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A BERNSTEIN TYPE OF INEQUALITY
FOR EIGENFUNCTIONS
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Abstract

We proved a Bernstein type of inequality for eigenfunctions
on Riemann Surfaces. This result improves similar results by
H. Donnelly and C. Fefferman in two dimensions.

1. Introduction

The following Bernstein inequality is well known (cf. [8]). Let φ(θ)
be a trigonometric polynomial of degree < n. Then,

dφ
(1.1) max

O<0<2π dθ
< n max \φ\.

O<0<2π

A principal theme in [1], [2] is that an eigenfunction with eigen-
value λ on a closed manifold behaves like a polynomial of degree Λ/X
H. Donnelly and C. Fefferman proved in [1]

Theorem 1.1. Let M be a smooth closed Riemannian manifold of
dimension n, and u be an eigenfunction with eigenvalue λ. Then,

(1.2) max I Vd < ——— max Id .
Br(x) ' " r Br(x)

They also conjectured
Conjecture 1.2.

(1.3) max I Vd < — max Id .
V ; Bτ(x) ' ' " T Br(x) ' '
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The vanishing order estimates are simply corollaries of this inequality
(cf. [1] and [9] for vanishing order estimates). Therefore, the Bernstein
inequality reveals even deeper structure of eigenfunctions. Bernstein
inequalities are also known to be associated to the construction of am-
plification devices.

The main results of this paper are the following:

Theorem 1.3. Let M be a smooth closed Riemannian manifold
of dimension two, and u be an eigenfunction with eigenvalue λ > 1.
Then, for r < /

(1.4) max iVϊil < max \u\.
V ' Br(x) ' ' ~ r Br(x) ' '

Corollary 1.4. Under the same condition as above, for r <

(1.5) max \u\ < Ci0 max \u\.

Corollary 1.5. Under the same condition as above, for r <

c λ3/4

(1.6) max |Vti| < — max \u\.
Br(x) ~ r Br(x)

The idea of this work is derived from our note [4], in which we proved
that the Bernstein inequality for a harmonic function is a consequence
of the frequency estimate of the function in two dimensions. We would
like to thank Prof. S.-T. Yau, J. Spruck, F.-H. Lin and D. Jerison for
helpful discussions.

2. Bernstein inequality

Let (M, g) be a connected, smooth, closed two dimensional Rieman-
nian manifold. Suppose that Δ is the Laplace-Beltrami operator on
(M,g), and u is a real eigenfunction with corresponding eigenvalue λ,
i. e., Δu = —\u. We are only interested in large eigenvalues, λ > 1. Let
H be an upper bound of the absolute value of the sectional curvature,
and D be the diameter of the manifold.

Denote c to be any constant depends only upon H and D. Fix the
center and we use Br to denote a geodesic ball of radius r. Pulling back
the metric to the tangent space via the exponential map. The injective
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radius of the new metric is now controlled by H. Lift the eigenfαnction
equation and the eigenfunction (by abusing the notation, we still denote
it by u) to the tangent space and restrict ourself to a smaller convex
geodesic ball, we can assume that under polar coordinates ds2 = dr2 +
p2dθ2,

~ pdr \Pdr)+ pdθ \pdθ)'

Make the radius even smaller, we can further assume that p is a mono-
tonely increasing function in r. Let ds2

H = dr2 + pl(r)dθ2 be the
canonical metric on the space form with sectional curvature — H, where
po(r)=sinh\/Hr/\fH.

Define q = | Vu| + Xu2/2 and let M(r) = max5 r q.
Lemma 2.1.

(2.1) ~ (po-flnM(r)) > -c14λ.
ρodr \ dr )

Proof. Observe that M(r) is a monotonely non-decreasing function
in r and that M(r) > q(r,θ).

Suppose first that M(r) > max&Br q. M(r) is constant near r and
therefore (2.1) holds.

Now suppose that M(r) = g(r, 0O) for certain 0O InM —Ing archives
its local minimal at (r, θ0). Hence, Δ lnM — Δ \nq > 0.

On the other hand, it follows from our results in [6] that

Δlng > -λ + 2min(ίί,0) + 4π ] Γ (k{ - 1) δPi.
i

Here δPi is the Dirac function centered at pi. This gives us

Δ InM{r) > -c1 5λ.

Finally, the fact that In M(r) is non-decreasing and the comparison
theorem for Laplace-Beltrami operators shows that

Δ In M(r) < AH In M(r) = — 4~ (p^
ρodr \ dr

where Δ^ is the Laplace-Beltrami operator in the space form ds2

H.
Lemma 2.2. For r < c^A"1/4 and e > 0, we have

(2.2) - (InM(r) - lnM(r(l - e)) < c17V\.
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Proof. Define
dr

(2.1) can be transformed into

— M > -

Let tλ = ί(r(l - €)),<2 = *(r) and t3 = <(2r). We have ί2 - *i <
and 3̂ —1 2 > c2o Elementary calculus shows that

lnM(2r) - In Af(r) lnM(r) - lnM (r(l - c))

We proved in [6] that

maxg <

or
lnM(2r) - In M(r) <

Therefore,

- [lnM(r) - lnM(r(l - e)] < C24Λ/X + c25λr2.

Noticing that r < ^eλ"1/4, we are done.
Theorem 2.3. Let M be a smooth closed Riemannian manifold

of dimension two, and u be an eigenfunction with eigenvalue λ. Then,
for r < ^

(2.3) max | Vixl < ^^- max Id .m
B

Proof. Take e = c29/\/λ in Proposition 2.2. Then (2.2) shows that

M(r) <
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where ri = r — δ and δ = c31r/>/λ. Suppose q(xo) = M(rχ) for some

x0 e Bri. Than we have dBδ(x0) C Br, standard elliptic estimate

implies that

IVt. (xo)\ <Cf[ \u\<Cf T \u\ = ̂  ma* |u|.
0 JdBs(xo) 0 Br r Br

Thus,

M(ri) = ςf(xo) ==
 |VW(Λ;O)|2 + λ/2 |w(xo)|2 < C35^" ( m a x 1̂ 1)

r2 \ Br j

Finally,

lr-7 I ^ I\jrί \ ^ C 36Vλ . .

max I \u\ < yJM\r) < max \u\.
Br » r Br

As an application of the theorem, we have
Corollary 2.4. Under the same condition as above, for r < c37λ"

max \u\ < G 3 8 maac |.tcι|.

Ψroqf. Defining m(r) = maxβr \%i\ 9 the above theorem tells us that

—m(τ) < max vϊil < m\τ).

/

r(l+£) ^ ^ ^ rr(l+e) Cλn

m(τ) Jr τ

= c4i\/λln(l + e).

It is obvious that

max \u\ = max I max m(τ), max \u\ I
( / ^ ) \[r,r(l+l/VX)] B' )

< max ( (l + 1/λ/λJ m(r), max |u| J
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Removing the restriction r < c 4 4 λ" 1 / 4 in Theorem 2.3, we have
Corollary 2.5. Under the same condition as above, for r < c 4 5,

max I Vul < max \u\.
Br ' ' - r Br ' '

Proof. There is nothing more to prove if r < c47λ~1//4. Assuming
that r > c4 8λ~1 / 4, and that max β r |Vu| = |Vtx (xo)\, for some x0 G Br.
Notice that we have taken r to be sufficiently small so that Br is convex.
Therefore, we can find a smaller ball Br> (p) such that r' = c49λ~1//4 and
x G Brι(p) C Br. Applying the above theorem to Br>(p) and observing
that maxβr,(p) \u\ < m a x ^ |tt|, we have

max IVu\ = max IVu\ < max \u\ < max \u\.
B ' ' B ( p ) ' ' ~ r' B ' ' - r B ' '

References

[1] H. Donnelly & C. Fefferman, Growth and geometry of eigenfunc-
tions of the Laplacian, Lecture Notes in Pure and Applied Math.
Vol. 122, Dekker, New York, 1990.

[2] , Nodal sets of eigenfunctions on Riemannian manifolds,

Invent. Math. 93 (1988) 161 - 183.

[3] , Nodal sets of eigenfunctions on surfaces, J. Amer. Math.
Soc. 3 (1990) 333 - 353.

[4] R.-T. Dong, A Bernstein type inequality for harmonic functions,
Preprint, 1994.

[5] , A BMO bound for eigenfunctions on Riemannian man-
ifolds, Proc. workshop on Degenerate Diffusions. IMA. Min-
neapolis, 1993.

[6] , Nodal sets of eigenfunctions on Riemann surfaces, J. Dif-
ferential Geometry 36 (1992) 493 - 506.

[7] R. Hardt & L. Simon, Nodal sets for solutions of elliptic equations,

J. Differential Geometry 30 (1989) 505 - 522.

[8] A. Torchinsky, Real-variable methods in harmonic analysis, Pure
Appl. Math 123. Orlando (1986).



A BERNSTEIN TYPE OF INEQUALITY 29

[9] F. -H. Lin, Nodal sets of solutions of elliptic and parabolic equa-
tions, Comm. Pure Appl. Math. 46 (1991) 287 - 308.

[10] S. Chanillo & B. Muckenhoupt, Nodal geometry on Riemannian
manifolds, J. Differential Geometry 33 (1991).

UNIVERSITY OF CALIFORNIA, IRVINE




