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VANISHING THEOREMS FOR COHOMOLOGIES
OF AUTOMORPHIC VECTOR BUNDLES

C. S. RAJAN

1. Introduction

Let M be a compact, irreducible, locally hermitian symmetric space
of noncompact type. If M is not a Riemann surface, then Calabi and
Vesentini have shown in ([4]), that the complex structure on M is
infinitesimally rigid, i.e., they show the vanishing of Hι(M, ΘM), where
ΘM is the tangent sheaf of germs of holomorphic vector fields on M.
Their method involves the construction of an 'auxiliary expression',
which is simplified in two different ways, to obtain a quadratic form
involving curvature terms. The desired vanishing is reduced then to
proving that the quadratic form is positive definite. One obtains criteria
for the vanishing of the cohomology groups H*(M, ΘM), which depend
on the curvature properties of M and not on the lattice defining M.

Based on their method, Weil showed (see [17]) that an irreducible,
cocompact lattice Γ in a real semisimple Lie group G without compact
or three dimensional factors is rigid, i.e., any 'nearby' deformations
of Γ inside G are equivalent. This amounts to showing the vanishing
of ΐί 1(Γ, Ad), where Ad is the adjoint representation of G on its Lie
algebra. Matsushima refined this method to show vanishing of Betti
numbers of M below some degree ([10]).

Our main result is to give a criterion for the vanishing of coho-
mologies of "automorphic" vector bundles, generalising the results of
Calabi-Vesentini and Matsushima. More generally we give a criterion
for the vanishing of d-cohomology (or (g, Kc)— cohomology) of uni-
tary g- modules with coeffecients in a K- module. The terms involved
can be calculated explicitly in terms of the dominant weight of the
reprsentation defining the automorphic vector bundle and the curva-
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ture constants of M.
Apart from Calabi-Vesentini and Matsushima, vanishing theorems

for cohomologies of automorphic vector bundles have been proved by
many authors, among them Narasimhan-Okamoto, Griffiths, Schmid,
Hotta and Parthasarthy. See for instance ([15]). However they all
involve some regularity assumptions on the dominant weight of the
reprsentation defining the automorphic vector bundle and are not ap-
plicable in general.

Our main application of and motivation for the vanishing theorem on
cohomology, is to generalize the rigidity theorems of Calabi-Vesentini.
We show for a large class of compact, locally homogeneous Kahlerian
spaces, that the complex structure on them is infinitesimally rigid.
These are precisely the spaces which are fibered over a locally her-
mitian symmetric domain. To show the infinitesimal rigidity of these
spaces, we use the Leray spectral sequence for the fibering, to reduce
the question to one concerning the vanishing of the first cohomolgy of
certain automorphic vector bundles on the associated locally hermitian
symmetric domain.

Let M be the universal cover of M. Let G be the group of isometries
of the symmetric space M. Let g be the Lie algebra of G, U(gc) be
the universal enveloping algebra of the complexification of g and Z_
be the center of the U(gc). If E is an automorphic vector bundle on
M, it is observed in ([5]), that there is a natural action of Z_ on the
Dolbeault complex V of (0,p)-forms (0 < p < dimM), and hence on
the cohomology H*(M, E). Faltings in fact shows that each Z E Z_ acts
as a scalar on HP(M,E), and morever determines the corresponding
homomorphism of Z_ into C. In view of the homogeneous nature of the
δ-Laplacian (with respect to an appropriate metric on £7), the space
of harmonic (0,p)- forms is Z-stable and hence harmonic p-forms are
eigenforms for the action of Z_ on V.

Thus we can view harmonic forms as eigenforms of the Casimir of
gc. This allows us to bypass the complicated calculations of Laplacians
on bundles (see for instance [6]) and instead work in a group theoretic
framework. We believe that the expressions are more amenable to
calculations in a group theoretic framework. The vanishing result we
obtain in fact asserts that under suitable conditions on the bundle £?,
nonzero eigenforms for Z_ corresponding to these eigenvalues do not
exist.
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Briefly our proof is as follows: Following the lines of Matsushima's
proof as adapted by Borel-Wallach, we obtain a quadratic form involv-
ing norm and the derivatives of the eigen-form. We then use the result
of Faltings, to express the norm of the form in terms of the norms of
the derivatives of the form. We obtain then a quadratic form on p ® p,
whose positivity ensures vanishing results on cohomology.

Remark. The method of Calabi-Vesentini has been further ex-
ploited by Corlette, Siu, Jost, Yau, Mok and Yeung to obtain archime-
dean superrigidity of lattices in semisimple Lie groups except those in
SΌ(n,l) and SU(n,l). See ([9], [14]). However apart from Calabi-
Vesentini and Matsushima this method does not seem to have been
used to compute the cohomologies of automorphic vector bundles. For
the relationship of these cohomology groups with arithmetic, we refer
to the article of M. Harris ([7]).

2. Preliminaries

2.1. Let G be a real, semisimple, connected linear Lie group
without compact factors. Let K be a maximal compact subgroup of G.
We assume that M = G/K is a bounded hermitian symmetric domain.
Let T C K be a compact Cartan subgroup of G. Denote the Lie
algebras of left invariant vector fields on G, K, Tbyg, ft, t respectively.
Let <7C, fcc, tc denote respectively their complexifications. Let Gc

be the complexification of G with Lie algebra g°. Let Kc denote the
complex subgroup of Gc corresponding to the Lie subalgebra kc of gc.
Let B denote the Killing form on gc. Let U(gc) denote the universal
enveloping algebra of g°. Let Z_ denote the centre of the universal
enveloping algebra U(gc).

Note. For all group theoretical facts we refer to ([8]).
One has the Cartan decomposition g = k Θ p, where p is the or-

thogonal complement of /c inside g. There is a natural identification
of p, with the tangent space at the identity coset of G/K. The com-
plexification p° of p splits canonically into two k invariant subspaces
pc = p+ 0p~, such that p + and p~ are abelian subalgebras of gc. Let
P + and P~ denote the subgroups of Gc corresponding respectively to
the subalgebras g+ and p~ of g°. Q = P~KC is then a (complex)
parabolic subgroup of Gc with Lie algebra q = p~ 0 kc.
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p+KcP~ is an open subset of G c containing G and GΠKCP~ = K.
Thus M = G/K can be embedded as a open subset in the compact
complex manifold Gc/Q and let the complex structure on G/K be the
one induced by this open immersion. p + (resp. p~) then corresponds
to the space of holomorphic (resp. antiholomorphic) tangent vectors at
the identity coset of G/K.

Let Δ denote the collection of roots of the pair (£ c , tc). Let Δ c

(resp. Δn) denote the set of compact (resp. noncompact) roots i.e.
those α E Φ for which ga C kc (resp. £α C £ c ) . We choose an ordering
of the roots, such that p + is the span of the root spaces corresponding
to the noncompact positive roots. Let p denote half the sum of positive
roots of £ c .

The smooth tangent bundle to G/K is a G-equivariant bundle and
there is a G-equivariant isomorphism T(G/K) ~ G XK P- The Killing
form B on #, restricts to a positive definite form on p (and is negative
definite on k). This gives rise to a G-invariant metric on G/K. Let R
denote the curvature tensor on G/K. FoτX,Y eTeK(G/K), R(X,Y) G
End(TeK(G/K)). It is well known that under the natural identification

TeK{G/K)~p, R is given by

(1) R(X,Y)Z=[\Y,X],Z\ (X,Y,Zep)

Let {Xi}ι<i<d form an orthonormal basis of p. We choose an orthogonal

basis {Xa}d<a<n of fc, with B(Xa,Xa) = - 1 and such that each Xa is

either in the center of k_ or is in one of the simple ideals of k.. Define

the structure constants, c^ , cι

aj; 1 < i, j < cί, d < a <n by [Xi,Xj] =

Σac<ϊjXa and [Xa,Xi] = ΣjcίiXj' Prom the invariance of the Killing

form it follows that

(o\ r ?. — —ra. = rl .

Define Rijkι = B([Xi,Xj],[Xk,Xι])' In terms of the structure con-

stants,

a

G acts by left and right multiplication on itself. Denote the cor-

responding action on the functions on G by L and R i.e. for g,g' E
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G, L(g)(f)(g') = /(<rV), R(g)(f)tf) = /(<?'<?). We continue to de-
note by L and i?, the induced actions of U(gc) on smooth functions on
G as well. The left and right actions are compatible in the following
sense: for X G g c , let X1 — —X. This extends to an antiautomorphism
X^X1 oί U(lc). Then any Z G Z satisfies, L(Z) = Λ(Z*).

Let Γ be an irreducible, torsion-free, cocompact lattice in G. Let
M = Γ\G/K. We will assume that Γ is torsion free in order to ensure
that M be smooth. We want to study the cohomology of homogeneous
vector bundles on M.

2.2. We now describe a class of holomorphic vector bundles on
M. Let σ be a representation of if on a vector space V. We con-
tinue to denote by σ the corresponding holomorphic representation
of Q on V, which is trivial on P+. One can form the holomorphic
Gc—equivariant vector bundle on G c/Q, associated to the holomor-
phic principal Q—fibration Gc —> Gc/Q. Restrict this bundle to the
open set M and take the quotient by the action of Γ to get a holomor-
phic vector bundle E(σ) on M. We call such bundles as 'automorphic
vector bundles' in the sequel.

We note that as C°°-vector bundles, one has a natural isomorphism
of E(σ) with the bundle associated to the principal ίf-bundle Γ\G —>
T\G/K and the reprsentation σ (restricted to K) of if. See ([11]). We
can then define a G invariant metric on the bundle E{σ) by taking any
metric on V on which K acts as isometries.

Example. The holomorphic tangent sheaf Θ of M is isomorphic to
the automorphic vector bundle associated to the representation of Kc

on p + . (We will identify a vector bundle with its associated locally free
sheaf of germs of sections). Since one can identify (p*)* and p~ by the
Killing form, the cotangent bundle Ω1 of M is the automorphic vector
bundle associated to the representation of Kc on p~.

2.3. Let Ap>q(M, Eσ) denote the space of smooth forms of type
(p, q) on M with values in the bundle Eσ. AP)9(M, Eσ) is isomorphic to
the subspace of C°°(Γ\G) ® V ® f\pp~ ® /\q p+ defined by the following
condition: (see [12, page 9]) for X G kc and η G C°°(Γ\G) ® V ®

(4) {R®σ®a(F_® ad\){X)η = 0

where αcί.(resp. ad\) denotes the action of kc on l\pp~ (resp. Λ9P+)•
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The cohomology groups admit an interpretation in terms of rela-
tive Lie algebra cohomology. Let {Xa}i<a<d be a basis of p+, with
{^«}i<α<d the corresponding dual basis of p~.

We have the differential operator 8 : A^q{M,Eσ) -> A°'9+1(M, Eσ)
(see [12, page 16]) :

d =
a=l

Since σ(XΈ) = 0, d is just the differential in the complex computing
the relative (q, Kc) cohomology of the (q, Kc) -module C°°(Γ\G) ® V\
Hence

H«{M,Eσ) ~

Prom (4), we see that the center Z of the universal enveloping al-
gebra of U(g°) acts on Ap'9(M,£Jσ) (via i? or L). Morever from the
formulas for d and 5, we see that the Z_ action commutes with d. Hence
there is an action of Z on the cohomology groups of the vector bundles
considered above. This action will be basic to our study of the coho-
mology of automorphic vector bundles. In fact our vanishing theorems
state that under suitable conditions on the highest weight of the fcc

module, certain eigenforms of Z_ vanish.
We note that the left (right) translations of G, L (resp. i?), acting

only on the first factor G of G x V, act unitarily on the space of sections
of E(σ). Thus for any X E £ C , we have L(X)* = -L(X) (similarly
for R(X)), where * denotes the adjoint with respect to the metrics
considered above. Hence for any X G ί7(£c), L(X)* = L(Xt)^ where
X ι-> X1 is the involution on U(gc) considered above.

With respect to the metric defined above one can define the adjoint
of 8* of d and the Laplacian Δ^ = 88* + 8*8. As usual one can do a
harmonic theory and represnt the cohomology by harmonic forms.

Proposition 1. The left (or right) action L of Z_ described above
leaves stable the space of harmonic forms.

Proof. Let Z G Z_. We have seen above that Z o 8 = 8 o Z and
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L(Z)* = L(Z*). Let η, ω be smooth forms with values in E(σ). Then

< L(Z)8*η,ω > = < d'ηiLffiω >= < η,dL(Zι)ω >

= < r),L(Zι)dω >= < L(Z)η,8ω >

= <d*L(Z)η,ω>

Hence L(Z)8* = 8*L(Z) and so L(Z) o Δ^ = Δ a o L(Z). Consequently
the space of harmonic forms is Z_ stable, the Z_ action being the same
as in the cohomology.

2.4. We now recall a theorem of Faltings describing the action of the
centre of the universal enveloping algebra on the cohomology groups

Let W be the Weyl group of (gc,tc). By a theorem of Harishchan-
dra ([16, chapter 3]), one knows that Z_ is isomorphic to the W— in-
variants of the symmetric algebra S(tc) of tc. Let θ : Z_ ->• S(tc) be
the Harishchandra isomorphism. The symmetric algebra on tc can be
identified with the space of polynomial functions on (tc)*. Given a
complex linear form λ o n t c , let eλ be the evaluation map at λ. For
any complex linear form λ on ίc, define a character χx : Z_ —> C, by
χx = ex+p o θ. χx describes the action of Z_ on the Verma module with
highest weight λ. χx = χμ iff λ + p and μ + p are conjugate under the
Weyl group W.

Let μ be the highest weight of the Kc - representation σ. μ is a linear
form on tc. The theorem of Faltings says the following: ([5, page 77])

Theorem 2 (Faltings). Z_ acts on the cohomology groups
H*(M,Eσ) and hence also on the space of harmonic forms on M with
values in Eσ, via the left action L, by the infinitesimal character χμ.

For the sake of completeness we outline a proof of the theorem. Let
W be a unitary (#, ίf)-module, possessing an infinitesimal character
χw. The cohomology group Hq(q, Kc, W ® V), can be thought of as
Ext groups in the category of (<7,ΐfc)-modules. We have

By general homological algebra, it is enough to know the Z-action when
q = 0. Inducing to (£, Kc), we have the isomorphism

V\W)
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By Poincare-Birkhoff-Witt, it is easy to see that the cohomology groups

vanish unless χw = χμ (note that q = k +p ) and that Z acts by χμ.
This finishes the proof of the theorem.

2.5. We now make a few remarks about Casimir operators. Let
g' be a complex reductive Lie algebra. Let B1 be a nondegenerate
invariant form on £'. Let (ϊi)i<»<n and (F/)1< ί<n be bases of <?' dual
with respect to B1 i.e. B'{Yi,Y ) = δij. Define the Casimir element
Cβ' = ΣILi YiYi m U(g), with respect to the invariant form Bf. Then
CB> is a central element of U(g) and is independent of the choice of the
pair of bases. Let t' be a Cartan subalgebra of g' and fix an order on
the set of roots (#', t'). Let 2p' be the sum of the positive roots. Let λ'
be a linear form on t' and let Mχ> be the corresponding Verma module.
By choosing the bases to consist of root vectors and by analysing the
action on the highest weight vector of Mλ/, we see easily that

(5) χχι(CB,) = B'(λ',\')+2B'(λ\p')

where we continue to denote by B' the restriction of B' to Horn (£', C).

Since any highest weight module Vy with highest weight λ' is a quotient

of MX>,CB> continues to act on Vx, by χλ/(c ,)./d.

Remark. Let CQ denote the Casimir of g c , with respect to the

Killing form B of g°. CG e Z_ and Cι

G = CG. Thus the Casimir

CQ of g° acts (left or right) via χμ{Co) on the cohomology groups

H'(M,E(σ)).

2.6. Remark. When the representation σ of Q, is the restriction

of a representation of G c , then a vector bundle can be constructed on

M as in the case of automorphic bundles. These bundles are flat and

the computation of cohomology of the corresponding local system can

be reduced to the automorphic case. Let V be an irreducible ^-module

and let v be a, highest weight vector in V. Let S be the fcc-span of υ.

Let η be a (0, q)-foτm on M with values in V, harmonic with respect

to the Laplacian of d, constructed with respect to the natural metric.

Then it is easy to see from the formulas given in ([11] (Lemma 5.1,

page 409) ), that η takes values in the subspace S. By appealing then

to the theorems of Kuga and Faltings we see that in order to prove

vanishing theorems for the cohomology groups in the flat case, we are

reduced to proving the vanishing theorems for forms with values in

5, which have the right eigenvalue with respect to the Casimir. This
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allows us to recover the theorem of Weil from the theorem of Calabi
and Vesentini. This is just an illustration of Eichler-Shimura theory.
See ([12, Theorem 7.1]).

3. A vanishing theorem

We prove our main result (a vanishing theorem for cohomology of
automorphic vector bundles) in this section. As has already been re-
marked, the idea of the proof goes back to Calabi and was refined by
Weil and Matsushima. We follow the infinitesimal approach given by
Borel and Wallach. ([2] (Chapter II, Section 8) )

3.1. Let W be a unitary ^-module. We denote by R the action
of g on W. For example R can be the right regular representation of
G on the space C°°(Γ\G) of smooth functions on Y\G. Let σ be a
representation of K on a vector space V, with highest weight μ, with
respect to the order on it introduced earlier.

Notation: On the spaces V, and p + we give the metrics given in ( ).
On the spaces naturally associated to these spaces, we equip them with
the natural metrics constucted out of the metrics given above. In all
cases we will continue to denote the metric by < . , . > . We will always
assume that when we are summing over the variables i, j , fc, I the sum
will range from 1 to d , and when we are summing over indices α, 6,
the indices will range over d + 1 to n.

Denote by m = R®σ the action of k on W ®V. Let η be an element
of W ® V ® Λ9P+5 satisfying the equivariance condition (4)

(6) {m®adl){X)η = 0 fovXekc

If W is Coo(Γ\Gί), η can be thought of as a smooth (0, (?) form on
T\G/K with values in the bundle Eσ.

Consider the auxiliary expression

We will simplify Φ(η) in two different ways, one thinking of W ® V®
l\q p+ as a k — module, another in terms of the curvature components
of G/K. For harmonic 77, we then construct a quadratic form in the
derivatives of η.
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3.2. Denote by L, the invariant bilinear form on kc defined by

L(X, Y) = tr{adpXadpY) (X, Y e kc).

By our choice of bases, the {Xα}'s form an orthogonal basis with re-
spect to L. Since g has no compact factors, k acts faithfully on p.
Moreover the eigenvalues of adX(X G k) are purely imaginary. Hence
L is negative definite. For Xa in the centre of fcc, we have

(7) L(Xa,Xa)=B(Xa,Xa) = -l

Since L is an invariant form on fc, on each of the simple ideals k{ of fc,
L is a (positive) multiple A{ of the Killing form B restricted to ki. If £
is a direct sum of ideals g , then the forms B and L of g restrict to the
corresponding forms B and L of g . Thus the constants ^ depend only
on the simple algebra g . The constants Aι can be explicitly calculated
and we have 0 < A{ < 1. Let A = min^Ai. For the values of A{, refer
to Table 1.

In terms of the structure constants,

(8)

Define a Casimir operator CΊ, with respect to the invariant form L by

(9)

We will now simplify Φ(η) using £c-equivariance. Using (6), we

obtain

(10)
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3.3. Now we transform Φ(?7) using the formula [Xi, Xj] =

on only one term of the scalar product.

Using the equivariance of η under kc given by (6), we obtain

(11) Set Φ^η) = - ί i ^ l

(12) and Φ2(η) = -^lj2ciJ < ^\{Xa)η, σ[XitXj]η >

(13) Then Φ(η) = Φ^η) + Φ2(η)

Φi(η) contains the differentiation term only and behaves like the
expression for the trivial vector bundle, i.e. the case of constant coef-
ficients. Φi (η) will be simplified in terms of the curvature coefficients

Rijkl

Φ2(r/) involves only linear terms and can be written in terms of Cχ
3.4. We now simplify Φχ(η). We remark that we have identified

pc and (pcY by means of the Killing form restricted to p. (pc)* is
contragredient to the representation of kc on pc.

Let J = {ju jq} be a subset of cardinality q of {1, d}, and let
Xj denote the corresponding element in /\qp (upto a sign). If r/, ω
are g-forms on M with values in E(σ) then the inner product can be
written as

< η, ω >= Σ <
j

where J runs through subsets of cardinality q of {1,..., d}. (Note that
this is well defined, since the arbitrariness regarding sign disappears on
taking the product). If 77, ω are thought of as elements in W®V®f\qp,
then η(Xj), ω(Xj) will stand for the coeffecient (with values in W®V)
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with respect to the basis Xj of /\q p. Thus,

Φifa) = -^Y^ Σ 4 < ((adl(Xa)η)(Xj), (R[XuX,]η)(Xj) >

c .

where for a form α; G W®V®l\qp*~, we define Ujlr..jq = ω(Xjλ, XjJ.

Note that the factor (q — 1)! disappears because we are taking a sum

over all ordered sets of the form (jΊ, ...jg). Prom the antisymmetry of

c? and [Xi,Xj] we get

Φ1(η) = — q x Y^ c? < (αd+(

It can be easily checked that

where the sum over w runs from 1 to q. Thus,

. . , Λ Jl '"3 u'"3q
ί.i.fc.u

31,' '3q

Since by (3), Σ c ?/ C ^- = -̂ »i*i« > *' i e s u m o v e r α c a n ^ e w r i t t e n i n

a

terms of Rijki So

31,' jq

Since R is unitary, we have

<?Φi(r?) = - Σ ( - 1 ) " " l i ? i ^ W χ '

= - Σ
i.i.fc.u
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Λ

Writing ί for j u and rewriting the indices (ji,-** j u >'"3q)

(.72 j *' * ->3q) the above expression can be written

qΦ1(η) = -ς

(14) Thus Φ1(η) = - £ Rijki < R(Xi)ηkJ2...jq,R(Xj)ηιh...jq >

32,' 'jq

3.5. We now simplify $2(7?)- We have

Xa) < adq

+(Xa)η, σ(Xa)η >

Xa) < r/, ad\(Xa)σ(Xa)η >

Since adq

+(Xa)σ(Xa) = ^[{ad\ ® σ)(Xa)
2 - ad%{Xa)

2 ® 1

- l O σ ( X α ) 2 ]

we have

(15)

^ ^ CL) - σ(CL)]η

3.6. Substituting the expressions obtained for Φi(r?) in (14), for

Φ2(77) in (15) and for Φ(η) in (10) into (13), we obtain,

0 = ^ = ^ < η, [(adl ® σ){CL) + adP+(CL) - σ(CL)]η

(16)

3.7. So far, working in analogy with the case of constant coeffi-
cients, we have obtained an expression for Φ(η), for η any (0, g)-form
with values in E(σ). However we have a mixed expression involving
derivatives R(Xi)η of 77, together with terms involving essentially the
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square of the norm of η. To get rid of the dependence on the norm of
77, we assume that η is an eigenform for the Casimir operator CG of G.
Using this we will be able to express the norm of η in terms of inner
product involving the derivative R(Xi)η.

We saw in § 1, that harmonic forms are eigenforms of the Casimir
operator. Let μ be the highest weight of a representation of Kc and
η be a d—harmonic form on M with values in the automorphic vector
bundle E(σ). Then by Falting's result, Theorem 2, and the Remark 2.5
following it, R(CG)η = L(CG)η = σ(CG)η. Hence we assume from now
onwards that η is an eigenform of the Casimir operator CG of G with
eigenvalue σ(CG) for the action R of £.

In terms of the basis {Xa, X{} of g, CG = - Σ %l + Σ Xf Let

(17) Ck = -

σ(Cβ) II η II2 = «
\η > +Σ

i

R(Xa)η,R(Xa)η > -

The last equality follows because R is unitary.
By (6), we get,

(18) σ(CG) || η\\2 = < η, {ad\ ® σ)(Ck)η > -

3.8. Write Λ9P+ = Θ α

 v(a) ^ &°- modules, where V(α), stands
for the isotypical component of /\q p + corresponding to irreducible rep-
resentation a of kc. Write Vμ ® c /\q £ + = φaVμ®Va = ®β Vβ, where
V(β) is the kc— isotypical component of Vμ ® /\q p+ corresponding to
the irreducible representation /3, with highest weight λ. Since Ck and
CL are linear combinations of Casimir operators of the various simple
components of fcc, they act as scalars on V(β).

Write η = ΣVβi where ηβ are the projections to W ® Vβ of a form
η G VF®Vμ®/\qp+. Since 77 is assumed to be an eigenvector of CG with
respect to the action R of g on W, the same is true of the components
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ηp oΐη. Hence we assume from now onwards that η E W®V(β), where
β is a representation of kc occuring in Vμ ® /\9 p* Thus from (21)

σ(CG) || η ||2 = < (adl ® σ)(Ck)η, η > -

(19) = /?(C») || η II2 -

Iΐσ{CG) = )9(Cfc), then i ? ( X ^ = 0 Vi. Thus η G W^βV^, where W9-
is the invariants of g_ and since CG acts on the harmonic form via the
action R with eigenvalueσ(CGr) , we have 0 = σ(Co) = β{Ck) Hence
μ = 0. Since there are no kc- trivial subspaces of ΛV+ for g > 0 this
says q = 0, and we are reduced to calculating the zeroth cohomology.

Hence we assume from now onwards that the following positivity
condition holds:

(20) β(Ck) - σ(CG) > 0

Then

3.9. We now construct a quadratic form on p ® p. Using the fact
that 7/ takes values in the space V̂ , (16) takes the form

(g - 1)! (β(CL) + q(CL) - σ{CL)) || r? ||2

4 (β{Ck)-σ{CG))

< ΛpQifcA...,,, R{Xj)ηιh...u >

Substituting for || η ||2 (21), and expanding in terms of the coefficient
functions 77 .̂..̂ , we get

0 = R \

(22) + ] Γ i?ijfcί < R(Xi)ηkja...Jt,R(Xj)ηιh...jq
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Let

/no\ 7~) Ί~)(rr π rv R\

D is an explicit constant and depends only on σ, q, a and β.

Fix an orthonormal basis βi, es of V. Given an element υ of V,
let (iv) be the co-ordinates oft; with respect to this basis.

We obtain from (22),

= Σ

(24) + Σ Rijkl

The expression inside the curly brackets, can be thought of as an equa-
tion inp®p, involving the i, j variables, i.e. an expression in R(Xi)ηj*.
Let ξ = {ξij)i<ij<d be an element of p ® p. Consider the following
quadratic form H = H(g,g,μ,/3), defined o n p ® p a s follows:

(25) H(ξ) = D\\ξ\\2+ΣRmιξikξjl

If the form H is shown to be positive definite on p ® p, then we see

from (24), that for any j25 *i g and r,

where we have assumed that 77 is a (0, q)— form with values in V ,̂ which

is an eigenform of the Casimir with eigenvalue σ(Co) By a similar

reasoning which led to the positivity condition (20), we see that σ = 0

and that the form η is invariant. We have proved the following:

Theorem 3. Let σ be an irreducible kc—representation on V. Let

β be an irreducible k_c-module occuring in V ® /\9 p+ If the quadratic

form H constructed as above is positive definite, for all β satisfying the

condition 20, i.e., β{Ck) — CΓ(CG) > 0, then

unless σ is the trivial representation and q = 0.
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Remark. We have actually proved that under the hypothesis of the
theorem, nonzero eigenforms of the Casimir CQ of G with eigenvalue
σ(Co) do not exist, unless σ is the trivial representation and q = 0.

Remark. We note that our conditions on the vanishing of coho-
mology is independent of the lattice Γ and depends only on G, q and σ.
We note also that H is the sum of two quadratic forms - one the form
ξ *-> Σij^kjRijkiζίkζji which depends only on the geometry of G/K and
not at all on the representation σ nor on the degree g, the other being
the form ξ •->> D \\ ξ ||2, which depends on μ, q and β.

Remark. Our vanishing result is applicable even when the highest
weight μ of V is not regular for g. For example, in the next chapter we
need to show vanishing of cohomology groups for certain μ vanishing
on the center of k. If g is simple then the center of k is generated by
pn. This will force μ = 0, if μ is the highest weight of a representation
of g. Hence our results are not covered by the vanishing results of
Matsushima and Murakami. It can be seen that the vanishing results
we need to prove rigidity in the next chapter are not covered by the
vanishing results of Hotta-Parthasarathy either. See ([15]).

3.10. We can write p®p = S2pφ/\2p where S2p (resp. Λ2p) is the
space of symmetric (resp. skew-symmetric) 2-tensors of p. These spaces
are stable under k_ . Arguing as in ([17]), we see that the decomposition
above is orthogonal with respect to the quadratic form H. Further if
D is a positive real number, then H is positive definite when restricted
to Λ V For ξ = fe) e S2p, let P : S2p^ S2p be

(26) P(ξ)ik =

From the symmetry properties satisfied by Rijkh it is easy to see that
P is a symmetric operator on S2p. Hence in order to show that H is
positive definite on p®p, it is enough to show that the form H on S2p,

is positive definite on S2p.
Let λi be the minimum eigenvalue of P. λi depends only on G

and can be explicitly calculated. For the values of λ l5 we refer to
Table 1. We see that if | λi |< D(σ, g, α, /?), then the form iϊ(σ, #, α, β)
is positive definite.
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Corollary 1. Assume D is positive. If | λi |< £)(σ, q, α,/3) for all
β an irreducible fcc-module occuring in V ® f\q p* and satisfying the
positivity condition ( 20), then

3.11. Example. When the representation σ is the trivial repre-
sentation, then β ~ a. There is only one value of D to consider and
D > 0. We have from (23),

= 1 2a(CL) A

4g a(Ck) 2q

The inequality A/2q + λi > 0 is the one considered by Matsushima, to
conclude the vanishing of Betti numbers below some degree of M. Thus
from Table 1, we conclude that A/2 + λi > 0 is true in the following
cases: J m i , m a (mi > m2 > 2), IIm{m > 4), IIIm(m > 2), IVm(m >
3), V, V/. Hence in these cases the first Betti number of M vanishes.

3.12. We will now remove the dependence on the choice of /?, when
[/bc, kc] is simple. We will show now that when [fcc, kc] is a simple Lie
algebra, then under some conditions on the highest weight μ of σ, D
is positive and that the minimum value Dmin — min^D(σ, g, α, β) is
assumed for β with the highest weight λ + μ.

Lemma 1. Assume that [kc,kc] is a simple Lie algebra. Let pn be
half the sum of positive noncompact roots. If (μ,pn) ^ 0, then D > 0.

Proof. Write k_ = [fcC,^C]0fco, where k$ is the one dimensional
center of fcc. If r is an irreducible representation of fcc, then r can be
written as r' Θ τ0, where r' is trivial on ^ and τ0 is a character on k^.
Let C'L (resp. C£) be the Casimir of [/cc,fcc] (resp. k^) with respect
to the inner product defined by L. By (7) L \ k^ = B \ k^, and by the
assumption on fcc , we have C'L = AC'K, where A = minα | L(Xa, Xa)\-
Hence

τ(CL) = || τ 0 | |
2 +Aτ'(C'κ)

(27) =(l-A)\\τo\\2+Aτ(Ck)

Hence num(D) = β(CL) - σ{CL) + a{CL)

= (1 - A){|| ^ 0 | |
2 - || μ0 | |

2 + || α 0 ||
2}

(28) +A{β(Ck)-σ(Ck)+a(Ck)}
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where num(D) denotes the numerator of D. Since β0 = μo <8> &o > we
have

Il/3o||2-||μo||2=l|αo||2+2(μo,«o).

It is known that pn is a nonzero element of (ί c )*, (see [12] (page 11,

Lemma 4.2) ) which is trivial on ί c Π [fcC,fcC] Moreover (α,pn) >

0. Since by assumption (μ,pn) > 05 we see that μ0 is a nonnegative

multiple of α o Hence (μ0? <̂ o) > 0. Further, by the positivity condition

(20),

(29) β{Ck) - σ(Ca) = β(Ck) - σ(Ck) - 2(μ, pn) > 0

Since (μ,pn) > 0, this shows that

β(Ck)-σ(Ck)>0

Hence D is positive.

Since a(Ck) is independent of the irreducible fcc-constituent a of

Λ?|>+ ([12, Lemma 4.1]), we have that,

(30) a(CL) = (l-A)\\ao\\2+Aa(Ck)

is independent of the irreducible constituent a of fcc occuring in /\q p+.
Substituting ((27), (28) and (29) into the expression for D (23),"we

obtain,

(31)

Aq 4qβ(Ck)-σ(Ck)-2(μ,pn)

(I-A) 2||αo||
2+2(αo,/io)

Aq β(Ck)-σ(Ck)-2(μ,pn)

We notice that all the individual summands are positive if we assume

It is known that adq+(Ck) acts by a scalar on f\qp+ ([12] (Lem-
ma 4.1)). Hence the value of a(Ck) is independent of the irreducible
constituent a occuring in adq+. Morever the dependence on β occurs in
the denominators of the summands. Hence the minimal positive value
of D occurs when β(Ck) is maximum amongst the representations β
occuring in V(σ) ® ΛV + This happens when the highest weight of
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β = μ + a. Substituting for β we obtain the minimal value D m i n of D
as

A A
*J min — A i

Aq
|lαoll2+(αo,/io)

(32)

To obtain vanishing results one has to show by Corollary (1), that
D min >| λi |, where λi is the minimal eigenvalue of P. Hence we have

Theorem 4. Assume that [fcc,fcc] is a simple Lie algebra. Let σ be
an irreducible representation ofk with highest weight μ. Let pn be half
the sum of the positive noncompact roots. Assume that (μ,pn) > 0. If

n - A

K

A 2{μ,pn)+a(Ck)
U min — A "r A ( μ , p )

a0 |12 +(ao,μo)

1q 2(μ, a - pn)

then the cohomology groups, Hq(M,E(σ)) vanish.
Since D m j n > A/4q, we have
Corollary 2. Assume that [k_ , k ] is a simple Lie algebra. Let σ be

an irreducible representation ofkc with highest weight μ. Let pn be half
the sum of the positive noncompact roots. Assume that (μ,pn) > 0. //

then the cohomology groups, Hq(M,E(σ)) vanish.
We tabulate the constants A and λx in Table 1. See ([10]) for the

table.
Table 1

Type of M

Imum2(
ml > m2 > 1)

Πm{m > 3)
IIIm(m > 2)
IVm(m > 3)
V

VI

A

m2/(m1 + m2)
(m - 2)/2(m - 1)

(m + 2)/2(m + 1)
2/m

1/3

1/3

λl

—l/(m! + m2)
-l/2(m - 1)
- l/(m + l)

-1/m
-1/12
-1/18
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Note. For /m i,m 2, the other value is A2 = mi /(mi +m2).

From Table 1 we obtain for the first cohomology,
Corollary 3. Let G be any one of the following type: IIm(m >

6), J//m(ra > 6) and the two exceptional types V,VI. Let σ be an irre-
ducible representation of kc, with highest weight μ such that (μ,pn) >
0. Then

H1(M,E(σ)) = (0)

4. Application to deformations

4.1. In this section we look at deformations of complex structures
on locally homogeneous Kahlerian manifolds. We use the notation
of the previous sections. Let K' be a connected, closed subgroup of
G. From now onwards we assume that there is a G-invariant Kahler
structure on G/K'. Then the following is known: ([1])

K' is compact and is the centralizer of a torus S in G. Let T be a
maximal compact torus in G containing S. Then T is a Cartan sub-
group in G. Let K be the maximal compact subgroup of G containing
T. Then G/K is a hermitian symmetric domain and the natural map
π : G/K' -)• G/K is holomorphic.

Let &', k! , K1, KfC denote the usual objects associated with K'.
Let Po be the Borel subgroup of (7C, whose Lie algebra is spanned by
the negative root spaces corresponding to the ordering chosen above.
Let Q! denote the parabolic subgroup KlCP0, with Levi component
K' . The complex strucures on G/K1 is defined in a manner analogous
to that of G/K : G/K' C Gc/Qr is open and the complex structure
on G/K' is the induced one. Since Q' C Q, the projection map π :
G/K' -+ G/K is holomorphic.

Conversely given a parabolic subgroup Q' of G contained in Q, let
K' = P' Π K. Then K'c is a Levi component of P', and the projection
map G/K' —>• G/K is holomorphic. Furthermore G/K1 carries a G-
invariant complex Kahler strucure.

Remark. Let G be a real semisimle Lie group without compact fac-
tors and let K' be a compact, connected subgroup of G. Assume that
G/K' carries a G-invariant complex structure. Such spaces and their
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quotients by torsion-free lattices were studied by Griffiths and Schmid
([6]). These spaces arise as parametrizing spaces for variations of po-
larized Hodge structures. BoreΓs theorem says that G/K' supports a
G-invariant Kahler structure iff it is fibered over hermitian symmetric
domain. This allows us to apply the Leray spectral sequence to com-
pute the cohomologies of the vector bundles we consider on T\G/K'.
The problem then reduces to computing the cohomologies of certain
automorphic vector bundles on T\G/K to which we can apply the van-
ishing theorems of Section 3.

4.2. Let Γ be an irreducible, torsion-free, cocompact lattice in G.
Let M' = T\G/K' and M = T\G/K. Let π : M' -> M denote the
natural map. We are interested in the deformations of the complex
structure on M'. Similar to the construction of automorphic vector
bundles on M, given a holomorphic representation σ' of Q', one can
construct a holomorphic vector bundle Eσ> on M'. For a sheaf E on M
(or M'), denote by E, the pullback sheaf onjG/K (resp. G/K'). Let
ti(σ') denote the action of Q on H^Q/Q', Eσ, \ (Q/Q1)).

Proposition 5. With notation as above, ΈCΈ+Eσι ~ Ehi^σ>).
Proof. Let π : G/K' -> G/K also denote the projection map. For a

G-sheaf E on G/K' ^ denote by EΓ, the sheaf on M' obtained by taking
Γ-invariant sections of Γ invariant open sets in G/K' . Then,

•p

π, (El,) ~ (π*Eσ>) .

Since E H* ET is an exact functor, one has Rqπ*Eσ> = Rqπ*

To calculate I&π+Evi, since Eσ» are restrictions of Gc-sheaves on

Gc/Q', it is enough to calculate Ri;H+Eσι for the map π : Gc/Q' —>•

Gc/Q. Since Ri:π*Eσ> is again a Gc-sheaf on G c /Q, it is the sheaf

induced from the representation of Q, on the fiber of Rιπ^Eσt. Since

π : Gc/Q' -> Gc/Q is a locally trivial fibration, this representation is

just the action of Q on H^Q/Q'.E^ |(Q/Q')), which is h^σ'). Hence

the result.

4.3. Let ΘM' denote the sheaf of germs of holomorphic vector fields

on M'. We now calculate the cohomology of ®M' On M' there is a

short exact sequence of sheaves,

(33) 0 — > ΘMΊM —> ΘM< — * TΓ*ΘM — • 0
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where ΘM is the sheaf of germs of holomorphic vector fields on M and
ΘM'/M is the sheaf of germs of holomorphic vector fields which are
tangential to the fibers of the map M' —> M.

By projection formula

^ π , ( π * Θ M ) ~ (R^O'M) ® Θ M

By Proposition 5, R^O'M is the sheaf associated to the representa-
tion of Kc on i Γ ( # c / # c n Q ' , O). It is well known that JΪ<(ϋΓc/ϋΓC!n
Q',O) = (0) for i > 0. See ([3]). Hence

(34) Riπ*(π*ΘM) = {0) ( i > 0 )

(35) 7Γ*(TΓ*ΘM) = ΘM

Similarly, i?ιπ*ΘM'/M is the sheaf associated to the representation
of Kc on H*>(KC/KC n Q ' , Θ * c / x c n Q , ) . By Bott's Theorem ([3]), we
have

H\KCIKC Π Q', θirc/tfCngO = (0) (i > 1)

Hence

(36) R1K*QM>/M = (0) (i > 0)

Let TK/K* denote the UΓc-module H°{KC/KC Π Q', Θ x c / x c n Q / ) ,
which is isomorphic to TΓ^ΘM'/M The long exact sequence of direct
image sheaves under π corresponding to the short exact sequence (33),
reduces by (34), (35), (36) to the following short exact sequence on M:

(37) 0 -> E{TK/K>) -> 7r,θM ' -+ Θ M -> 0

Also from equations (34) and (36), we get

iΓπ.θM' = (0) (ί > 0)

Substituting the vanishing of i?97r*(©M') (q > 0), in the Leray spectral

sequence for the fibration M' —> M , calculating the cohomology of

ΘM' , we have

Eξ9 = Hp(M,Rqπ*ΘMI) - (0) (q > 0)

and so

Hp(M',ΘM>) = Ef = Hp(M,π*ΘM>)
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By the results of Calabi and Vesentini, we have

(38) iJ°(M,ΘM) = (0)

Further, since M is not a compact Riemann surface,

(39)

([4] (Theorem 1 and Corollary to Theorem 1). Inserting the information
from (38) and (39) into the long exact sequence of cohomology groups
corresponding to the short exact sequence (37), we see that

H\M',QM ) - H\M,E{TKIK,))

Let now K1 = T. ΘKC/KCΠP0 is the homogeneous vector bundle on
Kc/Kc Π Po associated to the representation of T on kc/(kc ΠgJ,
where p^ is the Lie algebra of Po By Borel-Weil-Bott Theorem,

Tκ,κ> = H°(KC/KC Π Po, Θκa/κcnPo) ~ [ALC, k°]

as ifc-modules.
For a general K' D Γ, E(Tκ/Rf) is a direct summand of E(TK/T)

as a fcc-module. Hence if one shows that HX(N, ΘN) = (0), when
N = Γ\G/T, then Hι{M', QM,) = (0) for M' = Γ\G/K', K D K' DT.

Hence we have,
Theorem 6. With notations as above, if

then the complex structure on any M' is infinitesimally rigid.
4.4. The fibration M' -> M can also be thought of as a Kc/Q'c

bundle associated to the Kc principal bundle on M. Hι(M, E(Tκ/κ'))
parametrizes the space of infinitesimal deformations of the bundle Mf -»
M. The Kuranishi space of deformations of the bundle M' —» M thus
has tangent space Hλ(M,E{Tκ/κ,)) ~ ^(EHk0^0])). By what has
been said before Theorem 6, Hι(M,E(Tκ/κ,)) ~ Hι(M',θ). Morever
it is clear that there is a natural map from the Kuranishi space corre-
sponding to the deformations of the bundle M' -> M, to the Kuranishi
space corresponding to the deformations of the complex structure on
M1. There is actually a map from the differential graded Lie algebra
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corresponding to the deformations of the bundle M' —> M to the dif-
ferential graded Lie algebra corresponding to the deformations of the
complex structure on M'. This map is an isomorphism at the first coho-
mology level, i.e., at the level of Zariski tangent spaces of the Kuranishi
spaces corresponding to the deformations. Morever from the degener-
ation of the Leray spectral sequence at the E2 stage and the vanishing
of Hλ(M, ΘM) by Calabi-Vesentini, it follows that there is a natural in-
clusion of H2(M,E(TK/K»)) into H2{M',ΘM,). It follows from general
facts on differential graded Lie algebras that the corresponding Kuran-
ishi spaces are actually isomorphic. See ([13] Comparison theorem)).

Theorem 7. Under the natural map, the Kuranishi space of defor-
mations of the bundle M1 -> M, is isomorphic to the Kuranishi space
of deformations of the complex structure on M'.

4.5. Write fcc = Â  θ 0 kr where k^ is the center of fcc and
kιrmmkr a r e *he simple ideals of kc. Thus in order to show the rigidity
of the complex structure on spaces of the form Γ\<7/T, it is enough to
show that Hι(M, #(£;)) vanishes for i = 1, r, where M = T\G/K
and E(k^ is the automorphic vector bundle on M associated to the
representation of if on k{. We now calculate the constants D. Let σ
denote any of the representations of kc on a simple component k{ of
k . σ is trivial on the center /^ of k°. Since pn is trivial on [fcc,fcc],
we obtain that (μ, pn) = 0 where μ is the highest weight of σ. Hence

(40) σ(CG) =| | μ ||2 +2(μ,pk + pn) =| | μ ||2 +2(μ,pk) = σ(Ck)

We are interested in the first cohomology of E(σ). We assume now
that gc is simple. Then the representation a = ad\ of k on p+ is
irreducible, r is then an irreducible kc- constituent of k{ ®p*. We will
do the computations when [k_ , k_ ] is simple and the case when G is a
group of the type I m i , m a (mi > ra2 > 2).

4.6. In this section we assume that [fcc,fcc] is simple. Since σ is
trivial on the center k#, we have by (32) and (40),

(41J
a{Ck)+2(μ,a)

Note. For the notation concerning root systems, we follow [8] (Chap-
ter X, Section3). We refer to Table 1, for the values of A and λi. First
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of all, for the exceptional groups of type V, VI we see from Table 1,
that

(42) D + X 1 > J + X 1 > 0

4.6.1. We now consider groups of type IIm. IIm(m > 3) : G =

Roots: ±βi ±βj (1 < i φ j < m)
Compact roots: ±(βi — βj) (1 < i ψ j < m) Non compact roots:

2ρk = (m - l)eχ + (m - 3)e2 H (m - l ) e m

μ = e i -e m , α = βi + e2

α| | 2 =4, (α,μ) = l, (a,2p4) = 2m-4, a(Ck) = 2m

- - n ) a o = £ ( l • • - ! ) II <*o | | 2 = ^
2 m 2 - 7 m - 2

Hence

(43) D + X1>0 if m > 4

4 . 6 . 2 . W e n o w c o n s i d e r g r o u p s o f t y p e I I I m . I I I m ( m > 2 ) : G

Roots: ±2e i5 ±(βi ± βj) (1 <i Φ j <m)
Compact roots: ±(e^ - e0) (1 <i φ j <m)
Noncompact roots: ±2e i5 ±(βi + βj) (1 <i φ j <m)

2pk = (m - l)eχ H (m - l)em

μ = ei - e m , α = 2βi

2 4
fco = C(ei, ,βm), θb = —(1, ,1), | | α o | | 2 = —

m m
(α,μ) = 2, ( 2 p Λ , α ) = 2 ( m - l ) , || a | | 2 = 4, a(Ck) =

m 2 - 6
-^ min i ^ l ^ / , - \ / , Λ\

4(771 + lj(m + L)
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Thus

(44) D + X1>0 if m > 3

4.6.3. We now consider groups of type IVmi for m even. IVm :
(m + 2 = 2Z, m > 3 , m ^ 4 ) G~SΌ(m,2), # ~ SΌ(m)

Roots: ±e< ± e ά (l<iφj< i)
Compact roots: ±e{ ±βj (2 < i φ j < I)
Noncompact roots: ±eλ ± e, (2 < j < ί)

2Pk = 2(1 - l)e2 + 2(i - 4)e3 + •

// = e2 + e3, α = eλ + e2

ho = Ceu a0 = eu \\ a0 \\2= 1

(α,μ) = l, || « | | 2 = 2, (2pk,a) = 4« - 10, α(Cft) = 4^ - 8 = 2m - 4

_ m — 4
•^ min H" λ i — - z —r

4m(m — 1)

Thus

(45) D + λλ>0 i f m > 4

4.6.4. We now consider groups of type IVm, for m odd. IVm :

Roots: ±e<, ±βί ± eά (l<iφ j < t)
Compact roots: ±e<, ±e^ ± ê  (2 < i φ j < i)
Noncompact roots: ±eli ±eλ ± βj (2 < j < ί)

2pk = (21 - l)ei + (2ί - 3)e2

kQ = Ceu a0 = eu || α 0 | | 2 = 1

(α,μ) = l, | | α | | 2 = 2 , ( 2 Λ l α ) = 4 * - 4 , α(C,) = 4^ - 2 = 2m

m — 4
-^ min 4" λ i = - p " —Γ

47n(m + 1)

Thus
(46) D + λ χ > 0 i f m > 4
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4.7. We now consider groups in Type I.
When G ~ SU(n, 1), a similar calculation done as above will show

that D m i n + λx is negative. Hence in this case we cannot conclude
anything about rigidity of the complex structure on T\G/T.

4.7.1. We now consider the case when g ~ su(rriι, m2) (mi > m2 >
2) Let m = mi + m2. We identify g° ~ s£(m, C). kc can be identified
with the trace 0 matrices in gί(mι, C) x gl(m2, C). tc will be idenfitied
with the trace 0 vectors in C m . For B we will consider the usual inner
product on C m . The inner product given by L o n t c , will be extended
to C m by taking the orthogonal sum with the usual inner product
on scalars. B and L have the property, that the scalar matrices are
orthogonal to kc. Hence if λ is the highest weight of a representation of
gi(rriι) x g£(m2), which vanishes on the space of scalar matrices, then
the values of the Casimir of kc and that oigt(muC) xg£(m2, C) taken
with respect to λ coincide. Moreover C m i and C m 2 are orthogonal with
respect to either B or L. Hence the Casimir of g£(mι) x g£(m2) taken
with respect to either B or L, decomposes as the sum of the Casimirs of
gί(rriι) and gί{m2). Let Cι

κ (resp. Cι

L)(i = 1,2) denote the Casimir of
g£(mi) taken with respect to B \ gί(πii). (resp. L \ g£(mi)). Then for a
highest weight λ of a representation oigi{m^C) x g£(m2, C) vanishing
on the scalars, we have

and
KCL) = Xi{C'L) + X2(Cl)

where λx (resp. λ2) denotes the projection of λ to C m (resp. C™2) .
With respect to the standard notation, the roots are:
Roots of s£(m, C) : ±(e< - eά)(l <i <j <m)

Roots of s£{muC) : ±(e< - eά)(l < i < j < mi)
Roots of s£(m2, C) : ±(e^ — ej)(m1 + 1 < i < j < m).

Write fcc — fco Θ s£{rriι, C) Θ s£(m2, C) where fco is the center of fcc

Let Oi be the representation of kc on s£{m^C). We have to show
that Hι(M,E(σi)) = (0).

The representation α = ad\ of fcc on p + can be identified with the
representation of g£(mι) x g£{m2) on C m i ® (Cm 2)*, which is trivial on
the scalars. The highest weight of α = eλ — em, and it vanishes on the
scalars.
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σx (resp. σ2) restricts to the adjoint representation of st{mx,G)
(resp. sί{m2,C)) and is trivial on s£(m2,C) (resp. si{muC)). Hence
in order to find the representations occuring in σ; ® a(i = 1,2), it is
enough to decompose the tensor product representation Ad0 ® ω\ of
gt(n,C) (for n = rrii oτ ra2), where Ad0 denotes the adjoint repre-
sentation of g£(n, C) on the space of trace 0 matrices and ωλ is the
standard representation of g£{n, C) on C n . Note that a restricted to
gl{mι) (resp. gl{m2)) is isomorphic to ω^resp. ωl).

Now Ad0 QAd~Cn® (Cn)* and

(Cn ® (Cn)*) ® C n ~ (Cn ® Cn) ® (Cn)*

® (Cn)* Θ (Λ2Cn) ® (Cn)*

From the Weyl dimension formula, it is easy to see that as gί{n)
modules,

(52Cn) ® (Cn)* ~ V{2ex - en) ® Vfa)

Λ2Cn ® (Cn)* - V(ex +e2- en) ® F e J

where F(2eχ — en) (resp. V{β\ + e2 — en)) is the representation of
g£(n, C) with highest weight 2eχ — en (resp. βx + e2 — en).

Since L15^(mi) = Ai5 | sl(mι) and L | sί{m2) = A 2 5 | s^(m2), and
L and 5 are same on the orthogonal complement of sί(mι) x sί(m2)
inside gί{mι) x gi(m2), we have for i = 1,2

where λi0 is the orthogonal projection of A» to scalaj vectors in C m i (1 =
1,2).

Let C be the Casimir of gt{n, C) with respect to the usual inner
product on C n . Then it is easy to see ωλ{C) = n, Ado(C) = 2n. Let
r be a representation of gt{n, C) occuring in Ad0 ® ωλ. We have the
following table.

Table 2

T

α>i ~ V{iχ)

V(ί1+e2-en)
V(2£1+i2)

τ(C)
n

3n-2
on -f- Z

τ(C) + Ui(C) - Ado(C)
0

2n-2
2n + 2
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4.7.2. We now calculate D. Let T» be a represent occuring in θi
having highest weight $ .

(47)D(σ i,α,l,τ i)

= lτi(CL) + a(CL)-σi(CL)

4 (niCό-σiiCu))

D - σiL(Cj) + a{Cj)} + {τa{Cj) + a2{Cj) - σa{Cj)}
4 TiiC) - σi(Ck)

12(1-A1) || α 1 0 ||

4

1 2(1 - Aa) || α 2 0 | |
2 +A2{τi2(C2

κ) - σi2(C2

κ)

4 Ti(Ck) - σi(Ck)

Prom the table given above, we note that the quantities inside {,}

are > 0. Since we have the condition that Ti(Ck) — &i(Ck) > 0, we

see that D > 0. Thus in order to conclude about the vanishing of

H1(E(σi)) we have to check that D + Ax > 0 for all allowed choice 8 of

τ<. We have

Thus

(48)

Hence

Hence

(49)

4

D + λ

D + λ,

A!
1 4 -,

ι " 4

ι > 0

α(

ri{Ck)

if mi

TΠ,2 —

4m

> m 2 >

1

4

4

4.7.3. Prom (48), the minimum value of the right hand side occurs

when Ti(Ck) is the maximal possible value. Let us assume for example

that i = 1, and τi(Cfc) is maximum. We have

rχ{Ck) - σi(Ck) = { τ n ( C i ) - σ u ( C ^ ) } + {r12(C2

K) - σ12(C2

κ)}
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Now σί2 is the trivial representation and so rί2 — α 2 . For r n we can

assume that it has highest weight 2ex — e m i . Thus in this case,

~ σι(Ck) = (3m1 + 2) - 2m1 + m2 = m + 2

Similarly when i = 2, we find that

τ2(Ck)-σ2(Ck)=m + 2

We have α(Cfc) = πii + m2 = m. Thus

Am Am (m + 2)

(50) > 0 if m 2 > 3

4.7.4. Hence we are now left with £77(mi,2). We have that the

highest weight of α x is eλ and of α 2 is - e m . Thus

Prom (48), we see that

n > ^1 , ^ i «(g>) , 1 2(1 - Λ ) II αio | | a +2(1 - A2) [| α 2 0
U ~ 4 + 4 T^C*) -σ i (C,) + 4 r^C*) - ^ ( C O

and the equality is strict unless either A\ = ̂ 42 or T^CK) — σi2(Cjί) +
a2(C2

K)=0.
This can happen only when either mχ—m2 — 2, or that i = 2, and

τ22 is the representation with Casimir acting by the scalar m2.
Suppose i = 2 and τ22(Cχ) = m2.

Since σ2i is the trivial representation we have,

- 2ra2) = mλ - ra2

Since by (20), τ(Cfc) — σi(Ck) > 0, we have that mi > m2. Further

4 4 mi — m2

and

Π α _ χ ^ (m2 - 4)(mi - m2) + m2(mx + m 2)
- m 2 )
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which is clearly positive for ra2 > 2. Thus in this case we have D + λx>
0.

Coming back to the original inequality (48), on substituting for ai0

and taking for Ti{Ck) the maximum possible value we find that

n . (m2 - 4)(m + 2) + m2m + 4
D + λ l " 4m(m + 2)

with strict inequality if πii φ 2. When ra2 = 2, we see then that

(51) D + λi > 0 (mi > m 2 > 2)

When mi = m2 = 2, we get that JD + λx = 0 . Thus except when
G ~ S77(2,2) we have shown the vanishing of Hι{M, Efa)).

4.8. We now look at the situation when gc ~ o φ • 0 j
with r > 2, and where g. are simple Lie algebra, g. is one of the
types considered above. We have the corresponding decompositions,
fcc ~ fcj 0 0 fcr where fc^ is the complexification of the Lie algebra
of a maximal compact subalgebra of £., and p ~ p+ © © p+, where
p + is the space of holomorphic tangent vectors corresponding to the
symmetric space defined by g., insider gc.

Let σ be representation of fcc on any one of its simple components,

which we can assume without loss of generality is a simple component

of kx. Since a is assumed to be an irreducible component of £ + , α can

be any p + , thought of as a fcc-module. We note that with respect to the

metrics we are considering, there is a decomposition of the Casimir of

gc as a sum of the Casimir corresponding to the g.. We now calculate

the constants D.

i) a is the irreducible representation of fcc on p+. In this case the

values of the Casimirs of k_t (i > 2) are zero, and we are thus reduced

to the inequalities concerning the first cohomology of the holomorphic

vector bundle on cocompact quotients of GχjKx corresponding to the

representation σ oίK\.

ii) a is /^-representation p.,i ψ 1, then σ ® a is an irreducible

representation of fcc(σ © oί)(C) — σ(CΊ) + α ^

_ 1 σ(Cj) + ajjCj) - σ(Cj) + a^

4 σ{&k) + cui
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12ai(Cj)
4 MCI)

We are thus reduced to the inequalities concerning the first Betti
number of lattices in a simple group having Lie algebra g. . We see
from (3.11) and the calculations of this chapter, that when g is simple,
the first Betti number of M vanishes whenever the complex structure
on M is also rigid. Thus in the situation when g is not simple, the
positivity of D + λi reduces to showing it for the simple components
of £.

4.9. Summarising, we have from (43), (44), (45), (46), (42), (49),
(50), (51), that the following rigidity result holds:

Theorem 8. Assume that G is such that the simple components
of G are not of the type Jm,i(ra > 1), J2,2 — IV4i II3 ~ I3}1, III2 ^
JV3,. Then the complex structure on Γ\G/K' is infinitesimally rigid.
In particular the complex structure on Γ\G/T is infinitesimally rigid.
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