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1. Introduction

The central result of this paper, Theorem 6.1, gives a constraint
that must be satisfied by the generators of any free, topologically tame
Kleinian group without parabolic elements. The following result is case
(a) of Theorem 6.1.

Main Theorem. Let k > 2 be an integer and let Φ be a purely
loxodromic, topologically tame discrete subgroup o/Isom+(H3) which is
freely generated by elements ξi , . . ,£&. Let z be any point of H 3 and
set di = dist(z, ξi z) for i — 1,... , k. Then we have

k 1 Ί

+ ed< ~ 2

In particular there is some i G {1,... , k} such that d{ > log(2& — 1).
The last sentence of the Main Theorem, in the case k = 2, is equiv-

alent to the main theorem of [14]. While most of the work in proving
this generalization involves the extension from rank 2 to higher ranks,
the main conclusion above is strictly stronger than the main theorem of
[14] even in the case k — 2 .

Like the main result of [14], Theorem 6.1 has applications to the study
of large classes of hyperbolic 3-manifolds. This is because many sub-
groups of the fundamental groups of such manifolds can be shown to be
free by topological arguments. The constraints on these free subgroups
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free by topological arguments. The constraints on these free subgroups
impose quantitative geometric constraints on the shape of a hyperbolic
manifold. As in [14] these can be applied to give volume estimates for
hyperbolic 3-manifolds satisfying certain topological restrictions. The
volume estimates obtained here, unlike those proved in [14], are strong
enough to have qualitative consequences, as we shall explain below.

The following result is proved by combining the case k = 3 of the
Main Theorem with the techniques of [15].

Corollary 9.2. Let N be a closed orientable hyperbolic 3-manifold.
Suppose that the first betti number βι (N) is at least 4, and that TΓI (N)
has no subgroup isomorphic to the fundamental group of a surface of
genus 2. Then N contains a hyperbolic ball of radius | l o g 5 , and hence
the volume of N is greater than 3.08.

There is no reason to expect these estimates to be sharp. For in-
stance, empirical evidence based on Weeks census [39] suggests that the
conclusion of the corollary may hold under the hypothesis that βx (N)
is at least 2, with no assumption on the surface subgroups of πi(ΛΓ).
However, the significance of our results lies elsewhere. The point is that
these results imply that certain topological conditions on the manifold
follow from an upper bound on the volume. More specifically, the vol-
umes of hyperbolic 3-manifolds are known to form a well-ordered set
of ordinal type ωω. If one lists the closed hyperbolic manifolds in as-
cending order of volume, the topological complexity of the manifolds
tends to grow as one progresses through the list. We are interested in
understanding this phenomenon in an explicit way.

The above result provides explicit information of this type. The vol-
ume of a cusped manifold is larger than that of any of its Dehn fillings,
and is a limit point of the set of volumes of such fillings. There are 8
distinct volumes less than 3.08 among the volumes of orientable cusped
manifolds in the Weeks census. Thus the result implies that each of
the manifolds realizing the first 8ω volumes either has betti number at
most 3 or has a fundamental group containing an isomorphic copy of
a genus-2 surface group. (This conclusion is stated as Corollary 9.3.)
It was not possible to deduce qualitative consequences of this sort in
[14] because the lower bound of 0.92, obtained there for the volume of a
closed hyperbolic 3-manifold of first betti number at least 3, is smaller
than the least known volume of any hyperbolic 3-manifold.

Corollary 9.4 is similar to the above corollary but illustrates the ap-
plicability of our techniques to the geometric study of infinite-volume
hyperbolic 3-manifolds. It asserts that a non-compact, topologically
tame, orientable hyperbolic 3-manifold N without cusps always con-
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tains a hyperbolic ball of radius \ log 5 unless πλ (N) either is a free
group of rank 2 or contains an isomorphic copy of a genus-2 surface
group.

Another application of Theorem 6.1 to non-compact finite-volume
manifolds is the following result, which uses only the case k = 2 of
the Main Theorem, but does not follow from the weaker form of the
conclusion which appeared in [14].

Theorem 11.1. Let N = H3/Γ be a non-compact hyperbolic 3-
manifold. If N has betti number at least 4, then N has volume at least
π.

Theorem 11.1 is deduced via Dehn surgery techniques from Propo-
sition 10.1 and its Corollary 10.3, which are of independent interest.
These results imply that if a hyperbolic 3-manifold satisfies certain topo-
logical restrictions, for example if its first betti number is at least 3,
then there is a good lower bound for the radius of a tube about a short
geodesic, from which one can deduce a lower bound for the volume of
the manifold in terms of the length of a short geodesic. This lower
bound approaches π as the length of the shortest geodesic tends to 0.
Corollary 10.3 will be used in [13] as one ingredient in a proof of a new
lower bound for the volume of a hyperbolic 3-manifold of betti number
3. This lower bound is greater than the smallest known volume of a hy-
perbolic 3-manifold, and therefore has the qualitative consequence that
any smallest-volume hyperbolic 3-manifold has betti number at most 2.

The proof of the Main Theorem follows the same basic strategy as the
proof of the main theorem of [14]. The Main Theorem is deduced from
Theorem 6.1(d), which gives the same conclusion under somewhat dif-
ferent hypotheses. In 6.1(d), rather than assuming that the free Kleinian
group Φ is topologically tame and has no parabolics, we assume that the
manifold H3/Φ admits no non-constant positive superharmonic func-
tions. As in [14], the estimate is proved in this case by using a Banach-
Tarski-style decomposition of the area measure based on a Patterson
construction. The deduction of the Main Theorem from 6.1(d) is based
on Theorem 5.2, which asserts that, in the variety of representations of a
free group Fki the boundary of the set CC(Fk) of convex-cocompact dis-
crete faithful representations contains a dense Gs consisting of represen-
tations whose images are "analytically tame" Kleinian groups without
parabolics. This was proved in [14] in the case k = 2.

By definition, a rank-A; free Kleinian group Γ without parabolics is
analytically tame if the convex core of H3/Γ can be exhausted by a
sequence of geometrically well behaved compact submanifolds (a more
exact definition is given in Section 5). The case k = 2 of Theorem 5.2
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was established in [14] by combining a theorem of McMullen's [29] on
the density of maximal cusps on the boundary of CC(Fk) with a special
argument involving the canonical involution of a 2-generator Kleinian
group. The arguments used in the proof of Theorem 5.2 make no use of
the involution. This makes possible the generalization to arbitrary A;,
while also giving a new proof in the case k = 2. The ideas needed for
the proof are developed in Sections 2 through 5, and will be sketched
here.

In Section 3 we prove a general fact, Proposition 3.2, about a se-
quence (pn) of discrete faithful representations of a finitely generated,
torsion-free, non-abelian group G which converges to a maximal cusp
ω. (For our purposes a maximal cusp is a discrete faithful representa-
tion ω of G into PSL2(C) such that ω(G) is geometrically finite and
every boundary component of the convex core of H3/ω(G) is a thrice-
punctured sphere.) After passing to a subsequence one can assume that
the Kleinian groups pn(G) converge geometrically to a Kleinian group
Γ, which necessarily contains ω(G) as a subgroup. Proposition 3.2 then
asserts that the convex core of N = H3/ω(G) embeds isometrically in
H3/Γ. To prove this, we use Proposition 2.7, which combines an alge-
braic characterization of how conjugates of ω(G) can intersect in the
geometric limit (Lemma 2.4), and a description of the intersection of
the limit sets of two topologically tame subgroups of a Kleinian group
(Theorem 2.5).

In Section 4 we construct a large submanifold D of the convex core of
N which is geometrically well-behaved in the sense that dD has bounded
area and the radius-2 neighborhood of dD has bounded volume. We use
Proposition 3.2 to show that if p is a discrete faithful representation near
enough to α>, then H3/p(G) contains a nearly isometric copy of D. This
copy is itself geometrically well-behaved in the same sense.

In Section 5 we specialize to the case G — Fk. We show that if
a discrete faithful representation p is well-approximated by infinitely
many maximal cusps, then its associated quotient manifold contains
infinitely many geometrically well-behaved submanifolds. In fact, we
show that the resulting submanifolds exhaust the convex core of the
quotient manifold, and hence that the quotient manifold is analytically
tame. We then apply McMullen's theorem to prove that there is a dense
Gs in the boundary of CC(Fk) consisting of representations which can
be well approximated by maximal cusps.

In the argument given in [14], the involution of a 2-generator Kleinian
group is used not only in the deformation argument, but also in the
calculation based on the decomposition of the area measure in the case
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where H3/Φ supports no non-constant superharmonic functions. The
absence of an involution in the A -generator case is compensated for
by a new argument based on the elementary inequality established in
Lemma 6.2. This leads to the stronger conclusion of the main theorem
in the case k = 2.

Section 6 is devoted to the proof of Theorem 6.1.
We have mentioned that the application of Theorem 6.1 to the ge-

ometry of hyperbolic manifolds depends on a criterion for subgroups of
fundamental groups of such manifolds to be free. The first such crite-
rion in the case of a 2-generator subgroup was proved in [19] and in-
dependently in [37]. A partial generalization to A -generator subgroups,
applying only when the given manifold is closed, was given in [3]. In
Section 7 we give a criterion that includes the above results as special
cases and is adapted to the applications in this paper.

In Section 8 we introduce a generalization of the notion of a Margulis
number. We say that a positive number λ is a A -Margulis number for
a Kleinian group Γ if the following condition holds: if £χ,... ,ξk are
elements of Γ, and there exists a point z G H 3 which is displaced less
than λ by each £i? then the group (£i,... , £*.) can be generated by k — 1
abelian subgroups. In the case k = 2 the group (̂ 1,̂ 2) would have to
be abelian; thus the notion of a 2-Margulis number coincides with that
of a Margulis number as defined in [14] and [33]. This notion and the
related notion of a A -strong Margulis number prove useful for organizing
the applications of the results of the earlier sections to the study of
hyperbolic manifolds. The applications are presented in Sections 9, 10
and 11.

The pictures of limit sets of maximal cusps which appear in Section
3 were created by Yair Minsky, and were based on some earlier pictures
by Chris Bishop. We are grateful to them for allowing us to use them
here.

We close the introduction by mentioning a few notational conventions
which are used throughout. We use H < G to denote that H is a
subgroup of G, and H < G to denote that H is a proper subgroup of G.
The translate of a set X by a group element 7 is denoted 7 X. Finally,
we use dist(z,iί;) to denote the hyperbolic distance between points z
and w in H3.

2. On the sphere at infinity

In this section we introduce the notion of the geometric limit of a
sequence of Kleinian groups. We will consider a convergent sequence of
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discrete faithful representations into PSL2(C) whose images converge
geometrically. In general, the geometric limit of the images contains the
image of the limit as a subgroup. The results in this section characterize
the intersection of two conjugates of this subgroup and the intersection
of their limit sets.

The group PSL2(C) will be considered to act either by isometries on
H 3 or, via extension to the sphere at infinity, by Mόbius transformations
on the Riemann sphere C. The action of a discrete subgroup Γ of
PSL2(C) partitions C into two pieces, the domain of discontinuity Ω(Γ)
and the limit set Λ(Γ). The domain of discontinuity is the largest open
subset of C on which Γ acts properly discontinuously. If Λ(Γ) contains
two or fewer points, we say Γ is elementary. If Γ has an invariant circle
in C and preserves an orientation of the circle, then we say that Γ is
Fuchsian.

By a Kleinian group we will mean a discrete non-elementary subgroup
Γ of PSL2(C). We will say that a Kleinian group Γ is purely parabolic
if every non-trivial element is parabolic, or purely loxodromic if every
non-trivial element is loxodromic.

Given a finitely generated group G, let Hom(G,PSL2(C)) denote the
variety of representations of G into PSL2(C). A choice of k elements
which generate G determines a bijection from Hom(G,PSL2(C)) to an
algebraic subset of (PSL2(C))fc. We give Hom(G,PSL2(C)) the topol-
ogy that makes this bijection a homeomorphism onto the algebraic set
with its complex topology. This topology on Hom(G,PSL2(C)) is inde-
pendent of the choice of the generators of G.

For the rest of this section, and throughout Section 3, we will assume
that G is a finitely generated, non-abelian, torsion-free group.

Let T>(G) denote the subspace of Hom(G,PSL2(C)) consisting of
those representations which are injective and have discrete image. It
is a fundamental result of J0rgensen's [20] that T>(G) is a closed subset
of Hom(G,PSL2(C)). The proof of J0rgensen's result is based on an
inequality for discrete subgroups of PSL2(C). A second consequence of
this inequality is the following lemma.

Lemma 2.1. (Lemma 3.6 in [21]) Let (pn) be a convergent sequence
in V(G). If (gn) is a sequence of elements of G such that (ρn(9n))
converges to the identity, then there exists n0 such that gn = 1 for
n>n0. q.e.d.

A sequence of discrete subgroups (Γn) is said to converge geometri-
cally to a Kleinian group Γ if and only if:

(1) for every 7 G f, there exist elements j n G Γn such that the
sequence (7n) converges to 7, and
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(2) whenever (Γ n i ) is a subsequence of (Γn) and j n j G Γ n j are ele-

ments such that the sequence (jn.) converges to a Mobius trans-

formation 7, we have 7 G Γ.

We call Γ the geometric limit of (Γn).

The following basic fact is proved in J0rgensen-Marden [21].

Proposition 2.2. (Proposition 3.8 in [21]) Let (pn) be a sequence

of elements of Ί)(G) converging to p. Then (pn(G)) has a geometri-

cally convergent subsequence. If Γ is the geometric limit of any such

subsequence, then p(G) < Γ.

The following fact will also be used.

Lemma 2.3. Let (pn) be a convergent sequence in V(G) such that

(pn(G)) converges geometrically to Γ. Then Γ is torsion-free.

Proof Suppose that 7 G Γ has finite order d. Let (gn) be a sequence
of elements of G such that pn(gn) converges to 7. Then pn{gt) converges
to the identity. Hence by Lemma 2.1 we have g% = 1 for large n. Since
G is torsion-free, we have gn = 1 for large n and therefore 7 = 1. q.e.d.

The following lemma characterizes the intersection of two conjugates
of p(G) in the geometric limit Γ.

L e m m a 2.4. Let (pn) be a sequence of elements ofV(G) converging
to p. Suppose that the groups pn(G) converge geometrically to Γ. Then
p(G) Π 7p(G)7~1 is a (possibly trivial) purely parabolic group for each

Ίef-P(G).
Proof Suppose that p(a) is a nontrivial element of p(G) Πjp(G)j~1

for some 7 G Γ — ρ(G). We will show that p(a) is parabolic.
Assume to the contrary that p(a) is loxodromic. We may write p(a) =

7/o(6)7~1 for some b G G. Choose gn G G such that {pn(dn)) converges
to 7. Then {ρn(gj>9n1)) converges to p(a), and hence (p^a'1 g^g'1))
converges to 1. It follows from Lemma 2.1 that there exists an integer
n0 such that a = gnbg~ι for all n > n0. Hence g~^gn is contained in the
centralizer of b for all n> n0. Applying pn and passing to the limit, we
have that p(g~^)j commutes with p(b).

Since the Kleinian group Γ is torsion-free by Lemma 2.3 and the
element ρ(b) G Γ is loxodromic, the centralizer of p(b) in Γ is cyclic.
Thus there are integers j and k such that {p(gnl)lV — p(b)k A sec-
ond application of Lemma 2.1 shows that for some n x > n 0 we have
(g~^gn)

j = bk for all n > rii. But since G is isomorphic to a torsion-free
Kleinian group, each element of G has at most one j t h root. Hence bk

has a unique j t h root c, and g~^gn = c for n > M. Thus gn — gnoc for
large n, so the sequence (gn) is eventually constant. Since (pn{gn)) con-
verges to 7, this implies that 7 is an element of p(G), which contradicts
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our hypothesis that 7 G Γ — ρ(G). q.e.d.
Next we consider the intersection of the limit set of p(G) with its

image under an element of the geometric limit Γ.
The following definition will be useful. Let I\ and Γ2 be subgroups

of the Kleinian group Γ. We will say that a point p G Λ(Γχ) Π Λ(Γ2)
is in P(I\ ,Γ 2 ) if and only if StabΓ l(p) = Z, StabΓ 2(p) = Z, and
(Stabi^ip^Stabraip)) = Z ® Z. In particular, p must be a parabolic
fixed point of both ΓΊ and Γ2.

We will make use of the following result, due to Soma [34] and An-
derson [1], which provides the link between the intersection of the limit
sets of a pair of subgroups and the limit set of the intersection of the
subgroups.

Recall that a Kleinian group Γ is topologically tame if H 3 /Γ is home-
omorphic to the interior of a compact 3-manifold.

Theorem 2.5. Let I\ and Γ2 be nonelementary, topologically tame
subgroups of the Kleinian group Γ. Then

A(Γχ) n Λ(r2) - A(Γχ n r 2 ) u P ( r l 5 r 2 ) .

The next lemma shows that the term P(Γi, Γ2) may be ignored in the
case where I\ and Γ2 are distinct conjugates of p{G) by elements of the
geometric limit Γ.

L e m m a 2.6. Let (pn) be a sequence in V{G) converging to p. Sup-
pose that the groups pn(G) converge geometrically to Γ. Then for each
7 G f - p(G), the set V{p{G)^p{G)η~ι) is empty.

Proof The argument runs along much the same line as the proof of
Proposition 2.4. Suppose that p G P(p(G),rγp(G)ry~1), that Stabp(G)(p)
= Z is generated by p(a) and that Stab7P(G)7-i(p) = Z is generated by
7p(6)7~~1. Note that each of the elements a and b generates its own
centralizer.

Choose gn G G so that (pn(dn)) converges to 7. Since p(a) commutes
with 7p(£>)7~1, we conclude as in the proof of Lemma 2.4 that there
exists an integer n 0 such that a commutes with gnbg~ι for all n > no

Since a generates its centralizer in (?, each of the elements gnbg~λ for
n > n0 must be a power of a. But these are all conjugate elements,
while distinct powers of a are not conjugate. Therefore we must have
that gnbg-1 = gnbg~l for all n > n 0 .

Thus Q~1Q commutes with b for all n > n0. Since the centralizer of
J TlQ J Ύϊ ~~

b is cyclic, we may now argue exactly as in the proof of 2.4 that the
sequence (gn) must be constant for n > nx > n 0, a contradiction to our
hypothesis that 7 G f - ρ(G). q.e.d.
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As an immediate consequence of Lemma 2.4, Theorem 2.5, and Lem-
ma 2.6, we have the following proposition.

Proposition 2.7. Let (pn) be a sequence in V{G) converging to
p. Suppose that the groups pn(G) converge geometrically to Γ and that
p(G) is topologically tame. Then for any 7 E Γ — p(G) the group p(G) Π
7p(G)7~1 is purely parabolic and

A(p(G)) Π 7 Λ(p(G)) = Λ(p(G) Π ηp{G)η-1).

Hence if A(p(G)) ΓΊ7 A(p(G)) is non-empty then it must contain only
the fixed point of p(G) Π jp(G)j~x.

3. In the convex core

We continue to assume that G is a finitely generated nonabelian
torsion-free group. We consider a sequence (pn) in V(G) converging
to a representation ω which is a maximal cusp (defined below). If the
groups pn(G) converge geometrically to Γ, then the hyperbolic manifold
N — ΈL3/ω(G) is a covering space of TV = H 3/f. The main result of
this section states that in this situation the restriction of the covering
projection gives an embedding of the convex core of N into N.

It may be helpful to recall the most basic situation in which the convex
core of a manifold does not embed in a manifold which it covers. Let
N be a hyperbolic 3-manifold, and let / : S ->• N be a totally geodesic
isometric immersion of a finite area surface S. Let N be the cover of
N associated to τri(S'), so that / lifts to a totally geodesic embedding
/ : S -> N. Since f(S) is totally geodesic, Λ(πi(5)) is a circle and f(S)
is the convex core of N. The convex core of N embeds in N if and only
if / is an embedding. Notice that / is not an embedding if and only
if there exists an element 7 of ττι(N) such that 7(Λ(τri(5))) intersects
A(π1(S)) transversely, hence in at least two points.

We will be dealing with the case where the algebraic limit is a max-
imal cusp, and hence each boundary component of the convex core of
our algebraic limit is a totally geodesic thrice-punctured sphere (Lem-
ma 3.1). We will see, as in the example above, that if the convex core
of the algebraic limit does not embed, then there must be an element
7 of f — ω(G) such that j(A(ω(G))) intersects Λ(α;(G)) in at least two
points. An application of Proposition 2.7 will complete the proof.

Given a Kleinian group Γ, define its convex hull CH(Γ) in H 3 to be
the smallest non-empty convex set in H 3 which is invariant under the
action of Γ. Thus CH(Γ) is the intersection of all half-spaces in H 3 ,
whose closures in the compactification H 3 U C contain Λ(Γ). (Recall
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that a Kleinian group is, by definition, non-elementary so that its limit
set has more than two points.)

The convex core of TV = H 3 /Γ is C(TV) = CH(Γ)/Γ. We say that TV,
or equivalently Γ, is geometrically finite if Γ is finitely generated and
C(TV) has finite volume.

The injectiυity radius injiV(x) of TV at the point x is half the length
of the shortest homotopically non-trivial closed loop passing through x.
Note that injectivity radius increases under lifting to a covering space.
That is, if TV is a cover of TV with covering map π : TV —> TV, and x is
any point of TV, then mjN(x) > inj^(π(:r)4).

Given a hyperbolic 3-manifold TV, define the e-thick part of TV as

Nthick(e) = {x e TV| injtfίz) > -},

and the e-thin part of TV as

= {X e TV| iΩJN(x) < | }

We recall that C(TV) Π TVthick(e) is compact for all e > 0 if and only if
TV is geometrically finite (see Bowditch [7]). Hence, for a geometrically
finite hyperbolic 3-manifold TV, the sets C(TV) Π TVthick(1/m) for m > 1
form an exhaustion of C(TV) by compact subsets.

We say that a representation ω in V(G) is a maximal cusp if TV =
Ή.3/ω(G) is geometrically finite and every component of the boundary
dC(N) of its convex core is a thrice-punctured sphere. We will further
require that ω(G) not be a Fuchsian group. (This rules out only the case
that ω(G) is in the (unique) conjugacy class of finite co-area Fuchsian
groups uniformizing the thrice-punctured sphere.) Maximal cusps are
discussed at length by Keen, Maskit and Series in [22], where the image
groups are termed maximally parabolic.

A proof of the following lemma appears in [22]; since we will be using
the lemma heavily, we include a sketch of the proof here.

L e m m a 3.1. Let ω G T>(G) be a maximal cusp, and let TV =
Ή.3/ω(G). Then each component of dC(N) is totally geodesic.

Proof. Since the universal cover of C(TV) is CH(ω((2)), it suffices
to show that each component of dCH(ω(G)) is a totally geodesic hy-
perplane or, equivalently, that each component of Ω(ω(G)) is a disk
bounded by a circle on the sphere at infinity.

Recall, for example from Epstein-Marden [17], that <9C(TV) is homeo-
morphic to Ω(ω(G))/ω(G). Moreover, by the Ahlfor's Finiteness
theorem Ω(ω(G))/ω(G) has finite area. Thus each component S of
Ω(ω(G))/ω(G) must be a thrice-punctured sphere. Write S =
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FIGURE 1. The domain of discontinuity of a maximal
cusp is a union of round disks

FIGURE 2. The limit set of a maximal cusp may intersect
its translate in at most one point.

where Δ is a component of Ω(ω(G)), and ΓA is the subgroup of ω(G)
stabilizing Δ.

Since Δ / Γ A is a thrice-punctured sphere, the group ΓΆ must be a
Fuchsian group, and Δ must be a disk bounded by a circle on the sphere
at infinity. (For a proof, see Chapter IX.C of Maskit's book [26]; for a
picture see Figure 1.) q.e.d.

We are now ready to prove the main result of this section. A map
between locally compact spaces will be called an embedding if it is proper
and one-to-one.

Propos i t ion 3.2. Let (pn) be a sequence of elements ofV(G) con-
verging to a maximal cusp ω. Suppose that the groups pn{G) converge
geometrically to f. Let N = H3/ω(G), N = H3/Γ\ and let π : N -> N
be the covering map. Then TΓ\C(N) i>s an embedding.
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FIGURE 3. The convex hull of the limit set of a maximal
cusp cannot intersect its translate

Proof. We first note that if (xi) is a sequence in C(N) leaving every
compact set, then lim^oo miN(xi) = 0. Hence, lim^oo mi~(π(xi)) = 0,
which implies that {π(xi)) leaves every compact subset of N. Thus,
κ\c(N) is a proper mapping.

It remains to show that π is injective. The universal cover of C(N) is
CH(u;(G)). So it suffices to show that CB(ω(G))Πj Cϊl{ω(G)) is empty
for each 7 G Γ — ω(G). For notational convenience, set X = Cΐί(ω(G)).

Since ω is assumed to be a maximal cusp, each component of d C(N)
is totally geodesic. Hence each component of dX is a plane H in H 3

whose boundary at infinity is a circle C which lies in A(ω(G)).
If X Π 7 X is not empty, there are two possibilities: Either there is

a point in dX Π 7 dX, or a component of dX lies entirely within 7 X
(or vice versa).

We begin with the case that there is a point x in dX ΓΊ7 dX. There
then exist a plane H in dX and a plane H' in 7 dX with x £ H ΠHι.
If two planes in H 3 meet, either their intersection is a line or they
are equal. If we let C denote the boundary at infinity of H and C the
boundary at infinity of if', then either CΓ\C contains exactly two points
or C = C". However, CΠC is contained in A(ω(G))Πj A(ω(G)), so that
A(ω(G)) Π 7 A(ω(G)) contains at least two points, which contradicts
Proposition 2.7.

The second possibility is that a component H of dX lies entirely
within 7 X. In this case, the boundary at infinity C of H lies in the
boundary at infinity of 7 X, which is exactly 7 A(ω(G)). However, C
also lies in Λ(ω(G)); hence Λ(ω(G)) Π 7 (Λ(ω(G))) contains G. This
also contradicts Proposition 2.7. See Figures 2 and 3 for an illustration
of how A(ω(G)) can meet its translate by 7. q.e.d.
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Remark 3.3. The conclusion of Proposition 3.2 holds, by the same
argument, whenever N is topologically tame and dC(N) is totally
geodesic.

In general, the convex core of the algebraic limit need not embed in
the geometric limit. However, one can define the visual hull of a Kleinian
group Γ to be the set of all points in H 3 such that the visual area of
every component of Ω(Γ) is at most | . The visual core is then defined
to be the quotient of the visual hull. Notice that if Γ is a maximal cusp,
then its visual core and its convex core coincide.

Anderson and Canary [2] use techniques similar to those developed in
this section to prove that the visual core embeds whenever the algebraic
limit has connected limit set and no accidental parabolics. They also
show that, under the same assumptions, there is a compact core for the
algebraic limit which embeds in the geometric limit. It has recently been
discovered that the visual core of the algebraic limit need not embed in
the algebraic limit even if the algebraic limit has connected limit set.

4. Near a maximal cusp

In this section, we will prove that if a representation in V(G) is near
enough to a maximal cusp, then its associated hyperbolic 3-manifold
contains a nearly isometric copy of an e-truncated convex core of the
maximal cusp. We first define this e-truncated object and describe some
of its useful attributes.

We recall that it follows from the Margulis lemma that there exists
a constant λ0, such that if e < λ0 and N is a hyperbolic 3-manifold,
then every component P of iVthin(e) is either a solid torus neighborhood
of a closed geodesic, or the quotient of a horoball if by a group θ of
parabolic elements fixing H (see for example [4]). In the second case, θ
is isomorphic to either Z or Z 0 Z. Moreover, H is precisely invariant
under θ < Γ, by which we mean that if 7 G Γ and 7 H Π H φ 0, then
7 G θ and 7 H = H. If θ = Z, we call P a rank-one cusp, and if
θ = Z 0 Z, we call P a rank-two cusp. Recall also that there exists
L(e) > 0, such that any two components of ΛΓthin(e) axe separated by a
distance of at least L(e).

The next lemma gives the structure of iVthin(e) for sufficiently small e.
For a proof see Section 6 of Morgan [31].

Lemma 4.1. Let N be a geometrically finite hyperbolic 3-manifold.

There exists δ(N) < λ0, such that if e < δ(N) and P is a component of

-Wthin(e) 9 then the following hold:

(i) P is non-compact,
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(ii) dP meets C(N) orthogonally along each component of their in-
tersection.

(iii) E = dP Π C(N) is a Euclidean surface with geodesic boundary,
and diam E < 1.

(iv) // P is a rank-one cusp, then E is an annulus, and if P is a
rank-two cusp then E is a torus; and

(v) C(N) Π P is homeomorphic to E x [0, oo).

In particular, for any e < δ(N) the set Nthick(e) Π C(N) is a compact
3-manifold with piecewise smooth boundary.

Given a geometrically finite hyperbolic 3-manifold N we may define
its e-truncated convex core D€ (N) to be the intersection of its convex
core C(N) with the e-thick part Nthick(e) of TV. The above lemma com-
pletely characterizes C(N) - D€(N) when e < δ(N).

Recall that a compact submanifold of N is said to be a compact core
for N if the inclusion map is a homotopy equivalence.

L e m m a 4.2. Suppose that N is a geometrically finite hyperbolic
3-manifoldj and δ(N) > e > 0. Then De(N) is a compact core for N.

Proof. First recall that the inclusion of C(N) into N is a homotopy
equivalence. Moreover, each component of C(N) — De(N) is homeomor-
phic to E x (0, oo) for some Euclidean surface E. Thus, the inclusion
of De(N) into C(N) is a homotopy equivalence, and the result follows,
q.e.d.

For any subset X of a hyperbolic manifold N we will denote by λίr(X)
the closed neighborhood of radius r of X. In the case N = H3/α;(G),
where ω is a maximal cusp, Proposition 4.4 will provide bounds for both
the area of dDe{N) and the volume of Λί2{dDe(N)). These bounds will
depend only on the topological type of N and not on e. We first recall
the following special case of Lemma 8.2 in [8] (see also Proposition 8.12.1
of Thurston [36]).

L e m m a 4.3. There is a constant K > 0, such that for any maximal
cusp ω G T>(G) and any collection S of components of the boundary of
the convex core of N — Έί3/ω(G), the neighborhood λίs(S) has volume
less than K area S. q.e.d.

If N — H 3 /ω(G), where ω(G) is a maximal cusp, we will denote by
σ(N) the number of components of 9C(JV), and by τ(N) the number
of rank-two cusps of N. We set

a(N) = -πσ(JV) + 2πτ{N)
Δ

and

β(N) = 2πκσ(N) + πe4τ(N),
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where K is the constant given by Lemma 4.3.
Lemma 4.4. Let ω be a maximal cusp and let N = Ή.3/ω(G). If

δ{N) >e>0, then

(i) area<9£>e(7V) < a(N), and
(ii) vol(λf2(dDe(N)))<β(N).

Proof. Notice that dDe(N) = SUE where S = dC{N)nNthick{e) and
E = C(iV)n&/Vthick(e). Since S C dC{N) and each component of dC(N)
is a thrice-punctured sphere, we have area S < area<9C(iV) = 2πσ(N).
By Lemma 4.1, each component of E is a Euclidean manifold of diameter
at most 1, and therefore has area at most π. Since each component
of dC(N) contains three components of dE, there are §σ(7V) annular
components of E. Moreover, there are τ(N) toroidal components of E.
Hence the first assertion follows.

Let S denote the union of S with the annular components of E. Since
each annular component of E has diameter less than 1,

Λf2(S) C λf3{S) c Λf3(dC(N)).

Thus Lemma 4.3 guarantees that

volλί2(S) < κarea(dC(7V)) = 2πκσ(N).

Now, if Γ is a toroidal component of E, then JV2(T) is (the quotient of)
a region isometric to T x (—2,2) with the metric ds2 = e'^ds2^ + dt2,
which has volume less than 2πe4. Hence the second assertion is proved,
q.e.d.

Our next result, Proposition 4.5, asserts (among other things) that
the hyperbolic manifold associated to a representation which is near
enough to a maximal cusp contains a biLipschitz copy of the e-truncated
convex core of the manifold associated to the maximal cusp.

We first outline the argument. Suppose that (pn) is a sequence of
representations in Ί)(G) which converges to a maximal cusp ω, and that
the groups pn(G) converge geometrically to Γ. Let N = Ή.3/ω(G) and
N = H3/Γ. If π : N -» N is the covering map, Proposition 3.2 implies
that 7τ\r,e(N) is an embedding. Since (pn(G)) converges geometrically
to Γ, larger and larger chunks of N are nearly isometric to larger and
larger chunks of Nn = H3/pn(G). In particular, for all large enough n
there exists a 2-biLipschitz embedding fn : Vn -> Nn where π(D€(N)) C
Vn C N. The desired biLipschitz copy of De(N) is fn(π(D€(N))).

In order to carry out the program outlined above, it will be neces-
sary to make consistent choices of base points in different hyperbolic
3-manifolds. We will use the following convention. If z is a point in
H3 and Γ is a Kleinian group, we will let zΓ denote the image of z in
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the hyperbolic manifold H3/Γ. In the case that Γ = p(G) for some
representation p E Hom(Gf,PSL2(C)) we will write zp = ZP(G)

If a codimension-0 submanifold X of a hyperbolic manifold N is con-
nected and has piecewise smooth boundary, then it has two natural
distance functions. In the extrinsic metric the distance between two
points of X is equal to their distance in JV, while in the intrinsic met-
ric the distance is the infimum of the lengths of rectifiable paths in X
joining the two points. Observe that if X and Y are submanifolds of
hyperbolic manifolds, and / : X —> Y is a if-biLipschitz map with re-
spect to the extrinsic metrics, then / is also if-biLipschitz with respect
to the intrinsic metrics.

Proposition 4.5. Suppose that ω E Ί)(G) is a maximal cusp, and
set N = H3/ω(G). Let e > 0 be given with the property that e < δ(N),
and let z be a point of H 3 such that zω lies in the interior of D€(N).
Then there is a neighborhood U(e,z,ω) of ω in T>(G) such that for each
p E U(e,z,ω), there exists a map φ : De(N) -> N' = ΈL3/p(G), with the
following properties:

(1) φ maps De(N) homeomorphically onto a manifold with piece-
wise smooth boundary, and is 2-biLipschitz with respect to the
intrinsic metrics on De(N) and φ(De(N)),

(2) φ(zω) = zp,
(3) wolλίι{d{φ{De(N)))) < Sβ(N), and
(4) φ(Nthϊn(s) Π De(N)) C Nlhin(2δ) for any δ < ?f, where λ0 is the

Margulis constant.

Proof of 4-5. Let (pn) be a sequence in Ί)(G) that converges to ω, and
set Nn = Ή.3/pn(G). It suffices to prove that (pn) has a subsequence
(pn) such that there exist maps φι : De(N) —> Nn. with properties
( l )-(4) .

Given any sequence (pn) in V(G) converging to α;, Proposition 2.2
guarantees that there exists a subsequence (pni(G)) of (pn(G)) which
converges geometrically to a group Γ such that ω(G) C Γ. Let N =
H 3/Γ, and let π : N —> N be the associated covering map. From
Proposition 3.2 it follows that TΓ\C(N) is a n embedding, so that π\r)e(N)
is an embedding. Let D = π(De(N)). Since π is a local isometry, we
use Lemma 4.4 to find that

vo\ΛΓ2{dD) < vo\λΓ2{dDe{N)) < β(N).

Since (pni(G)) converges geometrically to Γ, from Corollary 3.2.11 in
[10] or Theorem E.I. 13 in [4] it follows that there exist smooth sub-
manifolds Vi C N, numbers r{ and a i ? and maps /; : V{ -> Nni such
that:
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(i) Vi contains B(ri,Zγ), the closed radius-r; neighborhood of zp,
(ii) fi{z?) = zPn.,

(iii) Ti converges to oo, and a{ converges to 1,
(iv) fi maps Vi difFeomorphically onto f(Vi) and is α rbiLipschitz

with respect to the extrinsic metrics on Vi and f(Vj).

Choose d so that D C B(d,Zγ). Set μ — max{l,λo/2}. We may
assume that the subsequence (pn.) has been chosen so that a{ < 2 and
Γj > d + 2μ for all i. This condition on r{ implies that Λf2μ{D) is
contained in the interior of VJ.

We claim that λίμ(fi(D)) C fi(Vi). To prove the claim, we consider
the frontier X oΐM2μ(D) in N and the frontier Y{ of fi{λί2μ(D)) in Nn..
Since /; is a homeomorphism onto its image, from the invariance of
domain it follows that fi(X) — Y{. Since f~ι is extrinsically a^-Lipschitz
with OLi < 2, and every point of X has distance 2μ from D, every point
of fi(X) = Yi must be a distance greater than μ from fi(D). Thus Y{ is
disjoint fromλίμ(fi{D)). Since fi(λί2μ(D)) contains fi(D) and is disjoint
from the frontier Y{ oίNμ(fi(D)), we have fi{λΓ2μ{D)) D λfμ(MD)), and
the claim thus follows.

In particular, λίι(fi(dD)) C fi(Vi). Again using that f^1 is extrin-
sically 2-Lipschitz we conclude that Mι(fi{dD)) C fi(λί2(dD)). On
the other hand, since /< is extrinsically 2-Lipschitz, it is intrinsically
2-Lipschitz and can therefore increase the volume by at most a factor
of 8. Hence

(1) volΛ/Ί(<9/i(£>)) < 8volλί2(dD) < 8β(N).

We now define φ{: D€(N) -> Nn. to be fi o π, and will complete the
proof of the proposition by showing that φi has properties (1)—(4).

Since π is a local isometry and τr\De(N) ι s a n embedding, the map
TΓ|DC(7V) is an isometry between D€(N) and π(Dε(N)) with respect to
their intrinsic metrics. Since /*: D -> /ΐ(D) is an extrinsically (and
hence intrinsically) 2-biLipschitz homeomorphism, it follows that φi has
property (1).

We have φi(zω) = fi{π(zω)) = fi(z~) = ^P n., which is property (2).
Property (3) follows from equation (1) since φi(De(N)) = fi(D).

It remains to check property (4). Suppose that x G AΓthin((5) Π D€(N)
and δ < ^-. Then there exists a homotopically non-trivial loop C (in N)
based at x and having length at most δ. Notice that φi(C) has length
at most 2δ. Hence φi(x) must lie in the 25-thin part of iVn. unless
φi(C) is homotopically trivial. But since φi(C) has length at most 2<S,
it is contained in the closed δ- neighbor hood of φi(x) in Nni. Thus if
φi(C) were homotopically trivial in TV, it would lift to a loop in a ball
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of radius δ in H 3 whose center projects to φi(x). Hence φi(C) would
be null-homotopic in B(δ,φi(x)) C λίδ(Φi(D)) C λίμ{φi(D)) C fi(Vi).
This would imply that f^ι{φi{C)) = π(C) is homotopically trivial in
N, in contradiction to the fact that π is a covering map. Thus, φi has
property (4), and the proof of Proposition 4.5 is complete. q.e.d.

Remark 4-6. Lemmas 4.3 and 4.4 have analogues for general geo-
metrically finite hyperbolic 3-manifolds, but the constants would also
depend on the minimal length of a compressible curve in d C(N). Propo-
sition 4.5 remains true, by similar arguments, whenever N is geomet-
rically finite and every component of dC(N) is totally geodesic. One
may use arguments similar to those in Section 3 of [11] to prove that if
p is sufficiently near to a maximal cusp ω, then φ(D€(Nω)) is a compact
core for Np.

5. All over the boundary of Schottky space

We now restrict to the case where G is the free group Fk on k
generators, where k > 2. We set Vk = V(Fk). Recall that Vk is
a closed subset of Hom(Ffc,PSL2(C)). Let CCk denote the subset of
Vk consisting of representations which are convex-cocompact, i.e., are
geometrically finite and have purely loxodromic image. Moreover, let
Bk = CCk —CCk CVk. It is known (see Marden [24]) that CCk is an open
subset of Hom(i^,PSL2(C)). (The quotient of CCk under the action of
PSL2(C) is often called Schottky space.)

Let Mk denote the set of maximal cusps in Vk. It is a theorem of
Maskit's [28] that Mk C Bk. McMullen has further proved that Mk is
a dense subset of Bk. This result, though not written down, is in the
spirit of McMullen's earlier result [29] that maximal cusps are dense in
the boundary of any Bers slice of quasi-Fuchsian space.

The main result of this section, Theorem 5.2, asserts that there is
a dense G^-set of purely loxodromic, analytically tame representations
in Bk. This theorem generalizes and provides an alternate proof of
Theorem 8.2 in [14].

The proof of Theorem 5.2 makes use of Proposition 4.5 and Mc-
Mullen's theorem. We use Proposition 4.5 to show that if p E Bk is
well-approximated by an infinite sequence of maximal cusps, then its
convex core can be exhausted by nearly isometric copies of the truncated
convex cores of the maximal cusps; this implies that p is analytically
tame. McMullen's theorem guarantees that the G -̂set of points in Bk

which are well-approximated by an infinite sequence of maximal cusps
is dense.
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We now recall the definition of an analytically tame hyperbolic 3-
manifold.

Definition. A hyperbolic 3-manifold N with finitely generated
fundamental group is analytically tame if C(N) may be exhausted by a
sequence of compact submanifolds {Mi} with piecewise smooth bound-
ary such that

o o

(1) Mi C Mj if i < j , where Mj denotes the interior of Mj consid-
ered as a subset of C(JV),

(2) UMi = C(N),
(3) there exists a number K > 0 such that the boundary dMi of Mi

has area at most K for all z, and
(4) there exists a number L > 0 such that Λfi(dMi) has volume at

most L for every i.

While the definition of analytic tameness is geometric in nature, it
does have important analytic consequences. In particular, for an analyt-
ically tame group Γ one can control the behavior of positive Γ-invariant
superharmonic functions on H 3 . Specifically, we will make extensive use
of the following result, which is contained in Corollary 9.2 of [8].

Proposition 5.1. If N = H3/Γ is analytically tame and Λ(Γ) = C,
then all positive superharmonic functions on N are constant. q.e.d.

We are now in a position to state Theorem 5.2.
Theorem 5.2. For all k > 2, there exists a dense G^-set Ck in Bk,

which consists entirely of analytically tame Kleinian groups whose limit
set is the entire sphere at infinity.

The proof of Theorem 5.2 involves the following three lemmas. The
first lemma is contained in Chuckrow [12].

L e m m a 5.3. The setUk of purely loxodromic representations in Bk

is a dense Gs-set in Bk. Moreover, if p G Uk, then A(p(Fk)) = C.
q.e.d.

The second lemma is an adaptation of Bonahon's bounded diameter
lemma [5].

Lemma 5.4. For every δ > 0, there is a number ck(δ) with the
following property. Let e > 0 be given, let ω be any maximal cusp in
Vk, and set N — ΈL3/ω(Fk). If δ(N) > e, then any two points in
dD€(N) may be joined by a path β in dDe(N) such that βΠNth[C^s) has
length at most ck(δ).

Proof. Let δ > 0 be given. In order to define ck(δ) we consider a
hyperbolic 2-manifold P which is homeomorphic to a thrice-punctured
sphere; there is only one such hyperbolic 2-manifold up to isometry.
Since Pthick((S) is a compact subset of the metric space P, it has a finite
diameter d(δ). It is clear that any two points in P may be joined
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by a path β such that β (Ί Pthick(<5) has length at most d(δ). We set
cfc(ί) = {2k - 2)d(δ) + 3k - 3.

Now let ω be any maximal cusp in Vk, and set N = Ή.3/ω(Fk).
We consider an arbitrary component S of dC(N). Then S is a totally
geodesic thrice-punctured sphere. Hence S, with its intrinsic metric,
is isometric to P. Furthermore, the inclusion homomorphism τr1(Sf) —>
πι(N) is injective, and hence Sthm(δ) C iVthin(ό)- It follows that any two
points in S may be joined by a path β in S such that β Π -/Vthick(j) has
length at most d(δ).

Now, since De(N) is a compact core for N and τri(iV) is a free group
of rank fc, we see that D€(N) is a handlebody of genus k. In particular,
there are exactly 2k—2 components of ΘC(N) and exactly 3&—3 annular
components oΐdD€(N)—d C(N). Also recall, from Lemma 4.1, that each
component of dDe(N) — dC(N) has diameter at most 1. Thus, since
dDe(N) is connected, any two points in dD€(N) may be joined by a path
β such that βnNthϊck(δ) has length at most (2k-2)d(δ) + 3k-3 = ck(δ).
q.e.d.

In the following lemma and the rest of this section, we arbitrarily fix
a base point z° E H 3 , and let Xk denote the set of all representations
p E Bk such that z° lies in the interior of Cΐί(p(Fk)) relative to H 3 .

L e m m a 5.5. The set Xk is an open dense subset of Bk.

Proof. Given a representation p G ^ , we have that z° lies in
the interior of CΉ.(p(Fk)). Hence z° lies in the interior of some ideal
tetrahedron T with vertices in A(p(Fk)). Since the fixed points of the
elements of p(Fk) are dense in A(p(Fk)), we may assume that the vertices
of T are attracting fixed points of elements p(gi),..., ρ(g±) of p{Fk). It
follows that for any p' E Bk sufficiently close to p, the attracting fixed
points of p'(#i), . ^P'(9A) span a tetrahedron having z° as an interior
point. Thus z° lies in the interior of CH(p ;(F fc)). This shows that Xk is
an open subset of Bk.

If p E Z45 then p E Xk since A(p(Fk)) = C. Hence, Lemma 5.3
implies that Xk is dense. q.e.d.

Proof of 5.2. By the result of McMullen's discussed at the beginning
of this section, Mk is a dense subset of Bk. In view of Lemma 5.5 it
follows that MkΠ Xk is also dense in Bk. For each ω E MkΠ Xk and
each e > 0 we will define a neighborhood F(e,ω) of ω in Xk C Bk.

Set Nω = H3/ω(Fk). Since ω E Xk, z° E CH(ω(Fk)\ in the basepoint
convention given in Section 4 we have z% E C(Nω). Hence either z% E
De{Nω), or £° lies in the interior of the e-thin part of Nω. Let η(e,ω) —
min{e,<KJ\U}. If z°ω E De(Nω), then we set V(e,ω) = U(η{e,ω),z°,ω)Π
Xk, where U(η(e,ω),z°,ω) is the open set given by Proposition 4.5. If
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z° lies in the e-thin part of Nω, we take F(e, ω) to be a neighborhood of
ω in Xk such that for every p E V the point zQ lies in the interior of the
e-thin part of Ή.3/p(Fk). (Such a neighborhood exists because there is
an element g E Fk such that dist(z°,ω(g) z°) < e. For any p sufficiently
close to ω we have dist(z°, p(g) z°) < e.)

We now set Wk(e) = UωeMknxkV(c,ω). Since Mk Π Xk is dense in
Bk, the set Wk(e) is an open dense subset of Xk for every e > 0. Since
Uk is a dense G^-set in Bk, it follows that

ck=ukn Π wk{-)

is a dense G^-set in Xk. In order to complete the proof, we need only
to show that each element of Ck is analytically tame and has the entire
sphere as its limit set.

Let p: Fk -> PSL2(C) be a representation in Ck. Set N = H3/p(Fk).
Lemma 5.3 guarantees that C(N) = N.

By the definition of Ck, for every m E Z+ there exists a maximal cusp
ωm : Fk -> PSL 2(C) such that p E V(±,ωm). Let iVm - H3/ωm(Fk)
and let T7io be a positive integer such that ~^- is less than the injectivity
radius of N at z°p. In what follows we consider an arbitrary integer
m > m0.

By the definition of ra0 the point z°p lies in the ^-thick part of N.
Prom the definition of the sets y ( ^ , ω m ) , it follows that
p E U(η{^δ(Nm)),z°,ωm). Let Dm = Dη(jLtδ(Nm)){Nm). Proposi-
tion 4.5 guarantees that there is a map φm : Dm —> JV, such that:

(1) φm maps Dm homeomorphically onto a manifold with piecewise
smooth boundary, and is 2-biLipschitz with respect to the in-
trinsic metrics on Dm and φm(Dm)^

(2) φm(z°ωJ=Z^
(3) volM(d(<MAn))) < 8β(Nm) = 32πκ(* - 1), and
(4) φm{(Nm)thin(δ) Π Dm) C iVthin(2<5) for any ί < 4f,

where K is the constant given by Lemma 4.3. Notice that since πι(Nm)
is a free group we have r(Nm) — 0 and hence β(Nm) = 2πκσ(Nm) =

κ ( j f e l ) .
We set 50 = λo/3 and Mm = φm(Dm). Then by (4) we have

Mm Π φm(Dm (Ί (iVm)thin((50)) C

Hence, by Lemma 5.4, any two points in dMm may be joined by a path
β in dMm such that β Π AΓthin(2<5o) has length at most 2cfc(50)

Let r > 0, and let X(r) denote the set of points x E N for which
there exists a path /? beginning in B(r, 2°) and ending at £ such that
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β Π iVthick(2(50) has length at most 2ck(δ0). Since ρ{Fk) is purely loxo
dromic, each component of Nth{n^s0) is compact. Moreover, the com-
ponents of Nth-m(2δ0)

 a r e separated by a distance of at least L(2δ0), so
there exists only a finite number of components of Nth'ιn(2δ0) contained
in X(r). Therefore X(r) is compact. Set ζ(r) = minx€χ( r) mjN(x), and
mi = max(rao,2/ζ(r)).

If m > mi then dMm Π B(r, z%) = 0, since any point in dMm may
be joined by a path of length at most 2ck(δ0) to a point of injectivity
radius < ^ namely any point in φm(dDm - dC(Nm)). Since z° G M m

by (2), and since dMm Π S ( r , ^ ) = 0, we see that B(r,z°) C M m for
every m > mι.

o

We therefore have U m > m i M m = N = C(N). We may pass to a
o o

subsequence Mmj. such that M m j C M m j + 1 for all j and Ujez+Mmj =

By (3) we have

for all m> mi. Moreover, using (1) and Lemma 4.4 we obtain

area<9Mm < 4α(JVm) = 14πσ(JVm) = 28π(A; - 1).

Thus N is analytically tame. q.e.d.

6. Free groups and displacements

This section is devoted to the proof of the following theorem, which
includes the Main Theorem stated in the introduction.

Theorem 6.1. Let k > 2 be an integer and let Φ be a Kleinian group
which is freely generated by elements £ i , . . . , ζk- Suppose that one of the
following holds:

(a) Φ is purely loxodromic and topologically tame,
(b) Φ is geometrically finite,
(c) Φ is analytically tame and Λ(Φ) = C ;

(d) the hyperbolic 3-manifold H3/'Φ admits no non-constant positive
superharmonic functions.

Let z be any point of H 3 and set d{ — dist(z,ξi z) for i = 1,... , k.
Then we have

k λ 1

ι <

In particular there is some i E {1,... , k} such that d{ > log(2A: — 1).
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Note that if we had d{ < log(2& — 1) for i = 1,... , k it would follow
that

f̂ _>*.l_i.
έί 1 + e* 2k 2

Thus the last sentence of Theorem 6.1 does indeed follow from the pre-
ceding sentence.

Conditions (a)-(d) of Theorem 6.1 are by no means mutually exclu-
sive. In particular, according to Proposition 5.1, condition (c) implies
condition (d).

The following elementary inequality will be needed for the proof of
Theorem 6.1.

Lemma 6.2. Letx andy be non-negative real numbers with x+y < 1.
Set p— \{x + y). Then we have

Proof. We can write x = p + a and y = p — a for some a G R. We
find by direct calculation that p2(l — x)(l — y) — (1 — p)2xy = (1 — 2p)a2.
But p < 1/2 since x + y < 1. Hence p 2 ( l — x)(l — y) > (1 — p)2xy , and
the assertion follows. q.e.d.

A basic step in the proof of Theorem 6.1 is the observation that if the
inequality in conclusion holds on the boundary Bk of CCk, then it also
holds on CCk This observation is contained in the following lemma.

L e m m a 6.3. For k > 1 let Fk denote the free group on the k gener-
ators Xι... xk, and let p: Fk —>- PSL2(C) be any representation in CCk

Then given any point z in H 3 there exists a representation pz G Bk such
that

dist(z,ρ(xi) z) = dist(z,pz(xi) z)

for i = l , . . . , k.
Proof. We consider the set

Rz = {σ e Hom(Fk,PSL2(C))\dist(z,σ(xi) • z) = distfopfo) z)}.

It suffices to show that Rz is connected and contains a point of
Hom(FΛ,PSL 2(C)) — CCk. The connectedness follows immediately from
the easy observation that for any positive number d the set
{£ G Isom + (H 3 ) | dist(z, ξ z) = d} is path-connected. Since Rz contains
a representation with an invariant line passing through z, Rz — CCk is
clearly non-empty. q.e.d.

Proof of Theorem 6.1. We first prove that condition (d) implies the
conclusion of the theorem.
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We use the terminology of [14]. We set Φ = {£i> ^f1? > ζk, C"1} C Φ.
According to Lemma 5.3 of [14], there exists a number D E [0,2] such
that, for any z0 £ H 3 , there exist a Φ-invariant Z?-conformal density
Tl = (μz) for H 3 and a family (*ty)^eψ of Borel measures on SΌo such
that:

(i) μ,0(Soo) = 1;

(ϋ) βz0 = Σψe*uψΊ a n d

(iii) for each ^ E Φ w e have

/ (λ^.zoί^rf^-1 = 1~ duΨ'

If condition (d) of the theorem holds, it follows from Proposition 3.9
of [14] that any Φ-invariant conformal density for H 3 is a constant
multiple of the area density 21. In view of condition (i) above we must
in fact have 9JΪ = 21. In particular D = 2.

For i = 1, . . . , k we set Vi = v^. and v\ — v^-i. We denote by a{ and β{

the total masses of the measures Vi and v[ respectively. After possibly
interchanging the roles of ξi and ξ'1 we may assume that oti < β{.
(Interchanging the roles of ξi and ξ~λ does not affect the truth of the
conclusion of the lemma, since dι = dist(zo,£i z0) = dist(^0,ξ~1 z0).)

By conditions (i) and (ii) above we have Σi=i(ai + β%) — l I n

particular for each i we have 0 < βι < 1, and since α^ < βi we have
0 < ai < 1/2. Since 3Jt = 21, condition (ii) also implies that 14 < ΛZo,
where AZo denotes the area measure on 5Όo centered at z0. By applying
condition (iii) above to φ = ξ~λ we get that j S o o λ2

 τ z dv{ = 1 — βim And

by definition we have ^(SΌo) = oti. Thus the hypotheses of Lemma 5.5
of [14] hold with v = ẑ , a = a{ and b = 1 — βim Hence by Lemma 5.5 of
[14] we have

di = dist(^0, ξΓ1 zo) > o loglog _ .

(This is a corrected version of the conclusion of Lemma 5.5 of [14]. In
the published version of [14] the inequality appeared with the roles of a
and b reversed.)

Thus

Since <*» + βi < Σi=i( α « + A) = 1> i* follows from Lemma 6.2 that

( 1 - « , ) ( ! - A ) ^ , 1 - t t v a

Pi
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where p> = (α* + A)/2. Thus

rfi>log—^,
Pi

or equivalently

Σ rh~ <
Hence

This completes the proof that condition (d) implies the conclusion of
the theorem. In view of Proposition 5.1, condition (c) also implies the
conclusion of the theorem.

Next we assume that condition (a) holds and deduce the conclusion
of the theorem.

Since Φ is purely loxodromic and free of finite rank, either Λ(Φ) = C
or Φ is a Schottky group (see Maskit [27]). In the case that Λ(Φ) =
C, we use Theorem 8.1 in [8], which states that a topologically tame
hyperbolic 3-manifold is analytically tame.

Thus in this case condition (c) holds, and hence the conclusion of the
theorem is true.

Now suppose that Φ is a Schottky group. Let Fk denote the abstract
free group generated by {#!, . . . ,xk}. Let p0 : Fk —> Φ denote the
unique isomorphism that takes x{ to & for i = 1,.. . , k. We may regard
Po as a representation of Fk in PSL2(C). Since Φ is a Schottky group
we have p0 G CCk.

We define a continuous, non-negative real-valued function fz on the
representation space Hom(F f c,PSL2(C)) by setting

k -j

ί z ^ = £ ί 1 + expdist(z,p(xi) z) '

We must show that for any point z in H 3 and any representation p in CCk

we have fz(p) < \- Let z and p be given. By Lemma 6.3 there exists
a representation pz G Bk such that the point z is displaced the same
distance by ρo(xi) as by ρz{x{) for i = 1,... , fc. Thus fz(ρz) = fz(po),
so it suffices to show that fz(p) < \ for any representation p G Bk. To
see this we consider the dense Gδ-set Ck C Bk given by Theorem 5.2.
Recall that every representation in Ck maps Fk isomorphically onto an
analytically tame Kleinian group whose limit set is the entire sphere at
infinity. Thus for any p G Ck the group p(Fk) satisfies condition (c) of
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the present theorem, and we therefore have fz(p) < | . Since Ck is dense
in Bk and fz is continuous, we have fz(p) < | for every p G Bk.

Finally, we verify the conclusion of the theorem under the assumption
that condition (b) holds.

We continue to denote by Fk the abstract free group on k generators.
We fix an isomorphism p : Fk —> Φ, which we regard as a discrete,
faithful representation of Fk in Isom+(H3). In view of the geometric
finiteness of Φ = ρ{Fk), a theorem of Maskit's [28] guarantees that
there exists a sequence of discrete faithful representations {pj : F ->
Isom+(H3)} such that (for all j) Pj{F) is geometrically finite and purely
loxodromic, and Pj converges (as a sequence of representations) to p.
Given z G H3, we set

Y j e { p j { ) ) γ | e

Since each pj satisfies (a), we have m3 < | . But clearly {rrij} converges
to m, so 7τι < | . This is the conclusion of the theorem. q.e.d.

7. Topology and free subgroups

The results of the last section can be used to study the geometry
of a hyperbolic manifold N. One writes N in the form H3/Γ where
Γ is a torsion-free Kleinian group, and applies the estimate given by
Theorem 6.1 to suitable free subgroups Φ of Γ to deduce geometric
information about N. Of course, such applications require that one be
able to produce free subgroups of Γ. In this section we concentrate on
the problem of giving sufficient conditions for a subgroup of Γ = πx (N)
to be free.

This problem can be attacked with purely topological techniques.
Results which use 3-manifold theory to deduce, from topological hy-
potheses, that certain subgroups of π^JV) are free have appeared in
[37], in Section VI.4 of [19] and in the appendix to [3]. The first two
sources consider the case of a 2-generator subgroup, while the results of
the third apply to higher rank subgroups, but require that N be closed.
In this section we give a systematic treatment of this topic. We prove a
result that includes the results of [3] as special cases and is suitable for
the applications in this paper.

We shall follow a couple of conventions that are widely used in low-
dimensional topology. Unlabeled homomorphisms between fundamental
groups are understood to be induced by inclusion maps. Base points
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will be suppressed whenever it is clear from the context how to choose
consistent base points.

Recall that an orientable piecewise linear 3-manifold N is said to be
irreducible if every PL 2-sphere in TV bounds a PL ball. We shall say
that N is simple if N is irreducible and if for every rank-2 free abelian
subgroup A of πχ(N), there is a closed PL subspace E of JV, piecewise
linearly homeomorphic to Γ 2 x [0, oo), such that A is contained in a
conjugate of Ίm(πι(E) -> πi(iV)). (The subgroup im(πi(£?) -> τri(iV))
of τr1(N) is itself well-defined up to conjugacy.)

We shall say that an orientable PL 3-manifold N without boundary
has cusp-like ends if it is PL homeomorphic to the interior of a com-
pact manifold-with-boundary M such that (i) every component of dM
is a torus and (ii) for every component B of <9M, the inclusion homo-
morphism ττι(B) —» τri(M) is injective. In particular, note that if TV is
closed, then it has cusp-like ends.

Recall that the rank of a group Γ is the minimal cardinality of a
generating set for Γ.

A group Γ is termed freely indecomposable if it is non-trivial and is
not a free product of two non-trivial subgroups.

For any non-negative integer g we denote by Sg the closed orientable
surface of genus g.

Theorem 7.1. Let N be a simple orientable PL 3-manifold without
boundary. Suppose that k = rankπi(iV) < oo, and that ττι(N) is freely
indecomposable and has no subgroup isomorphic to any of the groups
πi(Sg) for 2 < g < k — 1. Then either τrι(N) is a free abelian group, or
N has cusp-like ends.

Proof. According to [32], there is a compact PL manifold-with-
boundary M C N such that π x (M) ->• πx (N) is an isomorphism. Among
all compact PL manifolds-with-boundary with this property we may
suppose M to have been chosen so as to minimize the number of com-
ponents r = rjM of dM. We may assume if we like that r > 0, for if
r = 0, then N = M is closed, and in particular it has cusp-like ends.
Let £?i,. . . , Br denote the components of c?M, and gι the genus of B{ for
% = 1,...,r. Since τri(M) = πx(N) has rank &, the first betti number of
M is at most k.

From Poincare-Lefschetz duality and the exact homology sequence of
(M, dM) it follows that the total genus J] g{ of dM is at most the first
betti number of M. Thus Σgt <k.

We must have gt > 0 for i = 1,. . ., r. Indeed, if B{ is a 2-sphere for
some z, then B{ bounds a PL ball K C N since N is irreducible. We have
either K D M or K Π M = B{. If K D M, then since τri(M) -> τ
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is an isomorphism we have /ττ1(N) — 1, in contradiction to the free
indecomposability of πi(iV). If KΠM = Bu then M1 = MUK has fewer
boundary components than M, and τri(M) —> τrι(N) is an isomorphism;
this contradicts our choice of M.

Let us consider the case in which πχ(βj) -» πχ(M) has a non-trivial
kernel for some i < r. According to the Loop Theorem [35], M contains
a properly embedded disk D such that dD is homotopically non-trivial
in dM. If D separates M, both components of M — D have boundary
components of positive genus and are therefore non-simply connected.
This contradicts the free indecomposability of πχ(M). Hence D does not
separate M, and M is a free product of an infinite cyclic group with a
group isomorphic to 7Γχ (M—D). The latter group must be trivial in view
of the free indecomposability of πi(M) = ττι(N). Thus πi(iV) = πx(M)
is infinite cyclic in this case, and in particular free abelian.

From this point on we assume that π\(Bi) —> πχ(M) is injective for
i = 1,... ,r. Since by the hypothesis of the theorem, τri(M) = πι(N)
has no subgroup isomorphic to πι(S9i) for 2 < gι < k — 1, each gι is
either < 1 or > k. We have seen that the gι are all strictly positive and
that their sum is at most k. Hence we must have either (i) r — 1 and
gλ = k, or (ii) g{ = 1 for i = 1,.. ., r.

Suppose that (i) holds. Then dM is a connected surface of genus
k. Hence the Euler characteristic χ(dM) is equal to 2 — 2k. We have
χ(M) = \χ(dM) — 1 — k. Now as a compact PL 3-manifold with
non-empty boundary, M admits a simplicial collapse to a 2-complex
L. In particular M is homotopy-equivalent to L, and hence to the
CW-complex L1 obtained from L by identifying a maximal tree in the
1-skeleton of L to a point. If c« denotes the number of z-cells in L', we
have c0 = 1 and 1 — cx + c2 = χ(L') = χ(M) — 1 — &, so that cλ—c2 — k.
But ττι(Lf) = τri(M) = τrι(N) has a presentation with Ci generators
and c2 relations, and A; = cx — c2 is by definition the deficiency of the
presentation. On the other hand, k is by hypothesis the rank of πi(AΓ).
It is a theorem due to Magnus [23] that if a group Γ has rank k and
admits a presentation of deficiency A:, then Γ is free of rank k. Since
τri(JV) is freely indecomposable, we must have k = 1, and ττ1(N) must
be infinite cyclic in this case as well.

Now suppose that (ii) holds. Then Bι,...,Br are tori. Since the
inclusion homomorphisms ττι(Bi) -> π x (M) are injective, the groups
Aι = im(7Γi (2?i) -> τri(M)) are free abelian groups of rank 2. Since N is
simple, there are closed PL subspaces Eu... ,Er of JV, each piecewise
linearly homeomorphic to T 2 x [0, oo), such that A{ is contained in a
conjugate of im(πi(£7<) ->> πi(iV)) for i = l , . . . , r . It follows from
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Proposition 5.4 of [38] that B{ is isotopic to 3E{ for i = 1,. . . , r. Hence
we may suppose the JS< to have been chosen so that dE{ — B{. For each
i <r we have either M C E{ or M Π E{ = 5*.

If M Π £7< = JBi for i = 1,.. ., r, we have JV = M U ̂  • U Er. It
follows that in this case TV is PL homeomorphic to the interior of M,
and hence that N has cusp-like ends.

There remains the case in which M C E{ for some i. In the sequence
of inclusion homomorphisms

the composition of the first two arrows (from the left) is the isomorphism
π1(Bi) —>- τri(£?;), and the composition of the last two arrows is the
isomorphism τri(M) —> τri(JV). Thus the entire sequence consists of
isomorphisms, and hence τrι(N) is a rank-2 free abelian group in this
case. q.e.d.

We shall say that a group is semifree if it is a free product of abelian
groups.

Corollary 7.2. Let N be an orientable hyperbolic 3-manifold of
infinite volume. Suppose that k = rank πλ (TV) < oo, and that τri(JV) has
no subgroup isomorphic to any of the groups πι(Sg) for 2 < g < k — 1.
Then TΓL (N) is semifree.

Proof. Let us write N = H 3 /Γ, where Γ = πχ(N) is a discrete
torsion-free subgroup of Isom+(H3). Since Γ is finitely generated, it
can be written as a free product I\ * * Γ n of freely indecomposable
subgroups. Since TV has infinite covolume, so does the manifold H3/Γi
for i = 1,... ,n. The rank k{ of I\ = π1(Ni) is at most k. Hence the
hypothesis of the corollary implies that I\ has no subgroup isomorphic
to any of the groups πι(Sg) for 2 < g < k — 1. Applying Theorem 7.1
with Ni in place of JV, we conclude that for each i < n, either I\ is free
abelian or Ni has cusp-like ends. But the latter alternative is impossible
because a hyperbolic manifold with cusp-like ends has finite volume (see
[4, D.3.18]). Thus all the I\ are free abelian and hence Γ is semifree.
q.e.d.

Recall that a group Γ is termed k-free, where A; is a cardinal number,
if every subgroup of Γ whose rank is at most k is free. We shall say
that Γ is k-semifree if every subgroup of Γ whose rank is at most k is
semifree.

Corollary 7.3. Let N be an orientable hyperbolic 3-manifold, and
let k be a non-negative integer. Suppose that ττι(N) has no subgroup
isomorphic to any of the groups πi{Sg) for 2 < g < k — 1. In addition
suppose that either
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(i) TV has infinite volume, or
(ii) every subgroup of 7Γχ (TV) whose rank is at most k is of infinite

index in 7Γχ(TV).

Then πχ(N) is k-semifree.
Proof. Let Δ be any subgroup of πλ (TV) whose rank is at most k.

Let TV denote the covering space of TV associated to H. If either (i) or
(ii) holds, TV has infinite volume. Hence by Corollary 7.2, Δ is semifree.
q.e.d.

Hypothesis (ii) of 7.3 clearly holds if the first betti number of TV is
at least k + 1. According to Proposition 1.1 of [33], it also holds if
H1(N, Zι/p) has rank at least k + 2 for some prime p. Thus we have:

Corollary 7.4. Let TV be an orientable hyperbolic 3-manifold, and
let k be a non-negative integer. Suppose that τri(TV) has no subgroup
isomorphic to any of the groups π1(Sg) for 2 < g < k - 1. In addition
suppose that either

(i) the first betti number of TV is at least k + 1, or
(ii) i ϊ i (TV, Z/p) has rank at least k + 2 for some prime p.

Then τri(TV) is k-semifree.
Remark 7.5. If the orientable hyperbolic 3-manifold TV has no cusps,

then every abelian subgroup of TΓI (TV) is infinite cyclic; thus πx (TV) is k-
semifree for a given k if and only if it is fc-free. Hence if TV has no cusps
we may replace "semifree" by "free" in the conclusions of Corollaries 7.3
and 7.4.

8. Strong Margulis numbers and Λ -Margulis numbers

In order to unify the different applications of the results of the last
two sections it is useful to introduce a little formalism. Let Γ be a
discrete torsion-free subgroup of Isom+(H3). Recall from [33] and [14]
that a positive number λ is termed a Margulis number for the group Γ,
or the orientable hyperbolic 3-manifold TV = H 3 /Γ, if whenever ξ and
η are non-commuting elements of Γ, and z E H 3 , we have

max{dist(£ z, z),dist(η z, z)} > λ.

We shall say that λ is a strong Margulis number for Γ or TV, if whenever
ξ and η are non-commuting elements of Γ, we have

1 1 < 2
I _|_ edist(ξ>z,z) I _|_ ed\at(ψz,z) — I _j_ e λ

Notice that if λ is a strong Margulis number for Γ, then λ is also a
Margulis number for Γ.
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More generally, let k > 2 be an integer, and let λ be a positive real
number. We shall say that λ is a k-Margulis number for the discrete
torsion-free group Γ < Isom+(H3) or N = H 3 /Γ if any k elements
£i> 5 ζk £ Γ and for any z G H 3 , we have that either

(i) maxf=1 dist(& z, z) > λ, or
(ii) the group (ξx,..., ξk) is generated by at most k — 1 abelian sub-

groups.

We say that λ is a strong k-Margulis number for Γ or JV, if for any k
elements ξ 1 ? . . . , ξk G Γ and any z G H 3 , we have that either

(i)

+ eaist^iZ,z) - i +eλ '

or
(ii) the group ( £ 1 ? . . . , ξk) is generated by at most k — 1 abelian sub-

groups.

Note that λ is a (respectively, strong) 2-Margulis number for Γ if and
only if it is a (respectively, strong) Margulis number for Γ. Note also
that if λ is a strong λ -Margulis number for Γ, then λ is also a A -Margulis
number for Γ.

In this section we will use Theorem 6.1 and the corollaries of Theo-
rem 7.1 to prove that under various conditions a hyperbolic 3-manifold
has log(2fc — 1) as a strong fc-Margulis number. In the following three
sections these results will be used to obtain lower bounds for the volume
of various classes of hyperbolic 3-manifolds.

Our first result is an easy consequence of Theorem 6.1 (a). We shall
say that a Kleinian group Γ is k-tame, where A; is a positive integer, if
every subgroup of Γ having rank at most k is topologically tame.

Proposition 8.1. Let k > 2 be an integer and let Γ be a discrete
subgroup o/Isom+(H 3). Suppose that Γ is k-free, k-tame and purely
loxodromic. Then log(2& — 1) is a strong k-Margulis number for Γ.

Proof. If £ i , . . . , ξk G Γ are elements of Γ, then the group ( £ x , . . . , ξk)
is topologically tame, purely loxodromic and free of some rank < k.
If its rank is A;, then it is freely generated by £ i , . . . ,£*; hence for any
z G H 3 , we have

_|_ gdist(ξi z,2:) — 2 1 -}- glog(2A;-l)

by Theorem 6.1 (a). If (ξu . . . ,ξk) has rank < k — 1, then in particular
it is generated by at most k — 1 abelian subgroups. q.e.d.
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Corollary 8.2. Let k > 2 be an integer, and let N be a non-compact,
topologically tame orientable hyperbolic 3-manifold without cusps. Sup-
pose that 7Γι(N) has no subgroup isomorphic to any of the groups ττι(Sg)
for 2 < g < k — 1. Then log(2A; — 1) is a strong k-Margulis number for
N.

Proof. Let us write N = H 3 /Γ, where Γ is a discrete, non-
cocompact, purely loxodromic subgroup of Isom + (H 3 ). According to
Proposition 3.2 in [8], every finitely generated subgroup of Γ is topo-
logically tame. In particular Γ is A -tame. On the other hand, since N
has infinite volume and πι(N) has no subgroup isomorphic to any of
the groups τrι(Sg) for 2 < g < k — 1, Corollary 7.3 and Remark 7.5
guarantee that Γ = ττ1(N) is A -free. The desired conclusion therefore
follows from Proposition 8.1. q.e.d.

It is worth pointing out that the following corollary can be deduced
from Proposition 8.1, although a more general result, Corollary 8.7, will
be proved below by a slightly different argument.

Corollary 8.3. Let k > 2 be an integer and let N be a closed
orientable hyperbolic 3-manifold. Suppose that the first betti number of
N is at least k + 1 and that TΓI (N) has no subgroup isomorphic to any
of the groups πι(Sg) for 2 < g < k — 1. Then log(2k — 1) is a strong
k-Margulis number for N.

Proof. Let us write N = H 3 /Γ, where Γ is a discrete, cocompact,
purely loxodromic subgroup of Isom+(H3). By Corollary 7.4 and Re-
mark 7.5, Γ = ττι(N) is A -free. On the other hand, since N has first
betti number at least k + 1, any subgroup Γ" of Γ having rank at most
k is contained in the kernel of a surjective homomorphism β : Γ —> Z.
According to Proposition 8.4 of [9], it follows that Γ' is topologically
tame. Thus Γ is fc-tame and the desired conclusion follows from Propo-
sition 8.1. q.e.d.

The following result gives information not contained in Proposition 8.1
because the group Γ is allowed to have parabolic elements.

Proposition 8.4. Let k > 2 be an integer and let Γ be a discrete sub-
group o/Isom + (H 3 ). Suppose that Γ is k-semifree. Suppose in addition
that for every subgroup Γ' of Γ having rank at most k, either

(i) Γ ; is geometrically finite, or
(ii) N* — H 3 /Γ ' admits no non-constant positive superharmonic

functions.

Then log(2fc — 1) is a strong k-Margulis number for Γ.

Proof If ξ i , . . . , ξk £ Γ are elements of Γ, the group (&,. . . ,&) is
semifree. Thus we may write it as a free product Aλ * * Ar, where r is
an integer < k and Ai, . . . , Aτ are free abelian groups. The sum of the
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ranks of the A{ is at most k. If r < &, or if some Ai has rank > 1, then
(£i> 5 ζk) is generated by at most k — 1 abelian subgroups. Now sup-
pose that r = k and that the Ai are all cyclic. Then (ξι,..., ξk) is free of
rank k and is therefore freely generated by £ i , . . . , ξk. If condition (i) of
the hypothesis of the proposition holds, it follows from Theorem 6.1(b)
that for any z G H 3 we have

_|_ edist(ξi z,z) — 2 1 + e\og(2k-l) '

If condition (ii) holds, the same conclusion follows from Theorem 6.1(d).
q.e.d.

If a torsion-free Kleinian group Γ is geometrically finite and has in-
finite covolume, then a theorem of Thurston's (see Proposition 7.1 in
Morgan [31]) guarantees that every finitely generated subgroup of Γ
is geometrically finite. This yields the following corollary to Proposi-
tion 8.4.

Corollary 8.5. Let k > 2 be an integer, and let Γ be a discrete
subgroup o/Isom+(H 3) which is geometrically finite and k-semifree and
has infinite covolume. Then \og(2k — 1) is a strong k-Margulis number
forT.

This result can also be combined with the results from Section 7 as
in the following corollary.

Corollary 8.6. Let k>2 be an integer, and let N be a geometrically
finite orientable hyperbolic 3-manifold of infinite volume. Suppose that
τrι(N) has no subgroup isomorphic to any of the groups ττι(Sg) for 2 <
g < k — 1. Then log(2fc — 1) is a strong k-Margulis number for N.
q.e.d.

Proof. We write N = H 3 /Γ, where Γ is a geometrically finite
Kleinian group. Since N has infinite volume and π x (N) has no subgroup
isomorphic to any of the groups ^(Sg) for 2 < g < k — 1, Corollary 7.3
guarantees that Γ = πi(TV) is fc-semifree. The assertion now follows
from Corollary 8.5. q.e.d.

The next corollary generalizes Corollary 8.3.

Corollary 8.7. Let k > 2 be an integer, and let N be an orientable
hyperbolic 3-manifold of finite volume. Suppose that the first betti num-
ber of N is at least k + 1, and τrι(N) has no subgroup isomorphic to any
of the groups πi(Sg) for 2 < g < k — 1. Then log(2fc — 1) is a strong
k-Margulis number for N.

Proof. We write N = H 3 /Γ, where Γ is a Kleinian group of finite
covolume. It follows from Corollary 7.4 that Γ = πχ(iV) is fc-semifree.
To complete the proof it suffices to show that for every subgroup Γ'
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of Γ whose rank is at most A;, one of the hypotheses (i) and (ii) of
Proposition 8.4 holds.

Since N has first betti number at least k + 1, the subgroup Γ' is
contained in the kernel of a surjective homomorphism β : n1(N) -> Z.
Therefore, by Corollary E in [9], Γ' is either geometrically finite, or N
has a finite cover N which fibers over the circle and Γ' is topologically
tame and contains the fiber subgroup Γ" of N. In the latter case we have
Λ(Γ') = C, since Λ(Γ") = C. Corollary 9.2 in [8] then guarantees that
N1 = H 3/Γ" admits no non-constant positive superharmonic functions,
q.e.d.

Finally, by specializing some of the results stated above to the case
k — 2 we obtain some sufficient conditions for log 3 to be a Margulis
number for a hyperbolic 3-manifold.

Corollary 8.8. Let N = H3/Γ be an orientable hyperbolic 3-mani-
fold, such that either

(i) TV is geometrically finite and has infinite volume,
(ii) N is topologically tame, purely loxodromic, and has infinite vol-

ume, or
(in) N has finite volume and its first betti number is at least 3.

Then log 3 is a strong Margulis number for Γ.
Proof. As we observed at the beginning of this section, a Margulis

number is the same thing as a 2-Margulis number. Under the hypothe-
sis (i), (ii) or (iii), the assertion follows respectively from Corollary 8.6,
Corollary 8.2, or Corollary 8.7. The general version of each of these
corollaries includes the assumption that πx (N) has no subgroup isomor-
phic to any of the groups nι(Sg) for 2 < g < k — 1. For k = 2 this
condition is vacuously true. q.e.d.

Remark 8.9. Given Corollary 8.8 it seems reasonable to conjecture
that log 3 is a strong Margulis number for any infinite volume hyperbolic
3-manifold. We notice that our conjecture would follow from the con-
jecture that every free 2-generator Kleinian group is a limit of Schottky
groups. There appear to exist closed hyperbolic 3-manifolds for which
log 3 is not even a Margulis number; computations by Hodgson and
Weeks give strong evidence that the Weeks manifold [40] does not con-
tain a ball of radius (log 3)/2.

9. Geometric estimates for closed manifolds

In this section we will prove the results promised in the introduction
concerning the balls of radius \ log 5 and the volume estimates for closed
manifolds of first betti number at least 4. This will be done by combining
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the results of the last section with the following result, which illustrates
the use of the notion of a A -Margulis number for k > 2.

Theorem 9.1. Let N be an orίentable hyperbolic 3-manifold without
cusps. Suppose that ττι(N) is 3-free. Let λ be a 3-Margulis number for
N. Then either N contains a hyperbolic ball of radius λ/2, or ττι(N) is
a free group of rank 2.

Before giving the proof of Theorem 9.1 we shall point out how to use
it to prove the corollaries stated in the introduction.

Corollary 9.2. Let N be a closed orientable hyperbolic 3-manifold.
Suppose that the first betti number βλ (N) is at least 4, and that πx (N)
has no subgroup isomorphic to πι(S2). Then N contains a hyperbolic
ball of radius | l o g 5 . Hence the volume of N is greater than 3.08.

Proof. According to Corollary 7.4 and Remark 7.5, the group πχ(JV)
is 3-free. By Corollary 8.3, log 5 is a strong 3-Margulis number, and
a fortiori a 3-Margulis number, for N. It therefore follows from The-
orem 9.1 that either N contains a hyperbolic ball of radius | l o g 5 or
τrι(N) is a free group of rank 2. The latter alternative is impossible,
because Γ, as the fundamental group of a closed hyperbolic 3-manifold,
must have cohomological dimension 3, whereas a free group has coho-
mological dimension 1. Thus N must contain a hyperbolic ball of radius
I log 5.

The lower bound on the volume now follows by applying Bόrόczky's
density estimate for hyperbolic sphere-packings as in [14]. q.e.d.

Let W denote the set of all finite volumes of orientable hyperbolic 3-
manifolds. Then W is a set of positive real numbers, and by restricting
the usual ordering of the real numbers we can regard W a s a n ordered
set. It is a theorem of Thurston's, based on work due to Jorgensen
and Gromov, that W is a well-ordered set having ordinal type ωω and
that there are at most a finitely many of isometry types of hyperbolic
3-manifolds with a given volume. (See [4, E.I]) Thus there is a unique
order-preserving bijection between W and the set of ordinal numbers
less than ωω. Let us denote by υc the element of W corresponding to
the ordinal number c.

Corollary 9.3. Let c be any ordinal number less than 8ω, and let N
be any orientable hyperbolic 3-manifold with volN = vc. Then either the
first betti number of N is at most 3, or π x (N) contains an isomorphic
copy ofΈι{S2)

Proof. Assume that N has first betti number at least 4 and contains
no isomorphic copy of πι(S2). Then by Corollary 9.2 we have υc =
volN > 3.08. On the other hand, Weeks census (see [18] and [39]) lists
8 distinct volumes less than 3.08 for orientable manifolds with one cusp.
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The volume of such a cusped manifold is the limit, from below, of the
volumes of its Dehn fillings (see Theorem E.7.2 in [4]). Hence the result
follows. q.e.d.

Corollary 9.4. Let N be a non-compact, topologically tame, ori-
entable hyperbolic 3-manifold without cusps. Suppose that: (i) πi(iV) is
not a free group of rank 2, and (ii) τrι(N) has no subgroup isomorphic
to 7Γι(S2)' Then N contains a hyperbolic ball of radius | l o g 5 .

Proof. According to Corollary 8.2 and Remark 7.5, the group π1(N)
is 3-free. By Corollary 8.3, log 5 is a strong 3-Margulis number, and
a fortiori a 3-Margulis number, for N. It therefore follows from Theo-
rem 9.1 (and hypothesis (ii)) that N contains a hyperbolic ball of radius
I log 5. q.e.d.

The rest of this section is devoted to the proof of Theorem 9.1. The
essential ideas of the proof appear in the proof of Theorem B in [15].
We begin by reviewing and extending a few notions from [15].

As in [15], we shall say that elements zλ,...,zr of a group Γ are
independent if they freely generate a (free, rank-r) subgroup of Γ. Re-
call that the rank of a finitely generated group G to be the minimal
cardinality of a generating set for G.

As in [15], a Γ-labeled complex, where Γ is a group, is defined to be
an ordered pair (if, (Xv)v), where if is a simplicial complex, and (Xv)υ

is a family of cyclic subgroups of Γ indexed by the vertices of if. If
(if, (Xυ)υ) is a Γ-labeled complex, then for any subcomplex L of K we
denote by Θ(L) the subgroup of Γ generated by all the groups Xv, where
υ ranges over the vertices of L.

In this paper we shall use one notion which appeared only implicitly
in [15]. Let Γ be a group and let (if, (Xv)v) be a Γ-labeled complex. By
a natural action ofΓ on (if, (Xv)v) we shall mean a simplicial action of
Γ on if such that for each vertex υ of if we have XΊ.υ = jXy^y'1. The
following result could have been stated and used in [15].

Proposition 9.5. Let Γ be a finitely generated 3-free group in which
every non-trivial element has a cyclic centralizer. Let (if, (Xυ)v) be a Γ-
labeled complex which admits a natural T-action. Suppose the following:
Xυ is a maximal cyclic subgroup of Γ for every vertex υ of if, if is
connected and has more than one vertex, the link of every vertex of K
is connected, for every 1-simplex e of K the group Θ(|e|) is non-abelian,
and there is no 2-simplex σ of K such that Θ(|σ|) is free of rank 3.
Then Θ(if) is a free group of rank 2.

Proof. The hypotheses of the above proposition include those of
Proposition 4.3 of [15]. According to the latter result, Θ(if) has local
rank 2; according to the definitions given in [15], this means that every
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finitely generated subgroup of Θ(if) is contained in a subgroup of rank
< 2, but that not every finitely generated subgroup of Θ(if) is contained
in a subgroup of rank < 1. On the other hand, the existence of a natural
action of Γ on (if, (Xv)v) clearly implies that Θ(if) is a normal subgroup
ofΓ.

Now choose any vertex v0 of if, and let x0 denote a generator of
Xo = XVo. Since x0 has a cyclic centralizer and Xo is a maximal cyclic
subgroup of Γ, the element x0 generates its own centralizer in Γ. Now
it is a special case of Proposition 4.4 of [15] that if Θ is a normal
subgroup of a finitely generated 3-free group Γ, Γ is 3-free over some
finitely generated subgroup of Θ, and Θ has local rank 2 and contains
an element x0 which generates its own centralizer in Γ, then Γ is a free
group of rank 2.

This completes the proof. q.e.d.
Proof of Theorem 9.1. As in [15], for any infinite cyclic group X of

isometries of H 3, generated by a loxodromic isometry, and for any λ > 0,
we denote by Zχ(X) the set of points z e H 3 such that dist(z, ξ z) < λ
for some non-trivial element ξ of X.

Suppose that N satisfies the hypotheses of Theorem 9.1 but contains
no ball of radius λ/2. We shall prove the theorem by showing that
πι(N) is a free group of rank 2. Let us write N = H3/Γ, where Γ is
a purely loxodromic Kleinian group. Then according to the discussion
in subsection 3.4 of [15], the indexed family (Z\(X))Xeχ, where X —
X\ (N) denotes the set of all maximal cyclic subgroups X of Γ such that
Z\(X) φ 0, is an open covering of H 3, and the nerve K = Kχ(N) of
this covering is a simplicial complex. By definition the vertices of K are
in natural one-one correspondence with the maximal cyclic subgroups
in the set X. If we denote by Xv E X the maximal cyclic subgroup
corresponding to a vertex υ, then (if, (Xυ)v) is a Γ-labeled complex.

We shall show that the group Γ and the Γ-labeled complex (if, (Xυ)v)
satisfy the hypotheses of Proposition 9.5. By the hypothesis of the
theorem, Γ is 3-free. Since Γ is a purely loxodromic Kleinian group,
it has the property that each of its non-trivial elements has a cyclic
centralizer.

In order to construct a natural action of Γ on (if, (Xv)v), we first
define an action of Γ on the set of vertices of K by XΊ.V — ηXvη~ι. If
uo,...,wm are the vertices of an m-simplex of if, then we have

Ί'ZX{X)=Ί

0<i<m 0<i<m 0<i<m

so that 7 i70,.. ,7 vm are the vertices of an m-simplex of if. Thus
the action of Γ on the vertex set extends to a simplicial action on if.
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It is immediate from the definitions that this is a natural action on

By Proposition 3.4 of [15], K is a connected simplicial complex with
more than one vertex, and the link of every vertex of K is connected.
Now let e be any 1-simplex of K, and let υ and w denote its vertices.
Let xυ and xw be generators of Xv and Xw. We have v φ w and hence
Xv φ Xw\ that is, the elements xυ and xw generate distinct maximal
cyclic subgroups of Γ. Since the abelian subgroups of Γ are cyclic, it
follows that θ(|e|) = (xv,xw) is non-abelian.

Finally, we claim that if σ is a 2-simplex of if, the group θ(|σ|) cannot
be free of rank 3. To prove this, let u, υ and w denote the vertices of
σ, and let ξui ξv and ξw be generators of Xu, Xυ and Xw. From the
definition of the nerve K it follows that ZX(XU)ΠZX(XV)ΠZX(XW) φ 0.
Let z be any point of ZX(XU) Π ZX(XV) Π ZX(XW). By definition there
are non-trivial elements of Xu, Xv and Xw, say ηu = ξ"u, ηυ — ξ^v and
ηw = ξ1^ 5 such that dist(z, ηu z), dist(z, ηv z) and dist(z, ηw z) are less
than λ. Since λ is a 3-Margulis number for Γ, (ηm'Πυi'Πw) is generated
by at most two abelian subgroups. Now if θ(|σ|) is free of rank 3, then
ξu, ξv and ξw are independent, and so are ηu, ηυ and ηw. This means
that (ηuiVvi'Πw) is free of rank 3, and thus cannot be generated by two
abelian subgroups. The claim is proved.

Thus Γ and (if, (Xv)υ) satisfy all the hypotheses of Proposition 9.5.
Hence Γ is a free group of rank 2, as required. q.e.d.

Remark 9.6. It is possible to drop the hypothesis that N has no
cusps in Theorem 9.1. Because τri(iV) is 3-free, N can only have rank 1
cusps. The construction of the Γ-labeled complex in the proof of 9.1 can
still be carried out, although the arguments in [15] must be extended
to account for the fact that some of the sets ZX(X) will be horoballs
instead of cylinders.

10. Volumes and short geodesies

Let C be a non-trivial closed geodesic in a closed hyperbolic 3-manifold
N. Let us write N = H3/Γ, where Γ is a cocompact, torsion-free, dis-
crete group of isometries of H 3 . Then C is the image in N of the axis
AΊ of some non-trivial (and hence loxodromic) element 7 G Γ which is
uniquely determined up to conjugacy. Let us set

R = - mindist(Aγ, δ AΊ),

where δ ranges over all elements of Γ which do not commute with 7. If
we denote by Z the set of all points in H 3 whose distance from AΊ is
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less than i?, from the definition of R it follows that Z Π δ Z = 0 for
every δ G Γ not commuting with 7; hence the quotient Z/(j) embeds
in N. The resulting isometric copy of Z/(j) in N is called the maximal
embedded tube about the geodesic C, and the number R is called the
radius of the tube. If the geodesic C has length Z, then the volume of
the maximal embedded tube about C is given by the formula

(2) πisinh 2 i ϊ ,

which is therefore a lower bound for the volume of N.
In this section we prove the following result.
Proposition 10.1. Let N be an orientable hyperbolic 3-manifold

having log 3 as a strong Margulis number. Let C be a closed geodesic in
N, and let I denote its length. If R denotes the radius of the maximal
embedded tube about C, then

, o z ? e

2 / + 2e< + 5
cosh 2R

Combining this with Corollary 8.8 immediately yields
Corollary 10.2. Let N be an orientable hyperbolic 3-manifold of

finite volume whose first betti number is at least 3. Let C be a closed
geodesic in N, and let I denote its length. If R is the radius of the
maximal embedded tube about C', then

cosh 2R

The above results will also be used to give volume estimates for hy-
perbolic 3-manifolds containing short geodesies (see 10.3, 10.5 and 10.6
below).

Proof of 10.1. By the definition of R there is an element δ of Γ, not
commuting with 7, such that the distance from AΊ to δ AΊ — Aδlδ-\ is
2R. Let B denote the common perpendicular to the lines AΊ and ί A7,
and let z and w denote the points of intersection of B with AΊ and δ AΊ

respectively. Then dist(^, w) = 2R. Let us write w — δ u where u is a
point of AΊ. Since 7 acts on AΊ as a translation of length /, there is an
integer m such that dist(u,7m z) < 1/2. Hence dist(w,£7m z) < 1/2.
The triangle with vertices z, w and δym z has a right angle at w.
Writing α = dist(z, £7™ z) for the hypotenuse of this right triangle and
applying the Hyperbolic Pythagorean Theorem, lead to

(3) cosh a = cosh 2R cosh dist(it;, δjm z) < cosh - cosh 2R.
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Since 7 and δ do not commute, neither do the elements 7 and δj171 of
Γ. Applying the definition of a strong Margulis number with ξ = 7 and
η = δjm, and using a = dist(^, δηm 2) and I = dist(^, 7 2), we obtain

1 1 1

which can be rewritten in the form

,4,

On the other hand, using (2) we find that

ea = cosh α + sinh α

= cosh a + Y cosh2 a — I

< cosh2Rcosh - + \/cosh 2i?cosh 1.
Δ

Combining this with (3) gives

1 1 ί _ ι o

(5) cosh2Rcosh - + Wcosh2 2iϊcosh2 - - 1 > - — - .
v

The equation

I I ~l eι + 3
x cosh - + 1 / x2 cosh2 - — 1 = —

Δ y Δ β J.

has the solution

e2/ + 2e* + 5

Since the function x cosh £ + Jx2 cosh2 £ — 1 is monotone increasing for

x > 1, it follows from (4) that

cosh2i? > XQ,

which is the conclusion of Proposition 10.1. q.e.d.
Let us define a function V(x) for x > 0 by

) πx

and note that
l α / I /I .
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Since sinh2 R = |(cosh2iϊ — 1), Proposition 10.1 and the above for-
mula (1) for the volume of a maximal tube now imply:

L e m m a 10.3. Let N be an orientable hyperbolic 3-manifold having
log 3 as a strong Margulis number. Let C be a closed geodesic in N, and
let I denote its length. Then the maximal embedded tube about C has
volume at least V(l).

The following result will permit us to put the information given by
the above lemma in a more useful form.

Proposition 10.4. The function V(x) is monotonically decreasing
for x>0.

Proof. For x > 0 we set

Since

(cosh 2 :z;)(e 4 *+2e 2 *-3)7'( :r)

= (coshz - zsinhz)(e 4* + 2e2x - 3)(e4x + 2e2x + 5)

-32z(coshα;)(e 4 x +e 2 x ),

(coshx){e4x + 2e2x -3)2f'{x)

<(e4x+2e2x -3)(e4x+2e2x + 5)

- ( e 4 x + 2e2* - 3)2 - 32z(e4* + e2x)

= 8(e4*(l - Ax) + 2e2x{\ - 2x) - 3).

But the function e 4 x ( l - Ax) + 2e2x{\ - 2x) - 3 is negative-valued for
x > 0, because it vanishes at 0, and its derivative — xe4x — Axe2x is
negative for x > 0. Thus f'(x) < 0 for x > 0. q.e.d.

Combining Lemma 10.3 with Proposition 10.4, we immediately ob-
tain:

Corollary 10.5. Let N be an orientable hyperbolic 3-manifold having
log 3 as a strong Margulis number. Let λ be a positive number, and
suppose that N contains a closed geodesic of length at most X. Then the
maximal embedded tube about C has volume at least V(λ). In particular
the volume of N is at least V(X).

Corollary 10.6. Let N be an orientable hyperbolic 3-manifold which
has first betti number at least 3. Let X be a positive number, and suppose
that N contains a closed geodesic of length at most X. Then the volume
of N is at least V{X).



FREE KLEINIAN GROUPS 779

Proof. We may assume that N has finite volume, as otherwise the
assertion is trivial. It then follows from Corollary 8.8 that log 3 is a
Margulis number for N. The assertion now follows from Corollary 10.5.
q.e.d.

We observe above that l im^o V(x) = π. Thus Corollary 10.6 implies
that if an orientable hyperbolic 3-manifold N has betti number at least 3
and contains a very short geodesic, the volume of N cannot be much less
than π. Explicitly, we can say for example that if N contains a geodesic
of length at most 0.1, then the volume of TV is at least V(0.1) = 2.906
We already get non-trivial information from 10.3 and 10.4 if TV contains
a closed geodesic of length at most 1; in this case the results imply
that N has volume at least V(l) = 0.956.... This is greater than
the smallest known volume 0.943 . . . of a closed orientable hyperbolic 3-
manifold, which is in turn greater than the lower bound 0.92 established
in [14] for the volume of an arbitrary closed orientable hyperbolic 3-
manifold of first betti number at least 3.

In [13], Corollary 10.6 will be used as one ingredient in proving that
any orientable hyperbolic 3-manifold with first betti number at least 3
has a volume exceeding that of the smallest known example, and hence
that any smallest-volume orientable hyperbolic 3-manifold has first betti
number at most 2.

11. A volume bound for non-compact manifolds

Theorem 11.1. Let N = H3/Γ be a non-compact hyperbolic 3-
manifold. If N has first betti number at least 4, then N has volume at
least π.

Proof. We may assume that N has finite volume. In this case N
is homeomorphic to the interior of a compact 3-manifold M with non-
empty boundary dM which consists of a finite collection of tori. Let 2\
be a torus in dM and let Mn be the result of the (l,n) Dehn filling of
M along Tλ, in terms of some fixed system of coordinates on Tί . Notice
that Mn has first betti number at least 3, since N had betti number at
least 4.

Thurston's Hyperbolic Dehn Surgery Theorem (see [36]) guarantees
that the interior of Mn admits a hyperbolic structure for all large enough
n (see also Theorem E.5.1 in [4].) Let Nn — H 3 / Γ n be a hyperbolic
manifold homeomorphic to the interior of Mn. Then volNn < volN for
all n and vol Nn converges to vol TV (see Theorem E.7.2 in [4]). Moreover,
we may assume that Γ n converges geometrically to Γ (see Theorem E.6.2
in [4]).
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Let 7 n denote an element of Γn representing the shortest closed

geodesic in Nn. Since Γ n converges geometrically to Γ, N has k cusps

and Nn has k — 1 cusps (for every n), we see that ln = l(jn) converges

to 0 (see Theorem E.2.4 in [4]). By Corollary 10.3 we have

v o l 7 V n > V ( Q = ^ ^ { )

Recall that V(ln) converges to π, since ln converges to 0. Therefore

voliV > π. q.e.d.
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