O ® O-O ® x1 ®x*

Ziβ: O-O ® O-O ® O-O ® x2 ®JC»

2r

256

8192

given by (o-o ® o-o (g) x1) φ (o-o ® o-o (g) x~ι), where xk is the /:-th tensor
power of a certain obvious representation of degree 1 of T1. Alternating,

Λ2(αδ) UUΪT1 is (o-o (g) o-o (g) x2) © (o-o ® o-o (g> J:"2) φ (ό-o (g) δ-o ® A:),
which gives us χ l 9 χ2 and χ3. For χ4 we note that JRΓ acts on (£/S) c by

(o-o <g) ό-o (g) ό-o (g) x1) + (dual).

E8/A^A4. Here the center Z of K has order 5. Let ε be a primitive 5-th

root of 1, z be a generator of Z, and 5Dίέ denote the subspace of (©/$) c on

which z acts as scalar multiplication ε\ Theorem 4.3 says that the action χt

of # on 9Ri is irreducible, and [11, Lemma 8.12.5, p. 293] says mt Φ 0.

Thus χ = χi Φ χ_i Φ χ2 ® X-2 with <teg& divisible by 5. The representations

of Λ4 of lowest degree are ό-o-o-o (degree 5), ό-o-o-o (degree 15),

o-ό-o-o (degree 10) and their duals. As deg χx + deg χ2 = 100, and as

χ2(z) = χχ(z)2 as scalars, it follows that we may take χτ = o-o-o-o (g) o-o-o-o

(degree 25) and χ2 = ό-o-o-o (g) ό-o-o-o (degree 75).
E8/A2A,Γ. Here K c L c G with L of type ^ 8 . L acts on (®/2)c by
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π ® it where π = Λ\a6) = o-o-6-o-o-o-o-o . For a certain faithful repre-
sentation x1 of sε1,

<*8 Us^sr1 = (O-O ® O-O-O-O-O ® *2) φ (O-O ® O-O-O-O-O (g) X'1) ,

which has third alternation χτ ® χ2 θ χ3 θ χ4 as listed. And finally the action

of K on (£/S) c is the direct sum of o-o ® o-o-o-o-o ® -*1 and its dual.

Let ω be the representation o-o-o-o-o of degree 27 of Eβ. We need the

i i °

fact that <y | ^ ^ 2 = (o-o ® o-o ® o-o) φ (o-o ® o-o ® δ-o) φ (ό-o ®
o-θ(g)6-o). To see that let γ be the highest weight of ω and number the
simple roots of of Eβ as usual. Then 2 < - r ' ̂  = 2<^r> ^ = 1 and γ is or-

thogonal to the other simple roots of Sί2 φ Sί2 © Sϊ2. Thus the restriction of ω
has o-o (g) o-o (g) o-o as the irreducible summand with highest weight γ.
But that restriction is stable under the inner automorphism of order 3 on £ β

which induces a cyclic permutation of the three simple summands of 2t2 θ
2Γ2 θ Sί2 by rotation of the extended Dynkin diagram. Thus o-o ® o-o (g) o-o
and ό-o ® o-o ® ό-o are also summands of the restriction of ω. These three
summands add up to a subrepresentation of degree 27 of the restriction of
ω, so they exhaust the restriction. Our assertion is proved.

EJA2A2A2A2. Here K<zLcG with L of type A2E6. L acts on (®/S)c by

π φ n where π = a2 (g) ω, ω given as just above. Now π \κ = χτ φ χ2 φ χ3 as

listed. And finally the action of K on (£/®)c is the sum of o-o (g) o-o ® o-o

® o-o and its dual.
E%\A2A2A2AJ^. Here K c L c G where L is the group A2A2A2A2 con-

sidered just above and where the Λ^Γ1 factor of K is contained in the last A2

factor of L. We have just found the action of L on (®/2) c. Let 0 be an irre-
ducible summand. If β = ( ) ® o - o then β\κ = ( ) ® o ® x . If β =
(•••)<g)o-o then ^3|^[(.. - )® o ® ^ ] φ [ ( ) ® O ® Λ : - 2 ] . NOW K acts on
(®/S)c by χx φ χ.j © Φ χ7 Φ χ_7 as listed. And finally the representation
of K on (£/®)c is the sum of o-o <g) o-o <g) o-o (g) o (g) JC1 and its dual.

E8//42/42/42P. Here K c L c G where L is A2A2A2A2 as above, where £
and L have their first three A2 factors in common, and where the P factor of
K is in the last A2 factor of L. We know the representation of L on (@/£)c.
Let β be an irreducible summand. If β ( •) (g) o-o then /J I* = ( •) ® * ® *•

If £ = (...)<g)o-o thenjB|jr= [(• -)®xι<2>x]®[( ) ® ^ ® ^ ] θ [ ( •)
<g) jc-1 ® x- 1 ]. Now K acts on (©/S)^ by & θ χ_χ θ θ χ10 Φ χ.io as listed.
Finally the representation of K on (£/$) c , which is given by the representa-
tion of T2 on (2Ϊ2/£2)C, is the sum of (o-o <g) o-o <g) o-o <g) x1 <g) x"1) ® (o-o
® o-o ® o-o ® x1 ® x2) φ (o-o ® o-o ® o-o ® x2 ® x1) and its dual.
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5. Canonical forms of outer automorphisms

Let θ be an automorphism of a compact Lie algebra ©. Decompose © =
© o θ 1 ® θ θ r @ where ©0 is abelian and the s® are simple. Then θ
preserves ©0 and permutes the *©; let {®f>, . ,©{r<)} be an orbit of the
permutation group defined by θ and define ®t = ®|1} θ ® ®{r£}. We may
assume the simple summands of ©* ordered so that, if rt > 1,

(5.1a) 0(@f) = @f+1) for s<ri9

(5.1b) θ(®lr*) = ®f> .

The trick is to think of (5.1a) as an identification, so ®* is viewed as the
sum of Ti copies of the simple algebra ©f>. Then (5.1b) becomes an auto-
morphism ψi of ©£> in other words, ®* and θ |©{ are given by

(5.2a) ©, = ©f> 0 . 0 © « (rt times) ,

(5.2b) θ(xl9 , xr) = (<PiXrv Xu , xr^ύ where * s € ©« .

Finally, 0 j©0 is an arbitrary linear automorphism we are not assuming that
θ defines a Lie group automorphism.

In the paragraph above, notice that θ has finite order k > 0 if and only if
k is the least common multiple of positive integers {kQ, ,kr} where © =
@o θ θ ®r and θ \®i has order kt if i > 1 then kt = r^i where φt has
finite order st. We also observe that θ is an outer (not inner) automorphism
if and only if either (i) θ |©0 Φ 1, or (ϋ) some rt > 1, or (iii) some p* is outer.

Now we need only study the outer automorphisms of simple compact Lie
algebras. There we use

5.3. Lemma. Let © be a compact simple Lie algebra. Choose a Carton
subalgebra % and a system Ψ = {φly -,ψι}of simple roots. Relative to these
choices let Δ be the Dynkin diagram, and {hφ,ez:ψeΨ,λeΛ} a Weyl basis
(A = root system) of ®c.

1. Let s:Ψ -+Ψ be a symmetry of A; sos has some finite order p. Extend
s to A by linearity and let σ be the linear transformation of © c defined by
σ(hφ) = ή ί W , σ(e;) = esW. Then (la) σ is an automorphism of order p on ®c

which preserves ®, (lb) σ is inner if and only if s = 1, i.e. p = 1, and (lc)
the automorphism group of © is the disjoint union of the σad(G), where G
is a fixed connected group with algebra ®, and s runs through the symmetries
of Δ.

2. Given s, the fixed point set ©* of σ has Carton subalgebra %* =

% n®*.
3. Let θ eσ ad(G), automorphism differing by σ from an inner automor-

phism. Then there exist xe%c and a € ad(G) such that a θ α" 1 = σ ad(exp x),
and θ has finite order k > 0 if and only if ad(exp x) has finite order q>0
and k is the least common multiple of p and q.
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{Statements (1) and (2) are standard and straightforward; see [11, Theorem
8.11.2, p, 285] for an exposition. Statement (3) is the de Siebenthal conjugacy
theorem [11, Theorem 8.6.9, p. 256] in disguise. This method is used in [11,
§ 8.11] to classify the riemannian symmetric spaces.}

The case p = 1 is the case of inner automorphisms, settled in §2. The
case p = 2 is the case of symmetric spaces, which is standard and can, for
example, be found in [11, §8.11]. If p > 2 then, by classification, © is of

type D4 o-o<(0*3 with s given by φ2 -• φ2, φ1-+ψz^>ψ4-+ φx or its inverse,
Φi Φ2 O ψ\

so a or σ~x is triality:

5.4. Definition. Let © be a Lie algebra of type DA o-o<(Os*3. Let * be the

symmetry φ2—*ψ2> φ\ —*φ3 —*Φ* —>Ψι °f the Dynkin diagram. Let τ be the
automorphism defined in Lemma 4.3(1). Then τ is called the triality auto-
morphism ©.

5.5. Theorem. Let θ be an outer automorphism of order 3 on a compact

or complex simple Lie algebra G. Then © is of type £>4 o-o^ O ί > 3 and
Ψl ψ2 O ί>4

triality τ is defined as above; the fixed point set ®T is of type G2 and has
linear isotropy representation

& = ©2 on (3y@2)
c: i=D 0 i=D .

Define τ1 = τ αd(exp 2 * 4 ^ 1 f v2) then τf is an outer automorphism of order
3 with fixed point set © r ' of type A2 and has linear isotropy representation

ffl*' = 2ί2 on (S)4/a2)
c: o~o φ 0-0 .

Finally, θ is conjugate to τ or τ' in the full group of automorphisms of G,
and θ is conjugate to r-1 or to τf±1 by an inner automorphism.

Proof. Let ε = e 2 s r V r ϊ / 3 and define

(5 6a) a* = β±φl + 6±*3 + €±Ψi' a± = β±φl + εβ±Φz + ε2β±'Λ'
< « + Λ + β β ;

(5.6b) ftl = e±(φl±φώ + εe±iψ3+φ2) + ε2e

C - = ^ ± (.ψχ + φs + Ψ'2) "1" ^ ± (ί&S + ί&4 + ί&2) "1" ^ ± (

(j.OC) C ± = e ± (01 + ί»β + fte) + £^±(,>s + i>4 + ̂ 2) + £ ^

C ± = ^±(^1 + ̂ 3+^) + £ e±(φ3 + Φi + Ψz) H" ε ^

Then the complex eigenspaces (S(r, εk) have bases



108 JOSEPH A. WOLF & ALFRED GRAY

ί 5 ? a )
^ ( ^ l + S ^ + ί b + ί**)' Λ ± > " ± » C ± J 9

(5.7b) ®(r, ε) : {hφx + ε%z + «Λ,4, <', b", c»} ,

(5.7c) ffi(r, ε2): {ΛΛ + eΛΛ + «^4, < , fti, c'±} .

As (δ(τ, 1) is ® r or its complexification, now ® r is of rank 2 and dimension
14, hence of type G2. Furthermore the complex eigenspaces of τ1 have bases

(5.8a) <£(τ', 1 ) : {hH9 hφl + hφz + hH, a±J 6'+, ̂ , < , cZ},

(5 8b) ® ( Γ / ' £ ) ' ' ̂  + £2/Z"3 + εkφi* 6φ2' e * ^ φ * + φ * '
e-(^1+2^+^3+^4)' Λ ^» ^ + ' **-> C + 5 C - J >

r 5 8 c ) S f r ' , £ 2 ) : { ^ 4 - δ Λ , 8 + ε 2 / z , 4 , « . Λ , e ^ φ )

As before, a glance at @(τ', 1) shows that © r ' is of rank 2 and dimension 8,
hence of type Λt.

We check the adjoint representations. A glance at (5.7) shows that ®2 =
<δ(τ, 1) acts nontrivially on the 7-dimensional spaces (8(τ, e*1), so it must act

on each by its representation of lowest degree « = D which is of degree 7.
A glance at (5.8) and a short calculation shows that ®T' o-o has a Weyl

basis {hβl> h^\ j ± β χ 9 f±β£, / ± ( , 1 + Λ ) } given by

(5.9a) hβl = hφl + hφz + hφi, hh = -3Λ Λ - 2{hH + AΛ + A,J;

(5.9b) / ± Λ = α ± ; /,2 = clί, UH = < , 1H+H = V-> UK-H = V + -

Now (5.8) and another short calculation show that ®T' acts on ®(r', ε) by

o-o and acts on @(r', ε2) by o-o.
Finally, let θ be an outer automorphism of order 3. As the symmetry group

of the Dynkin diagram of D4 is the dihedral group of order 6, the class rep-
resented by θ is that of τ or r"1 and the latter two are conjugate. Now we
may assume θ e τ ad(exp S/), i.e. θ = r ad(exp 2πΊ —1#) with x =
dw2 -j_ ̂ ( ^ _j- vz + ΦJ. Then 03 = 1 reduces our considerations to the cases

(i) a = b = 0 so θ = r, (ϋ) a = f and fc = 0 so 0 = r', and (iii) α = 0 and
b = £. In that third case 0 = τΌd(txp2π4^l'i(v1 + vz + vj) has ®* of
dimension 14 with basis {AΛ, AΛ + hφz + hφι,eAψ2, e±(φl+φ2+φi+φj,e±(φl+2φ2+φ3+φ4),
a'+, a?ί, b'_, b'L, cL, < } ; as for ® r this says that ©* is of type G2; then ®° and
® r are conjugate; as τ is the only element of τ ad(G) with fixed point set ®?

it follows that θ and r are conjugate. q.e.d.
Now we can classify the outer automorphisms in some sense, using the

"irreducibility" conditions that the algebra has no invariant direct sum de-
composition and that every power Φ1 is outer:



HOMOGENEOUS SPACES. I 109

5.10. Theorem. Let θ be an outer automorphism of a compact Lie
algebra © such that (i) there is no proper θ-invariant ideal in © and (ϋ) every
power θm not equal to the identity is an outer automorphism*. Let χ be the
linear isotropy representation of the fixed point set ®9 on ©/©*.

1. If ® is not semisimple then it is abelian of dimension r = 1 or 2, ©* =
0, and χ is trivial If r = 1 then θ is scalar multiplication by some real λ,
0φ\λ\φ 1. If r z= 2 then θ is scalar multiple of a rotation,

Λ / cos2^ω sin2π<o\ ^ Λ n .
ffa=^\-sin2jrJ c o s 2 ^ ) ' ί > > 0 > ° < ?

2. // © w semisimple but not simple then © = ® 0 φ ί £ ( r > l sum-
mands) with β «mp/6 and θ(xu , Jcr) = ( ĵcr, JC1? , * r.i) /or an automor-
phism ψ of S. // 9 = 1 *Λ*n ©ff ίy ά embedded diagonally, θ has order r,
and x = ad$ φ . - - φ ad$ (r — 1 summands). If φ Φ 1 ί/iβn ψ has order p =
2 or 3 with S anίί 9 listed below in (3) then θ has order rp9 ®* is ®ψ embed-

where γ is theded diagonally, and χ = adκΨ® - @adκψ@γ®
linear isotropy of ®φ on (®j®*)c as listed in (3).

3. If ® is simple then the following table is a complete list of the possi-
bilities, up to conjugacy of θ in the full automorphism group of ®.

2l2n

%>

S>4

θ

v=complex conjugation

••(.; 3

\ -hn-2r-l)
0<r<n—1

γ from symmetry of
Dynkin diagram

f-γ-(certain θf)

τ

τ'

®n

6»

95r@95n-r-l

%4

©4

©2

« 1

order of θ

2

2

2

2

2

2

3

3

X

O-O CΣ3

°-°—-°<o

•-• CD

6 αz
®o σiB

1

•-CD-O

•ΞDΘ ZD

o-o Θ o-o

3 This is automatic if θ has prime order, especially in the important special case of order 3.
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Proof. Assume © not semisimple. Then ® is an abelian algebra %r of
some dimension r > 0, for θ preserves the center and the derived algebra
and satisfies (i). Now θ is a nonsingular linear transformation of @, arbitrary
except for property (i). Property (i) implies that θ is diagonable over C. If λ
is an eigenvalue of θ now r = 1 if and only if λ is real, and r > 1 implies

θ=\λ\{ C?S*π<P sin*π<P) where λ = \λ\e**^.1 ] \ — S]n2πφ cos2πψj ' '

Suppose © semisimple but not simple. Again by (i), ® = ft© ®ft
(r > 1 summands) for some simple Lie algebra ft such that θ acts by
(*i, ••-,*»•)-• (p*r, *i, , *r-i) As 0r = p x x?> hypothesis (ii) says
that the automorphism φ of ft is trivial or outer. The fixed point sets satisfy
®< c (ft* φ θ ft*)' c ®#, so ©' = (ft* φ ® &)• is Qr embedded
diagonally in ®. The adjoint action of ®* on the 5-th summand ^ of ® is
the same as the adjoint action of the subalgebra ®9 of that summand. The
latter is ad®» φ γ where γ is the linear isotropy representation of ®φ on

. Now

so

χ = α ^ ® . . . φ α^9® r φ φ

If φ = 1 then $ 9 = ® and p is of degree 0, so our assertions are immediate.
If φ ψ 1 then ® and 9? come into the scope of (3) and our assertions are
reduced to that case.

Finally assume © simple. Classification and (ii) say that θ has order p = 2
or 3. If p = 2 our assertions are standard facts on symmetric spaces [11, pp.
285-288], the calculation of χ being an exercise in multilinear algebra. If
p = 3 our assertions are the content of Theorem 5.5.

6. Summary and global formulation for automorphisms of order 3

Let Z b e a compact simply connected coset space G/K where G is a com-
pact connected Lie group acting effectively on X. Let θ be an automorphism
of order 3 on such that ® = ®*. As in the first paragraph of § 5 we now have

© = ©x φ . φ @r, ft = Rτ Φ φ ftr, θ = θ1 φ φ 0 r ,

where $t = ft Π ®i = ©J* and 0* is an automorphism of order 3 on ©* which
does not preserve any proper ideals. Let G* and Kt be the analytic subgroups
of G for ®i and ft* they are closed subgroups, and

X = Xτ x - x Xr, Xt = Gi/Ki,
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because X is simply connected. Now a glance at the commuting algebra of
the linear isotropy representation of K shows that the G-invariant almost
complex structures on X are precisely the tensor fields / = Jτ x X Λ, Λ
invariant almost complex structure on Xt. Thus our study of X is reduced to
the "irreducible" case considered in the following theorem.

6.1. Theorem. Let X be a simply connected coset space G/K where G is
a compact connected Lie group acting effectively. Suppose ® = ®β where θ is
an automorphism of order 3 on © which does not preserve any proper ideals.
Let N be the number of G-invariant almost complex structures on X. Then
the following tables give a complete list of the possibilities, up to automor-
phism of G.

{Note: In the tables, if A is a Lie group then A/Zn denotes the quotient
of A by a central subgroup which is cyclic of order n. If A is explicitly written
a s B x C , then the Zn has the property that no nontrivial element is contained
in either factor, so AjZn is B x C "glued" along central cyclic subgroups of
order n.)

Table 1. G centerless simple, K centerlizer of a torus

G

SU{n)/Zn
n>2

SO(2n+l)

Sp{n)/Z2

SO{2ή)/Z2

G2

F<

K N

S{U(rί)XU(r2)XU(r3)}/Zn

U(r)XSO(2n-2r+l), l^r^w

{U{f)XSO(2n-2r)}/Z2, l^r^n

U{2)

{Spinςi)XT^}/Z2

{SpQ)XT*}/Z2

{SO(1O)XS0(2)}/Z2

{S{U{5) X U(l))XSU(2)}/Z2

{[SU(6)/ZZ]XT*}/Z2

{[SO(β)XSO(2)] XSO(2)}/Z2

2 if r1 =θ
8 if /i>0

2 if r=l
4 if r>l

2 if r=n
4 if r<π

2 if r=l
2 if r=/2
4 if 1<Γ</I

4

4

4

2

4

4

8
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G

E-JZι

ft

K

{EeXT*}/Z3

{SU(2) X [50(10) X 50(2)]}/Z2

{S0(2)XS0(12)}/Z2

S{U<J)XU(\)}/Z<

SO(U)XSO(2)

{E7XT*}/Z2

N

2

4

4

4

4

4

Table 2. G centerless simple, rank G=rank K,
K semisimple with center of order 3.

G

G2

F4

Es/Z3

E7/Z2

Es

K

SUQ)

{SUQ)XSU(3)}/Z3

{SU{3)XSUQ)XSU(1)}/{Z3XZZ}

{SU(3)X[SU(6)/Z2)}/ZZ

{SU(3)XE6}/ZZ

suφyzs

N

2

2

2

2

2

2

Table 3. rank G > rank £

G

5p/n (8)

{LXLXJL}/Z
where L is compact simple
and simply connected and
Z is its center embedded
diagonally.

K

suoyzz

G2

L/Z
where L is embedded dia-
gonally in LXL XL and Z
is its center.

N

2

one to one correspondence
with 2x2 real matrices of
square —/, i.e. of form

( a b\'
\-(l + Λ2)/£ -*/

^ 0

Proof. If θ is inner, then G and K are as stated by Theorem 3.1, N is as
stated by Theorems 4.2 and 4.3 and because K is connected, and G is the
centerless group as listed because K has maximal rank. Now we must check
that K is the global Lie group with Lie algebra ίϊ as listed. That depends on
the following application of Schur's Lemma to isotropy representations:
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(6.2) Let A/B be an irreducible effective symmetric coset space of compact
connected Lie groups. Then the center ZB of B is (i) trivial if rank A > rank
B, (ϋ) Z2 // rank A = rank B with B semisimple, and (iii) a circle group if B
is not semisimple.
It also depends on the observation
(6.3) Let Bx be a simple normal analytic subgroup of B in (6.2). In cases
(ϋ) and (iii) of (6.2), ZB Π B^= Z2.

Table 1. θ = ad(cxp 2π>\ — Ix) in the notation of Theorem 3.1, with x =
\Vi (mt = 1), x = \Vi (mi = 2) or x = £(v« + v7) (m^ = m5 = 1). Let L be
the analytic subgroup of G with Lie algebra β = ©<% φ = ad(pxp2π»l^ϊy)9

y to be specified. If x = ^ then G/£ satisfies (6.2) in case (iii); then (6.2)
and (6.3) prove our assertions. If x = §i;f we let y = v{; then G/L satisfies
case (ϋ) of (6.2), and (L/L'ZL)/(XyL'Z£) satisfies case (iii) of (6.2) where V
is the largest analytic subgroup of K normal in L then the assertions follow
from (6.2) and (6.3). If x = £(t?* + Vj) we let y = %vu so G/L and (LjUZL)l
(KJL'ZL) satisfy case (iii) of (6.2) and we are finished by (6.2) and (6.3).

Table 2. K has center of order 3 which meets every simple normal
analytic subgroup. The assertions follow.

Table 3. © , $ and N are as stated by Theorems 5.5 and 5.10. Global
formulation is obvious for ® = fi φ £ φ S, and follows for & = S>4 because
there the lift of K = SU(3)/ZZ = ad(SU(3)) of K = <72 from 50(8) to S/>/π(8)
remains centerless. q.e.d.

Now we can complete Theorem 6.1 to a global structure-classification
theorem.

6.4. Theorem. The coset spaces X = G/K with properties (i) G w a
compact connected Lie group acting effectively, (ii) ® = ®" w/iere 0 w an
automorphism of order 3 <m ©, and (iii) AT carries a G-invariant almost
complex structure, are precisely the spaces (Xo x Xλ x x Xr)jΓ =
{(Go x G i X X Gr)/Γ}/K constructed as follows.

XQ is a complex euclidean space, Go is its translation group and Ko = {1}
<zG0.

r > 0 is an integer. If I < i < r then Xt = GJKi is one of the spaces listed
in Theorem 6.1. Z* is ths center of Gu trivial if rank Gt = rank Kt {tables 1
and 2), Z2 X Z2 // G* = Spin(S), and Z x Z if Gt = {LχLχ L}/Z.

Γ is any discrete subgroup of GQχZxχ X Zr such that Γ Π Go is a
lattice in the vector group Go.

K is the image of (Ko x Kλ x . . . x Kr) in (Go x G, x . x Gr)/Γ.

Proof. The universal covering X-*X can be constructed from the
universal covering group β: G* —> G as follows. Z* is the kernel of the action
of G* on G*tf-l(K)9, G = G*/Z*, ^ = {Z* β-\K)0}/Z*jand X = G/^. If
v: <J -• G is the natural covering, then K — v~\K)0 and X —• AT is given by

As G is compact and effective and X is simply connected,
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G = Go x Gλ x x Gr and K = KQ x KΎ x χ ί : r where Go is a vector
group, ^ 0 = { l } c G 0 , X = ΛΓ0 x X1 x .. x Z r , AΓ0 = GJK0 complex
euclidean space, and (1 < / <r) Xi = GJKi is listed in Theorem 6.1.

We can view X = G/u'\K) with X -+ X given by gK -* g - i>-\K) for K
is the identity component of v~\K) and g-v~\K) -+v(g)-K defines a diffeo-
morphism of G/v~\K) onto G/K. Now we look to see the possibilities for

Let A be the normalizer of K in G. Then v~\K) is a closed subgroup of A
with identity component £ . Now A = Go x Aτ x x /ίr where (1 < / < r)
y4i is the normalizer of Kt in Gt. Let aev~\K), so αs^ί, and decompose
aoχ aτχ • χfl r,f l, ;€^ t . Then α, preserves the almost complex structure
on Gi/Ki. If rank Kt = rank Gt now Proposition 4.2 says αϊ e Ki = ZilCϊ. If
rank Kt is less than rank Gt we go by cases. First let G2 = Spin(&). If AT* = <?2

then it has no outer automorphism so ad(a^) {

Ki is inner. If lCt = SU(3)/ZZ

then o^(fli) cannot interchange the summands of the isotropy representation

o-δ φ o-o, so ad(at) \Ki is inner. In either case we have a' € ajii centralizing
Kt. No inner automorphism of ©* is trivial on ®t thus a' eZii now a' € Z ^ .
The same argument is valid for the case Gt = (L x L x L)jZ.

We have now proved that v~\K) is a closed subgroup of Go X Z ^ x
• X ZrKr which has identity component K = {1} x AΊ x x £ r . But
Go x Z ^ ! x x Z r £ r = (Go X Zx x x Zr) x J? as topological groups.
So v'\K) =z Γ X K where Γ is a discrete subgroup of Go x ^ x x Z r.
Thus X = (X, x Xx x - x Zr)/Γ = G/JK; G = (Go x G2 x . - • x Gr)/Γ
and K is the image of K in G. As G is compact Γ Π Go is a lattice in Go.
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